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Introduction

For hundreds of years mankind has been fascinated with machines that display life-
like appearance and behaviour. The early robots of the 19" century were anthropo-
morphic mechanical devices composed of gears and springs that would precisely re-
peat a pre-determined sequence of movements. Although a dramatic improvement in
robotics took place during the 20" century with the development of electronics, com-
puter technology, and artificial sensors, most of today robots used in factory floors are
not significantly different from ancient automatic devices because they are still pro-
grammed to precisely execute a pre-defined series of actions. Are these machines in-
telligent? In our opinion they are not; they simply reflect the intelligence of the engi-
neers that designed and programmed them. In the early 90’s, we and other researchers
started to address this issue by letting robots evolve, self-organise, and adapt to their
environment in order to survive and reproduce, just like all life forms on Earth have
done and keep doing. The name Evolutionary Robotics was coined to define the col-
lective effort of engineers, biologists, and cognitive scientists to develop artificial ro-
botic life forms that display the ability to evolve and adapt autonomously to their en-
vironment.

Within this perspective, artificial intelligence is a continuous and open-ended process
that capitalises on physical interactions between the agent and its environment with-
out human intervention. Embodiment does not only provide realism and semantic
grounding to intelligent artefacts. It also provides opportunities that are unconceivable
for bodiless systems. Embodied systems can tap upon a virtually infinite range of sen-
sory cues and actions available in the physical world. Given the limits of their proc-
essing and behavioural abilities, they can be opportunistic and select only those sen-
sory cues and actions that are necessary to carry on with the business of survival and
reproduction. For example, ants can build magnificent nests with differentiated
space, climate control, and air filtering. They do so without resorting to a plan, but by
executing an evolved set of simple, but highly specific, sensory-triggered actions. In
embodied systems, computation, representation, and memory can be partially out-
sourced to the physical laws and material persistence of the world. Consider for ex-
ample the task of goal-directed navigation. One option to achieve that task is to build,
store, and use an internal model of the entire environment. Another option is to select
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and associate simple sensory cues with sequences of actions that will lead from one
cue to the next until the goal is reached. Whereas man-made intelligent systems tend
to use the first option, there is mounting evidence that animals (at least simple ones)
exploit the second option.

In this chapter we will give an overview of some milestone experiments in evolution
of physical robots and describe some examples of the intelligence that these robots
develop.

Evolutionary Robotics

The possibility of evolving artificial creatures through an evolutionary process had al-
ready been evoked in 1984 by neurophysiologist Valentino Braitenberg in his truly
inspiring booklet “Vehicles. Experiments in Synthetic Psychology”. Braitenberg pro-
posed a thought-experiment where one builds a number of simple wheeled robots
with different sensors variously connected through electrical wires and other elec-
tronic paraphernalia to the motors driving the wheels. When these robots are put on
the surface of a table, they will begin to display behaviours such as going straight, ap-
proaching light sources, pausing for some time and then rushing away, etc. Of course,
some of these robots will fall off the table. All one needs to do is continuously pick a
robot from the tabletop, build another robot just like one on the table, and add the new
robot to the tabletop. If one wants to maintain a constant number of robots on the ta-
ble, it is necessary to copy-build one robot for every robot that falls from the table.
During the process of building a copy of robots, one will inevitably make some small
mistakes, such as inverting the polarity of an electrical connection or using a different
resistance. Those mistaken copies that are lucky enough to remain longer on the ta-
bletop will have a high number of descendants, whereas those that fall off the table
will disappear for ever from the population. Furthermore, some of the mistaken copies
may display new behaviours and have higher chance of remaining for very long time
on the tabletop. You will by now realise that the creation of new designs and im-
provements through a process of selective copy with random errors without the effort
of a conscious designer was already proposed by Darwin to explain the evolution of
biological life on Earth.

However, the dominant view by mainstream engineers that robots were mathe-
matical machines designed and programmed for precise tasks, along with the technol-
ogy available at that time, delayed the realisation of the first experiments in Evolu-
tionary Robotics for almost ten years. In the spring of 1994 our team at EPFL (Swiss
Federal Institute of Technology in Lausanne) [8] and a team at the University of Sus-
sex in Brighton [15] reported the first successful cases where robots evolved with
minimal human intervention and developed neural circuits allowing them to autono-
mously move in real environments. The two teams were driven by similar motiva-
tions. On the one hand, we felt that a designer approach to robotics was inadequate to
cope with the complexity of the interactions between the robot and its physical envi-
ronment as well as with the control circuitry required for such interactions. Therefore,
we decided to tackle the problem by letting these complex interactions guide the
evolutionary development of robot brains subjected to certain selection criteria (tech-



nically known as fitness functions), instead of attempting to formalise the interactions
and then designing the robot brains. On the other hand, we thought that by letting ro-
bots autonomously interact with the environment, evolution would exploit the com-
plexities of the physical interactions to develop much simpler neural circuits than
those typically conceived by engineers who use formal analysis methods. We had
plenty of examples from nature where simple neural circuits were responsible for ap-
parently very complex behaviours. Ultimately, we thought that Evolutionary Robotics
would not only discover new forms of autonomous intelligence, but also generate so-
lutions and circuits that could be used by biologists as guiding hypotheses to under-
stand adaptive behaviours and neural circuits found in nature.
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Fig. 1. Left: Artificial Evolution of neural circuits for a robot connected to a computer. Right:
The miniature mobile robot Khepera in the looping maze used during an evolutionary experi-
ment.

In order to carry out evolutionary experiments without human intervention, at
EPFL we developed the miniature mobile robot Khepera [25] (6 cm of diameter for
70 grams) with eight simple light sensors distributed around its circular body (6 on
one side and 2 on the other side) and two wheels (figure 1). Given its small size, the
robot could be attached to a computer through a cable hanging from the ceiling and
specially designed rotating contacts in order to continuously power the robot and let
the computer keep a record of all its movements and neural circuit shapes during the
evolutionary process, a sort of fossil record for later analysis. The computer generated
an initial population of random artificial chromosomes composed of 0’s and 1’s that
represented the properties of an artificial neural network. Each chromosome was then
decoded, one at a time, into the corresponding neural network whose input neurons
were attached to the sensors of the robots and the output unit activations were used to
set the speeds of the wheels. The decoded neural circuit was tested on the robot for
some minutes while the computer evaluated its performance (fitness). In these ex-
periments, we wished to evolve the ability to move straight and avoid obstacles.
Therefore, we instructed the computer to select for reproduction those individuals
whose two wheels moved on the same direction (straight motion) and whose sensors
had lower activation (far from obstacles). Once all the chromosomes of the population
had been tested on the same physical robot, the chromosomes of selected individuals
were organised in pairs and parts of their genes were exchanged (crossover) with
small random errors (mutations) in order to generate a number of offspring. These



offspring formed a new generation that was again tested and reproduced several
times. After 50 generations (corresponding to approximately two days of continuous
operation), we found a robot capable of performing complete laps around the maze
without ever hitting obstacles. The evolved circuit was rather simple, but still more
complex than hand-designed circuits for similar behaviours because it exploited non-
linear feedback connections among motor neurons in order to get away from some
corners. Furthermore, the robot always moved in the direction corresponding to the
higher number of sensors. Although the robot was perfectly circular and could move
in both directions in the early generations, those individuals moving in the direction
with fewer sensors tended to remain stuck in some corners because they could not
perceive them properly, and thus disappeared from the population. This represented a
first case of adaptation of neural circuits to the body shape of the robot in a specific
environment.

The Sussex team instead developed a Gantry robot consisting of a suspended cam-
era that could move in a small box along the x and y coordinates and also rotate on it-
self [15]. The image from the camera was fed into a computer and some of its pixels
were used as input to an evolutionary neural circuit whose output was used to move
the camera. The artificial chromosomes encoded both the architecture of the neural
network and the size and position of the pixel groups used as input to the network.
The team used a form of incremental evolution whereby the gantry robot was first
evolved in a box with one painted wall and asked to go towards the wall. Then, the
size of the painted area was reduced to a rectangle and the robot was incrementally
evolved to go towards the rectangle. Finally, a triangle was put nearby the rectangle
and the robot was asked to go towards the rectangle, but avoid the triangle. A remark-
able result of these experiments was that evolved individuals used only two groups of
pixels to recognise the shapes by moving the camera from right to left and using the
time of pixel activation as an indicator of the shape being faced (for the triangle, both
groups of pixels become active at the same time, whereas for the rectangle the top
group of pixels becomes active before the lower group). This was compelling evi-
dence that evolution could exploit the interaction between the robot and its environ-
ment to develop smart simple mechanisms that could solve apparently complex tasks.

The next question was whether more complex cognitive skills could be evolved by
simply exposing robots to more challenging environments. To test this hypothesis, at
EPFL we put the Khepera robot in an arena with a battery charger in one corner under
a light source (figure 2) and let the robot move around as long as its batteries were
discharged [9]. To accelerate the evolutionary process, the batteries were simulated
and lasted only 20 seconds; the battery charger was a black painted area of the arena
and when the robot happened to pass over it, the batteries were immediately re-
charged. The fitness criterion was the same used for the experiment on evolution of
straight navigation (figure 1), that is keep moving as much as possible while staying
away from obstacles. Those robots that managed to find the battery charger (initially
by chance) could live longer and thus accumulate more fitness points. After 240 gen-
erations, that is 1 week of continuous operation, we found a robot that was capable of
moving around the arena, go towards the charging station only 2 seconds before the
battery was fully discharged, and then immediately returning in the open arena. The
robot did not simply sit on the charging area because it was too close to the walls and
its fitness was very low (remember from the previous experiment that robots had



higher fitness when its proximity sensors had lower activation). When we analysed
the activity of the evolved neural circuit while the robot was freely moving in the
arena, we discovered that the activation of one neuron depended on the position and
orientation of the robot in the environment, but not on the level of battery charge (fig-
ure 2). In other words, this neuron encoded a spatial representation of the environment
(sometime referred to as “cognitive map” by psychologists), computationally similar
to some neurons that neurophysiologists discovered in the hippocampus of rats ex-
ploring an environment.
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Fig. 2. Left: A Khepera robot is positioned in an arena with a simulated battery charger (the
black-painted area on the floor). The light tower above the recharging station is the only source
of illumination. Right: Activity levels of one neuron of the evolved individual. Each box shows
the activity of the neuron (white = very active, black = inactive) while the robot moves in the
arena (the recharging area is on the top left corner). The activity of the neuron reflects the ori-
entation of the robot and its position in the environment, but is not affected by the level of bat-
tery charge.

Competitive Co-evolution

Encouraged by these experiments, we decided to make the environment even more
challenging by co-evolving two robots in competition with each other. The Sussex
team had begun investigating co-evolution of predator and prey agents in simulation
to see whether increasingly more complex forms of intelligence emerged in the two
species [24]. They showed that the evolutionary process changed dramatically when
two populations co-evolved in competition with each other because the performance
of each robot depends on the performance of the other robot. In the Sussex experi-
ments the fitness of the prey species was proportional to the distance from the preda-



tor whereas the fitness of the predator species was inversely proportional to the dis-
tance from the prey. Although in some evolutionary runs they observed interesting
pursuit-escape behaviours, often co-evolution did not produce interesting result.

Fig. 3. Co-evolutionary prey (left) and predator (right) robots. Trajectories of the two robots
(prey is white, predator is black) after 20, 45, and 70 generations.

At EPFL we wanted to use physical robots with different hardware for the two spe-
cies and give them more freedom to evolve suitable strategies by using as fitness
function the time of collision instead of the distance between the two competitors
[10]. In other words we did not explicitly select predator robots for getting closer to
the prey and prey robots for keeping at a distance from predators, but we let them
choose the most suitable strategies to succeed the ultimate survival criterion: catch the
prey and avoid the predator, respectively. We created a predator robot with a vision
system spanning 36 degrees and a prey robot that had only simple sensors capable of
detecting an object at 2 cm of distance, but that could move twice as fast as the
predator (figure 3). These robots were co-evolved in a square arena and each pair of
predator and prey robots were let free to move for 2 minutes (or less if the predator
could catch the prey). The results were quite surprising. After 20 generations, the
predators developed the ability to search for the prey and follow it while the prey es-
caped moving all around the arena. However, since the prey could go faster than the
predator, this strategy did not always pay off for predators. 25 generations later we
noticed that predators watched the prey from far and eventually attacked it anticipat-
ing its trajectory. As a consequence, the prey began to move so fast along the walls
that often predators missed it and crashed into the wall. Again, 25 generations later
we discovered that predators developed a “spider strategy”. Instead of attempting to
go after the prey, they quietly moved towards a wall and waited there for the prey to



arrive. The prey moved so fast near the walls that it could not detect the predator early
enough to avoid it!

However, when we let the two robot species co-evolve for more generations, we
realised that the two species rediscovered older strategies that were effective against
the current strategies used by the opponent. This was not surprising. Considering the
simplicity of the environment, the number of possible strategies that can be effec-
tively used by the two robot species is limited. Even in nature, there is evidence that
co-evolutionary hosts and parasites (for example plants and insects) recycle old
strategies over generations.

Stefano Nolfi, who worked with us on these experiments, noticed that by making
the environment more complex (for example with the addition of objects in the arena)
the variety of evolved strategies was much higher and it took much longer before the
two species re-used earlier strategies [26]. We also noticed that the competing selec-
tion pressure on the two species generated much faster evolution and behavioural
change than in robots evolved in isolation under an externally defined fitness func-
tion. These experiments never stopped surprising us and indeed turned out to be a
source of inspiration for the best-selling novelist Michael Crichton in his latest sci-
ence fiction book Prey [6]. We feel that this area of research has still much to deliver
for the bootstrapping of machine intelligence.

Cooperative Co-evolution

Beside competition, living organisms display a sort of "collective intelligence", char-
acterised by complex levels of cooperation that provide them with higher evolutionary
advantage. For instance, it has been estimated that one-third of the animal biomass of
the Amazon rain forest consists of social insects, like ants and termites [17]. The suc-
cess of social insects might come from the fact that social interactions can compensate
for limitations of the individual, both in terms of physical and cognitive capabilities.

A social insect colony is a complex system often characterised by division of la-
bour and high genetic similarity among individuals [37]. Ants, bees, wasps, and ter-
mites provide some of the most remarkable examples of altruist behaviour with their
worker caste, whose individuals forego their own reproduction to enhance reproduc-
tion of the queen. These and other examples of group harmony and cooperation show
the colony as if it behaved as a "superorganism" where individual-level selection is
muted, with the result that colony-level selection reigns.

Biologists agree that relatedness plays a major role in favouring the evolution of
cooperation in social insects [19]. However, the concept of the colony as a super-
organism has been challenged [19]. In collaboration with ant biologist Laurent Keller
and robot designer Roland Siegwart, we are trying to determine whether the role of
relatedness and the level of selection can be experimentally demonstrated using colo-
nies of artificial ants implemented as small mobile robots with simple vision and
communication abilities (figure 4). For this purpose, we have defined experimental
settings where these robotic ants are supposed to look for food items randomly scat-
tered in a foraging area. The robots are provided with artificial genomes that code for
their behaviours in an indirect manner (i.e., the patterns of behaviour activation coded



by the same genetic code vary according to the phenotype frequencies in the colony).
There are two kinds of food items. Small food items can be transported by single ro-
bots to the nest. Large food items require two cooperating robot to be pushed away.
By varying the energetic value of the food items, we can put more or less pressure on
the advantage of cooperative behaviours.
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Fig. 4. Left: The sugarcube robot Alice equipped with vision system, distance sensors, commu-
nication sensors, and two frontal ,,mandibles” to better grasp objects. Right: The arena with
small and large objects. The nest is under the textured wall where a small gap let objects —but
not robots—fall on the floor.

In a first set of experiments carried out in simulation, we investigated how colony
performance evolved under different levels of selection (individual and colony level)
and under high versus low “genetic” relatedness between robots of the same colony.
We ran experiments using a minimalist simulator of the collective robotics evolution-
ary setup [28], and found that “genetically” homogeneous colonies of foraging simu-
lated robots performed better than heterogeneous ones. Moreover, our experiments
showed that altruistic behaviours have low probability of emerging in heterogeneous
colonies evolving under individual-level selection. Our current work is aimed at run-
ning these experiments in colonies of 20 sugar-cube robots in order to better study the
role of physical interactions.

Physical Interactions

Collaboration among animals can also take place at a pure physical level. For in-
stance, a mother can help her kids by pushing, pulling, or transporting them on the
back. Human acrobats can build towers with their bodies, ants can build bridges, rafts,
pulling chains or doors, and bees can build curtains or balls, for instance. In all these



examples the group of individuals can achieve a task impossible for a single individ-
ual by dynamically aggregating into different and functional physical structures. To
investigate this new research direction, in collaboration with other European partners
[29], we are developing a new robotic concept, called s-bot, capable of physically in-
terconnecting to other s-bots to form a swarm-bot (http://www.swarm-bots.org). Each
s-bot is a fully autonomous mobile robot capable of performing basic tasks such as
autonomous navigation, perception of the environment and grasping of objects (figure
5). Ants can lift each other and heavy objects with their mandibles and can establish
flexible connections between each other with their legs. Similarly, each s-bot is
equipped with a strong beak gripper that can lift heavy objects or another s-bot and
with a flexible gripper that can grasp another s-bot on the belt to maintain physical
contact. S-bots can organise in swarm-bot configuration by dynamically attaching to
each other and form various shapes according to environmental constraints or task
needs.

Fig. 5. Left: The prototype of the s-bot with the strong beak gripper and the flexible arm. Right:
Several s-bots can self-connect to build a swarm-bot capable of passing obstacles one single s-
bot cannot deal with.

In addition to these features, an s-bot is capable of communicating with other s-
bots by emitting and receiving sounds. S-bots can also use body signals by changing
the colour of their body belts to display their internal states. Other s-bots, with their
vision system, can see this corporal expression and react, for instance helping the
“red” robot, following the “blue” one, or connecting to the “green” one to form a
swarm-bot configuration. Assembled in swarm-bot configuration, the robots are able
to perform exploration, navigation and transport of heavy objects in very rough ter-
rain, where a single s-bot could not possibly achieve the task.

The control of this hardware structure is very challenging and has implications on
the whole design, from mechanics to software. In this project we resort to a combina-
tion of artificial evolution, behaviours inspired from the world of social insects, and
standard engineering methodologies. Standard engineering methodologies are applied
in all local sub-problems where classical approaches are well known, reliable and
form a basic structure on top of which we can build the collective control. This is for
instance the case of mechanical design, low-level motor control, sensor management
(not processing), and low level communication procedures. Bio-inspired solutions are
applied where natural mechanisms are well identified and can be translated into our



robot design and control. Examples of bio-inspired design elements are the shape of
the grippers and the interactive synchronisation of the robots when grasping an object.
Another bio-inspired element is the general concept to solve complex tasks with the
combination of many simple mechanisms. On the top of these two approaches we ap-
ply artificial evolution to exploit in the best way the specific properties of each part
for a given behaviour.

Artificial evolution generated a set of simple rules capable of coordinating the
movement of a group of connected s-bots [1]. In this particular case, evolution ex-
ploited the property of a force sensor within the body of each s-bot to integrate the
behaviour of the whole group without need of external communication or additional
coordination layers. These results indicate that physical interactions alone can provide
useful information for coordination. Still, it is the responsibility of the engineer to
provide sensors and actuators that can be handled efficiently by evolution. This illus-
trates a big difference with respect to natural evolution, where the behaviours and the
body of organisms co-evolve.

Active Vision and Feature Selection

Brains are characterised by limited bandwidth and computational resources. At any
point in time, we can focus our attention only to a limited set of features or objects.
One of the most remarkable —and often neglected— differences between machine vi-
sion and biological vision is that computers are often asked to process an entire image
in one shot and produce an immediate answer whereas animals are free to explore the
image over time searching for features and dynamically integrating information over
time.

We thought that the computational complexity of vision-based behaviour could be
greatly simplified if the processes of active vision and of feature selection are co-
evolved while the robot interacts with the environment. Each of these two processes
has been investigated and adopted in machine vision. Active vision is the sequential
and interactive process of selecting and analysing parts of a visual scene [2]. Feature
selection instead is the development of sensitivity to relevant features in the visual
scene to which the system selectively responds [14]. However, the combination of
active vision and feature selection is still largely unexplored.

To investigate that hypothesis, we devised a very simple neural architecture com-
posed of only one layer of synaptic connections (figure 6, left) that link visual neurons
to two sets of motor outputs. One set of output units controls the behaviour of the
system (for example, the movements of a robot or the categorisation of an image dis-
crimination system). The other set controls the behaviour of the vision system
(movement over the visual field, zooming factor, pre-filtering strategy). The synaptic
weights, which are genetically encoded and evolved using a simple genetic algorithm,
are responsible both for the visual features to which the system responds to and for
the actions of the vision system.

We carried out a series of experiments on co-evolution of active vision and feature
selection for behavioural systems equipped with primitive retinal systems and delib-
erately simple neural architectures [7]. In a first set of experiments, we show that sen-



sitivity to very simple features is co-evolved with, and exploited by, active vision to
perform complex shape discrimination [18]. We also show that such discrimination
problem is very difficult for a similar vision system without active behaviour because
the architecture must solve non-linear transformations (position and size invariance)
of the image in order to solve the task. Instead, the co-evolved active vision and fea-
ture selection system rely on linear transformations of parts of the image (oriented
edges and corners), which are actively searched and sequentially scanned in order to
provide the correct answer. In a second set of experiments, we applied the same co-
evolutionary method and architecture for driving a simulated car over roads in the
Swiss Alps and show that active vision is exploited to locate and fixate the edge of the
road while driving the car. In a third set of experiments, we used once again the same
co-evolutionary method and architecture for an autonomous robot equipped with a
pan/tilt camera (figure 6, right) that is asked to navigate in an arena located in an of-
fice environment [22]. Evolved robots exploit active vision and simple features to di-
rect their gaze at invariant parts of the environment (horizontal edge between the floor
and furniture) and perform collision-free navigation. In a fourth set of experiments,
we apply this methodology to an all-terrain robot with a static, but large, field of view
that must navigate in a rugged terrain. Here again, the system becomes sensitive to a
set of simple visual features that are maintained within the retina by the active vision
mechanisms.
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Fig. 6. Left: Architecture of the control system. The architecture is composed of A) a grid of
visual neurons with non-overlapping receptive fields whose activation is given by B) the grey
level of the corresponding pixels in the image; C) a set of proprioceptive neurons that provide
information about the movement of the vision system; D) a set of output neurons that determine
the behaviour of the system (pattern recognition, car driving, robot navigation); E) a set of out-
put neurons that determine the behaviour of the vision system; F) a set of evolvable synaptic
connections. The number of neurons in each sub-system can vary according to the experimental
settings. Right: The Koala robot equipped with a mobile camera whose image is fed into the vi-
sion neurons of the neural architecture.

Evolution of Learning

Another interesting direction in Evolutionary Robotics is the evolution of learning.
In a broad sense, learning is the ability to adapt during lifetime and we know that
most living organisms with a nervous system display some type of adaptation during
life. The ability to adapt quickly is crucial for autonomous robots that operate in dy-
namic and partially unpredictable environments, but the learning systems developed
so far have many constraints that make them hardly applicable to robots interacting
with an environment without human intervention. Of course, evolution is also a form
of adaptation, but modifications occur only over several generations, and that may re-
quire too long time for a robotic system (for a comparative discussion of lifelong
learning and evolution, see [27]). In order to compensate for the problems of both ap-
proaches, we decided to genetically encode and evolve the mechanisms of neural ad-
aptation [11]. The idea was to exploit evolution to find good combinations of learning
structures, rather than static controllers, and to evolve learning structures that without
the constraints of off-the-shelf learning algorithms. The artificial chromosomes en-
coded a set of rules that were used to change the synaptic connections among the neu-
rons while the robot moved in the environment. The results were very interesting.



A Khepera robot equipped with a vision system was put in an arena with a light
bulb and a light switch (figure 7). The light switch is marked by a black stripe painted
on the wall. The fitness is given by the amount of time spent by the robot under the
light bulb when the light is on. Initially the light is off. Therefore, the robot must first
go towards the black stripe to switch the light on (notice that the fitness function does
not explicitly encourage this behaviour). The black and grey areas on the floor are
used by the computer to detect through a sensor positioned under the robot when to
switch the light on and when to accumulate fitness points, but this information is not
given to the evolutionary controller. Evolved robot learned during their lifetime the
sequence of behaviours necessary to increase their fitness. These included: wall
avoidance, movement towards the stripe, movement towards the light, and resting un-
der the light.

Not only the evolution of learning rules resulted in more complex skills, such as
the ability to solve sequential tasks that simple insects cannot solve, but also the num-
ber of generations required was much smaller. However, the most important result
was that evolved robots were capable of adapting during their lifetime to several types
of environmental change that were never seen during the evolutionary process, such
as different light conditions, environmental layouts, end even a different robotic body.
Very recently, Akio Ishiguro and his team at the University of Nagoya used a similar
approach for a simulated humanoid robot and showed that the evolved nervous sys-
tem was capable of adapting the walking style to different terrain conditions that were
never presented during evolution [13]. The learning abilities that these evolved robots
display are still very simple, but current research is aimed at understanding under
which conditions more complex learning skills could evolve in autonomous evolu-
tionary robots.



Fig. 7. Left: A Khepera robot with a vision system is positioned in an arena with a light bulb
and a light switch (black stripe on the wall). At the beginning of the robot life, the light bulb is
off. The robot must develop from random synaptic connection using genetically determined
learning rules how to switch the light on and stay under the light bulb. Right: Trajectory of an
evolved robot with enabled synaptic adaptation.

Evolvable Hardware

In the experiment described so far, the evolutionary process operated on the features
of the software that controlled the robot (in most cases, in the form of an artificial
neural network). The distinction between software and hardware is quite arbitrary and
in fact one could build a variety of electronic circuits that display interesting behav-
iours without any software. A few years ago, some researchers realised that the meth-
ods used by electronic engineers to build circuits represent only a minor part of all
possible circuits that could be built out of a given number of components. Further-
more, electronic engineers tend to avoid circuits that display complex and highly non-
linear dynamics, and more in general those which are hard-to-predict, which may be
just the type of circuits that a behavioural machine requires. Adrian Thompson at the
University of Sussex suggested the evolution of electronic circuits without imposing
any design constraints [35]. Thompson used a type of electronic circuit, known as
Field Programmable Gate Array (FPGA), whose internal wiring can be entirely modi-
fied in a few nanoseconds. Since the circuit configuration is a chain of 0’s and 1’s, he
used this chain as the chromosome of the circuit and let it evolve for a variety of
tasks, such as sound discrimination and even robot control. Some evolved circuits
used 100 times less components than circuits conceived for similar tasks with con-
ventional electronic design, and displayed novel types of wiring. Interestingly,
evolved circuits were sensitive to environmental features, such as temperature, which
is usually a drawback in electronic design practice, but is a common feature of all
living organisms.

The field of Evolutionary Electronics was born and these days several researchers
around the world use artificial evolution to discover new types of circuits or let cir-
cuits evolve to new operating conditions. For example, Adrian Stoica and his col-
leagues at NASA/JPL are designing evolvable circuits for robotics and space applica-
tion [34], while Tetsuya Higuchi, another pioneer of this field, at the Electro-



Technical Laboratory near Tokyo in Japan is already bringing to the market mobile
phones and prosthetic implants with evolvable circuits [16].

Vi T

CF——<F—— <
é:)j—c'g')—’&:': /’ \ Expression of functionality Phenotype
<A AL I S—CF
Multi-cellular tissue ~
rd ~

(phenotypic layer)

W/Signalling uni(/47/§fferenliat'on uV Mapplng
AL Yy,
' ~

[ /
/

///
/ Chromosome // Genotype
/4

e g /
FPGA prototyping on real robot Cell architecture

Fig. 8. A schematic representation of the electronic tissue. Each cell of the tissue is composed
of three layers, a genotype layer to store the artificial genome of the entire tissue, a phenotype
layer to express the functionality of the cell, and an intervening mapping layer to dynamically
express the genes into functionalities according to gene expression and cell signalling proc-
esses. In addition, each cell of the circuit has input and output connections with the environ-
ment. Cells can be dynamically added or removed from the circuit at runtime. A prototype of
the electronic tissue has been added on top of the Khepera robot and evolved to generate tissues
of spiking neural controllers.

At EPFL, in collaboration with other European partners [36], we are pushing even
further the analogy between silicon devices and biological cells in the attempt to cre-
ate an electronic tissue capable of evolution, self-organisation, and self-repair
(http://www.poetictissue.org). The electronic tissue is multi-cellular surface com-
posed of several tiny re-configurable electronic circuits that can be attached or de-
tached while the tissue is in operation. Similarly to a biological cell, each electronic
cell is composed of three layers (figure 8). The genotype layer stores the artificial ge-
nome of the entire tissue. The phenotype layer expresses the functionality of the cell
such as a neuron, a hair cell, a photoreceptor, a motor cell, etc. Finally, the mapping
layer regulates the gene expression mechanisms depending on inter-cellular electronic
signals. In addition, each electronic cell or group of cells can be attached to a sensor
(a phototransistor, a whisker, a microphone, etc.) and/or to an actuator (a servomotor
or an artificial muscle). An artificial genome is sent to a mother cell that sends it to all
available cells, mimicking a process of cell duplication. As a cell receives a genome, a
process of gene expression starts. The gene expression mechanism is affected by in-
tercellular signals so that the functional property expressed by a cell partially depends
on the type and intensity of received signals, on its position in the tissue, on the time
of genome reception, and on environmental stimulation. For example, cells connected
to photoreceptors may have a higher likelihood to process photons. Early prototypes
of the system have been interfaced to a robot by connecting the sensors and actuators



to cells. The tissue has been subjected to an evolutionary process where different ge-
nomes are sequentially tested, reproduced, crossed over and mutated until the robot
displayed suitable navigation in a maze [32].

Evolutionary Morphologies

In the early experiments on evolution of navigation and obstacle avoidance (figure 1),
the neural circuits adapted over generations to the distribution of sensors of the
Khepera robot. However, in Nature also the body shape and sensory-motor configu-
ration is subjected to an evolutionary process. Therefore, one may imagine a situation
where the sensor distribution of the robot must adapt to a fixed and relatively simple
neural circuit. The team of Rolf Pfeifer at the A.L. laboratory in Zurich developed
Eyebot, a robot with an evolvable eye configuration, to study the interaction between
morphology and computation for autonomous robots [20]. The vision system of Eye-
bot is similar to that of houseflies and is composed of several directional light recep-
tors whose angle can be adjusted by motors. The authors evolved the relative position
of the light sensors while using a simple and fixed neural circuit in a situation where
the robot was asked to estimate distance from an obstacle while moving along a track.
The experimental results confirmed the theoretical predictions: The evolved distribu-
tion of the light receptors displayed higher density of receptors toward in the frontal
direction than on the sides of the robot. The messages of this experiment are quite im-
portant: on the one hand the body shape plays an important role in the behaviour of an
autonomous system and should be co-evolved with other aspects of the robot; on the
other hand, computational complexity can be traded with a morphology adapted to the
environment.

Back in 1997, when quadruped robots where still an affair of research laboratories,
we used a co-evolutionary approach to investigate the balance between morphology
and control of a four leg robot [12] (figure 9). More specifically, we were interested in
finding a good ratio between leg and body size as well as minimise the number of
motorised degrees of freedom provided by a behaviour-based control system with a
number of evolvable parameters. We carried out co-evolution of body and control in
3D simulations, but constrained the genetic representation of the robot morphology to
a number of primitives that could be built using available technology. Evolved robots
were capable of walking forward and turning very smoothly to avoid obstacles using
an infrared sensor positioned in front of the robot. These robots used rotating joints
only on the front legs. We then built a physical robot according to the dimensions
found by the co-evolutionary process (figure 9, right) and downloaded the evolved
control system for autonomous navigation. The physical robot displayed the same
walking behaviour shown in simulation, although it had a noticeable trembling (which
looked as if it was affected by the mad-cow disease) caused by the differences be-
tween simulations and physical reality. Since our purpose was to study the interac-
tions between body and control co-evolution, we did not attempt to improve the
walking behaviour of the physical robot. However, a possible strategy would be to
evolve the learning rules (as described in a section above) and have the “newborn”
physical robot adapt online to its own physical characteristics. Also adding some



noise to the sensors and actuator while simulating the robot may help bridge the gap
to reality [23] by avoiding that the controller over-specialises to the simulation.

Fig. 9. An evolved 4 legged robot. The control system of the robot, its body size, and length of
legs have been evolved in 3D simulations (left). The physical robot (right) has been built ac-
cording to the evolved genetic specifications. The evolved control system is transferred from
the simulated to the physical robot. Such evolved robot can walk and avoid obstacles. The robot
is approximately 20 cm long and less than 1kg without batteries. Leg control performed by a set
of HC11 microcontrollers.

Co-evolution of the body and controller has also been applied to biped robots [4].
The results showed better walking characteristics than when only the controller was
evolved. The idea of co-evolving the body and the neural circuit of autonomous ro-
bots had already been investigated in simulations by Karl Sims [33], but only recently
this has been achieved in hardware. Jordan Pollack and his team at Brandeis Univer-
sity have co-evolved the body shape and the neurons controlling the motors of robots
composed of variable-length sticks whose fitness criterion is to move forward as far
as possible [21]. The chromosomes of these robots include specifications for a 3D
printer that builds the bodies out of thermoplastic material. These bodies are then fit-
ted with motors and let free to move while their fitness is measured. Artificial evolu-
tion generated quite innovative body shapes that resemble biological morphologies
such as those of fishes.

A Look Ahead

Over the last 10 years, the role of embodiment and behavioural interaction has been
increasingly recognised as a cornerstone of natural and artificial intelligence. New re-
search initiatives in information technologies, neuroscience, and cognitive science
sponsored by the European Commission, U.S. National Science Foundation, and a
number of national programs explicitly emphasise these two aspects.

Many more examples of evolutionary robots exhibiting intelligent behaviours are
available out there, too many to be covered in this short document. However, we are
just scratching the surface of a radically new way of understanding how intelligent
life emerged on this planet and could evolve in machines. There are a number of con-
ceptual and technological challenges ahead. For example, evolution does not auto-
matically lead to intelligent behaviours. A lot of prior knowledge and experience is



still required to select appropriate parameters, such as the genetic encoding, the neural
network architecture, the mapping of sensors and actuator to the network or even the
fitness function. Developing better methodologies to select those parameters is an im-
portant aspect that needs to be tackled for evolving more complex systems. Also, we
are facing what is called the “bootstrap problem”. If the environment or the fitness
function is too harsh for the evolving individual during the initial generations (so that
all the individuals of the first generation have zero fitness), evolution cannot select
good individuals and make any progress. A possible solution (and by far not the only
one) is to start with environments and fitness functions that become increasingly more
complex over time. However, this means that we must put more effort in developing
methods for performing incremental evolution that, to some extent, preserve and
capitalise upon previously discovered solutions. In turn, this implies that we should
understand what are suitable primitives and genetic encoding upon which artificial
evolution can generate more complex structures. A key aspect will most likely be the
emergence of modular and hierarchical structures through mechanisms of genetic
regulatory networks, cell differentiation, and inter-cellular signalling. Another chal-
lenge is hardware technology. Despite the encouraging results obtained in the area of
evolvable hardware, many of us feel that we should drastically reconsider the hard-
ware upon which artificial evolution operates. This means that maybe we should put
more effort in self-assembling materials that give less constraints to the evolving sys-
tem, facilitate the evolutionary process, and may eventually lead to truly self-
reproducing machines.
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