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Incremental Robot Shaping II

Abstract: We propose a modular architecture for autonomous robots which

allows for the implementation of basic behavioral modules by both programming

and training, and accommodates for an evolutionary development of the inter-

connections among modules. This architecture can implement highly complex

controllers and allows for incremental shaping of the robot behavior. Our pro-

posal is exempli�ed and evaluated experimentally through a number of mobile

robotic tasks involving exploration, battery recharging and object manipulation.
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1 Robot Shaping

Modern approaches to behavior engineering of autonomous robots have stressed

the importance of modular and distributed architectures composed of simple and

interconnected elements (Brooks, 1990; Dorigo & Schnepf, 1991, 1993; Dorigo

& Colombetti, 1994) where each component has full or partial access to sensory

data and can a�ect the actions taken by the robot. Distributed modular control

has several potential advantages: it is an open system, it is intrinsically robust

to local failures, and it is suitable for gradual \shaping", that is, incremental

training of independent behavioral competencies (Dorigo & Colombetti, 1998).

With modular architectures, relatively complex behavioral patterns can be

built bottom-up from a set of simple basic behaviors. Two aspects are of key

importance for the success of such an approach: (i) the set of basic behaviors,

�A preliminary version of this paper was published in the proceedings of the Genetic

Programming Conference, Madison, Wisconsin, 1998.

1
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and (ii) the mutual interactions among them. As regards the �rst point, the

choice of which behavioral modules to assume as basic is typically made by

a human designer. Once such a choice has been made, however, it is often

feasible to use machine learning techniques as an aid to the implementation of

the basic modules. Machine learning methods can also be exploited to develop

the interactions among modules.

A problem which is often di�cult to solve is �nding the optimal balance

between human design and the use of machine learning techniques. To �nd a

reasonable solution, one should always have a clear idea of why learning is used

in a speci�c application (Floreano, 1997). In fact, a robot's ability to learn

its own behavior can be exploited to: (i) cut development costs by relieving

human designers of part of their burden; (ii) bypass the practical impossibility

to completely describe the robot's environment and task a priori; (iii) endow

the robot with capacities for self-adaptation, which may play an essential role

in both optimizing behavior with respect to some performance measure, and in

coping with unforeseen changes in the environment.

However, to exploit machine learning techniques at their best, the whole

development activity has to be conceived and organized in the appropriate way.

In the course of our research, we have developed a methodology to assist an

engineer in the process of designing and training an autonomous robot. The

Behavior Analysis and Training methodology (BAT; Dorigo and Colombetti,

1998) is a �rst example of a behavior engineering methodology involving the

analysis of behavior, the integration of machine learning techniques with other

aspects of robot design, and the independent assessment of the learning activity

and of the resulting global behavior. The BAT methodology proposes a ra-

tional organization of the main phases of robot development based on learning

techniques, that is: application description and behavior requirements, behavior

analysis, speci�cation, design and implementation of the physical robot, train-

ing, and behavior assessment.

The two phases that more sharply distinguish BAT from classical methodolo-

gies for the development of software products are behavior analysis and training.
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Behavior analysis includes the speci�cation of the basic behaviors and of their

relationships. Training involves exploiting the robot's learning capacities in

order to develop the required behavior.

Among the possible approaches to machine learning, reinforcement learn-

ing seems to be particularly �t for developing robotic behaviors. The reason is

that the only information necessary to train a reinforcement learning agent is

a scalar evaluation of its behavior, which is relatively easy to produce as com-

pared to supervised learning requiring step-by-step feedback based on an error

value generated from a training set. As it has been argued elsewhere (Dorigo

and Colombetti, 1998), the Reinforcement Program (i.e., the computer program

that produces the evaluation of behavior) can be regarded as a high-level speci-

�cation of the desired behavior. From this standpoint, learning translates such

speci�cations into a working controller. Such translation is situated, in the sense

that it is sensitive to aspects of the actual robot-environment interactions which

may not be modelled in any part of the system, and of which the robot designer

might even be unaware.

It should be pointed out that robot controllers based on a complex interac-

tion of many basic components may be very di�cult to understand, and par-

ticularly so if a substantial amount of training has been carried out, due to the

sensitivity of learning to unmodelled aspects of the world. A lot of experimental

activity may be necessary to grasp their behavior to a satisfactory degree. This

fact makes the �nal assessment of the robot's behavior a more fundamental ac-

tivity than traditional system testing. Indeed, behavior assessment has to show

not only that the system learned what it has been taught, but also that it has

been taught the right thing which, in practical applications, might be far from

trivial.

As we have already pointed out, a major problem is in deciding what should

be explicitly designed and what should be left for the robot to learn from ex-

perience. In several practical situations, it is neither necessary nor advisable

to train a control system completely from scratch. On the one hand, learning

not only takes long time, but it also does not guarantee convergence if the pa-
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rameter search space is very large. On the other hand, there might be some

aspects of the behavior that could be easily pre-programmed exploiting avail-

able knowledge about the task constraints. A modular architecture can easily

accommodate both adaptive and pre-programmed modules.

Adaptation in modular architectures can take place at two di�erent levels:

within a module and between modules. The �rst level is often concerned with

acquisition of a new speci�c competence and/or with �ne tuning of some pa-

rameters of the module, such as threshold adjustments, to accommodate minor

changes in the environment or robotic platform. This aspect of adaptation is

equivalent to local search in a restricted parameter space and is well-suited for

learning paradigms such as, for example, reinforcement learning. The second

level of adaptation is concerned with coordination of all modules and/or with

acquisition and integration of new modules to cope with major environmental

changes and task constraints. This aspect of adaptation is analogous to a global

search over a coarser space composed of a �nite set of behavioral competencies,

and seems well-suited for an evolutionary approach (Brooks, 1992). The evo-

lutionary method chosen should allow for the addition and integration at later

stages of development of new modules necessary to cope with modi�cations of

the robot shell and/or new behavioral tasks.

Besides giving a contribution to the rapidly growing �eld of evolutionary

robotics, we hope our paper may play a part in the current trend of arti�cial

intelligence and robotics, which takes a deeper understanding of the biology of

intelligence to be an important prerequisite for success. While we do not aim

at modelling biological mechanisms in any strict sense, our work is biologically

inspired under several respects. In general, we think that biologically inspired

models can play a part at di�erent levels of system development, namely:

� at the functional level, where the functions of a system are considered with

respect to its environment;

� at the architectural level, where the internal structure of the system is

designed in relationship with its functions;
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� at the implementation level, where is considered the problem of concretely

realizing an architecture.

At the functional level, we have been inuenced by biology in considering be-

havior (viewed as the interaction between the system and its environment) as

the target of our work, and in taking adaptiveness as a basic feature for any

system which has to interact with the physical world. In agreement with the

BAT methodology, such a standpoint has direct consequences at the architec-

tural level: �rst, the centrality of behavior lead us to adopt a behavior-based

architecture; and second, the need for adaptiveness gives great importance to

the system's learning capabilities and to the methodology to be followed for

training. More precisely, the learning methods we have adopted (reinforcement

learning and evolutionary computation) are both inspired by biology, and the

shaping methodology used in training is loosely derived from experimental psy-

chology. In fact, the way in which a robot is trained through reinforcements

is remarkably similar to the procedure that psychologists use to train a labo-

ratory animal to perform a prede�ned behavioral response (Skinner, 1938): in

both cases, the �nal behavior is gradually approached by shaping the subject's

spontaneous behavior through rewards and punishments. In this work, we have

not pursued the biological analogy further down to the implementation level.

We believe however that the lower is the level of analysis, the stronger become

the constraints posed by the hardware used for implementation, which, in the

case of arti�cial systems, is remarkably di�erent from that of biological organ-

isms. Therefore, bringing biological inspiration down to the implementation

level raises a whole new set of issues and challenges that go beyond the scope

of this work.

Approaches related to shaping methodologies can be found in the work by

(Nehmzov & McGonigle, 1994), who implemented a pattern associator using

supervised learning to change on-line the weight strengths of a neural network

that controlled a mobile robot, and in the work by (Touretzky & Saksida, 1996,

1997), who presented a model of an operant conditioning technique in which be-
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haviors were progressively combined in order to yield more complicated action

sequences. Multi-level adaptation in modular architectures has been addressed

by (Jordan & Jacobs, 1994) work on mixture of experts and, in the context of

autonomous robotics, by (Tani & Nol�, 1998). Nol� also indicated that emer-

gent modularity might outperform hand-designed and pre-de�ned modularity

(Nol�, 1997b, 1997a). Asada worked on emergent behavior acquisition in mod-

ular architectures (Asada, Noda, Tawaratsumida & Hosoda, 1996).

This paper is organized as follows. In Section 2 we briey describe our

approach and methodology. In Section 3 we introduce our modular architecture.

In Section 4 we present a number of paradigmatic experiments and discuss their

results. Finally, in Section 5 we draw some conclusions.

2 The BAT Methodology

In this paper we describe the implementation on a real robot of an open modular

architecture that can be incrementally shaped via evolutionary and learning

mechanisms while the robot interacts with its environment. The three main

objectives of the proposed method are:

� the architecture must be capable of integrating adaptive modules with

pre-programmed behaviors;

� the system must allow for incremental and autonomous construction of

a suitable architecture, as demanded by the shaping policy or by major

changes in the task constraints;

� individual modules must be capable of quickly re-adapting themselves to

local changes without requiring a full re-engineering of the whole archi-

tecture.

As we have already remarked, the development of a modular robot controller

by design and training presupposes a suitable methodology, that is, a suitable
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ordering of critical decisions. Here we shall briey sketch the ordering of deci-

sions according to the BAT methodology (Colombetti, Dorigo, & Borghi, 1996;

Dorigo & Colombetti, 1998). The �rst step in the development process is a

su�ciently detailed description of the robot, the environment, and the target

behavior, that is, the task that the robot is intended to carry out. It should

be kept in mind that behavior is not a process produced by the robot alone;

rather, by behavior we mean the interaction between the robot's "body" (i.e.,

its physical shell) and the environment. For example, the very notion of obstacle

avoidance will be materialized by di�erent behaviors in an o�ce setting and in

an environment containing clusters of small, randomly placed obstacles.

The second step in the process of developing a modular controller is an anal-

ysis of the global target behavior, with the goal of breaking it down to a set of

simpler behaviors. The idea is that the robot's global behavior should emerge

from the interaction of basic behaviors, which in turn are not decomposed into

simpler elements but are generated from the interaction between the sensori-

motor mapping implemented by a single module and the environment in which

the robot is situated. In fact, the very notion of basic behavior is rather fuzzy.

In one context, grasping an object may be a basic action, while in another it

may be necessary to break the grasping behavior into a complex sequence of

simpler behaviors, each deserving a separate implementation. Only experience

with robot development can tell a designer where to stop the analysis.

Often, behavior analysis makes it clear that basic behaviors need special

sensors to gather the necessary input information from the environment, or

special e�ectors to act on the environment. The third step in the development

process therefore includes the design, implementation and testing of necessary

additions to the robot's sensorimotor interface.

The fourth step includes the implementation of the behavioral modules and

of their interconnections, which may be fully developed by hand or acquired

through some machine learning technique. In the experiments described later

on, some behavioral modules are directly programmed and some are learned,

while the interconnections are always learned.
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The use of learning techniques to develop robotic behaviors is far from triv-

ial. It is a main point of the BAT methodology that the ability to learn is best

exploited if an appropriate training activity is carried out. From the point of

view of the trainer, the details of the learning process are usually irrelevant.

However, the trainer must be aware of the kind of information that must be

provided during training to guide the learning process toward the target be-

havior. Moreover, when developing a modular architecture one has to decide in

advance how to "shape" the robot's behavior, choosing between a modular and a

holistic shaping strategy (i.e., training each basic behavior separately, and then

their interconnections, or training the whole target behavior in one shot). In

the experiments presented later on, we systematically adopt a holistic shaping

strategy. As regards the learning mechanism, we exploit reinforcement learning

techniques. This involves designing and implementing a suitable reinforcement

program, that is, a software module which generates the reinforcements used by

the learning algorithm to produce the desired behavioral modules and intercon-

nections.

The last step in the process of robot development is the �nal assessment

of behavior. When robot training is adopted, there is always the problem of

proving that the behavior obtained satis�es the initial requirements. When this

is not the case, there may be two di�erent reasons: either the robot has not

learned what it has been taught; or the robot has learned correctly, but it has

not been taught the right thing. Therefore, behavior assessment must clearly

distinguish between the e�ectiveness of the learning process and the correctness

of the reinforcement program.

3 The Modular Architecture

The control architecture employed is composed of a set of fully interconnected

modules.

|||||||||
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INSERT FIGURE 1 ABOUT HERE

||||||||{

Each module (�gure 1) has an input and an output. The input comes from

the sensors of the robot. The output consists of two messages: an activation

level that indicates whether the module wants to a�ect the robot current action

and an output vector which consists of a motor command. At each time step,

a winner-take-all process occurs among modules. The module with the highest

activation level wins the competition and is allowed to access the motor resources

and control the robot for a short time slice.

The internal structure of modules is based on two components: an activation

network and a behavior generator. The activation network decides the activation

level of the module by combining current sensory information with the weighted

sum of activation signals coming from other modules. The resulting activation

level, besides being used by the winner-take-all process, is also sent out to

the other modules in the architecture. Connections among modules can have

excitatory or inhibitory values. In our experiments the activation network is

implemented as a feedforward neural network. The behavior generator can

be a pre-programmed behavior, a neural network (as in �gure 1), a classi�er

system (Booker, Goldberg, & Holland, 1989), or any other structure suitable

for generating motor commands and other behavioral decisions in response to

sensory inputs.

Optionally, modules incorporate also a local learning algorithm and a re-

inforcement program. The learning algorithm can adapt both the parameters

of the activation network and of the behavior generator using a reinforcement

program de�ned by the engineer. The reinforcement program is also used to

generate an indication of the performance level of the module. Learning is

automatically enabled whenever the performance of the module falls below a

prede�ned threshold (e.g., 90% positive reinforcement signals). In the imple-

mentation described below the reinforcement program used immediate reinforce-

ment signals based on strictly local (to the module) sensory information. The
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learning algorithm is a modi�ed version of the complementary reinforcement

back-propagation algorithm (CRBP) (Ackley & Littman, 1990). For each input

pattern �, it propagates the input vector I� through the network to produce

a real-valued output vector S� (si 2 [0; 1]) on the output layer. Each output

value is interpreted as the probability that an associated random bit takes on

the value 1. From these probabilities a binary output vector O� is stochastically

produced. For each input pattern I�, if the action corresponding to the current

O� is rewarded by the reinforcement program, the synaptic weights are modi-

�ed with the generalized delta rule (Rumelhart, Hinton, & Williams, 1986) by

back-propagating the discrepancy between the binary motor commands and the

real-valued output vector, (O� �S�). This amounts to increasing the probabil-

ity of generating the same motor command O� for that input pattern I�. On

the other hand, if the action generates a negative signal, the synaptic weights

are changed in the opposite direction on the basis of ((1 � O�) � S�)). The

assumption on which the CRBP algorithm is implicitly based is that when the

O� output corresponds to a punished action, then (1�O�) corresponds to the

correct action for the same input pattern I�. In this way rewarded outputs will

be more likely to occur again and punished outputs will tend to produce the

complement output vector in similar situations (Meeden, 1996).

The pattern of connectivity among the modules and their individual activa-

tion networks are encoded on a binary string and evolved by a genetic algorithm

(�gure 2). Evolution is incremental and operates on variable-length genotypes.

Initially, a set of basic modules are de�ned by the engineer on the basis of

available knowledge about the task requirements and the characteristics of the

robot shell. The genetic string encodes the synaptic strengths of the activation

networks of all available modules and the values of inter-module connections.

Each value is encoded on the genetic string as a 4-bit integer number and is nor-

malized in the continuous range [0,1] before decoding it into the corresponding

weight value.

|||||||||
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INSERT FIGURE 2 ABOUT HERE

||||||||{

An initial population of such controllers is evolved until an individual is gen-

erated that satis�es the task criteria. Individual modules with learning abilities

can be separately trained before evolution and/or during evolution, depending

on the task constraints. If the task constraints change, or if new hardware

modules are added to the robot, it is possible to de�ne new modules and to

increment the genotype length by including the new activation networks and

all connections to previous modules. However, old parts of the genotype are

masked so that they cannot be a�ected by the crossover and mutation opera-

tors. Incremental evolution o�ers at least two advantages. It allows the engineer

to modify parts of the task de�nition, environment, and/or robot con�guration

without restarting the whole evolutionary process, and it makes possible to

evolve behaviors which otherwise would not be evolvable (as it has been shown

by (Floreano, 1993; Nol� & Floreano, 1998) in experiments in which environ-

ment complexity was gradually increased, and by (Harvey, Husbands, & Cli�,

1994) who experimented with a varying �tness function). In this article we focus

on the former aspect of incremental evolution.

4 Evolution and Shaping

In this section we apply the BAT methodology (Colombetti et al., 1996; Dorigo

& Colombetti, 1998) described in the previous section 2. In particular, we run an

experiment aimed at demonstrating two aspects of incremental robot shaping:

incremental evolution to accommodate hardware and task modi�cations, and

automatic local adaptation of an individual module to changed environmental

conditions.
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4.1 Robot, environment, task

The robot employed in this experiment was the miniature mobile robot Khepera

(Mondada, Franzi, & Ienne, 1993) which has a circular shape, a diameter of 55

mm, a height of 30 mm, and a weight of 70 g (�gure 3). Khepera is supported by

two wheels (and two small Teon balls) whose speeds and rotation directions can

be independently controlled. Eight infrared proximity sensors, six positioned

on the front side and two on the back side, return continuous values between 0

and 1 proportional to the distance of an object from the sensor. Additionally,

each sensor can measure the ambient light. The robot is also equipped with a

microcontroller and four rechargeable batteries.

|||||||||

INSERT FIGURE 3 ABOUT HERE

||||||||{

The environment was a rectangular arena (40 cm by 60 cm) whose walls

were covered with white paper. A 20 cm long metallic bar for battery charge

was attached to one side of the arena and a 20-watt light bulb was positioned

above it (�gure 3). The metallic bar could be used for recharging the robot

batteries by using special contacts plugged on the robot.

The desired task was that of developing a controller capable of moving the

robot around the arena as much and as long as possible, avoiding obstacles, and

periodically recharging the batteries at the recharging station.

4.2 Behavioral decomposition and module allocation

The global task can be decomposed into four simple behaviors: wander, obstacle

avoidance, light following, and battery recharge. Four modules were accordingly

allocated, as described below.

Wander Used to move the robot around the environment. The behavior gen-

erator was a programmed simple straight motion (whatever the sensor
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activation is). The input consisted of information coming from the prox-

imity sensors, used by the activation network in order to decide whether

the wandering module was activated or not. The output commanded the

robot's wheels.

Obstacle-Avoidance The behavior generator was an adaptive neural network

mapping sensor activations into one of four possible motor actions1. A re-

inforcement program punished increased sensor activations and rewarded

decreased sensor activations. The learning algorithm was CRBP described

in section 3. The input consisted of information coming from the proximity

sensors and the output commanded the robot's wheels.

Light-Following The behavior generator moved the robot towards light sources

using the direction of the vector resulting from the activity of all ambi-

ent light sensors. It received ambient-light sensor values and the battery

level as inputs, and the output commanded the robot's wheels. No learn-

ing mechanism was required because there was only one light source and

su�cient gradient information in the environment.

Recharge The behavior generator froze every motor activity until the battery

charge indicated full. The module was a programmed wait action that

simulated the battery charging operation. It received front proximity sen-

sor values2 and the battery charge indicator as inputs, and commanded

all available motors.

Individual activation networks were genetically evolved and no other local

learning mechanism a�ected them during evolution. All modules were fully

interconnected and encoded on binary strings as described in section 3 above.

1Discrete actions corresponding to motor speeds are given by two output neurons, each

one corresponding to a motor. Each output neuron can have a positive or a negative value,

generating in all four possible movements: go forward, turn right, turn left, move backward.
2The proximity sensors were used by the activation network in order to detect the battery

charging point and activate the module.
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4.3 Training

Khepera was attached via a serial port to a Sun SparcStation by means of

a lightweight aerial cable and rotating contacts. The genetic algorithm and

control architecture were run on the workstation and the serial cable was used to

read sensor activations and send motor commands every 100 ms. This solution

allowed us to keep track of several data during training for later analysis.

Instead of using the real batteries available on the Khepera (which last ap-

proximately 30 minutes and require additional 40 minutes to recharge), a vir-

tual battery lasting 50 seconds and a fast virtual recharger (taking 5 seconds

to recharge whenever the robot touched the metallic bar in recharging mode)

were simulated during training. Electric power was provided through the aerial

cable.3

The only module with local learning capabilities was obstacle avoidance.

Local learning in the obstacle avoidance module was always active for all in-

dividuals. For each action, the reinforcement program provided a negative re-

inforcement (R=-1) if the activation of the proximity sensors increased, or a

positive reinforcement (R=1) if the action of the proximity sensors decreased.

An initial population of 100 individuals was randomly created and evolved

on the physical robot without any human intervention for 40 generations (ap-

proximately 2 days). Each individual, starting with a full battery, was tested for

a maximum of 300 actions (a full battery allowed approximately 200 actions).

Fitness points were calculated and accumulated at every action according to a

function that encouraged straight motion and low sensor activation (Floreano

& Mondada, 1994).

� = �V � (1� i) (1)

where �V is a measure of how straight the motion of the robot is, and (1� i)

encourages distance from walls. �V = j(vleft + vright)j =(2�vmax), 0 � �V � 1,

3This strategy did not change the di�culty and/or realism of the training environment,

but considerably speeded up our measures.
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where vleft and vright are the signed speed values of the wheels (positive is one

direction, negative the other), and vmax is the maximum rotation speed of a

wheel (positive value). 0 � i � 1 is the activation value of the proximity sensor

with the highest activity. Controllers capable of recharging the battery could

accumulate more �tness scores than others.

4.4 Analysis of results

Fitness scores were scaled in the range [0; 1]. The maximum �tness score at-

tainable without recharging was approximately 0.5. Figure 4 plots the average

population �tness and the �tness of the best individual at each generation dur-

ing evolutionary training. After few generations there are already individuals

capable of recharging, but their low score indicates that they still spend much

time against walls. In the environment used for the training stage, individuals

with a �tness value above 0.70 (achieved after 25 generations) performed the

desired task appropriately coordinating all the modules.4

|||||||||

INSERT FIGURE 4 ABOUT HERE

||||||||{

Figure 5 shows the performance of the obstacle avoidance module for the

best individual of the �rst generation. Initial motor actions5 generated by the

behavior generator network produced a random movement of the robot, result-

ing in a poor performance. As the robot received reinforcement signals from

its interactions with the environment, the network gradually learned the correct

synaptic weights for performing the obstacle avoidance behavior. A performance

level of 0.6 corresponds to a good obstacle avoidance behavior. An ideal per-

formance of 1.0 could be achieved only by a robot that moves forward in an

environment without obstacles.

4A maximum score of 1.0 would be attainable only in an environment without walls.
5A motor action lasted 100 ms. Before each new motor action the speed of each wheel was

set to a new value.
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|||||||||

INSERT FIGURE 5 ABOUT HERE

||||||||{

4.5 Task and hardware modi�cations

In a second stage, we added a number of small objects in the environment and

equipped the Khepera with a gripper module (�gure 6). The gripper module has

two degrees of freedom: it can lift/lower the arm and open/close the gripper.

An optical barrier between the two segments of the gripper provides sensory

information on the presence of an object.

|||||||||

INSERT FIGURE 6 ABOUT HERE

||||||||{

The desired task was that of collecting the highest number of objects and

releasing them outside the arena, while maintaining the already evolved abilities

of navigation, obstacle avoidance, and battery recharge.

4.6 Behavioral decomposition and module allocation

The new task can be decomposed in two relatively complex behaviors: object

gripping and object releasing. The complexity comes from the fact that each

module must learn to discriminate between objects and walls. Two new modules

were allocated as follows.

Object-Gripping The behavior generator implemented the following sequence

of programmed actions. It moved the robot towards the direction of the

vector resulting from the activation of the proximity sensors, it lowered the

gripper, it backed until the optical barrier was on (object well-positioned),

closed the gripper, and lifted the object. The activation network decided

whether the pattern of activity of the infrared sensors corresponded to an

object or to a wall. The reinforcement program provided reinforcements
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using information coming from the optical sensor on the gripper. If the

gripper detected a graspable object, the activation network received a

positive reinforcement (R=1), otherwise a negative reinforcement (R=-1).6

Learning was always enabled for all individuals. The learning algorithm

was that described in section 3. The input consisted of information coming

from the optical barrier and proximity sensors, and the output commanded

the robot's wheels and the gripper.

Object-Releasing The behavior generator implemented the following sequence

of programmed actions. It moved the robot towards the vector resulting

from the activation of the proximity sensors, lowered the gripper, and

dropped the object. The activation network learned to discriminate walls

from objects as in the Object-Gripping module, but the value of the re-

inforcement signal was reversed. Learning was always enabled for all in-

dividuals. The input consisted of information coming from the optical

barrier and proximity sensors, and the output commanded the robot's

wheels and the gripper.

|||||||||

INSERT FIGURE 7 ABOUT HERE

||||||||{

The new modules were fully connected to all previously existing modules

(�gure 7) and the genotype representation was augmented by including the

new inter-module connections and the synaptic values of the new activation

networks.

As mentioned above, the synaptic values of the new activation networks

were learned during the lifetime of each decoded individual. Learning started

from the evolved synaptic values, but �nal values were not written back into

the genetic string. Alternatively, one could use a Lamarckian mechanism, that

is, encode on the genetic representation the changes acquired through life time

6If the robot tried to pick a wall up, the optical barrier of the gripper was not activated.
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learning. Although this method might speed up both the evolutionary and

learning process, it might also drive the controller into local minima (for a

discussion of Darwinian versus Lamarckian evolution, see (Parisi & Nol�, 1996)).

4.7 Training

Evolutionary training resumed from the last evolved population (generation 40).

The already evolved parts of the chromosomes were masked in order to exclude

them from crossover and mutation. The individuals of the initial generations

of the new task pushed the objects towards the walls.7 In order to make the

evolutionary process automatic, virtual objects were employed. A virtual ob-

ject is the generation of a pattern of sensory activation as if a physical object

was encountered by the robot. Sensor activations were recorded before train-

ing for an object positioned at various locations around the shell of the robot.

For each individual, eight objects were virtually placed in random locations.

Without this procedure, somebody should have assisted the robot by manually

repositioning objects in the arena during training.8 Evolutionary training was

continued for 40 generations. The �tness function, which maintained the previ-

ous components, was extended by adding 0.5 points for every gripped object and

1.0 point if the object was correctly released outside the arena (see also (Nol�,

1997b) for a similar �tness de�nition). The Khepera mobile robot had to learn

to discriminate between objects and walls. Both the object-gripping and the

object-releasing modules learned autonomously to distinguish between objects

and walls by lowering the gripper in front of the detected obstacle, observing

whether the optical barrier between arms detected an object (see also (Pfeifer,

1996) for a similar procedure), and associating the sensory pattern of infrared

sensor activation with the corresponding category (�gure 8).

7As two new modules had been added to the architecture, inter-modular coordination was

not optimal and obstacle avoidance was not activated every time an object was detected.
8As individuals of the initial generations pushed the objects towards the walls, after some

generations all the objects would have been placed in contact with the walls and the robot

would have not been able to pick them up by lowering the gripper.
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|||||||||

INSERT FIGURE 8 ABOUT HERE

||||||||{

4.8 Analysis of results

Both the average population �tness and the �tness of the best individuals gradu-

ally increased across generations (�gure 9). After approximately 15 generations

(generation 55 in the �gure), the best controllers already displayed the desired

abilities. It should be noted that within 300 actions best individuals can pick

up at most 5 real objects (corresponding approximately to a �tness value of 8).

However, since virtual objects appeared at random without taking into account

robot trajectories and gradual depletion of the environment observed, �tness

values during evolutionary training could be higher than 8.

|||||||||

INSERT FIGURE 9 ABOUT HERE

||||||||{

Figure 10 plots the performance of the Object-Gripping module for the best

individual after 15 generations while it learns to discriminate small objects from

walls using the local learning algorithm.

|||||||||

INSERT FIGURE 10 ABOUT HERE

||||||||{

Figure 11 displays the activation of the modules composing the control ar-

chitecture while the best individual of the last generation was tested with 8 real

objects evenly distributed in the arena. The Wander behavior is active most

of the time, sporadically interrupted by the Obstacle-Avoidance behavior. The

Light-Following behavior becomes active when the battery is almost discharged.

While the robot returns to the recharging station, it has an object in the gripper
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and therefore it temporarily activates the Obstacle-Avoidance behavior to avoid

an object on its way. Once the recharging bar is detected, the Recharge module

takes control until the battery is fully charged. Five objects are gripped and

released outside the arena.

|||||||||

INSERT FIGURE 11 ABOUT HERE

||||||||{

4.9 Environmental change

The objects employed during evolutionary training had a diameter of 10 mm.

In order to test the adaptation abilities of the Object-Gripping and Object-

Releasing modules, all objects were replaced by larger objects with a diameter

of 25 mm (�gure 12) while the best individual analyzed above was tested in the

environment. Recall that local learning is automatically enabled whenever the

performance indicator of the module drops below a threshold (here the threshold

was 100% correct response, therefore learning was on almost all the time).

|||||||||

INSERT FIGURE 12 ABOUT HERE

||||||||{

4.10 Analysis of results

Figure 13 shows the re-adaptation performance of the Object-Gripping module

when the small objects are replaced by larger ones. No additional evolutionary

training is required.

|||||||||

INSERT FIGURE 13 ABOUT HERE

||||||||{

After object substitutions, walls and objects are sometimes confused re-

sulting in a performance drop. However, the signal coming from the optical
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sensor on the gripper continuously provides information that punishes or re-

wards the activation network. Re-adaptation to new objects takes place locally

and automatically without requiring modi�cations in other parts of the control

architecture.

5 Conclusions

In this paper we have presented a modular architecture for autonomous robots

which allows for the implementation of basic behavioral modules by both hand

programming and training, and accommodates for an evolutionary development

of the interconnections among modules. This architecture is particularly suit-

able for developing autonomous robots along the lines of the BAT methodology,

which stresses the importance of analyzing the target behavior into basic com-

ponents and of incremental shaping. The feasibility of the approach is shown

by the results of experimental activity carried out on a number of tasks of non-

trivial complexity.

The approach to incremental robot shaping described here signi�cantly ex-

tends previous results by Dorigo and Colombetti (1998). On one hand, connec-

tions among modules are developed more freely than in Dorigo and Colombetti's

distributed classi�er system (ALECSYS). On the other hand, the experiments

reported show the feasibility of holistic shaping (i.e., of the simultaneous train-

ing of several modules and of their interconnections). As a whole, the approach

advocated in this paper leads to a more natural and e�ective way of training

autonomous robots to perform complex behaviors. At the same time, this ap-

proach also extends previous results from (Floreano & Mondada, 1996) in the

direction of practical applicability of the evolutionary method. By incorporat-

ing some knowledge about the task, the adaptive process is almost one order

of magnitude faster than in experiments where evolution started from scratch.

Furthermore, here the evolved controllers can be easily re-used and extended to

more complex tasks.

Another interesting point (which so far has been investigated only to a very
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limited extent) is that the proposed architecture allows one to easily mix pre-

programmed and learned behaviors. This aspect is going to be of fundamental

importance in practical applications, because the use of learning for certain spe-

ci�c behaviors may be uneconomical or even dangerous. Moreover, the fact that

any reinforcement learning algorithm can be used within the basic models makes

our architecture extremely exible and potentially suitable for a wide range of

possible applications.

In principle, one may consider the possibility of allowing for di�erent learning

mechanisms also at the level of connections. At this level, however, we think

that restricting to an evolutionary approach is well justi�ed. While it is not

possible to constrain a priori the kind of learning to be carried out within a

single behavioral module, we know that at the higher level the agent has to learn

a network of connections. At this level, the use of an evolutionary algorithm

ensures that the space of possible connections will be searched globally, thus

minimizing the risk of converging to a highly suboptimal local maximum of the

�tness function.

While the results described in this paper appear to be encouraging, we are

aware that there is a long way to go before an extensive use of learning becomes

feasible in practical robotic applications. In particular, we should increase our

understanding of how sensory input can be used best to compute reinforcements.

In fact, we think that for any learning agent it will be crucial to extract as

much information as possible from its own interactions with the environment.

A distributed modular approach to solving this problem seems to us an e�cient

solution.
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Figure Captions

Figure 1: Structure of a module. See text for explanation. In this module both

the activation network and the behavior generator are implemented as neural

networks. The module also includes a strictly local learning algorithm L that

uses reinforcement signals coming from a reinforcement program P. A module

can receive weighted signals from other modules (connections in), which are

summed up and combined with the sensory input in order to drive the activation

level. In the same way, a module can send its activation state to other modules

in the form of weighted signals (connections out).

Figure 2: Genetic encoding of the control architecture. A chromosome encodes

the synaptic strengths of the activation networks of all modules and all inter-

module connections. For each module of the architecture, synaptic weights of

the activation network are coded �rst, followed by connection weights to the

other modules. Each value is encoded on the genetic string as a 4-bit integer

number and is normalized in the continuous range [0,1] before decoding it into

the corresponding weight value. New modules are added by increasing the

genotype length. In this case, previously evolved modules and inter-connections

are masked to protect them from cross-over and mutation operators.

Figure 3: The Khepera robot is placed in the environment with a battery

charger. The task is to keep moving in the environment avoiding obstacles,

and periodically recharge the batteries.

Figure 4: Fitness values during evolution. Dash-dotted line shows average pop-

ulation �tness, continuous line the �tness of the best individual at each gener-

ation. Data smoothed using rolling averages (time window = 3).

Figure 5: Performance of the Obstacle-Avoidance module while learning to

avoid walls from randomly initialized weights. Reinforcement values are rolling

averages (window size = 30). Performance below zero means higher percentage

of negative reinforcements, above zero higher number of positive reinforcements.

Figure 6: Small objects of roughly equal size are randomly distributed in the

environment and the Khepera robot is equipped with a gripper module. The

additional task is to �nd the objects, pick them up and release them outside the
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arena while maintaining the previous navigation and recharging abilities.

Figure 7: The new architecture for the extended task and hardware components.

Two new modules have been added and connected to previous modules.

Figure 8: Self-supervised learning to discriminate objects by active exploration.

The robot wanders around until it detects an obstacle (1 and 2), then turns

towards the detected obstacle (3), lowers the gripper in front of it, and observes

whether the optical barrier between arms detected an object in order to associate

the sensory pattern of infrared sensor activation with the corresponding category

(4).

Figure 9: Fitness values during incremental evolution on the extended task.

Dash-dotted line shows the average population �tness, continuous line the �tness

of the best individual at each generation. Data smoothed using rolling averages

(window size = 3). Temporary dip from generation 60 to 70 took place overnight

and it might be due to some physical events, such as the robot getting stuck

with the gripper, or noisy transmission over the serial line.

Figure 10: Performance of the Object-Gripping module while learning to dis-

criminate small objects (diameter is 10 mm) from walls. Reinforcement values

are rolling averages (window size = 30). Performance below zero means higher

percentage of negative reinforcements, above zero higher number of positive

reinforcements. Performance around zero means random discrimination.

Figure 11: Module activations for 225 actions of the best individual after 80 gen-

erations. Five objects are picked up and released outside the arena. While the

third object is in the gripper, the robot goes to recharge. Legend: BtLv: bat-

tery level; Wand: Wander behavior; ObAv: Obstacle-Avoidance behavior; LtFl:

Light-Following behavior; BtCh: Recharge behavior; ObGr: Object-Gripping

behavior; ObSr: object in the gripper (sensor); ObRl: Object-Releasing behav-

ior.

Figure 12: A small object (10 mm of diameter) seen during evolutionary training

and a new larger object (25 mm).

Figure 13: Performance of the Object-Gripping module when small objects

are substituted by larger objects. Reinforcement values �1; 1 are rolling aver-
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ages (window size = 30). Performance below zero means higher percentage of

negative reinforcements, above zero higher number of positive reinforcements.

Performance around zero means random discrimination.
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