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Abstract

Evolutionary robotics is an interesting novel approach to shape the
control system of autonomous robots. This explores issues related to re-
adaptation in changed environments of a population of evolved individu-
als. Experimental studies are reported for genetic evolution of neurocon-
trollers that have developed the ability to perform homing navigation for
battery recharge of miniature mobile robot. It is shown that re-adaptation
to important changes in the environment is very rapid and does not dis-
rupt previously acquired knowledge. The results are discussed in relation
to the internal representation of the neurocontroller and to the variability
within the population.

1 Evolutionary Shaping of Autonomous Robots

An autonomous robot can be seen as an artificial organism capable of self-
organising its own behaviour according to environmental constraints in order
to maintain its own viability without human intervention. In recent years, the
analogy between autonomous robots and biological organisms has generated a
novel approach, also known as “Behaviour—Based Robotics” [10], to program
and understand robot behaviour in unknown and unpredictable environments.
This approach is quite different from the classical Al approach that attempted
to emulate human reasoning by building large and complex planning systems
which failed to deliver the expected results [1]. In Behaviour-Based Robotics
emphasis is put on speed, robustness, low-cost, and incremental development of
modular controllers. Here, researchers seek inspiration from biology, trying to
understand and reproduce the smart and simple mechanisms that allow animals
to survive in their own environment [13].

Typically, the control system of such robots is based on parallel and dis-
tributed processes interconnected by modifiable links. One example is the well-
known subsumption architecture [2]. Several successful results have been also re-
ported using neural networks; e.g., see [15, 14, 3, 11] for an overview of the field.
Neural networks, in particular, offer interesting advantages if one is interested
in biological inspiration and adaptation: a) They facilitate knowledge-tranfer
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Figure 1: Genetic evolution on a single robot. Between one individual and the
next the robot is allowed to perform a random motion for 5 seconds.

and comparison between biological and artificial organisms; b) Several learning
algorithms are available for modifying internal processing parameters; ¢) They
display intrinsic generalisation abilities. A large number of people have used
genetic algorithms for evolving the appropriate internal parameters of robot
neurocontrollers (see [12] for a comprehensive overview). Genetic algorithms [9]
represent a family of optimisation techniques inspired upon natural evolution.

A genetic algorithm operates on a population of strings, each of them rep-
resenting a solution of the problem, that is the parameters defining a neuro-
controller for the robot (Figure 1). Tt is necessary to define a fitness function,
that is a measure of robot performance, and a set of decoding rules for mapping
the genotypic string into the neural network phenotype. Initially, all the strings
are randomly generated and each is in turn decoded, downloaded on the robot,
and tested while the fitness value is measured. Then, three genetic operators
—selective reproduction, crossover, and mutation— are applied in order to cre-
ate a novel generation of strings. Selective reproduction allocates a number of
copies for each string proportional to its fitness value, crossover swaps parts of
the genetic material between randomly paired strings, and mutation randomly
changes the contents of each gene with a certain low probability. The process is
repeated until the average performance of the population and the performance
of the best individual reaches reaches a satisfactory value (see [7] for an introduc-
tion to genetic algorithms). An interesting feature of genetic algorithm is that it
1s not necessary to specify in detail the desired actions for every possible sensory
stimulation; rather, only a general description of the expected behaviour can be
used to design the fitness function. This is of great advantage in autonomous
robotics where correct motor actions are not known in advance making thus
supervised learning algorithms unsuitable.

To date, most of the experiments reported in the literature have been done
using simulated robots. Although those findings are certainly relevant, we be-
lieve that computer models of robots cannot capture the complexity of the
interaction between a real robot and a physical environment where mechanical
and physical laws (such as wearing of the components, changing light condi-



tions, friction, etc.), non-white noise at all levels, and various types of potential
hardware malfunctioning play a major role.! Here, I shall focus on what is
now recognised as the first experiment where the evolutionary process has been
entirely carried out on a real mobile robot without human intervention [5]. In
section 2 I shall briefly describe the basic setup and results; in section 3 I shall
focus on novel results where important environmental conditions are changed;
finally, in section 4 I shall discuss the results and shortly describe current direc-
tions.

2 Homing for Battery Charge: A case-study

In the experiment here described we attempted to evolve a homing behaviour
for battery recharge using the miniature mobile robot Khepera. Our goal was
that of of testing the hypothesis that complex behaviours do not necessarily
have to be specified in the fitness function, but can rather develop in order to
satisfy a more general constraint [5]. Therefore, neither the fitness function
nor the neurocontroller incorporated explicit knowledge about the presence and
location of the battery charger.

In this experiment we employed the miniature mobile robot Khepera [17],
which has a diameter of 55 mm, it is 30 mm high, and its weight is 70 g
(Figure 2a). The robot is supported by two wheels and two small Teflon balls
placed under its platform. The wheels are controlled by two DC motors with an
incremental encoder (12 pulses per mm of robot advancement) and can rotate
in both directions. In the basic version used here, it is provided with eight
infrared proximity sensors placed around its body (six on one side and two on
the opposite one) which are based on emission and reception of infrared light.
Fach receptor can measure both the ambient infrared light (which in normal
conditions is a rough measure of the local ambient light intensity) and the
reflected infrared light emitted by the robot itself (for objects closer than 4-5 cm
in our experiments). An additional sensor was placed under the robot platform
to detect floor brightness. The robot was also provided with a simulated battery
characterized by a fast linear discharge rate (max duration: approx. 20 seconds),
and with a simulated sensor giving information about the battery status (we
could have used the on-board batteries, but the evolutionary procedure would
have lasted 6 years, instead of 10 days).

The environment employed for the evolutionary training consisted of a 40x45
cm arena delimited by walls of light-blue polystyrene and the floor was made
of thick gray paper (Figure 2b). A 25 c¢m high tower equipped with 15 small
DC lamps oriented toward the arena was placed in one corner. The room did
not have other light sources. Under the light tower, a circular portion of the
floor at the corner was painted black. The painted sector, that represented
the recharging area, had a radius of approximately 8 ¢cm and was intended to
simulate the platform of a prototype of battery charger under construction.
When the robot happened to be over the black area, its simulated battery
became instantaneously recharged.

A multilayer perceptron of continuous sigmoid units was used to map sensor
inputs into motor outputs. 12 input units clamped to 8 infrared sensors, 2

1But see [16] for a clever methodology that bridges the gap between simulation and imple-
mentation in certain conditions.
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Figure 2: a) Khepera, the miniature mobile robot. b) The environment with
the light tower and the robot (there were no other light sources in the room).

ambient light sensors (one on the front and one on the back side of the robot), 1
floor-brightness detector, and one battery charge sensor, were fully connected to
5 hidden units with recurrent connections [4]; hidden units were fully connected
to 2 output units, each controlling the speed and rotation direction of the two
wheels. Each robot (corresponding to one string of the population) started its
life with a fully charged battery which was discharged by a fixed amount at each
time step: a fully charged battery allowed a robot to move for 50 time steps. If
the robot happened to pass over the black area the battery was instantaneously
recharged and, thus, its life prolonged. An upper limit of 150 steps was allowed
for each individual, in order to eventually terminate the life of robots that
remained on the recharging area or that regularly passed over it.

Each genetic string coded real values of synaptic strengths and neuron
thresholds of the neural network (a total of 102 genes per string). The pop-
ulation size was kept constant to 100 individuals per generation, the crossover
and mutation probability were 0.1 and 0.2 respectively. FEach motor action
lasted 380 ms (including time for serial communication with the workstation).
Each decoded individual was evaluated during its life according to the following
fitness function @,

d=V(1-i), 0<V<10<i<l (1)

where V is a measure of the average rotation speed of the two wheels and
¢ 1s the activation value of the proximity sensor with the highest activity. The
function ® has two components: the first one is maximized by speed and the
second by obstacle avoidance. The accumulated fitness value of each individual
(which depended both on the performance of the robot and on the length of its
life) was then divided by the maximum number of steps (150) and stored away
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Figure 3: Average population fitness (continuous line) and fitness of the best
individual (dotted line) at each generation.
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Figure 4: Number of actions during life for the best individual at each genera-
tion. 50 actions (approximately 20 seconds) represent the minimum life length
because each individual starts with a full battery.

for the genetic operators. It should be noted that locating and passing over the
recharging area is not treated as one of the main goals that the robot should
achieve, but only as a possible behavioral strategy that could emerge to exploit
the characteristics of the robot and of the environment.

The robot was left alone in a dark room lit only by the small light-tower while
we monitored its evolution on our workstation in another room for the next 10
days. Both the population average-fitness and the fitness of the best individual
steadily increased along the corresponding 240 generations (Figure 3). Accord-
ingly, the number of steps (actions) taken by the best neurocontroller increased
along generations (Figure 4). By combining the data in Figure 3 and Figure 4,
it is possible to notice that, especially in the last 90 generations, increased their
own life duration and spent shorter periods of time over the recharging area
(no fitness was returned when the robot was on the charging areal!). An analy-
sis of the behaviour and of the neurocontroller internal dynamics showed that
the best individual of the last generation spent most of his energy wandering
around the environment without hitting the walls; when the battery was almost
discharged (exactly when depended on robot location and remaining energy),
the robot quickly returned to the charging station and rapidly returned to the
environment once the battery had been recharged (see [5] for further details and
analysis).

3 Changing Environmental Layout

On the left side of Figure 5 one can see the trajectory of the best individual of
generation 240 for the initial 50 actions. The robot starts with a fully charged
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Figure 5: Trajectories of best individual of generation 240 in three environmental
conditions. Left: Test in training conditions. The robot starts with a full
battery in the bottom right corner (only the first 50 actions are displayed).
Centre: The battery is not automatically recharged when the robot arrives on
the charging area. The robot starts in the centre of the environemnt with an
almost discharged battery. Right: The light source is positioned on the top
right corner, but the charging area remains at the original location.

battery in the lower right corner of the environment and moves around the
environment avoiding the charging area (where it does not receive any fitness
value) until the battery reaches a minimum level; then, it heads straight to the
charging area where it always arrives with approximately 2% residual energy.
Discovery of the charging area location, straight paths, and calculation of resid-
ual energy as function of robot location are abilities that were not specified in
the fitness function, but emerged in order to maximise the selective reproduc-
tion criterion of keeping as long as possible the wheels rotating without hitting
the walls (see [5] for a description of the internal world map developed by the
neurocontrollers). Therefore, these abilities can be seen as sub-goals finalised
to the satisfaction of the final goal described in the fitness function.

In this experiment, the position of the light source is the only landmark that
can be exploited to locate the charging area. The robot has learned to associate
certain values of light intensity and direction with the charging area location.
Two simple tests show this. If the battery is not automatically re-charged when
the robot arrives to the area, it will still stay on i1t exploring the it thoroughly
until all the residual energy is exhausted (Figure 5, centre). Similarly, if the light
source is moved to the top right corner (but the charging area is not moved),
the robot will head toward that corner and stay in the surroundings until all
the energy is exhausted. However, now exploration of the corner will consist of
larger trajectories, probably because the neurocontroller is actively looking for
the black surface (Figure 5, right).

Although these behaviours are interesting, it would be desirable for an au-
tonomous robot to re-adapt to changing environmental conditions in order to
maintain its own viability. Adaptation in the original environment required 240
generations, corresponding to approximately 250 hours of continuous operation.
How long will it take —if possible at all- to re-adapt to important environmental
changes? Since here the most important environmental variable is the posi-
tion of the light source relative to the charging area, evolutionary training was
continued in three different environmental conditions, each with the light source
positioned in a different corner of the environment (top-right, bottom-right, and
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Figure 6: Re-adaptation in environments with a new light position. Each row
(a, b, and c¢) plots —respectively— the average population fitness (continuous
line) and the fitness of the best individual (dotted line) across generations, the
number of actions during life for the best individual at each generation, and a
sketch of the light position (small circle) in the environment (the black sector
represents the charging area). For sake of comparison, each plot includes data
for the last ten generations of the original run (see Figs. 3 and 4); therefore,
data on re-training start at the origin of the y-axis.
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Figure 7: Re-training on the original environment of the last population of
individuals adapted to the light spot positioned in the low-left corner (Fig. 6¢).

bottom-left; called a, b, and ¢, respectively). For each condition, the genetic al-
gorithm was restarted on the population of generation 240 and continued for 80
additional generations with the same parameters already described in section 2.
Data for all conditions are displayed in Figure 6. A comparison of these data
with the data recorded from the original training session puts in evidence three
main results. The initial drop in performance, both at the level of the popu-
lation and of the best individual, is not dramatic; this is probably due to the
presence of several individuals which were “sub-optimal” in the original envi-
ronment, but resulted indeed fitter in the new environment. Re-adaptation took
place relatively quickly; in the worst cases (Figure 6, a and ¢), 20 generations
(less than 10% of the time required for initial training) were sufficient to cre-
ate an individual perfectly adapted to the new environment which reported the
same performances already measured for the best individual of generation 240
in the original environment. Re-adaptation was extremely rapid when the light
source was positioned in the corner opposite to charging area (Figure 6, §); this
indicates that the mirror symmetry of the new environment does not require a
drastic change in the internal representation developed by the neurocontrollers.
In other words, whereas conditions a and ¢ require a rotational translation of
the internal world map involving changes in several synaptic weights, condition
b can be successfully solved by changing few important synaptic weights which
result in a complete reversal of the internal map. If this is the case, then one
expects that only the best individuals (i.e., those which already developed a
correctly oriented map in the original environment) would benefit from mirror
symmetry of the new environment; this is indeed shown by the sharp contrast
between the performance of the best individual and the average performance
of the population which displays the same initial drop and recovery rate as in
conditions a and ec.

Another question is whether re-adaptation in a changed environment has
cancelled the behavioural strategies acquired in the original environment and
—if this is the case— what is the amount of additional training necessary to
restore them. The genetic algorithm was thus restarted on the original envi-
ronment from the population of the last generation of individuals re-adapted to
condition ¢; and continued for 30 generations; the population of condition ¢ was
chosen because it was one of the two cases which required longer re-adaptation.
All evolutionary parameters were kept constant. As it can be seen in Figure 7,
the initial drop in performance is minimal both at the level of the best indi-



vidual and at the level of the population. This result indicates that internal
behavioural knowledge acquired during the original adaptation phase has not
been considerably disrupted by re-adaptation to a quite different environmental
layout. Although here behavioural knowledge is stored at the level of the popu-
lation, the system as a whole is capable of rapid reconfiguration while preserving
previously acquired representations.

4 Discussion

The results discussed above raise a number of issues. Perhaps, the most impor-
tant one concerns variability of the population along generations. Variability
of individuals within the population represents the combustion material that
drives genetic adaptation. When internal variation is exhausted, there cannot
be any further adaptation. The reason why the population of generation 240
could re-adapt to the new environments is that it had not yet converged (aver-
age fitness performance had not yet reached a plateau level). Tt is reasonable to
assume that further 80 generations of retraining reduced the population vari-
ability; thus, the possibility to have further re-adaptation after generation 320
(240 plus 80) is smaller than after generation 240. Indeed, this is what happens
when the population of generation 320 is retrained in the original environment
(Figure 7). Here, the average performance of the population does not increase
along generations. The reason why the best individuals can achieve the task is
that previous knowledge about the charging area location was not erased from
the population. These consideration make one think that re-adaptation is not
an open-end property of traditional genetic algorithms where single-task optimi-
sation i1s the main objective. It is thus necessary to look for different approaches.
One possibility is that of using variable-length genotypes for continuously evolv-
ing populations [8]. A different approach is that of evolving learning rules that
modify the internal parameters of the neural network while the robot inter-
acts with its own environment [6]. Initial experiments in the latter case have
generated learning networks capable of configuring the robot behaviour in few
seconds according to the goal described in the fitness function and to the ac-
tual properties of the environment. These results seem promising because they
could provide a way to reduce the adaptation time requested by the traditional
evolutionary approach. However, these experiments were carried out in static
environments and require further tests in order to assess the real potentials of
the approach.
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