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Abstract

Indirect genotype to phenotype mappings in the form of developmen-
tal systems may allow better scalability to larger phenotypes in evolvable
hardware. This report reviews developmental systems used in evolvable
hardware and it proposes a new classifications based on hardware charac-
teristics. It then describes a genetic encoding and developmental system
called the morphogenetic system which has been designed for multi-cellular
circuits. This morphogenetic system is inspired upon gene expression and
cell differentiation but it focuses on efficient hardware implementation.
An hardware implementation on the dynamically reconfigurable POEtic
circuit is described. It uses serial arithmetics and time-multiplexing to
minimize ressource use.

1 Introduction

Scalability to larger circuits is a problem frequently encountered in evolvable
hardware [55] 17, [I5] [12]. Genotype to phenotype mappings based on a develop-
mental process have been proposed to improve the scalability of the evolutionary
approach to larger phenotypes [57, [19].

This report first reviews developmental systems used in evolvable hardware.
It proposes a classification of those developmental systems which is based on
characteristics linked to their hardware implementation.

The report then describes the hardware implementation of a genetic en-
coding and developmental system based on gene expression and cell differen-
tiation called the morphogenetic system [41]. This morphogenetic system has
been developed for a multi-cellular reconfigurable circuit called POEtic [53]. In
particular it focuses on low computational complexity and efficient hardware
implementation. Previous experiments have shown that it performs well com-
pared to a direct genetic encoding when evolving neural networks to do pattern
recognition or robot control [41] and that it may scale better than a direct ge-
netic encoding when evolving phenotypes to resemble specific 2D patterns [40].
The hardware implementation is a multi-cellular (distributed) implementation
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which uses serial-arithmetics and time-multiplexing to reduce ressource uses,
yet development is still achieved at relatively high speed.

This report is organized as follows. Developmental systems used in evolv-
able hardware are reviewed and classified in section [2l The architecture of the
POEtic chip is summarized in section [3] The hardware implementation of the
morphogenetic system is described in section[d] Finally the results are discussed
in section [l

2 Developmental systems

Over the last 40 years, several scientists have proposed mathematical models
of development, notably Turing’s morphogenesis [52], Lindenmayer’s L-Systems
[26] and Kauffman’s random boolean networks [16].

In the early 1990s, Kitano proposed a graph generation system inspired upon
L-Systems to generate the connection matrix of neural networks [18]. Mjolsness
et al. proposed another evolutionary developmental model which consisted in
rules formed of recursive applications of growth equations [38] with the objective
of improving the scalability and generalization capabilities of neural networks
by reducing the size of the search space. Vaario et al. used L-Systems to control
the growth of neural networks [54].

In his 1993 review of the evolution of artificial neural networks, Yao dis-
tinguished between direct encoding schemes, where all connection parameters
are individually encoded in the genetic string, and indirect encoding schemes,
where the details of the architecture, such as the connections, are left to a train-
ing scheme or to developmental rules. In particular he mentioned that indirect
encodings allow a more compact representation of the network’s connectivity
and may be more biologically plausible [57].

De Garis, in his 1992 PhD thesis, predicted that the combination of evolution
and development would be applied to electronic circuits and he called this field
Artificial Embryology [3].

The following section reviews developmental systems used in evolvable hard-
ware. Afterwards, a classification of developmental systems used in evolvable
hardware is introduced.

2.1 Growing electronic circuits

Developmental systems may improve evolvability or scalability in evolvable
hardware, or to they can introduce fault-tolerance and adaptivity in hardware.
Research in this field is reviewed below.

Circuits represented in a Hardware Description Language (HDL) can be
evolved by a developmental process consisting of rewriting rules following a HDL
grammar, evolved by ”production” genetic algorithms [37]. This approach is
motivated by the need for automated hardware design processes for the evolution
of large circuits. Rewriting is controlled by a tree-structured chromosome where
each node contains a production rule that is recursively applied to a starting
symbol. Evolved HDL circuits are simulated to evaluate their fitness. The
approach has been used to generate controllers for artificial ants that must
follow a possibly interrupted food trail. The authors suggest that this approach



exploits regularities in the phenotype and therefore may be scalable to more
complex problems [13].

Motivated by the scalability problem which is encountered with direct ge-
netic encodings, Haddow and Tufte explored an indirect genetic encoding based
on L-Systems to evolve electronic circuits on a custom ”virtual” FPGA. The
virtual FPGA [10] has the features deemed necessary for unconstrained evolu-
tion [9]. It does not exist as a custom chip, but is implemented over a Xilinx
Virtex FPGA. The genetic encoding is an adaptation of L-Systems [26] for the
evolution of hardware. It consists of a set of rewriting rules recursively applied
to a ”growing” string starting from an initial axiom (starting string). Two types
of rule are used. Change rules replace a part of the configuration string with
another one of equivalent length. Growth rules are used to allocate new logic el-
ements (called s-blocks in the virtual FPGA terminology) on free space around
the s-block which triggered the rule. The starting axioms and development
rules are evolved using a standard genetic algorithm. The system was used to
evolve circuits with specific distribution of s-blocks on a 16x16 cell array with
moderate success [11]. Subsequent work considered the restriction of s-block
configuration to specific s-block types to help evolution find specific types of
circuits [50] and L-System rules were extended to be contextual and to control
cell death. Applications included the growth of structure from a single starting
cell (achieving a specific target size with a limited number of developmental
steps), the differentiation of cells (a number of different cell types should be
present after the developmental process) and the formation of patterns. In the
last case, a symmetrical pattern of cells had to be found within a limited number
of developmental steps. Those circuits were not implementing a particular func-
tionality and had limited size: 3x3 for the growth and differentiation, and 4x4
for the pattern formation. The developmental mechanism was implemented in
hardware on a dedicated processor [51] and the genetic algorithm was executed
in software on a standard desktop computer.

Gordon et al. explored a model of biological development for the evolution
of electronic circuit [8], which is akin to a minimalistic gene regulatory net-
work with binary protein concentrations in a locally interconnected 2D array
of cells. Cells implement a binary function of 4 inputs by means of a lookup
table (LUT). Development rules have preconditions indicating which proteins
must be present or absent for the postcondition to occur. Postconditions can
either generate a protein or change the functionality of the cell which occurs
either through a change of the cell’s input and output connectivity or a change
of LUT. Cells were implemented in a Virtex FPGA and unconstrained evolution
was performed to evolve simple arithmetic functions. While the evolvability of
the system was lower than a direct encoding, more regular and repeatable struc-
tures appeared in the content of the look-up tables. The authors argued that
this is a key point of developmental systems and they suggested that evolving
larger adders would become easier because they can be implemented with very
regular structures such as the ripple carry adder. In further work the model was
enriched by introducing diffusion and a finer detection of protein concentrations
in neighbouring cells. The 2-bit adder could be evolved with this new devel-
opmental model when the genetic algorithm was replaced with a hill-climbing
algorithm [7].

Developmental Cartesian Genetic Programming (DCGP) is a biologically
motivated cell-based developmental model [36]. In DCGP a cell implements



both a functional part (the phenotype) and a developmental part. The func-
tional part corresponds to the logic gates. The developmental part is a program
that has as inputs the cell’s connections, function and position in the circuit
and defines the new connections, function and whether the cell will duplicate
in the next developmental step. Development starts from a single initial cell
and all the cells of an organism share the same developmental program. The
developmental program of the cell is evolved. DCGP has been used to evolve
binary adders and even-parity functions. It was shown that a moderate degree
of generalisation is possible, although rare, by increasing the number of devel-
opmental steps to obtain a logic function of an additional input. The authors
remarked that the DCGP genotypes are less evolvable than direct encodings,
and that, although developmental systems may pay off with larger phenotypes,
the issue may be more complex than simply looking for a way of reducing the
genotype length.

De Garis approached the evolution of large-scale neural networks by imple-
menting them in a large scale cellular-automaton (CA) executed in a custom
hardware architecture designed for fast simulation [4]. The neural connections
are grown according to an evolved program. During development, growth signals
are sent along synaptic connections. When they reach the extremity of connec-
tions they induce growth, possibly altering the synaptic direction or creating
branchings. Whenever a synapse reaches another one or a neuron, a connec-
tion is established. The sequence of growth signals is genetically encoded. This
system has been used to produce waveforms of arbitrary shapes, to halve the
frequency of an input signal, to solve the XOR problem, to detect a moving line
and to detect a frequency or signal strength [5].

Embryonics (Embryological Electronics) is a large scale integrated circuit
that displays properties associated with living organisms, such as self-repair
and self-replication, by exploiting a simple developmental process [32] [30] [31].
Inside the Embryonics chip (i.e. a new type of FPGA) a subset of identical
rectangular cells forms an ”organism” with self-repair and self-replication prop-
erties. Cells are made up of reconfigurable logic elements called molecules which
provide self-testing mechanisms through spatial redundancy. As in living organ-
isms, Embryonics cells differentiate to execute different tasks. All the cells are
structurally identical and run the same ”"program” (i.e. the genetic code of the
entire organism). However, depending on the coordinates of the cell in the or-
ganism different execution paths are followed resulting in differentiation of the
cell functionality. As all cells contain the complete genetic description of the
organism, mechanisms such as self-reproduction and self-repair become possi-
ble. Self-repair is an alteration of the coordinate system in which faulty cells
are avoided by the developmental process.

Miller described a method to evolve the development program inside cells to
construct phenotypes of arbitrary size [34]. Cells, organised as a 2D array, have
a type and contain internal variables akin to chemical concentrations. The cell
program maps input conditions (chemical concentration and type of the cell and
of its immediate neighbours) to output behaviours: change of chemical produc-
tion, of cell type, death or growth of a new cell. The cell program is encoded
using Cartesian Genetic Programming [35] and evolved. The system is able
to evolve organisms with specific patterns of differentiated cells. Self-repairing
properties were illustrated by removing cells and letting the developmental pro-
cess recover the pattern of differentiated cells. The system is also capable of



adaptation by showing different developmental pathways in function of external
environmental signals. Hardware implementation of the developmental model
and its use for applications requiring self-repair and adaptation are under-way
[27].

Gene regulatory networks (GRNs) describe the interactions among genes and
proteins which may in turn activate or repress the expression of other genes.
They are the basis of development in living organisms, allowing to build very
complex structures from the comparatively small amount of DNA that those
organisms have [2, 56]. With the objective of improving the fault-tolerance of
bio-inspired electronic circuits, Koopman developed a simplified gene regulatory
model that is suited for cellular implementation in electronic circuits [21]. Each
cell contains a gene regulatory network that interprets an artificial genome con-
taining the rules of activation or repression of the production of proteins. The
protein production rules take into account the state of existing proteins in the
cells. The system was used to evolve circular patches of specific target sizes
and the fault-tolerance of the system was shown to be better than that ob-
tained with a direct genetic encoding. A compact hardware implementation
using fixed-point and bit-serial arithmetic is suggested for implementaion on
the POEtic circuit [53].

Models of development are also interesting to understand the complex reg-
ulatory pathways in organisms, for example to design drugs. Hardware im-
plementations of gene regulatory networks may allow faster simulations than
their software counterpart and compact implementations may be achieved by
exploiting analogies between CMOS circuits and GRNs [46]. While this imple-
mentation focuses on biological applications, it would be possible to evolve its
configuration string and use it as a developmental system for evolvable hard-
ware, with the advantage of the very compact implementation and high speed
of the analog implementation.

Koza et al. showed that genetic programming can be used to evolve circuits
[22]. In Genetic programming the chromosome is a tree representation of a
computer program or of a circuit (each node of the tree represents an element
of a circuit). The process by which the tree-representation of the chromosome
is decoded to form a circuit may be considered a minimalistic form of a devel-
opmental system. Koza and others showed that genetic programming can be
enhanced by using automatically defined functions which provide modularity
and gene reuse [24] 23]. This method has been successfully applied to design
low-pass filters, two-band crossover filters, amplifiers, etc [25].

Lohn et al. explored a linear representation of an analog circuit coupled
with an unfolding process [28, 29]. This developmental system is used to evolve
analog circuits composed of two- or three-terminal elements (resistors, capaci-
tors, inductors and transistors). The chromosome consists in a list of bytecodes
that are executed sequentially. Each bytecode indicates which new element to
add to the circuit and how to interconnect it. The authors argued that this
encoding generates many topologies which are seen in hand-designed circuits,
even though not all the topologies can be encoded.

Mattiussi et al. proposed a genetic encoding which is decodable even after
major reorganization by genetic operators, and at the same time which allows
for gradual changes in phenotype under certain genetic operators. It has been
demonstrated by evolving analog circuits [33]. The chromosome is scanned
for substrings which identify components, components values (e.g. capacitor



values) and terminal labels. Interconnections among component terminals are
implemented as resistors whose values are inversely proportional to the degree
of similarity among the strings identifying the terminals. This genetic encoding
can always generates legal phenotypes. The authors noted that the genetic
encoding is also suited for the evolution of neural networks and gene regulatory
networks.

Developmental systems are also used to evolve neural networks and mor-
phologies. For reviews of those fields see [11, 20, [45].

2.2 Classification

To classify developmental systems which are employed in evolvable hardware,
we propose a to look at key characteristics of their implementation, described
below.

Extrinsic or intrinsic developmental system: Inspired from the difference be-
tween intrinsic and extrinsic evolution in evolvable hardware [4], which distin-
guishes the physical implementation of an evolved circuit from its simulation,
we want to distinguish similarly between the execution of the developmental
system in software or in hardware.

By extrinsic developmental system we mean that the developmental mech-
anism is executed in software on a PC. The execution of the developmental
system converts the genotype into the phenotype (a circuit) which can then be
implemented physically or simulated.

By intrinsic developmental system we mean that the developmental system
is implemented in the same hardware as the circuit which is evolved (e.g. the
same chip).

Centralized or distributed/cellular developmental system: In the case of an
intrinsic developmental system we wish to distinguish between a centralized
implementation or a distributed or cellular implementation.

In a centralized implementation a single hardware unit is in charge of running
the developmental mechanism in the same hardware as the evolved circuit. This
can be a CPU or a dedicated coprocessor in a system on a chip.

In a distributed approach the developmental system is executed by many
independent but communicating units. In a multi-cellular electronic circuit this
may be called a cellular implementation: each cell implements the developmental
process in addition to its normal functionality.

The latter implementation may faster, more scalable, more biologically plau-
sible, and possibly more robust than a centralized implementation, at the ex-
pense of more space.

Online or offline development: In online development the developmental
process is running continuously to decode the genotype into the phenotype. It
may also react to changes in the environment. Online development is biologically
plausible and could allow for characteristics which are seen in living organisms
such as growth or self-repair.

In offline development the developmental process decodes the genotype into
the phenotype in one step. Once the phenotype is obtained the developmental
process can be stopped. Although this is biologically less plausible, this may
save hardware resources when implementing the developmental system.

In this review most developmental models are extrinsic [13] [7] [36, [34], 22, [21]
25, [33] and few are intrinsic [46} 31} B, 5I]. Among those, some model biological



gene regulatory networks in hardware but do not have the objective to develop
circuits (although it could be a basis to do so) [46]. Embryonics [31] employs
a direct genotype to phenotype mapping, however evolution is not yet used to
find working circuits. To the author’s knowledge the only intrinsic evolutionary
developmental systems are the CA-based growth of neural networks of de Garis
et al. [5] and the L-System-based encoding of Haddow and Tufte [51].

Embryonics and the CA-based growth of neural networks use a cellular im-
plementation of the developmental system, while the L-System-based encoding
uses a centralized implementation.

All the developmental systems in this review operate offline, with the excep-
tion of Miller’s cellular program which showed that intrinsic development can
lead to fault tolerant or adaptive development [34].

3 POEtic chip

Evolvable hardware is the creation of electronic circuit by using artificial evo-
lution [I4]. However evolution is only one of the three sources, or axis, of
biological inspirations that the POE model distinguishes [43] [44]. The three
axis are: Phylogeny (evolution) which describes how organisms change over the
course of several generations, ontogeny (development) which is the development
of an organism starting from a single cell, and epigenesis (learning) which is the
adaptation or learning that an organism is capable during its lifetime.

Combining those three axis may lead to hardware with better properties. De-
velopment may improve the evolvability of circuits or may lead to self-repairing
and self-reproducing circuits [31]. Learning, the process by which the synaptic
connections changes under specific stimuli, may allow a controller to improve
its response in function of past events or to adapt to new environments [6].

The three-year European project called POEtic [53] set to explore the com-
bination of those three axis in hardware. For this purpose a novel reconfigurable
circuit, the POEtic chip, has been developed as a generic platform to implement
bio-inspired systems. POEtic is a common project of the Swiss Federal Insti-
tute of Technology in Lausanne, the University of Lausanne, the University of
York, the University of Glasgow and the Technical University of Catalunya in
Barcelona.

The POEtic chip [39] [48] [49, 47] has been developed to be a flexible sub-
strate to implement bio-inspired mechanisms in hardware. One of the objec-
tive of this chip is to favour the implementation of mechanisms of self-repair,
self-reproduction, development, learning, and evolution [53]. Keeping with the
bio-inspired terminology, those circuits are sometimes referred to as organisms.
The POEtic chip consists in reconfigurable logic which can be configured to
implement the desired bio-inspired mechanisms, in a way similar to FPGAs.

The features of the POEtic chip are the following.

POFtic system on a chip: The POEtic chip is a SoC (System on a Chip)
composed of a CPU, reconfigurable logic and 1/O peripherals. Bio-inspired
mechanisms that are better suited for a software implementation (e.g. evolu-
tionary algorithms) or communication with I/O peripherals (e.g. to send data
out of the chip) can be implemented in the CPU. Organisms are implemented in
the reconfigurable logic. I/O peripherals allow communication with the chip’s
outside (e.g. with a robot or sensors).



Direct and fast CPU access to configuration bits: The configuration bits of
the reconfigurable logic can be accessed directly and very fast from the CPU.
This is important as evolutionary techniques may need to test lots of circuit
configurations before finding suitable solutions. Commercial FPGAs usually
require an external interface which slows down reconfiguration.

Documented configuration bits: The POEtic chip offers a documented con-
figuration string. Therefore evolvable hardware experiments are possible and
the resulting circuits can be analysed by looking at the evolved configuration
string. Recent FPGAs do not offer such possibility anymore.

Hardware self-reconfiguration: Hardware self-reconfiguration of one logic ele-
ment by another one may allow adaptive hardware (e.g. a logic elements is repro-
grammed to act differently depending on environmental stimuli), self-repairing
or developing hardware (e.g. logic elements reconfigure spare logic elements
with a copy of their configuration bits to recover functionality or instantiate
new functional elements).

Support for evolutionary algorithms in CPU instruction set: Evolutionary
algorithms are stochastic search algorithms and therefore they make extensive
use of pseudo-random number generation. They also manipulate chromosomes
(bit strings) at the bit level. The POEtic CPU instruction set provides instruc-
tions of that kind to speed up evolutionary processes.

Dynamic routing: The POEtic chip has a novel concept of dynamic rout-
ing through which connections between components can be built automatically
and at run-time by the hardware in a distributed way. This enables dynamic
reorganization of routing within the chip. This feature is deemed necessary for
self-repair, self-reproduction and also to react to changing environments (e.g.
changes in location of sensors or actuators). In conventional FPGAs physical
connections must be planned at design-time and cannot be changed at run-time.

The POEtic chip is illustrated in figure (I} It is composed of two subsystems:
the environmental subsystem which contains a CPU and its peripherals and the
organic subsystem which is reconfigurable logic.

In a typical application the environment subsystem is in charge of configuring
the organic subsystem, interfacing with the outside of the chip through the
numerous I/O peripherals which are available, and also running evolutionary
algorithms and measuring the circuit fitness. The organic subsystem is used
to implement the actual circuits which have e.g. learning, development or self-
repair capabilities.

The environment subsystem is centered around a 32-bit, five-stage pipeline
RISC microprocessor with 32 registers and a Harvard architecture. The in-
struction set contains specific instructions for evolutionary algorithms: random
number generations and bit manipulation. An AMBA bus is used to interface
with peripherals and the organic subsystem. The peripherals are: 2 UARTSs
(serial lines), 12C and SPI interface, an 8-bit parallel port, 2 16-bit timers, a
16x16 bit hardware Booth multiplier, and the organic subsystem interface. The
latter allows access to the configuration bits and to the status and control bits
of the organic subsystem.

The organic subsystem is organized as two layers as illustrated in figure
The lower layer is composed of an array of reconfigurable logic elements called
molecules which are locally interconnected. This is where cells or functional
blocks are implemented in the organic subsystem. The above layer is an array
of dynamic routing units (RU) which are used for long distance connections
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Figure 1: The POEtic chip is composed of two subsystems. The environment
subsystem is composed of a CPU and several peripherals. In a typical appli-
cation it is used to interface with the outside of the chip, program the recon-
figurable logic and run the evolutionary algorithm. The organic subsystem is
the reconfigurable logic where circuits which may have capabilities to learn or
develop are implemented. The organic subsystem is composed of two functional
elements: molecules, which are programmable logic elements, and routing units
which are capable of dynamic routing.

among cells or functional blocks. A RU is shared by a group of 4 molecules
underneath.

Molecules are composed of a 16-bit memory, a flip-flop and a switch box for
local communication (see figure . A molecule can operate in different modes
according to its configuration. In the 4-LUT mode the molecule is a 4-input
lookup table. In the 3-LUT mode the molecule is used as two 3-input LUT. This
mode allows efficient implementation of arithmetic operations (e.g. comparison,
additions). In the memory mode the molecule implements a 16-bit shift memory.
The input and output modes are used to send/receive signals to/from the routing
layer. A trigger mode is used to synchronize the routing layer. The configure
mode allows self-reconfiguration by transferring the content of the molecule
memory into the configuration of a neighbouring molecule. Eventually in the
communication mode the 16-bit memory is split in an 8-bit shift memory and
in a 3-input LUT. This mode may be used for packet-based communication.

The routing array is composed of locally connected routing units which are
capable of dynamic routing. The routing array is used for long distance con-
nections. A routing unit is connected to a group of four underlying molecules.
The functionality of the routing unit is given by the input or output molecule
in this group. Routing units are passive when there is no underlying input or
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Figure 2: The organic subsystem is composed of two layers on top of each
other. The lower layer is an array of molecules (reconfigurable logic elements)
and the upper layer is an array of routing units which are used for long distance
communication and dynamic routing.
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Figure 3: Moleculecular array (left) with close-up on the molecule (right) which
reveals the 16-bit memory (middle), the flip-flop and the switch-box for local
interconnection.

output molecule.

Routing units situated at the border of the array are connected to pins of
the chip. Therefore signals on the chip pins can be accessed from the molecular
array via the routing layer. Furthermore the chip is designed in such a way
that several chips can be interconnected pin-to-pin to achieve a larger array
of reconfigurable logic. In this case routing can be done across several chips
transparently.

Routing units are capable of dynamic routing: connections between the
routing units are built automatically at run-time. Dynamic routing relies on
identifiers which are used as the addresses of the routing units. Those identifiers
are stored in the 16-bit register of the corresponding input or output of molecule.
A breadth first search algorithm implemented in the routing units is used to find
a path between source and target routing units which have the same identifier.
Path can also be changed, added or removed at run-time by locally reconfiguring
the input or output molecules. For instance, by changing the content of the
16-bit register containing the identifier, the source or target of a path can be
changed. Therefore new connections can be made even if they are not initially
planned.
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Figure 4: The three arrays on the left are snapshots of the signaling phase with
one type of signal and two diffusers (gray cells) at the start of the signaling
phase (left), after two time steps (middle) and when the signaling is complete
(right). The number inside the cells is the intensity of the signal in hexadecimal.
The expression table used in the expression phase is shown on the right. In
this example the signal D matches the second entry of the table with signal F'
(smallest Hamming distance), thus expressing function Fj.

4 POEtic implementation of the morphogenetic
system

The morphogenetic system is a genetic encoding and developmental system for
multi-cellular circuits which has been designed with compact hardware imple-
mentation in mind [41]. As such the computational and memory requirements
have been kept to a minimum. Only shift operations, decrements, increments
and comparisons are needed. In particular none of the costly operations of
multiplication or division operations are necessary. After summarizing the op-
eration of the morphogenetic system, an implementation optimized for space is
described for the POEtic circuit.

4.1 Summary

The morphogenetic system assigns a functionality to each cell of a multi-cellular
circuit from a set of predefined functionalities. The process works in two phases:
first a signalling phase then an expression phase. The signalling phase relies on
the ability of the cellular circuit to exchange signals among adjacent cells to
implement a diffusion process. The expression phase finds the functionality to
be expressed in each cell by matching the signal intensities in each cell with a
corresponding functionality stored in an expression table. Evolution is applied
to the location of the diffusing cells, and to the content of the expression table.

Inter-cellular communication allows the exchange of signals between adja-
cent cells. A signal is a simple numerical value (the signal intensity) that the
cell owns, and that adjacent cells are able to read, akin to a chemical concen-
tration. Signals may be of different types (i.e of a different chemical nature).
The intensity of signal s in cell i is noted by C?.

Special cells, called diffusers, own a signal of maximum intensity. Signalling
ensures that the signal intensity in the neighbouring cells decreases linearly with
the Manhattan distance to the diffuser. The signalling algorithm is illustrated
in table [1l First, all the signals are initially tagged as uninitialized, except for
diffusers. Signals of each type are processed independently, without interactions
among them (i.e. as if they were in different chemical layers). The intensity of
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1  Tag in each cell the intensity of the signals as uninitialized. Decode the
chromosome to find the location of the diffusers. Initialize the intensity of
the corresponding signal to the maximum value of 15.

2 For each signal s and each cell 7 do:

3 If the cell is a diffuser of signal s, or if the intensity of signal s is already
set then skip this cell.

4 Compute the intensity of signal s. It is the value of any initialized sig-
nal in a neighbouring cell minus one. If all existing neighbouring cell are
uninitialized, then the intensity of signal s remains uninitialized.

5 Repeat step 2 to 4 15 times to complete the diffusion mechanism.

Table 1: Implementation of the signalling phase of the morphogenetic evolu-
tionary system.

Signal intensities Fu.nc-
tion
R
Expression
table

n-1 n-1 n-1 n-1

Ty | To| Ta| T4 | F

n-1

Figure 5: Top: expression table T with n entries. In this case four chemicals
are used therefore each entry is 16 bit long.

uninitialized signals is then computed. It is equal to the value of the correspond-
ing signal in any of the neighbouring cell minus one, if that signal is initialized
(if it is not, then the signal remains uninitialized). This process is repeated until
no more changes occurs in the signals. In the current implementation there are
4 type of signals and the signals are represented by a 4-bit number . Therefore,
after 16 steps (2* = 16) the developmental process is completed. Figureshows
an example of the signalling phase in the case of a single type of signal, with
two diffusers placed in the cellular circuit.

The expression phase assigns a function to each cell by matching the signal
intensities inside that cell with the entries of an expression table T' (fig. |5)
stored in the genetic code. Each entry of the table contains the intensities of
the four signals and the function to express in case of match. The intensity of
signal s in the entry j of the table is noted by T7. A cell i is said to match
an entry j of the expression table when the distance d = 221:1 DOp(Ci,TY) is
minimum. The distance operator DOp is the Hamming distance.

4.2 Hardware implementation

The hardware implementation uses 4 type of chemicals and 4 type of cells since
those are the settings used in most experiments done with the morphogenetic
system [4I]. As an additional motivation, 4 signals can be efficiently stored in a
single memory molecule. Note however that more type of cells can be handled
with minor modifications.

The implementation consists in an array of locally interconnected morpho-
genetic elements which implement the signalling and expression mechanisms
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within cells.

In the 3-layered view of POEtic cells which distinguishes the genotype, map-
ping and phenotype layers [53], the morphogenetic element would belong to the
mapping layer and to the genotype layer because it contains the expression
table which is part of the genotype. The genotype layer is completed by the
POEtic CPU which configures the diffusers in morphogenetic elements prior to
operation.

To keep the implementation generic, the phenotype layer is not part of the
morphogenetic element as it is application dependent. Instead an output of the
morphogenetic element indicates the functionality (cell type) that the phenotype
layer has to implement.

Serial operations are favoured over parallel operations, therefore trading
speed for smaller size. In particular bit-serial arithmetic (one bit of result is
computed at each clock cycle) is used. The molecules of the POEtic circuit
are well suited for this: shift memory molecules store efficiently 16-bit numbers
and a serial addition, substration or comparison can be done with a single 3-
LUT molecule (i.e. one LUT of the molecule computes the sum while the other
computes the carry, which is memorized by the flip-flop for the next clock cycle).

Although the number of clock cycles for serial arithmetics depends of the
bit length of the operands, it is best to extend the operation to a multiple of 16
clock cycles which corresponds to a complete rotation of values stored in shift
memories. We define the term molecular cycle as 16 clock cycles.

Morphogenetic elements need to exchange signal intensities and wvalid flags
which indicate whether signals are initialized (i.e. whether signal intensities
are valid). The dynamic routing mechanism of the POEtic chip is used for
this purpose and serial communication (data is transferred bit by bit) is used
to minimize the number of communication lines. Eventually a single connec-
tion is used to send the 4 signal intensities and the 4 valid flags to connected
morphogenetic elements.

The morphogenetic element has 4 inputs and one output which are con-
nected to the 4 neighbouring morphogenetic elements by the dynamic routing
mechanism at run-time. Plus it has another output which is the functionality
the phenotype should take. The block schematic of the morphogenetic element
is illustrated in figure [6}

It is composed of two main parts: the signalling block and the expression
block. The signalling block handles I/0, the diffusion mechanism, and provides
the signal intensities for use in the expression block. The cellular input
receives the signal intensities and the valid flag from neighbouring elements
over the dynamic routing layer. The valid signal is selected by input select
and then decremented by decrement-compare. Normalize renormalizes the
signal if it is invalid or below zero. Eventually the signal intensity and the valid
flag is stored in diffusion memory. It is then provided to the expression block
and afterwards it is sent to the cellular output at the next developmental
step.

The expression block provides the function output of the element by sequen-
tially comparing the signal intensities with each of the entries of the expression
table. The content of the shift memory expression table is compared to the
signal intensities in the cell with the Hamming distance. This distance is com-
pared to the current shortest distance by compare distance. If the current
distance is shorter the shortest distance is updated and the best function
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Figure 6: The morphogenetic element is composed of two main blocks: the
diffusion block handles input, output and implements the diffusion mechanism,
whereas the expression block finds the functionality to express in the cell ac-
cording to the signal intensities. The cellular input and cellular output
subblocks exchange signals with the connected morphogenetic elements via the
dynamic routing layer of the POEtic chip. Function is the output intended for
the phenotype of the cell: it indicates the functionality that the cell must take.

found until now is updated with the ever increasing value of the function
counter.

The morphogenetic element continuously executes the developmental pro-
gram. One developmental step consists of the sequential execution of the sig-
nalling and expression blocks. Figure [7] illustrates this and indicates the time
necessary to complete each operation. The signalling block operates in two
modes. During the first 5 molecular cycles it sends/receives the signal intensi-
ties to/from the neighbouring morphogenetic elements and updates the signal
intensities according to the signalling rules. In the following 11 molecular cy-
cles, the signalling block continuously provides at each molecular cycle the 4
4-bit signal intensities (i.e. a sequence of 16 bits) to the expression block to
implement the matching process. The expression block alternates between two
phases which implement the expression mechanism of the morphogenetic sys-
tem. Two molecular cycles are required for each entry in the expression table
because computing the Hamming distance and comparing it to the previously
stored Hamming distance (i.e. to know if a better match has been found) are
operations taking one molecular cycle. The sequence of operations is described
below.

1. I/O: The signalling block sends the intensity of its signals and its valid bits
to connected morphogenetic elements. At the same time it receives those
of its neighbours. Each signal is sent and received during one molecular
cycle: the first bit represents the valid bit (i.e. if the signal is initialized),
the following 4 bits are the signal intensity, and the remaining 11 bits are
ZEros.

2. DIFF: At each molecular cycle the intensity of one signal is updated ac-
cording to the diffusion rules. After 4 molecular cycles all the 4 signals
have been updated. Afterwards the newly computed signal intensities in
the morphogenetic element are provided to the expression block for the
expression phase.
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Figure 7: Sequence of operations for one developmental step, with the corre-
sponding control signals.

3. EXPR: The expression phase is executed to find the index of the entry in
the expression table best matching the intensities of signals in the morpho-
genetic element. Expression consists of two molecular cycles for each entry
in the expression table, plus two molecular cycles to initialize the process.
Those molecular cycles are EXPR-0 and EXPR-1. During phase EXPR-
0 the Hamming distance is compared with the shortest stored distance.
During phase EXPR-1 the Hamming distance is computed, the shortest
distance and the best entry are updated if needed, and the index in the
expression table is incremented. EXPR-0-R and EXPR-1-R correspond
to the initialization of the expression phase.

4. EXPREND: The index is transferred outside of the morphogenetic element
for use by the phenotype layer of the cell.

A complete developmental step takes 16 molecular cycles, with 5 molecular
cycles used for I/O and diffusion, 10 molecular cycles used for expression (2
molecular cycles are required per entry in the expression table, and 2 additional
molecular cycles are required to initialize the process) and the last molecular
cycle outputs the functionality of the cell.

Complete development, which requires 16 developmental steps, takes 16-16-
16 = 4096 clock cycles. In contrast to a software implementation, this time is
independent of the phenotype size.

Several control signals (see fig. manage the sequencing of the signalling
and expression blocks. Control signals are efficiently implemented by memory
molecules configured as rotating memories.

The complete schematic of the POEtic implementation is given in figure
and the molecular layout of the implementation is illustrated in figure [0
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Figure 9: Molecular layout of the morphogenetic element: 56 molecules are
required to implement the morphogenetic element.

The morphogenetic element is implemented in 56 molecules. They are
distributed as follows: 12 implement control signals (in comparison to the
schematic two molecules implement the same control signal in the layout to
reduce the routing ressources), 25 implement the signalling block (5 are used
as inputs and outputs via the dynamic routing layer) and 19 implement the
expression block (4 of them are memories to store the expression table).

A 3 by 3 array of morphogenetic element after interconnection by the dy-
namic routing mechanism is illustrated in figure Extensive simulations were
done to ensure that the behaviour of the hardware implementation is identical
to the software implementation.

5 Discussion and conclusion

The morphogenetic system, a developmental system and genetic encoding with
indirect genotype to phenotype mapping, has been implemented in hardware on
the POEtic circuit.

The low computational complexity of the morphogenetic system translates
in compact hardware implementation. A cellular hardware implementation of
the morphogenetic system on the POEtic circuit uses 56 molecules per cells to
implement the morphogenetic process. As a comparison, POEtic molecules are
approximately equivalent to a a Logic Element in Altera families of FPGA. Be-
cause of the cellular implementation, complete developmental takes 4096 clock
cycles whatever the size of the phenotype is. Assuming a reasonable operating
frequency of 10MHz of the chip this means that development of about 2000 in-
dividuals/sec is possible. The morphogenetic system is relatively compact and
fast and it still has very interesting properties of evolvability and scalability
compared to direct genetic encodings in several classes of applications [41] [40].

As a comparison, other developmental systems have been implemented in the
POEtic circuit. A multi-cellular evolving and developing circuit with a direct
genetic encoding has been implemented using 40 molecules per cell [42]. This
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Figure 10: A 3x3 array of morphogenetic elements. Interconnections are done
at run-time by the dynamic routing mechanism of the POEtic chip.

system exploits features of the POEtic chip to implement growth and differen-
tiation mechanisms: cells, which are initially undifferentiated and unconnected,
connect to each other and differentiate by expressing a corresponding part of
the genetic code and thereby taking a specific functionality in the circuit. How-
ever, this developmental system does not seek to address the issue of scalability
encountered in evolvable hardware, but it demonstrates the dynamic reconfigu-
ration features of the POEtic chip. As a consequence a direct genetic encoding
is used, which explains the smaller cell size. Also, hardware friendly genetic
regulatory networks (GRNs) have been implemented in the POEtic circuit [21].
A preliminary implementation of a cell requires about 200 molecules. GRNs
have the advantage of having intrinsic spatial and temporal dynamics which
can be exploited to implement the development and the functionality of cells.
For instance oscillatory circuits evolve easily and robustness to faults was evi-
denced. However this comes at a price: the size of the GRN cell is much larger
than that of the morphogenetic element.

Comparison with other intrinsic developmental systems is difficult due to the
disparity in hardware platforms. The L-System-based developmental models of
Haddow and Tufte is intrinsic and centralized, implemented in a coprocessor
dedicated to the development mechanism [50]. The developmental system of
Embryonics does provide self-repair and self-replication however a direct geno-
type to phenotype mapping is employed, and no evolution has yet been used to
find working circuits [31]. The cellular-automata-based growth of neural net-
works of de Garis was used in relatively simple tasks but seems to require a lot
of computing power [5]. Interestings results in extrinsinc developmental systems
were obtained in terms of fault-tolerance and adaptivity [34] and an intrinsic
implementation is considered [27].

The morphogenetic system is an intrinsic, online and cellular developmental
system, which is where we believe most of the benefits of developmental systems
lie. Intrinsic development means fast genotype to phenotype mapping and close
interaction of the developing circuit and its environment. Together with on-
line development it may allow adaptation to the environment or fault-tolerance.
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Finally a distributed development is faster, may be more robust than a central-
ized one and is more scalable. Still, the full potential of online development is
not yet achieved as the hardware implementation of the morphogenetic system
does not yet address the issue of adaptation or fault-tolerance. This remains
the subject of future work, however interesting preliminary results in terms of
fault-tolerance were obtained in software simulations [40].
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