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Abstract

We review recent experiments in evolutionary robotics
carried out in dynamic environments and across di�er-
ent robotic platforms. We then introduce a new evo-
lutionary approach where robots are evolved for their
ability to adapt online. Several experiments show that
this new approach is much faster, more powerful, and
scalable than the traditional approach.

1 Evolutionary Robotics

Autonomous robots are largely replacing computers as
a metaphor for investigating natural and arti�cial in-
telligent systems because they interact with a real en-
vironment through sensors and actuators in a closed
feedback loop, are subject to the laws of physics, oper-
ate in real-time, and are required to cope with partially
unknown and unpredictable situations. Arti�cial evo-
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Figure 1: A single physical robot is connected to a
host computer through a serial cable with rotating
contacts. The serial cable provides power to the robot
and data communication. The population of chromo-
somes, genetic operators, and decoding takes place on
the host computer, but the decoded control system
runs on the onboard processor. The �tness is com-
puted onboard without external measuring devices.

lution is a selectionist procedure that discovers suit-
able controllers by exploiting the interactions between
the robot and its environment rather than following a
model-based adaptation scheme [1]. The approach is
characterized by online evolution carried out on phys-
ical robots without human intervention and simple �t-
ness functions in order to emphasize environmental in-
teractions (�gure 1).
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Figure 2: An evolved 4 legged robot. The control sys-
tem of the robot, its body size, and length of legs have
been evolved in realistic 3D simulations. The physical
robot in the picture has been partially built accord-
ing to the evolved genetic speci�cations. The evolved
control system is transferred from the simulated to the
physical robot. Such evolved robot can walk and avoid
obstacles. The robot is approximately 20 cm long and
weights less than 1 kg without batteries. Leg control
is given by low consumption HC11 microcontrollers.

Evolved sensory motor controllers adapt their navi-
gation strategies to the physical characteristics of the
environment and of the robot hardware. The method-
ology has been applied to several types of robots, with
wheels and legs (�gure 2). When placed in more com-
plex environments, robots can evolve neural mecha-
nisms that build internal representations of space and
time in relationship to internally-de�ned goals [2].

When co-evolved with a competing robot (�gure 3),
the reciprocal bootstrapping of the competing con-
trollers drives the ecosystem to increased levels of com-
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Figure 3: Prey and predator robots co-evolved in com-
petition with each other. The predator on the right
has a vision system; its �tness is inversely proportional
to the time it takes to hit the prey. The prey can be
seen thanks to its characteristic black protuberance
and does not have vision, but it can detect if some-
thing is nearby with infrared sensors and can go at
double speed than the predator. The �tness of the
prey is proportional to the time it manages to sur-
vive without being hit by the predator. The \arti�cial
brains" of the two robots are arti�cial neural networks.

plexity and eventually to behavioral cycles displaying
rapid alternation of non-trivial pursuit-evasion strate-
gies [3].

The most important concept is that the �tness func-
tion should leave space for free interaction between
the robot and its environment; in other words, the �t-
ness function should not be very detailed. This allows
the robot to explore several di�erent ways of solving
a problem making evolution easier, faster, and often
surprising for an external observer.

2 Evolution of Adaptive Robots

Traditionally, arti�cial evolution operates on param-
eters of the controllers, such as synaptic connections
and architectures, that are maintained �xed during
operation of the controller. This approach does not
capture the adaptive plasticity that characterizes bio-
logical nervous systems. One way to re-adapt to new
conditions, such as a new robot platform (�gure 4), is
to incrementally continue evolution in the new condi-
tions, but this often takes long time [4].

I suggest to exploit arti�cial evolution for discover-
ing adaptive controllers that can continuously modify
their synaptic parameters in relation to environmental
inputs according to evolved adaptive rules. In other
words, the genetic string encodes only the parameters
of Hebbian plasticity that drive synaptic modi�cation,
but not the synaptic strengths. Every time an individ-
ual is born, its synaptic values are randomly initialized
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Figure 4: Incremental evolution across platforms. Ini-
tially a neural control system has been evolved using
a miniature mobile robot Khepera. After 100 genera-
tions, the last population has been transferred on the
much larger and more powerful Koala robot shown in
the �gure and evolution has been resumed. The pop-
ulation takes 20 generations to readapt to the new
sensors, motors, and geometry of the larger robot.

Bits for one synapse
Condition 1 2 3 4 5

1 sign strength
2 sign Hebb rule rate

Table 1: Genetic encoding of synaptic parameters.
1: Traditional approach; 2: Evolution of adaptive
synapses.

(always, from generation 1 to the �nal generation) and
are let free to adapt using the evoved Hebbian rules
while the robot moves in the environment.

In this new approach arti�cial evolution selects indi-
viduals that can adapt continuously and online start-
ing always from random initial weights. This does
not allow evolution to impress on the synaptic weights
a strategy that �ts a particular environment (which
would not generalize to environmental changes), but
rather forces evolution to discover individuals capable
of solving a problem by adapting online to the actual
environmental characteristics.

Table 1 shows the di�erence of synapse encoding be-
tween the traditional approach (row 1) and our new
approach (row 2). In both approaches, the �rst bit of
each synapse encode its sign (excitatory or inhibitory).
In the traditional approach, the remaining four bits
encode the synaptic strength as a value in the range
[0; 1]. No changes take place during the life of the
individuals. In the second case instead, two bits en-
code four Hebbian rules and the remaining two bits
the learning rate (0:0, 0:337, 0:667, and 1:0). The four
Hebb rules are: \pure Hebb" whereby the synaptic



strength can only increase when both presynaptic and
postsynaptic units are active, \presynaptic" whereby
the synapse changes only when the presynaptic unit
is active (strengthened when the postsynaptic unit is
active, and weakened when the postsynaptic unit is in-
active), \postsynaptic" whereby the synapse changes
only when the postsynaptic unit is active (strength-
ened when the presynaptic unit is active, and weak-
ened when the presynaptic unit is inactive), and \co-
variance" whereby the synapse is strengthened if the
di�erence between pre- and post-synaptic activations
is smaller than a threshold (half the activation level,
that is 0.5) and is weakened if the di�erence is larger
than such threshold. After decoding a genotype into
the corresponding controller, each synapse was ran-
domly initialised to a value in the range [0; 1] and mod-
i�ed at each time step according to the corresponding
hebbian rule and learning rate.
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Figure 5: Three examples of co-evolved predator (�lled
disk) and prey (empty disk). The genes of the two
robots encode adaptive characteristics of the synapses.
Prey robots always attempt to modify weight in ran-
dom fashion to generate unpredictable behaviors. In-
stead predator robots evolve combinations of Hebbian
rules that almost always succeed at hitting the prey
by quickly modifying their behaviors online.

Evolved adaptive controllers are capable of quickly
generating stable behaviors from randomly initial-
ized synaptic strengths. Although the synapses keep
changing in relation to presynaptic and postsynap-

tic activations, the controller is dynamically stable.
The ability of rapid online adaptation proves useful
in dynamic environments. For example, co-evolved
predator robots with adaptive controllers are better at
catching prey robots because they can rapidly switch
between di�erent behavioral strategies depending on
the prey behavior [5].
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Figure 6: A robot equipped with a vision module can
gain �tness points only when it is sitting on the light
(grey zone on the left) when the light is on. Initially
the light is o�, but the robot can switch it on by going
over the black area on the right. No �tness points are
given for the light switching behavior.

Evolution of adaptive controllers can develop solu-
tions for complex problems that the traditional ap-
proach can hardly manage. Consider for example the
robot in �gure 6 equipped with a vision module, prox-
imity sensors, and light sensors. This robot can gain
�tness points only when it sits on the grey area on the
left when the light is on. At the beginning of its life
the light is o� but it can be switched on if the robot
goes to the right area on the right of the arena. There-
fore, in order to receive �tness points this robot must
evolve the ability to �nd the light switching area, go
there, and once the light goes on rapidly move on the
�tness area and remain there for the rest of its life. 1

Our adaptive approach can solve generate very quickly
neural controllers that solve this problem in a very
reliable and e�cient manner, whereas the tradiotnal
approach takes almost twice as many generations and
the result is a much less e�cient (because it is equiva-
lent to a �xed navigation pattern largely independent
of the sensory information).
Since in the new adaptive approach synaptic weights

adapt online, the genetic encoding can be made more
more compact by specifying only the adaptive prop-
erties of entire neurons. Very recent results indicate
that this amounts to faster evolution and generates
more robust controllers [6]. It is thus a promising
step toward arti�cial evolution of developmental rules

1Note that the robot cannot see the patches on the oor and

therefore must look at the patterns on the walls and at the light.



for neural morphologies. From an engineering per-
spective, evolution of adaptive controllers provides a
method for generating systems capable of rapid self-
con�guration and increased robustness.
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