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ABSTRACT

We present a new method for signal reconstruction from mul-
tiple sets of samples with unknown offsets. We rewrite the re-
construction problem as a set of polynomial equations in the
unknown signal parameters and the offsets between the sets
of samples. Then, we construct a Grobner basis for the corre-
sponding affine variety. The signal parameters can then easily
be derived from this Grobner basis. This provides us with
an elegant solution method for the initial nonlinear problem.
We show two examples for the reconstruction of polynomial
signals and Fourier series.

1. INTRODUCTION

In this paper, we present a method to reconstruct a signal from
multiple sets of samples using Grobner bases. The offsets
between the different sets of samples are unknown, and can
take any real value. Each of the individual sets of samples
is sampled uniformly, at a rate below the Nyquist rate. This
is the typical setup that is used in super-resolution imaging,
where a high resolution, aliasing-free image is reconstructed
from a set of low resolution, aliased images with small rela-
tive shifts [1]. Similarly, in time-interleaved A/D converters
multiple low-rate converters are combined to build the equiv-
alent of a high-rate converter [2]. One of the important issues
in this domain is the synchronization of the low-rate convert-
ers.

The reconstruction problem from multiple sets of sam-
ples with known offsets was solved by Papoulis [3] for
bandlimited signals. Marziliano et al. [4] describe a re-
construction method for multiple sets of samples with un-
known, but discrete-valued offsets using a combinatorial
method. Subspace-based methods for the reconstruction with
unknown real-valued offsets between the sets of samples are
presented by Vandewalle et al. [5, 6].
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2. PROBLEM SETUP

Consider a signal f(¢) that belongs to the finite-dimensional
space spanned by a basis B = {¢;(t)},=0..—1. The signal
f(t) can then be written in this basis as

L—-1

F&) =" ma(t), (1)

=0

where z; is the expansion coefficient corresponding to ¢;(t).
The function f(t) is sampled using M sets of N regularly
spaced samples. The offsets between the sets of samples are
called t,,, (0 < m < M, with tg = 0). The m-th set of
samples can be written in a vector as

Ym = ®¢,X, 2

with @, the N x L matrix containing the L basis func-
tions ¢;(t) sampled uniformly with offset t,,, (®;, (i,5) =
¢;(i/N + t,,)), and x the expansion vector. The different
sample vectors y,,, can then be combined into a large vector
y (and similarly for ®):

y = ®x, 3

where both the expansion coefficients x and the offsets t
(which appear in the matrix ®¢) are unknown. This setup
is illustrated in Figure 1.

3. GROBNER BASES

Grobner bases are commonly used in algebraic geometry for
systems of polynomial equations in one or more variables. An
important property of Grobner bases is that they always lead
to a description of all the possible solutions for the system of
equations. A complete presentation of this domain is out of
the scope of this paper, but can be found in Cox et al. [7]. We
will concentrate on the main ideas that are of importance for
our signal reconstruction problem. Next to super-resolution,
Grobner basis techniques could potentially also give elegant
solutions to other signal processing problems.
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Fig. 1. Tlustration of the different variables from Section 2 for
M = 2 using a Fourier basis. (a) Time domain representation of
the signal f(¢) and its sets of samples yo and yi. (b) Frequency
domain representation of the absolute value of the signal f(¢) and
its aliased versions after sampling.

The central objects in algebraic geometry are affine vari-
eties. An affine variety V is defined as the set of all the com-
mon zeros of a set of polynomial equations in one or more
variables x1, ..., T,:

. 7xn—1)|p0(x) = pl(x) == 0}7

“)
where each p;(x) is a polynomial in the variables x =
( To Tp_1 ) In our case, for a polynomial basis 1,
the variety is defined as the set of solutions for ®¢x —y = 0.
We will see in the examples in Section 4 and 5 that if there
are enough samples and sampling sets (and therefore equa-
tions), the variety contains a single point, and the solution of
the reconstruction problem is unique.

In the simpler case of a linear affine variety, the set of so-
Iutions can be computed using Gaussian elimination. Recall
that the Gaussian elimination algorithm essentially consists in
computing linear combinations of the equations to progres-
sively eliminate all the variables.

For an arbitrary affine variety, the computation of a
Grobner basis can be seen as a generalization of Gaussian
elimination to polynomials. As in Gaussian elimination, we
will try to replace the initial set of equations by equivalent sets
(defining the same variety), from which the unknowns can be
derived more easily. Instead of the scalar coefficients in the
linear combinations with Gaussian elimination, we will now
use polynomial coefficients to combine different equations.
Just as in the linear case, we need to fix an ordering for the
terms of the polynomial. A common choice is lexicographic
ordering.

Grobner bases are defined for ideals. An ideal can be de-

V:{X: (1'0,271,..

fined as the set of all the polynomials that can be generated
as linear combinations of a given set of polynomials. Again,
polynomial coefficients can be used in these linear combina-
tions. For each affine variety, a corresponding ideal can be
defined from the polynomials of the variety. The ideal corre-
sponding to the variety V' given in (4) can be written as

Iv ={plp =Y ai(x)pi(x)}. 5)

3

The coefficients a;(x) are again polynomials in g, . .., Zs—1.

To determine whether a given polynomial belongs to an
ideal I, we need to check if it can be written as a linear com-
bination of the polynomials in the ideal. In Gaussian elimi-
nation, we used Euclid’s algorithm for the greatest common
divisor to do this. With polynomials in multiple variables, this
is not possible, because they do not form a Euclidean domain.
However, we can define a multivariate division, allowing us
to compute the division of one multivariate polynomial by an-
other polynomial, and its remainder. Unfortunately, the divi-
sion of a polynomial by a set of polynomials may depend on
the order in which the polynomials are given.

Now that we have ideals and a method for polynomial
division, we can define a Grobner basis. A set of polynomials
G = {g0,...,9r} forms a Grébner basis for the ideal I if
the division of any polynomial p € I by the polynomials of
G has remainder zero. Moreover, for a Grobner basis, the
result of the division does not depend on the order in which
the polynomials g; are given.

Since the polynomials form a ring, it is not always possi-
ble to compute the inverse of the (polynomial) coefficients
used in linear combinations. We can therefore not always
replace a polynomial by its linear combination with another
polynomial, as we did in Gaussian elimination. If we would
do this, it is possible that we cannot reconstruct the origi-
nal polynomial, and thus we modify the variety. Therefore,
it is necessary to expand the set of polynomials first, until a
Grobner basis is obtained. Afterwards, some of the polyno-
mials may be removed, if the remaining ones are sufficient to
generate the ideal and still form a Grobner basis.

The first algorithm to compute a Grobner basis in this way
was developed by Buchberger. It can be shown that this algo-
rithm always finds the (unique) reduced Grobner basis for a
specific ordering. Many improvements on this algorithm have
been proposed, for example by Faugere [8].

A very important property for solving equations using
Grobner bases is given by the elimination theorem. Assume
we have an ideal I with Grobner basis G, and we use lex-
icographic ordering. The elimination theorem states that a
Grobner basis for the polynomials of I in only the variables
Tk, - .., Tn_1 is then given by the polynomials of G that only
depend on zy, . .., z,—1. In other words, a set of polynomial
equations can be solved from its Grobner basis using back-
substitution, just like we did with Gaussian elimination. At
least one variable is eliminated in every iteration. The ideals
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I}, formed by intersecting the ideal I with decreasing numbers
of variables xy, . .., x,_1 are called elimination ideals.

4. POLYNOMIAL RECONSTRUCTION

We can apply Buchberger’s algorithm to our signal recon-
struction problem. The first step is to write the equations of
the system (3) as a system of polynomial equations. The sim-
plest case is when the basis B is a polynomial basis. For such
a basis, the equations from (3) are already in polynomial form,
and all we need to do is to compute a Grobner basis for the
corresponding ideal. The signal parameters can then directly
be derived from the basis. We illustrate this with an example.
Example: Consider the case where the basis B is given
by the functions ¢;(t) = t', 1 = 0,...,L — 1 with
L = 3. Assume that we take two sets of two samples,
ie. N = 2, M = 2. Consider the signal parameter vec-
tor x = ( 64 —24 —4 )7 and the displacements t =
(0 1/8)T. In this case, the two sets of measurements
wouldbeyo = ( —4 0 )T andy; = ( —6 6 )T. There-
fore, the system that we want to solve is

0 0 1 . —4

1 1 1 0 0

4 2 —

2 | il = 6 | ©
(F+1)? $+¢t 1 2 6

We can represent the set of solutions of (6) as the points of
the affine variety defined by the set of polynomials:

po=w2+4

pL= 1T0 + 521 + T2
pg_xot2+$1t+$2+6
p3zxotz—i—xot—l—ixo—i—xlt—l—%xl+x2—6

)

in the variables xg, x1, 2 and t. We fix the ordering of vari-
ables as xp > z; > x3 > t and we use lexicographic ordering
for monomials.

At the first step of Buchberger’s algorithm, we add the
following polynomials to the basis:

py = —8x1t% + 4ait + 641> 4 8
ps = —8x1t2 — a1t + 6412 + 64t — 24 (8)
Pe = 2.%’1t — 16t + 8.

Following the same procedure, in the second iteration, we find
that only two new non-zero polynomials can be computed.
We add

p7r = —2x1 — 48

ps = 64t — 8 ©)

to the basis. In the following iteration all remainders are zero
and we conclude that pq, ..., ps is a Grobner basis. We can
now try to reduce the elements of the basis. In this case, we
have that ps, ps3, p4, ps, pe can be removed and the final basis

is given by {po, p1, 7, ps}. In order to apply the elimination
theorem, we rename the elements of the basis as:

go = iIOJr%CEl + T2
g1:—2(£1—48

go =T2+4
93:64t—8.

(10)

The elimination ideals are Iy = (g1, g2,93), 11 = (92, 93),
and I = (g3). The solution of the problem can be obtained
by computing the points of the affine variety associated to I
and extending it by back substitution to I;, Iy and I. We
easily find that the unique solution is ¢t = 1/8, 3 = —4,
r1 = —24, and Tro = 64.

5. SIGNAL RECONSTRUCTION IN OTHER BASES

The procedure described in the example above can be applied
to any polynomial basis. More generally, using a change of
variable, we can solve the problem when the basis is a set of
functions ¢;(t) = h(t)!, with h(t) an invertible function. An
important case is when h(t) = €277t which gives the Fourier
series. In fact, consider the case of a complex signal of the

form
L—1

> wa), (11

I=—L+1

flt) =

with ¢;(t) = €277", The samples are given by

L—-1

n .
ym(n) = f (N + tm) = Z :CZW]\z[le%r]ltm’ (12)
l=—L+1

with Wy = e>™/N_ By setting, z,, = e2™ each of the
samples gives a polynomial constraint of the form:

L-1

Pavem = Y wWREET = 2k, (n) = 0. (13)
l=—L+1

As in the previous case, the solution of the problem is given
by the points that belong to an affine variety. We can therefore
again compute the signal parameters from a Grobner basis for
this variety. We illustrate this with an example for the Fourier
basis.

Example: Assume L = 2, i.e. the input signal is represented
by the parameter vector x = (z_a, ..., Z3), Where each entry
is a complex value. For this example, we assume

x=(3 2-j7 1 245 3)T. (14)

We suppose that M = 2 sets of N = 4 samples are taken from
the input signal, with the displacementst = ( 0 1/8 )T.1In
this case, the two sets of measurements are

yo=(11 -7 3 —3)7

15
B=(14v2 1-3/2 1-v2 143ya).
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Applying (13), we obtain 8 polynomials that represent the
constraints imposed by the measurements:

po=xo+x1+T0+2T_1+x_9—11
p1=—T2+jr1+To—Jjr 1 —xT 2+7
P2=2T2—T1+2Tg—T_1+T_2—3
p3=—T2—jJr1+ITo+jr_1 —T 2+ 3
pa = T2zt + 2128 + 202} + w121 10 — (1+ V2)2E
ps = —x22f + jx12} + w02t — jr_121 — 2o
—(1 - 3v2)z?
pe = To2t — 1125 Faezf —x 12+ g — (1 —/2)23
pr = —w2t — jw123 + wo2f + jr_121 — 2o
—(1+3v2)23,

(16)
where the complex variable z; = /2™ represents the dis-
placement. Again, we can compute a Grobner basis using
Buchberger’s algorithm. Assuming the ordering xo > z; >
...>x_o > z1, We obtain

go = 2:62 — 3]\/52’1 + 3\/521 —12
g1=r1—2—j

g2 =x0— 1

g3 =T 1—2+]

g4 =22_5 + 3jV221 — 3v22

g5 =227 —V2(1 + j)z1.

7)

The last polynomial of the basis, g5 eliminates all variables
but z;. Therefore we can compute the solutions for the dis-
placement variable, z; = 0 and z; = e/™/4. Clearly, z; = 0
is discarded since it does not belong to the unit circle, while
the second solution corresponds to the correct displacement
t; = 1/8. By backsubstitution, one can compute the signal
parameters.

From the above examples, we can see that this method can
be applied to any reconstruction problem that can be written
in the form of (3), with polynomial functions of the offsets t
in (§t~

6. COMPLEXITY

The computational complexity of our algorithm depends on
the specific polynomials py,. .., pasrn—1, and thus on the sig-
nal to reconstruct f(t). For specific choices of f(t), Buch-
berger’s algorithm will quickly lead to a Grébner basis, in
very few iterations. However, for other signals, Buchberger’s
algorithm will first introduce a large expansion of the basis
before it is complete.

In our case, we can see from (3) that the equations are
linear in the L variables z; (the signal expansion coefficients).
Higher degrees are only found with the M variables t,, (the
offsets). Therefore, if we place the expansion coefficients first
in our ordering (i.e. zg < ... < Tp_1 <tg < ... <tm—1),
most of the variables (the first L) can be eliminated in O(L?)
steps, using Gaussian elimination. Buchberger’s algorithm

only needs to be applied on the remaining equations in the M
offset variables.

Note that we need to compute the zeros of a polynomial
for the backsubstitution step of our solution method. Depend-
ing on the order of the polynomial, this may not always be a
trivial operation.

7. CONCLUSIONS

We presented a method to reconstruct a signal from multiple
sets of samples. The problem is first rewritten as a system of
polynomial equations. Next, we compute a Grobner basis for
the corresponding ideal. The signal parameters can then eas-
ily be derived from this Grobner basis. In this way, the non-
linear problem in the joint unknown signal coefficients and
offsets is highly simplified. We illustrated our method with
examples for the reconstruction of polynomials and bandlim-
ited signals.
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