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1 Introduction

Evolutionary Robotics is a technique for automatic creation of autonomous
robots that is inspired upon the Darwinian principle of selective reproduc-
tion of the �ttest. It is a new approach on its own which looks at robots as
autonomous arti�cial organisms that develop their own skills in close inter-
action with the environment without human intervention. Heavily draw-
ing from natural sciences like biology and ethology, evolutionary robotics
makes use of tools like neural networks, genetic algorithms, dynamic sys-
tems, and bio-morphic engineering.

Although the term \Evolutionary Robotics" has been introduced only
quite recently by Cli�, Harvey, and Husbands [3], the idea of representing
the control system of a robot as an arti�cial chromosome subject to the
laws of genetics and of natural selection dates back to the end of the 80's
when the �rst simulated arti�cial organisms with a sensory-motor system
began evolving on computer screens in some labs around the world. At
that time, however, real robots were still machines that required accurate
programming e�orts and careful manipulation. Only in the last years, a
few engineers began questioning some of the basic principles of robot de-
sign and came up with a new generation of robots that shared important
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characteristics with simple biological systems: robustness, simplicity, small
size, exibility, modularity (e.g., see [2, 22, 15]). Above all, these robots
were designed so that they could be programmed and controlled by peo-
ple with di�erent backgrounds and levels of technical skills. Progress in
robot design allowed the application of evolutionary techniques to physical
autonomous agents, which set the stage for a whole new range of robot
programming techniques.

The basic idea behind Evolutionary Robotics goes as follows. An initial
population of di�erent arti�cial chromosomes, each encoding the control
system (and sometimes the morphology) of a robot, are randomly created
and put in the environment. Each robot (physical or simulated) is then let
free to act (move, look around, manipulate) according to the the genetically
speci�ed controller while its performance to carry out a certain task is
automatically evaluated. The �ttest robots are then allowed to mate and
reproduce; in practice, this is achieved by crossing over (swapping parts
of) copies of their genetic material with small random mutations. This
process is repeated for a certain number of generations until an individual
is born which satis�es the performance criterion (�tness function) set by
the experimenter.

In this paper, I shall present a survey of some work done in Evolution-
ary Robotics by myself and in collaboration with some colleagues, mainly
Francesco Mondada and Stefano Nol�. This paper intends to be a gentle
introduction to Evolutionary Robotics and, therefore, it will not include
much technical detail which interested readers will �nd in cited articles.
The presentation will be structured according to two issues which I feel
are important for practical use and application of Evolutionary Robotics:
human design and adaptability of evolved robots. I shall also briey ad-
dress issues such as Evolutionary Robotics in Arti�cial Life and the role
of computer simulation. Finally, I shall conclude with some indications on
future directions of research and development.

1.1 Running Evolutionary Experiments on a Single Mobile Robot

Most of the work presented here has been carried out on the miniature mo-
bile robot Khepera initially developed by Francesco Mondada, Edo Franzi,
and Andr�e Guignard at the Microcomputing Laboratory of the Swiss Fed-



eral Institute of Technology in Lausanne.
Khepera has many characteristics which make it a suitable tool for in-

vestigating evolutionary techniques in autonomous robotics. It has a cir-
cular shape (Figure 1a), with diameter of 55 mm, height of 30 mm, and
weight of 70 g, and is supported by two wheels and two small Teon balls.
The wheels are controlled by two DC motors with incremental encoder
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Figure 1: a) Khepera, the miniature mobile robot. b) Evolution of neurocontrollers on a
single mobile robot.

(10 pulses per mm of advancement of the robot), and can move in both
directions.

Khepera is a modular system which can be extended by adding several
di�erent turrets which are simply plugged in on the top of its base. In
its basic con�guration, the robot is provided with eight infra-red sensors
which can work either in active or passive mode. In active mode, each
sensor emits infrared light and measures the quantity of reected light.
This is also called the proximity modality, because activation of each sen-
sor is inversely-proportional to its distance from an object. In passive
mode, each sensor simply measures the infrared component of ambient
light, which gives a rough estimate of light intensity in the environment.
Six sensors are positioned on one side of the robot (front), the remain-
ing two on the other side (back). A Motorola 68331 controller with 256
Kbytes of RAM and 512 Kbytes ROM manages all the input-output rou-
tines and can communicate via a serial port with a host computer. It
includes onboard rechargeable batteries which give a limited autonomy of



approximately 30 mins. However, it can also use electric power supplied
by an external computer via an RS232 link. Later on, where appropriate,
I shall briey describe other modules that were used in some experiments:
a laser positioning device, and a linear-array vision system.

The communication protocol of Khepera can exploit all the power and
disk size available in a workstation by letting high-level control processes
(genetic operators, neural network activation, variables recordings, etc.)
run on the main station while low-level processes (sensor-reading, motor
control, and other real time tasks) run on the on-board processor (Fig-
ure 1b). This was the solution employed in almost all our experiments.
Khepera was attached via a serial port to a Sun SparcStation (as a mat-
ter of fact, the robot can be attached to any computer type) by means of
a lightweight aerial cable and specially designed rotating contacts which
eliminated the problem of cable twisting. In this way, while the robot
was running, we could keep track of all the populations of organisms that
were born, tested, and passed to the genetic operators, together with their
\personal life �les". At the same time, we could also take advantage
of speci�c software designed for graphic visualization of trajectories and
sensory-motor status while the robot was evolving. Starting from an ini-
tial population of randomly created binary strings, the software running
on the workstation (Figure 1b) takes one string at a time, decodes it into a
corresponding neural network which receives input from the robot sensors
and sends its output to the motors through the serial cable every 100 ms,
and computes the �tness value while the robot is running. Every individ-
ual (string) in the population is evaluated on the physical robot for some
minutes and, at the end, the �nal �tness value is normalized by the num-
ber of actions and stored away for selective reproduction. Between any
two individuals in the population, the robot is given a random sequence of
actions for a few seconds in order to avoid that adjacent individuals start
from a similar position (which would happen quite often during the initial
generations when most of the neurocontrollers tend to get stuck against
a wall). Using this method, the whole evolutionary development was car-
ried out on a single robot without human intervention. While the robot
automatically evolved in its own room, we could follow its progress from
our workstation a few o�ces away. It should be noted, however, that the
software implementing the genetic development of neural networks [8] is



very simple and could be easily optimized to �t entirely into the robot
processor.

2 Reducing Human Design

Although it is possible to carry out arti�cial evolution on mobile robots
without human intervention, human design still plays a fundamental role
at early stages when the user must choose the most suitable type of con-
troller, its genetic encoding, and the �tness function. Di�erent controller
types have been used in the last few years, including neural networks [17],
modular computer programs [25], and classi�er systems [6]. Although each
structure has its own advantages and limits, there is not yet enough ev-
idence for the superiority of any one type with regard to generality and
behavior complexity of the evolved robot. In the work described below, I
have used arti�cial neural networks because they have potentially interest-
ing dynamics and are suitable for further adaptation during life of each in-
dividual. However, for what concerns the topics of this paper, the choice of
neural network is rather arbitrary and the general arguments here exposed
hold for any type of controller type. Regarding genetic encoding, vari-
ous researchers have devised di�erent techniques that range from the very
simple \direct encoding" [32] used here to the morphogenetic speci�cation
of variable neural architectures (e.g., [24]). Whereas the latter allows for
evolution of potentially more complex neural architectures, direct genetic
encoding assumes a �xed architectures for all individuals in the population
and evolves only its parameter values which are represented one-by-one
on the genetic string (e.g., the synaptic weight values). Direct encoding
strategies are suitable for small neural networks whose architecture is con-
strained by the structure of the robot sensory-motor system and by other
considerations on system requirements (for example, the presence or ab-
sence of hidden units in perceptrons). Although there is not yet enough
experimental evidence for the superiority of one method or the other with
regard to behavior complexity of the evolved robots, morphogenetic ap-
proaches are likely to be a more powerful solution for future research.

Whatever controller type and encoding strategies one decides to employ,
successful evolution of a desired behavior heavily depends on the �tness
function. Although by now there is a \library" of �tness functions avail-



able in the literature for evolving a limited number of behaviors, these
functions are suitable only for some robot morphologies and types of envi-
ronment. The di�culty of designing an appropriate �tness function for an
autonomous robot is mainly due to the fact that the function itself can be
computed only using information available to the robot via its own sensors.
In autonomous robotics, as opposed to computer simulations, it is di�cult
or impossible to exploit any external source of information which tells the
genetic algorithm how good an individual is. To clarify this point, let us
imagine to evolve a controller for a robot that must explore a surface opti-
mally (that is, passing over the largest number of di�erent locations in the
shortest possible time). If we do this in simulation, there are several simple
and straightforward �tness functions that we might use. For example, we
might lay a grid over the surface and give our simulated robot a limited
life time (say, 1,000 actions); then, the �tness function could simply be
the number of new locations visited by the robot divided by its life time.
When we use a real robot, it is impossible to know when it has visited
a new location. Of course, we could employ a global positioning device
which gives us the x; y coordinates of the robot, but then the experiment
looses much of its relevance for application purposes where exploration is
needed mainly for unknown environments.

Typically, a �tness function combines local information available from
the robot sensors (including internal states of the robot, such as level of
battery charge) with knowledge of environmental constraints and task re-
quirements. A further complication comes from the fact that information
available from the robot sensors is local not only in space (as for the exam-
ple given above), but also in time. This means that the �tness function can
appropriately select individuals only if there is immediate sensory evidence
that their behavior during lifetime has accomplished at least a portion of
the desired task. If the desired behavior speci�ed in the �tness function
can be accomplished only by achieving suitable performance on a sequence
of sub-behaviors, it might happen that individuals at the initial generation
will never receive �tness values larger than zero. A possible solution to this
problem is to allocate a �tness component for each sub-behavior; however,
if the resulting �tness function has several local maxima (that is, there
are several sub-behaviors which generate a non-zero �tness score), the evo-
lutionary run might settle in one of them, displaying what is known as



\premature convergence." Another solution is incremental evolution [16]
which consists in dividing the evolutionary process in several successive
stages. At each stage, which lasts for a variable number of generations, a
new �tness function selects individuals that display a given sub-behavior,
until the population converges to the �nal desired behavior.

Both the methods described above are a viable solution, although they
require some knowledge on task decomposition for �tness design. However,
here I shall describe another way of circumventing the problem of �tness
design. Instead of describing the desired behavior in the �tness function,
the environment is enriched with properties that provide several alternative
ways of achieving di�erent levels of performance. Now, it is the environ-
ment itself that puts pressure on the individuals in order to achieve more
complex behaviors, whereas the �tness function, if any, is rather simple
and steers evolution in the desired direction. In the following subsections,
I shall review three di�erent experiments that show how e�ort in �tness
design can be reduced by increasing the complexity of the environment.

2.1 Navigation with Obstacle Avoidance

The goal of this experiment was to evolve a neurocontroller capable of
performing straight navigation while avoiding obstacles [10]. The robot
was put in an environment consisting in a sort of circular corridor whose
external size was approx. 80x50 cm (Figure 2a). The walls were made
of light-blue polystyrene and the oor was a gray thick paper. The robot
could sense the walls with the IR proximity sensors. Since the corridors
were rather narrow (8-12 cm), some sensors were slightly active most of
the time. The environment was within a portable box positioned in a room
always illuminated from above by a 60-watt bulb light.

The �tness function � was computed using only information available
from the robot sensors

� = V
�
1 �

p
�v

�
(1� i) (1)

0 � V � 1

0 � i � 1

0 � i � 1
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Figure 2: a) Environment for the experiment on navigation and obstacle avoidance. b)
Population average �tness and best individual �tness at each generation. Values are
averaged over three runs (S.E. displayed).

where V is a measure of the average rotation speed of the two wheels, �v

is the algebraic di�erence between the signed speed values of the wheels
(positive is one direction, negative the other) transformed into positive
values, and i is the activation value of the proximity sensor with the highest
activity. The function � has three components: the �rst one is maximized
by wheel speed (without regard to direction of rotation), the second by
straight direction, and the third by obstacle avoidance.

The neural network architecture was �xed and consisted of a single layer
of synaptic weights from eight input units (clamped to the sensors) to two
output units (directly connected to the motors) with mobile thresholds,
logistic activation functions, and discrete-time recurrent connections only
within the output layer. The evolutionary methodology was that described
in subsection 1.1.

Khepera learned to navigate and avoid obstacles in less than 100 genera-
tions (Figure 2b), although around the 50th generation the best individuals
already exhibited an almost optimal behavior. Their navigation was very
smooth, they never bumped into walls and corners while trying to keep a
straight trajectory. They performed complete laps of the corridor without
turning back (Figure 3).

Each �tness component was necessary to develop this behavior. With-
out the �rst component, a robot standing still far from a wall would achieve
maximum �tness. Without the second component, maximum �tness could
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Figure 3: The trajectory performed by one of the evolved robots. Segments represent
successive displacements of the axis connecting the two wheels. The direction of motion
is counter-clockwise.

be easily achieved by fast spinning in the same place (wheels turning at
maximum speed in opposite directions) far from walls. Finally, without the
third component, evolution would develop robots moving straight (frontally
or backward) at maximum speed until they crashed against a wall.

Despite the fact that the �tness function was accurately designed to
evolve the desired behavior, a number of interesting aspects evolved as a
side e�ect of the interaction with the environment. For example, despite
the fact that the robot could theoretically learn to move either forward
of backward (because it has a circular shape), the best individuals in all
our runs developed a frontal direction of motion, corresponding to the side
where there are more sensors. Robots moving backward sometimes were
stuck into obstacle which could not be perceived and, since the �rst �t-
ness component would give values close to zero, these individuals would
not be selected for reproduction. Similarly, the best individuals developed
an optimal cruising speed which was not the maximum available, but was
perfectly adapted to the refreshing rate of the sensors. Robots moving
faster would crash into obstacles before having detected them and would
therefore soon disappear from the population. Finally, the best individu-
als developed appropriate recurrent connections at the output layer which
worked as a tie-breaking mechanism when symmetric stimulation of sen-



sors on both sides would generate equal and opposite signals to the wheels.
Such robots would never get stuck in corners while retaining normal navi-
gation abilities in all other situations.

2.2 Orientation and Homing

The goal of this new experiment [11] was to test the hypothesis that, when
employing an evolutionary procedure, more complex behaviors do not nec-
essarily have to be speci�ed in the objective �tness function, but rather
emerge from a mere change of the physical characteristics of the robot and
of the environment described in the previous experiment. More precisely,
we were interested in observing whether the robot discovered the presence
of a place where it could recharge its (simulated) batteries and modify its
global behavior by using an even simpler version of the �tness function
employed in the previous experiment.

The environment employed for the evolutionary training consisted of a
40x45 cm arena delimited by walls of light-blue polystyrene and the oor
was made of thick gray paper (Figure 4a) as in the previous experiment.
A 25 cm high tower equipped with 15 small DC lamps oriented toward
the arena was placed in one corner. The room did not have other light
sources. Under the light tower, a circular portion of the oor at the corner
was painted black. The painted sector, that represented the recharging
area, had a radius of approximately 8 cm and was intended to simulate the
platform of a prototype of battery charger currently under construction.
When the robot happened to be over the black area, its simulated battery
became instantaneously recharged.

Khepera was equipped with its basic set of eight infrared sensors (prox-
imity sensors) whose activation is inversely proportional to the distance
from an object. Two sensors, each on one side of the body, were also
enabled for measuring ambient light. Additionally, another ambient light
sensor was placed under the robot platform, pointing downward, and its
signal was thresholded so that it was always active, except when over the
black painted area in the corner (Figure 4b). The robot was provided with
a simulated battery characterized by a fast linear discharge rate (max dura-
tion: approx. 20 seconds), and with a simulated sensor giving information
about the battery status.
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Figure 4: a) The environment of the experiment on battery recharge. The light tower is
positioned in the far corner over the recharging area which is painted black. There are no
other light sources in the room. b) Sensory-motor layout of the robot.

The neural network controlling the robot was a multi-layer perceptron
of continuous sigmoid units. The hidden layer consisted of 5 units with
recurrent connections [7]. Each robot started its life with a fully charged
battery which was discharged by a �xed amount at each time step: a
fully charged battery allowed a robot to move for 50 time steps. If the
robot happened to pass over the black area the battery was instantaneously
recharged and, thus, its life prolonged. An upper limit of 150 steps was
allowed for each individual, in order to eventually terminate the life of
robots that remained on the recharging area or that regularly passed over
it.

The �tness function � was a simpler version of that employed in the
previous experiment,

� = V (1� i) (2)

0 � V � 1

0 � i � 1

where the component responsible for straight motion had been removed:



thus, a robot could achieve a reasonable performance even by simply spin-
ning in a place far from the walls. The �tness value was computed and
accumulated at each step, except when the robot was on the black area
(although later observations showed that the �tness function itself yielded
values extremely close to 0 when the robot was on the black area1). The
accumulated �tness value of each individual (which depended both on the
performance of the robot and on the length of its life) was then divided
by the maximum number of steps (150) and stored away for the genetic
operators. It should be noted that locating and passing over the recharging
area is not treated as one of the main goals that the robot should achieve,
but only as a possible behavioral strategy that could emerge to exploit the
characteristics of the robot and of the environment.

In order to visualize the trajectory and correlate neural activity with
behavior, we installed a laser device on the top of the environment and
equipped Khepera with an additional turret for detecting laser rays and
calculating its own x; y position using the processor on the additional tur-
ret (Figure 5a). This information was not passed to the controller, but
used only for analyzing behavior and neural dynamics after evolutionary
training. The measuring device was synchronized with the network activa-
tion; therefore, for every network update, we could plot the neural activity
against the robot location in the environment.

Figure 5b shows the behavior and neural activity of the best individual
at generation 240. As most of the best individuals in the �nal generations,
it navigated around the environment, avoiding the walls and, only when the
battery was almost discharged, it returned to the recharging area. Once on
the recharging area, the robot quickly turned on itself and resumed navi-
gation in the arena. This behavior was maintained inde�nitely or until we
stopped its life. In a further set of tests [11], it was shown that the inter-
nal hidden units were specialized for di�erent aspects of behavior. While
one unit was in charge of performing reactive obstacle avoidance, another
one developed a spatial representation of the environment which, combined
with information on battery charge, allowed the robot to compute exactly
when to initiate the homing behavior depending on its distance from the
recharging area and the residual energy level.

1Indeed most of the time 0.0: due to the small size of the area and to the vicinity of the walls, both
components are very close to zero.
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Figure 5: a) A close view of the robot with the turret for capturing laser signals and
the laser device on the background. b) Visualization of the hidden node activations (�ve
hidden nodes) while the best robot of the �nal generation moves in the environment.
Darker squares mean higher node activation. The robot starts in the lower portion of the
arena. The bottom-right window plots only the trajectory. The recharging area is visible
in the top left corner.

2.3 Competitive Co-Evolution

In the previous section, I have shown how the introduction of further el-
ements in the environment and in the robot could alleviate the e�ort in
�tness design while generating more complex behaviors than the previous
experiment. In this section, I shall describe another way of reducing �t-
ness design by augmenting the dynamical properties of the environment.
Instead of having a single robot, two robots are co-evolved in competition
with each other [14].

Competitive co-evolution has recently attracted considerable interest
in the community of Arti�cial Life and Evolutionary Computation. In
the simplest scenario of two co-evolving populations, �tness progress is



achieved at disadvantage of the other population's �tness. Although it
is easy to point out several examples of such situation in nature (e.g.,
competition for limited food resources, host-parasite, predator-prey), it is
more di�cult to analyze and understand the importance and long-term
e�ects of such \arms races" on the development of speci�c genetic traits
and behaviors. An interesting complication is given by the \Red Queen
e�ect"2 whereby the �tness landscape of each population is continuously
changed by the competing population. Given the relative lack of empirical
evidence for the importance of the Red Queen e�ect on biological evolu-
tion, Arti�cial Life techniques seem well-suited to study this penomenon
[4]. From a computational perspective, competing co-evolutionary systems
are appealing because the ever-changing �tness landscape, caused by the
struggle of each species to take pro�t of the competitors' weaknesses, could
be potentially exploited to prevent stagnation in local maxima.

Cli� andMiller realised the potentiality of co-evolution of pursuit-evasion
tactics in evolutionary robotics. In the �rst of a series of papers [21], they
provided an extensive review of the literature in biology and in di�erential
game theory and introduced their 2D simulation of simple robots with \eye-
s". Later, they proposed a new set of performance and genetic measures
in order to describe evolutionary progress which could not be otherwise
tracked down due to the Red Queen e�ect [4]. Recently, they described
some of the results where simulated robots with evolved eye-morphologies
could either evade or pursue their competitors of several generations ear-
lier and proposed some applications of the approach in biology and in the
entertainment industry [5].

Despite the promising achievements described above, if one carefully
looks at the results described in the literature focusing on competitive
co-evolution of pursuit-evasion behaviors, it is easy to notice that co-
evolutionary bene�ts often come at the cost of several thousand individuals
per population [26], several hundred generations [5], or repeated trials of
evolutionary runs with alternating success [28]. Moreover, since all the
experiments have been conducted in simulation, often the results cannot
be directly applied to real robots, either because agent descriptions are too
abstract or technically unfeasible, or because the �tness function takes into

2The Red Queen is a �gure, invented by novelist Lewis Carroll, who was always running without
making any advancement because the landscape was moving with her.



account global information (such as the distance between the competing
agents). All these facts seem to greatly limit any prospect of exploiting the
Red Queen e�ect for evolution of robotic controllers in the real world and
for engineering purposes. The focus of the experiment here described is an
investigation of the feasibility of this approach in more realistic conditions
for evolutionary robotics.
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Figure 6: a) Right: The Predator is equipped with the vision module (1D-array of pho-
toreceptors, visual angle of 36�). Left: The Prey has a black protuberance which can be
detected by the predator everywhere in the environment, but its maximum speed is twice
that of the predator. Both Predator and Prey are equipped with 8 infrared proximity
sensors (max detection range was 3 cm in our environment). b) Left and center: Details
of simulation of vision, of neural network architecture, and of genetic encoding. The prey
di�ers from the predator in that it does not have 5 input units for vision. Each synapse
in the network is coded by �ve bits, the �rst bit determining the sign of the synapse
and the remaining four its strength. Right: Initial starting position for Prey (left, empty
disk with small opening corresponding to frontal direction) and Predator (right, black
disk with line corresponding to frontal direction) in the arena. For each competition, the
initial orientation is random.

The main goal of the experiments described here consists in studying
the feasibility of co-evolutionary pursuit-evasion for evolving useful neu-
rocontrollers for two Khepera robots in a simple but realistic scenario.
We decided to study pursuit-evasion as a metaphor for predator-prey, this
being a quite common and suggestive situation in nature. As often hap-
pens, predators and preys belong to di�erent species with di�erent sensory
and motor characteristics. Thus, we employed two Khepera robots, one of
which (the Predator) was equipped with a vision module while the other
(the Prey) had a maximum available speed set to twice that of the preda-
tor (Figure 6a). Both individuals were also provided with eight infrared



proximity sensors (six on the front side and two on the back) which had
a maximum detection range of 3 cm in our environment. The two species
would evolve in a square arena of size 47 x 47 cm with high white walls so
that the predator could always see the prey (if within the visual angle) as
a black spot on a white background.

Running co-evolutionary experiments with two or more robots within
the same environment causes problems with the cables that connect the
robots to the workstation for power supply and information exchange.
Therefore, we decided to resort to a particular type of simulation exten-
sively tested on Khepera which consists in sampling sensor activity at dif-
ferent distances and angles of the robot from the objects of the world (see
[20] for details). We have sampled infrared sensor activity of each robot
in front of a wall and in front of another robot. These values were then
separately stored away and accessed through a look-up table depending on
the faced object. Simulation of the visual input required di�erent consid-
erations. The vision module K213 of Khepera is an additional turret which
can be plugged-in directly on top of the basic platform. It consists of a
1D-array of 64 photoreceptors which provide a linear image composed of 64
pixels of 256 gray-levels each, subtending a view-angle of 36�. The optics
are designed to bring into focus objects situated at distances between 5cm
and 50cm while an additional sensor of light intensity automatically adapts
the scanning speed of the chip to keep the image stable and exploit at best
the sensitivity of receptors under a large variety of illumination intensities.
The K213 vision turret incorporates a private 68HC11 processor which is
used for optional low-level processing of the scanned image before passing
it to the robot controller. One of these options is detection of the position
in the image corresponding to the pixel with minimal intensity (in this
case, only one byte of information is transmitted). Therefore, instead of
simulating the response of the 1D-array of receptors resorting to complex
and time-consuming ray-tracing techniques, we exploited the built-in facil-
ity for position detection of the pixel with minimal intensity and divided
the visual angle in �ve sectors corresponding to �ve simulated photorecep-
tors (Figure 6b). If the pixel with minimal intensity was within the �rst
sector, then the �rst simulated photoreceptor would become active; if the
pixel was within the second sector, then the second photoreceptor would
become active; etc. We made sure in a set of preliminary measurements



that this type of input reduction was largely su�cient to reliably capture
and represent all the relevant visual information available to the predator.

The robot controllers had the same architecture used for the experiment
described in section 2, but the predator had 5 more input units correspond-
ing to the visual module. Two populations of 100 individuals each were
co-evolved for 100 generations. Each individual was tested against the best
competitors of the ten previous generations (a similar procedure was used
in [28, 26, 4]) in order to improve co-evolutionary stability. For each com-
petition, the prey and predator were always positioned on a horizontal line
in the middle of the environment at a distance corresponding to half the
environment width (Figure 6b), but always at a new random orientation.
The competition ended either when the predator touched the prey or af-
ter 500 motor updates (corresponding to 50 seconds at maximum on the
physical robot). The �tness function �c for each competition c did not
require any sensor or motor measurement, nor any global position mea-
sure; it was simply TimetoContact normalized by the maximum number
of motor updates TtC for the predator pr, and 1 � TtC for the prey py,
further averaged over the number of competitions. Therefore the �tness
values were always between 0 and 1, where 0 means worst.

Six evolutionary runs were performed, each lasting 100 generations. In
all cases, after a few generations both the predator and the prey increased
their �tness value and, for the remaining generations, we observed a set of
oscillations in counterphase where either the predator or the prey reported
better performance over the competitor. When we looked at the behavior of
the two robots, we observed spontaneous evolution of obstacle avoidance,
visual tracking, object discrimination (prey vs. wall), following, and a
variety of other temporary behaviors (that is, lasting only few generations)
which were tuned to the competitor behavior.

However, the tight evolutionary dynamics between the two competitors
implied that the individuals of the last generation were not necessarily the
best individuals of all generations, as it is usually the case in single-agent
evolution. Rather, at each generation the best individuals are those in-
dividuals that report the best performance against the best competitors
of the previous ten generations. The simplest way to discover the best
predators and preys, is to organize a Master Tournament where each best
individual is tested ten times against each best competitor of all genera-
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Figure 7: Top: Fitness of best individuals in Master Tournament. Letters indicate po-
sition of best preys and best predators. Numbers indicate position of individuals whose
competitions are displayed below. Bottom: Behaviors recorded at interesting points of
co-evolution, representing typical strategies. Black disk is predator, white is the prey.

tions. Top of Figure 7 shows the master �tness for each best individual
across generations (�tness values are averaged over ten competitions and
over hundred tournaments). A Master Tournament tells us two things:
At which generation we can �nd the best prey and the best predator,
and at which generation we are guaranteed to observe the most interest-
ing tournaments. The �rst aspect is important for optimization purposes
and applications, the latter for pure entertainment. The best individuals
are those reporting the highest �tness when also the competitor reports
the highest �tness (marked by letters A and B in the graph). Instead, the
most entertaining tournaments are those that take place between individu-
als that report the same �tness level, because these are the situations where
both species have the same level of ability to win over the competitor.



In the lower part of Figure 7, behaviors of best competitors at critical
stages of co-evolution, as indicated by Master Tournament data, give a
more intuitive idea of how pursuit-evasion strategies are co-evolved. Ini-
tially, the predator tends to stop in front of walls while the prey moves in
circles (box 1). Later, the prey moves fast at straight trajectories avoiding
walls while the predator tracks it from the center and quickly attacks when
the prey is closer (box 2). Interestingly, predators develop the ability to
know how distant the preys are by using information on how fast their tar-
get moves in the visual �eld. Decrement of predator performance around
generation 65 is due to a temporary loss of the ability to discriminate be-
tween walls and preys. As shown in box 3, the predator intercepts the prey,
but it misses it crashing against the wall. Around generation 75, we have a
typical example of the best prey (box 4); it moves in circles and, when the
predator gets closer, it rapidly avoids it. This is quite interesting. Indeed,
preys that move too fast around the environment sometimes cannot avoid
an approaching predator because they detect it too late (IR sensors have
lower sensitivity for a small cylindrical object, like another robot, than for
a white at wall). Therefore, it pays o� to wait for the slower predator
and accurately avoid it. However, some predators become smart enough
to perform a small circle once they have missed the target, and re-attack
until, by chance, the prey displays a side without IR sensors. As soon as
the preys begin again moving around the environment, the predator devel-
ops a \spider strategy" (box 5): it slowly backs until it �nds a wall where
it waits for the fast-approaching prey. However, this strategy does not pay
o� when the preys stay in the same place. Finally, at generation 99 we
have a new interesting strategy (box 6): the predator quickly tracks and
reaches the prey which quietly rotates in small circles. As soon as the prey
senses the predator, it backs and then approaches the predator (without
touching it) on the side where it cannot be seen; consequently, the predator
quickly turns in the attempt to visualize the prey which rotates around it,
producing an entertaining dance.

Although before conducing experiments in real time on more complex
robots one should devise a solution for power supply (which is one of
our current e�orts), these experiments have shown that competitive co-
evolution is a promising technique for automatic evolution of complex be-
haviors without much e�ort in �tness design.



3 Evolution of Adaptive Agents

Arti�cial evolution generates controllers which are well matched to the
training environment. However, in practical applications some character-
istics in the environment might change unexpectedly. If genetic algorithms
are the only adaptation engine employed, any change in the environment
would require further evolutionary training in the new conditions. If the
population of genetic strings still has su�cient diversity (that is, chromo-
somes are not all equal), this might be achieved faster than retraining the
whole system from scratch. For example, consider the experiment on nav-
igation and homing for battery recharge described in subsection 2.2. The
robot was evolved for 240 generations in an environment with a light source
on top of the recharging area (Figure 4b).

After generation 240, we positioned the light source in a di�erent corner
of the environment and continued evolutionary training [9] in the new
condition. Figure 8 shows �tness values for evolutionary training on three
di�erent light positions, each time starting from the same population of
generation 240. As one can see on the �rst column, the �tness of the best
individuals returns to previous values in approximately 20 generations (the
population average �tness taking longer). A further indication that the
best individuals are capable to correctly locate the recharging area in the
new conditions is given by the graphs of the second column which plot
the number of actions which the best individual of each generation can
perform.3

Despite these results, running evolutionary experiments on a single
robot can be a time consuming process. For example, in the experiments
described in subsections 2.1 and 2.2 each generation lasted approximately
40 minutes. Although evolutionary time can be considerably reduced by
optimizing certain parameters of the genetic algorithm [27], it would still be
desirable for practical purposes to evolve more adaptive systems. In other
words, the time required for evolutionary training could be more cost-
e�ective if the evolved system were capable of additional self-organization
if and when necessary. In this way, one could evolve a controller for a
certain task in a prototypical environment and then put the robot in the

3Let us recall that a full battery lasts 50 actions and that after 150 actions the individual is \killed"
to leave place for the next one.
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Figure 8: Re-adaptation in environments with a new light position. Each row (a, b, and
c) plots {respectively{ the average population �tness (continuous line) and the �tness of
the best individual (dotted line) across generations, the number of actions during life for
the best individual at each generation, and a sketch of the light position (small circle) in
the environment (the black sector represents the charging area). For sake of comparison,
each plot includes data for the last ten generations of the original run; therefore, data on
re-training start in correspondence of the origin of the y-axis.

operating environment where it would �ne tune its behavior to accomodate
minor changes if necessary.

In nature there are at least two sources of adaptation: changes that
take place on the phylogenetic scale and changes that take place during
the life of each individual. To what extent these two sources of adaptation
interact is still an open issue, but the role of adaptive individuals in evolving
populations has interesting aspects also for our computational models (the
reader is referred to [1] for a good treatment of this subject in biology and
in computer science). For example, phylogenetic evolution cannot take
into account temporary environmental modi�cations that happen during



the life of an organism; these modi�cations are assimilated by ontogenetic
mechanisms, such as maturation and learning.

Also in evolutionary robotics it would be desirable if evolved controllers
could incorporate some form of adaptation which remains operative after
evolutionary training. The idea is that while arti�cial evolution shapes
high-level properties of the controller architecture and dynamics, another
form of fast adaptation tunes low-level parameters of the controller to
the characteristics of the environment in which the robot is expected to
operate. In the next section, I will describe some initial explorations in
this direction.

3.1 Evolving Modi�able Neural Networks

Adaptation in arti�cial neural networks usually takes place by changing the
value of the synaptic strengths [18]. In biological nervous systems, these
changes are regulated by some form of Hebbian plasticity, that is synaptic
modi�cations depend on some type of correlation between the activity of
presynaptic and postsynaptic neurons.

In this experiment we explored the idea of evolving the type of Heb-
bian rule employed by each synapse, rather than evolving the value of the
synapse itself [12]. Thus, a genetic algorithm was used to evolve neural
structures that could be continuously modi�ed during life of the individual
according to the mechanisms speci�ed in the genotype. The experimental
setup and the �tnes function employed in this experiment was identical
to that already described in subsection 2.1. The genotype of each indi-
vidual encoded a set of parameters describing synapse properties and four
Hebbian rules. Every time a phenotype was created, its synapses were in-
tialized to small random values and could change their strength during life
using one of the four rules, as speci�ed in the genes; �nal strengths were
not coded back into the chromosome. Thus, each decoded neural network
changed its own synaptic strength con�guration according to the genetic
instructions and without external supervision while the robot interacted
with its own environment.

Synapses were individually coded on the chromosome. Each synapse
was described by a set of four properties: whether it was driving or modu-
latory (1 bit), whether it was excitatory or inhibitory (1 bit), its Hebbian



rule (2 bits), and its learning rate (2 bits). Each individual synapse could
change its strength according to one of four basic Hebbian learning rules:
pure Hebbian, postsynaptic, presynaptic, and covariance (see [30]). These
rules were such that synaptic strength could not grow inde�nitely, but was
intrinsically bound in the range [0:0; 1:0] by means of a self-limiting mech-
anism which depended on the current synaptic strength; this solution had
the property of keeping the sign of the synapse unchanged, thus reducing
the degrees of freedom of the network and putting more emphasis on the
genetically evolved con�guration of excitation and inhibition. When a neu-
rocontroller was decoded from the corresponding genotype, the input units
were attached to the sensors and the output units to the motors of the
robot; then, each synaptic weight value wt was initialized to small random
values in the range [0:0; 0:1] and updated every 300 ms according to the
following discrete-time equation

wt = wt�1 + ��wt (3)

where � is the learning rate, which can assume one of four values (0.0,
0.3, 0.7, 1.0) and �wt is the change at timet computed using one of the
four Hebbian rules. If the learning rate for a given synapse was 0.0, that
synapse would not change its strength during the life of the individual.

Three di�erent runs of this experiment were made. In all cases the best
individual �tness reached a maximum value around the 50th generation
(� = 0:23;�0:09). All the best neural networks of the last generation
could control the robot in order to keep a straight trajectory while avoid-
ing obstacles. The evolved behaviors resulted in smooth paths around
the arena (Figure 9). This ability was developed by each individual neu-
rocontroller during the �rst few sensory-motor loops, whatever the inital
random values assigned to the synapses. This can be seen on the left plot
of �gure 9 where the robot starts its adaptation in the lower portion of
the environment. As time passed, the robot exhibited smoother trajec-
tories (for example turning on sharp bends as compared to the sequence
stop-back-turn-restart employed earlier on). In all the three runs the best
individuals of the last generation moved in the direction where more IR
sensors were placed, which provided a better sampling of the obstacles
facing the robot, as in the experiment described in subsection 2.1.

By analyzing the neurocontroller dynamics while the robot behaved in
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Figure 9: Trajectory of the robot that learns to navigate during life. Position data,
visualized as bars representing the axis connecting the two wheels, were acquired with
the laser positioning system every 100 ms. Data refer to the best individual of the last
generation of one evolutionary run. Left: trajectory during the �rst lap (the robot starts
in the lower portion of the environment and turns anti-clockwise). Right: trajectory at
the second lap.

the environment, we realized that the stable behavior acquired during life
was regulated by continuously changing synapses which were dynamically
stable. In the conventional view, synapses are relatively stable and slow
components of the nervous system. Synaptic changes are identi�ed with
the learning of new skills or acquisition of new knowledge, while neuron
activations are identi�ed with the expression of behavior and of existing
knowledge.4 Typically, acquisition of a stable behavior in a static environ-
ment corresponds to stability (no further change) of individual synapses
(e.g., see [18]). Such requirement is explicitly included into the objec-
tives (least-mean-square error minimization, energy reduction, maximiza-
tion of node mutual information, etc.) from which {both supervised and
unsupervised{ conventional learning algorithms are derived, but it was not
included into the �tness function employed here, which is de�ned only in
behavioral terms. The functioning of our system o�ers a complementary
{but not necessarily alternative{ explanation to adaptation: Synapses are
responsible for both learning and behavior regulation. Knowledge in the
network is not expressed by a �nal stable state of the synaptic con�gura-

4This view has been recently challenged by Yamauchi and Beer [31], who have evolved and analyzed
continuous-time recurrent neural networks that give the external appearance of performing reinforcement
learning while, in fact, these networks have �xed connection weights and use only internal node dynamics.
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Figure 10: State-space representation of synapse dynamics during the �rst 100 actions
(visualized on the left side of Figure 9) plotted as trajectory within the space of the
�rst three principal components. Arrows indicate the starting position and the range of
oscillation between action sequences 20-80 and 80-100. Oscillations within the subspace
of the third (smallest) component correspond to trajectory adjustments.

tion, but rather by a dynamic equilibrium point in a n-dimensional state-
space (where n is the number of synapses). Figure 10 plots the trajectory
of synaptic change in the reduced state-space of the �rst three principal
components of the recorded synaptic vectors during the �rst 100 actions
of the individual displayed in Figure re�g:traj.glearn.eps. During the �rst
6 action the systems moves toward a subregion of the space for which
there is no change in the �rst two principal components; residual varia-
tion along the space plane corresponding to the third principal component
corresponds to trajectory adjustments and is further reduced as the robot
gradually tunes its path to the geometry of the environment.

The adaptation abilities of the neurocontroller were limited only to those
variations that were encountered in the training environment (e.g., walls
with di�erent curvatures). To this extent, such a plastic system evolved
in stationary environments did not o�er signi�cant adaptation advantages
w.r.t. systems with �xed synaptic weights, but this experiment showed
the viability of such approach. Further analyses which are currently being
carried out indicate that such plastic neurocontroller is much more resistent
to sensor damages than a static controller.



3.2 Adaptive Behavior in Co-Evolutionary Systems

In order to test in dynamical environments the approach described in the
previous section, we have revisited the competitive co-evolutionary scenario
outlined in subsection 2.3. Both predator and prey are now co-evolved us-
ing the genetic structure described in the previous subsection {thus adapt-
ing synaptic weights during their life{ and the results are compared with
those obtained in subsection 2.3. In order to make better comparisons,
both the neural network architecture and the genotype length were the
same in both experiments. Furthermore, another set of experiments was
run where, instead of Hebbian modi�cation, the synapses were changed by
adding random noise (more details can be found in [13]). For sake of sim-
plicity, let us label the evolution of static controllers condition 1 (i.e., the
experiment described in subsection 2.3), the evolution of random synapses
condition 2, and the evolution of adaptive synapses condition 3. For each
condition, 6 di�erent evolutionary runs were performed, each starting with
a di�erent seed for initializing the computer random functions. A set of
pairwise two-tail t-tests of the average �tness and best �tness along gener-
ations among all the six runs, performed to check whether di�erent seeds
signi�cantly a�ected the experimental outcomes, gave negative results at
signi�cance level 0.05.

A relational measure of performance gives us interesting information on
the coupled dynamics of a co-evolved system: for example, one can derive
an index of relative performance rc

i
by counting how often one species re-

ports higher �tness than the competitor species at each generation for each
separate run i in a speci�c condition c. In our setup, such index was in the
range [�100; 100], where �100 means that the preys always outperformed
the predators, 0 means that both species were equally better or worse than
the competitors, and 100 means that the predators always outperformed
the preys. In condition 1 (c = 1) described in subsection 2.3, the average
value over di�erent runs was R1 = 16:67 with standard deviation of the
sample mean � = 38, indicating that both species reported similar perfor-
mances. The condition with evolutionary adaptive noise (c = 2) displayed
an average relative performance R2 = 11:66 with standard deviation of the
sample mean � = 32:5 which was not statistically di�erent from that of the
previous condition (probability value was 0.83 for t-test of the di�erence of
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Figure 11: Behaviors of species with adaptive synapses. Black disk is predator, white is
prey. Left. Generation 20. Center. Generation 70. Right. Generation 95.

the means between the two conditions, i.e. much bigger than signi�cance
level 0.05 typically used for rejecting the equality hypothesis). Instead,
relative performance of the two species in condition 3 signi�cantly di�ered
from condition 1 and condition 2, R3 = 72 with standard deviation of the
sample mean � = 15:39, p < 0:01 for a two-tailed t-test of the di�erence
of the means. In all the six evolutionary runs predators reported higher
average and best �tness values than preys. Furthermore, in all runs, the
average �tness of the predator population was more stable than that of the
preys.

As compared to condition 1, where the predator tended to e�ciently
track in only one direction, here it can turn in both directions at equal
speed. In condition 1 proper tracking in both directions required accurate
settings of all the visual synaptic strengths. Here, instead, since synapses
are temporarily increased depending on active units [12], individual ad-
justments of synapses take place when and where required depending on
current sensory input. The trajectory in the center image of �gure 11 shows
an example of synaptic adjustment. Here, while the prey rotates always
around the same circle, the predator performs three turns during which
synaptic values from the visual units are gradually increased; at the fourth
turn, the synaptic values will be su�ciently high to cause a straight pur-
suit (eventually, the prey will try to avoid the predator without success). If
activity-dependent synaptic change are exploited by the far-sighted preda-
tor, not the same happens for the prey. Although here preys are faster
than in condition 1 and 2, especially when turning near walls (where IR
sensors become active and synapses temporarily strengthen), they cannot
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Figure 12: Master Tournament between species evolved in condition 1 (left) and Master
Tournament between predator evolved in condition 3 and prey evolved in condition 1
(right).

increase their behavioral repertoire with respect to condition 1. Not even
can they improve it because volatile changes of the synaptic values imply
that most of the time they must re-develop on-the-y appropriate synaptic
values; although this can be well-suited for avoidance of static obstacles, it
does not score better when facing another moving object.

In order to check whether such improvements were due to a real ad-
vantage of the predator, rather than to some di�culties of the preys to
cope with directional-change controllers, we performed two Master Tour-
naments. The graph on the left of �gure 12 shows the Master �tness for
predators and preys co-evolved in condition 1, giving a relative performance
R = �12 (relative performance for the average �tness data of this run was
r11 = �4). The graph on the right of �gure 12 instead shows the Master
�tness for predators evolved in condition 3 against preys evolved in condi-
tion 1, giving a relative performance R = 42 (relative performance for the
average �tness data of this run was r31 = 50). Had the advantage reported
by predators in condition 3 been caused by underdeveloped preys rather
than better predators, the Master Tournament between species evolved in
di�erent conditions should have generated opposite results.

4 Some Future Directions

In this chapter I have considered two issues which I feel important for
practical applications of the Evolutionary Robotics approach: reduction of
human design in the �tness function and evolution of adaptive systems.



Although my suggestions have only an empirical character, the results
obtained so far seem promising.

There are several other ways of improving utility and usability of the
evolutionary approach in robotics. One of these is an appropriate use
of simulation as an integrated tool to develop robotic controllers. Given
the long duration of experiments in evolutionary robotics, simulations can
considerably speed up initial search of optimal architectures, evolutionary
parameters, and �tness functions. Simulations can also be used to carry
out most of evolutionary training before moving to the real robot. Ini-
tial generations run in simulation would develop the rough structure of
the controller with respect to the task requirements and the environment
characteristics, whereas the �nal generations on the real robot would �ne
tune the controller to the speci�c mechanical and physical constraints of
the real-world task [23]. This type of incremental evolution (which does
not necessarily imply changes in the �tness function) could later be contin-
ued on another robotic platform, such as a robot eith a di�erent geometry
or a di�erent sensory system. At the Evolutionary Robotics workshop in
1996, Francesco Mondada showed that continuing evolution on a di�erent
robot is not only feasible, but also faster than retraining the controller
from scratch on the new robot. In his experiment he continued the experi-
ment on navigation and obstacle avoidance with the Khepera described in
section 2.1 on a bigger robot, the Koala. He showed that the neurocon-
trollers adapted in few generations their internal paramaters to the new
mechanical and geometrical characteristics of the bigger robot.

But, why not evolving controllers directly on the target robot? The
reason is that if a robot has a complex geometry or poor sensors (with
respect to the task requirements), then an appropriate controller for such
robot would represent a very small zone in the huge space of possible con-
trollers. In very simple words, it might be di�cult for a genetic algorithm
with a small population size to discover this zone. Instead, by following the
simulation-simple robot-target robot strategy, the genetic algorithm would
search a solution space which is initially relatively simple (that is, there
are several zones that would correspond to viable {even if not optimal{
controllers) and then progressively grows in complexity. This line of rea-
soning is similar to the case where one tries to evolve a complex behavior by
progressively changing the �tness function [16], as described in section 2.



An incremental approach is feasible only when there is su�cient vari-
ablility in the population of genetic strings. There are no ways of telling
what is the minimum necessary variability for practical applications be-
cause this depends on a number of factors, such as the type of genetic
encoding employed, the genetic operators, the nature of the task, how
noisy the �tness evaluation is, etc. However, there are several ways for en-
suring such variability, such as injection of random strings or evolution of
isolated genetic populations with occasional exchange of individuals. The
stochastic process of selective reproduction together with the recombina-
tion operator would then appropriately exploit these sources of variation.

Another way of improving evolutionary development of controllers might
be Genetic Recycling. Instead of starting an evolutionary run from ran-
domly initialized genetic strings, one might include in the initial population
some genetic strings evolved in a previous experiment. The idea is that, if
the task requirements of the two experiments share some common ability
(e.g., obstacle avoidance or visual tracking), previously evolved \building
blocks" could be appropriately exploited for the new evolutionary run.
Even when the two experiments make use of di�erent robotic platforms or
employ di�erent environments or di�erent �tness functions, recycling could
still be bene�cial. For example, some recycled strings could report non-zero
performance values already at the initial generation and be selected for re-
production, recombination, and mutation, thus speeding up initial search
for viable controllers. In the case where initial performance of recycled
strings is not better than that of randomly initialized strings, they could
still be stochastically selected by the reproduction operator and maintained
in the population. The building blocks of recycled strings could then be-
come useful at some later stage when appropriately recombined with those
of other evolving strings.

Evolutionary Robotics is a young approach still open to several exciting
research developments and applications. As for any novel method, there is
still space for improvement, systematization, and formalization. However,
successful results on real robots presented in recent years already show
the practical feasibility of the method. One of the nice features of the
evolutionary approach is its generality, that is the possibility to apply it
to several di�erent aspects robotics (e.g., mechanical design [19] or circuit
design [29]) and to several di�erent control speci�cations. Furthermore, it



can be fruitfully combined with other forms of adaptation (such as learning)
and/or with traditionally pre-designed solutions.
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