
Structural and Algorithmic Issues of Dynamic Protocol Update

Olivier Riitti1, Pawel T. Wojciechowski2, Andre Schiper'

1Ecole Polytechnique Federale de Lausanne (EPFL) 2Poznan University of Technology
School of Computer and Communication Sciences Institute of Computing Science

1015 Lausanne, Switzerland 60-965 Poznan, Poland
{Olivier.Rutti, Andre.Schiper}@epfl.ch ptw@cs.put.poznan.pl

Abstract believe that our work will be useful for practitioners
and system developers.

In this paper, we study dynamic protocol update Our work focuses on the problem of dynamic update
(DPU). Contrary to local code updates on-the-fly, DPU of distributed protocols, i.e. protocols (e.g., group com-
requires global coordination of local code replacements. munication protocols) that are implemented by several
We propose a novel solution to DPU. The key idea is identical modules located on different machines. The
to add a level of indirection between the service callers dynamic protocol update (DPU) requires that all local
and the service provider. This indirection level facil- updates must be (eventually) consistently performed
itates an implementation of simple and efficient algo- on all machines. To avoid interference between concur-
rithms for DPU. For example, we describe an experi- rent versions of the protocol, some global synchroniza-
mental implementation of adaptive group communica- tion of local updates may be required. We would like
tion middleware. It can switch between different atomic to minimize the impact of this global synchronization,
broadcast protocols on-the-fly. All middleware proto- so that DPU efficiency and scalability is not degraded.
cols, including those that depend on the updated proto- For instance, it is desirable that the whole system is
cols, provide service correctly and with negligible delay not blocked, and remains available while protocols are
while the global update takes places. The switching al- updated.
gorithm introduces very low overhead that we illustrate Many systems have been developed to allow dy-
by showing example measurement results. namic adaptation in the context of distributed systems

(see [8, 11, 3, 2] among others). However, majority
of such systems do not address consistent update of

1 Introduction distributed protocols. Examples of existiug systems
that support DPU will be discussed later in this paper.
Moreover, little work exists on the theoretical foun-

Recent years have seen a growing interest in pro- dations for DPU. We made some initial step in [21],
gramming tools for adaptable systems, i.e., systems where we defined a formal mathematical model, and
that can be reconfigured and adapted to new envi- used it to define different levels of synchrony between
ronments or changing user requirements (see [12] for local updates (different updateable protocols may re-
examples of such tools and techniques). In this pa- quire different levels).
per, we propose algorithmic tools for adaptable group Liu et al. [10] define several meta properties on
communication middleware [20, 6]. They allow soft- traces of the send and deliver events. These meta prop-
ware modules or components of the middleware to be erties must be preserved by each updateable protocol
replaced on-the-fly without service interruption. The (an example is described in [1]). However, this model
benefit is a decrease of software upgrade and mainte- of DPU strongly limits the scope of application. On the
nance costs in systems that must run non-stop. We contrary, we define in this paper two generic correctness

Research supported by the Swiss National Science Foundation poete fdnmclyudtal ytm:sak
under grant number 21-67715.02 and Hasler Stiftung under grant well-formedness and protocol-operationability. Preserv-
number DICS-1825. ing these properties and some additional correctness

1-4244-0054-6/06/$20.00 ©2006 IEEE

properties specific to the protocols being replaced dur- 2 Model
ing dynamic update, guarantees that the update is
transparent to the users of the protocols. In this section we introduce a simple model that dif-

In this paper, we consider two complementary di- ferentiates services (specifications of distributed pro-
mensions of DPU: (1) the structural dimension, and tocols) from protocols (implementations of distributed
(2) the algorithmic dimension. The structural dimen- protocols). In the following sections, we use our model
sion of DPU deals with the way a replacement man- to describe the correctness properties and the imple-
ager is integrated into each protocol stack. The al- mentation of DPU.
gorithmic dimension of DPU deals with the algorithm

of te rplaemen maage. A levr itegrtio of Basic definitions We consider distributed protocols.ofthe replacement manager.fAciltates andtsimlifi t Protocols are implemented by a set of identical mod-the replacement manager facilitates and simplifies the ulsecmolernignadfeetmche(r
implementation of DPU algorithms. In particular, the u e
strnctnral dimension of DPU in existing solntions (e.g., site). A module describes the exchange of messages

[20, 6]) is not satisfactorily addressed. For instance, across the network, and may contain some local data.

most of the existing solutions require an explicit inter- The set of all modules located on a machine is called a
action between the updateable protocols and the re- protocol stack.
placement manager, which leads to poor modniarity A protocol P can be seen as the implementation of

(since the implementation of DPU strongly depends some service p. We say that protocol P provides service
on the updateable protocols). We propose a solution p on each stack. For example, the protocol p-atomic-
that solves this problem. Moreover, contrary to other broadcast, represented by a module m-atomic-broadcast
solntions where DPU reqnires to understand the np- on each stack, provides the service s-atomic-broadcast
dateable protocols, our solution only requires to know on each stack. A protocol providing some service may
the specification of the protocols that get replaced. requtre some other services.

To validate our ideas, we have implemented sup- Stack 1 Stack 2 Stack 3
port of the dynamic replacement of protocols that sat-
isfy the atomic broadcast specification [7]. The choice p p P Protocol P
of this type of protocols was not accidental: atomic Pi P2 P3
broadcast protocols are good representatives of non- q Protocol Qld~~~~~~~~~~~~~~~~- t7q- Prtoo Q

h dltrivial distributed algorithms, and so our results (e.g.
within the structural dimension) extend to other types
of protocols. Moreover, atomic broadcast is considered R r r Protocol R
to be an important building block for group communi- AN
cation middleware systems [13]. Such systems are used
for implementing replicated non-stop services. Thus, Network (Net)
the solutions presented in this paper can be valuable
for developers of highly available non-stop systems. Figure 1. An example protocol architecture.
We have implemented our adaptive group communi-

cation middleware using our SAMOA protocol frame-
work [22], and have experimented with switching on- Figure 1 shows an example system. Protocols are
the-fly between different atomic broadcast protocols. represented with capital letters F, Q and R, and ser-
In this paper, we present the results of experiments vices with small letters p, q and r. We write Pi to
evaluating the impact of dynamic protocol replacement denote a module of the protocol F, which is part of
on system performance. The results show that the cost stack i (i 1, 2, ..). Modulesare illustrated in figures
of switching between different protocols is negligible, as boxes. Services that are reqnired by a module are

named in a gray trapezoid inside the box representingThe rest of the paper is organized as follows. See- the module. Similarly, services that are provided by ation 2 describes the composition model that we nse module are named in white trapezoids that are alignedin the paper. Section 3 defines generic correctness outside the box of the module. For example module
properties related to DPU. Section 4 presents struc- Qi provides service q and requires service r (see Fig. 1).tural aspects of our solution for DPU, and compares it Note that the network is also a service (named Net).with existing solutions. Section 5 describes the replace-
ment algorithm for switching on-the-fly between dif- Module bindings A module can be dynamically
ferent atomic broadcast protocols. Section 6 presents boulnd to a service that it provides. It can be later
performance results, and Section 7 concludes, ulnbound. Unbinding a module does not remove it from

the stack. Stacks may contain several modules that Strong stack-well-formedness A stack is strongly
provide the same service. At most one module in a well-formed if and only if whenever a module calls a
stack is bound to a service at a time. service, the service is bound to one module.

Service calls When we make a service call, the mod- Weak stack-well-formedness A stack is weakly
ule that is bound to the service is executed. If no mod- well-formed if and only if whenever a module calls a
ule is bound, the service call is blocked until some mod- service, the service is eventually bound to one module.
ule is bound to the service. Stack-well-formedness is a local property. Below
Service responses Consider a call of a service q, we define the protocol-operationability property, which
which has been made by some module Pi (see Fig. 2). describes remote interactions. It ensures that whenever
The service q is provided by module Q,. We define the a service is called, then all possible responses to this call
response to this call to be any invocation of a module (in non-crashed stacks) are guaranteed to occur. We
Pj by Q- in some stack j (j = i or j zh i) that results again consider two levels of this property: strong and
from the initial call. If Pj is not currently in stack j, weak.
then the invocation made by Q is completed when PjJ J ~~~~Strong protocol-operationability A protocol P is
is added to stack j. Note that a module Qican respond i a se o sstrongly operational in a set of stacks II, if and only if
to a service call even if Qi has been unbound. whenever a module Pi is bound in some stack i, then

all non-crashed stacks j in H contain a module Pj.
P p P Protocol P Weak protocol-operationability A protocol P is

Aq qA_g qA A weakly operational in a set of stacks H, if and only if
call iresponse response response whenever a module Pi is bound in some stack i, then all

/q4 \ Z/ q \q Protocol Q non-crashed stacks j in II eventually contain a module
Qi Q2 \p

The strong protocol-operationability implies weak
Figure 2. Service calls and responses. protocol-operationability. With synchronous networks,

which impose time requirements on protocol interac-
tions, the strong level of both stack-well-formedness

Figure 2 illustrates service calls and responses. The and protocol-operationability must be ensured. In the
call of a service q made by module PI is shown with remainder of the paper, we consider only the weak
a solid arrow. Responses to this call are represented properties, since we consider asynchronous networks.
with dashed arrows. Note that responses can occur in
one or many stacks. We say that PI interacts locally 4 Structural Aspect of DPU
with module Qi on every call of service q. Responses
to the call of service q lead to a remote interaction of We describe now our solution to integrate a manager
P1 with P2 and P3. for dynamic protocol replacement. We illustrate our

Service calls and responses to service calls are the solution with an example group communication mid-
two kinds of interactions between modules. A service dleware. Then, we compare our solution with other
call is a local interaction between the service caller and existing solutions.
the service provider. A response to a call is an interac-
tion between the service caller and the (local or remote) 4.1 Our Solution
module that is receiving the response.

Description The main idea is to add a replacement
3 Generic Dynamic Update Properties nmodule that implements a level of indirection between

service calls and the protocol that provides the service.
In this section, we define several generic correctness The replacement module intercepts service calls and

properties of dynamic replacement of distributed pro- responses to the service calls, so that it can provide
tocols. Firstly, we define a property that ensures cor- synchronization, which is necessary to ensure the DPU
rect local interactions. We consider two levels of this correctness properties.
property: strong and weak. The former one ensures In addition to the generic properties described in
that a service call is never blocked. Preserving the lat- Section 3, some additional properties must be satis-
ter level means that a service call may be blocked, but fled; these properties are specific to the service pro-
not infinitely, vided by the modules being updated. The structural

aspect of our solution (with interception of service calls * The ABcast module implements atomic broadcast,
and responses) facilitates the implementation of algo- a group communication primitive that delivers
rithms that ensure the properties specific to the ser- messages to all processes in the same order; the
vice. Moreover, the interception of service calls and module requires the consensus service.
responses makes the algorithm dependent only on the
specification of the protocol that gets replaced. * The GM module provides a group membership ser-

vice that maintains consistent membership among
Fq-\ Fr-\ all group members; the module requires the atomic
Qi Ri broadcast service (see [17] for the details).

Aq AAO O
Qi R1R * The Repl module implements the replacement al-

A -p A \ X gorithm dedicated to the atomic broadcast service
(see Section 5).

Pi newPi
GM

Figure 3. The module composition without
a replacement module (left) and with the re-
placement module Repl (right). R A

Figure 3 shows an example stack without a replace- CT

ment module (on the left) and with the replacement
module Repl-Pi (on the right), where 1 denotes a stack FD
number. The modules Repl-P are used to replace a 1\L
protocol P by a protocol newP: both provide service p UDP RP2P
but may require different services. Note that modules UDP RP2P
Rept-Pi require service p. Modules Qi and R1 are two Stc
modules that may call service p. In the updateable Network (Net)
system, the service p is not called directly, but via an
interface r-p that is provided by Repl-Pl. Figure 4. Architecture of the group communi-
On the right of Figure 3, we show the replacement of cation stack.

protocol P1 by protocol newP1. Protocol P1 is bound
to the service p. The dashed lines connecting mod-
ules Repl-Pi and newP1 shows that Repl-P1 will bind Note that our ABcast module is not implemented
newP1 to the service p after having unbound module on top of a view synchrony protocol as it is often the
P1 from that service. case. However, our replacement algorithm is general

and works also for atomic broadcast protocols imple-
Example Figure 4 shows the architecture of our metdotpofavwsycrnpoool
adaptive middleware; it builds on the Fortika group
communication stack described in [13]. 4.2 Existing Solutions

* The UDP module provides an interface to the
UDP (unreliable) protocol. Many solutions for DPU exist [20, 6, 18, 9, 15]. How-

ever, some of these solutions (e.g. [18] and [9]) are
* The RP2P module implements reliable point- clearly not satisfactory. In [18] the authors propose a

to-point communication between distributed pro- solution that uses a centralized manager, which limits
cesses. its tolerance to failures. On the other hand, the solu-

* The FD module implements a failure detector; we tion proposed in [9] provides facilities to replace only a

assume that it ensures the properties of the OS single module of a protocol.
failure detector[4]. We present now two example solutions to DPU,failure detector 141.

which are represented by Maestro [20] and Grace Adap-
* The CT module provides a distributed consensus tation [6], and compare them with our approach. An

service using the Chandra-Toneg 0S consensus al- approach described in [15] is similar to Maestro but im-
gorithm [5] based on a rotating coordinator. plemented within the Appia [14] protocol framework.

Maestro [20] Maestro supports only the replacement of these protocols. In Maestro and Graceful Adapta-
of complete protocol stacks, i.e. in order to replace a tion, for each dynamic protocol update, the program-
single protocol, the whole stack (containing the proto- mer has to extend the protocol modules that get up-
col) has to be replaced. dated. In order to extend correctly these modules, the

The main idea of their solution is to install on each programmer of DPU must have a clear understanding
machine a stack switch module (SS module). The SS of the algorithms of the protocol modules that get re-
module is in charge to dynamically replace stacks. Its placed. Moreover, in our solution, the switching al-
main role is to (1) finalize the local old stack, and (2) gorithm is implemented entirely by the replacement
coordinate the start of the new stack as soon as pos- module. Protocol modules are not even aware that
sible. In order to finalize the old stack, some protocol the protocol replacement takes place. Our solution is
modules must be extended with a method finalize that therefore modular in contrast to existing solutions that
properly terminates the protocols. The method finalize require to extend each updateable module.
is called by the SS module each time a stack replace- Another advantage of our solution is that it is highly
ment is required. flexible. In contrary to Graceful Adaptation, our solu-

Graceful Adaptation [6] In this solution, each tion does not limit the possible replacements by impos-
ing any restrictions on the services that a newly added

ofaptCoemponuleimplementAdt() and servier Adaptive protocol may require. Unlike Maestro, replacement of
AwareComponentsAdaptor(AACs),th odse l.altive a single protocol in our system does not require a wholeAware Components (AACs) that providte alternative prtclsakobelorpaed
implementations of the service. Upon a service call,
only the AAC component that is activated is executed.
Only one AAC component can be activated at a time. 5 Algorithmic Aspect of the Atomic

The role of the component adaptor is to dynami- Broadcast Protocol Replacement
cally switch between the different AAC components,
thus changing the algorithm that is used to provide In this section we present the specification ensured
the service. This is done by (1) deactivating the AAC by the atomic broadcast protocols. Then, we describe
component that is currently activated, and (2) activat- the algorithm for the replacement of Atomic Broadcast
ing a new AAC. Each of these operations is performed (ABcast) protocols. The algorithm is implemented by
by AAC itself. The CA component only coordinates the Repi module presented in Figure 4. Finally, we
the operations, as follows: discuss the advantages of our solution over other algo-

rithmic solutions for DPU. These advantages are the
1.rTespecAiask deacatheol andtnaACivation. prepar result of an elegant integration of the replacement al-respectively deactivation and activation. grtm norfaeokgorithms in our framework.

2. Once all stacks terminate the preparation phase,
the CA starts the deactivation of the old AAC. 5.1 Atomic Broadcast

3. Once the old AAC deactivates itself, it starts the Atomic broadcast is defined by the two primitives
activation of the new AAC. ABcast and Adeliver, that satisfy the following prop-

In order to perform these three steps, the old AAC, erties [7]:
the new AAC and the CA communicate with each
other. Thus, each AAC must be extended in order to thVliit Ifeatorrec processA a
be able to communicate with the CA and some other mt
AAC during the replacement procedure. * Uniform agreement: If a process Adelivers a mes-

Note that each AAC in a module m can only use sage m, then all correct processes eventually Ade-
the services required by m. This limits the possible liver m.
replacements, since AACs that require other services
cannot be part of m. * Uniform integrity: For any message m, every pro-

cess Adelivers m at most once, and only if m was
Comparison with our solution Our solution has previously ABast.
several advantages over existing solutions due to the peiul Bat
wayweaddress the structural aspect of DPU. Themain * Uniform total order: If some process Adelivers
advantage is that our implementation of the dynamic message m before it Adelivers message mn', then
protocol update does not depend on the algorithm of every process Adelivers m' only after it has Ade-
the updateable protocols, but only on the specification livered m.

Algorithm 1 Replacement of ABcast: code of stack i. If a replacement is requested (lines 10-16), then the
1: Initialisation: seqNumber global variable is incremented (line 11),
2: undelivered 0 {set of messages not yet Adetivered} the old module (curABcast) is unbound and the new
3: curABeast current ABcast protocol
4: seqNumber 0 {sequence number} module prot (of the new ABcast protocol) is cre-
5: upon changeABcast(prot) do ated and bound (lines 12-14). Finally, all undelivered
6: ABcast(newABcast, seqNumber, prot) messages are reissued using the new ABcast protocol
7: upon rABcast(m) do (lines 15-16).
8: undelivered - undelivered u m If no replacement is requested (lines 17-21), then a
9: ABcast(nil, seqNumber, m) test is performed (in line 18) to avoid that message m
10: upon Adeliver(newABcast, sn, prot) do is Adelivered twice: a message with a sequence number
11: seqNumber seqNumber + 1 corresponding to an older ABcast protocol is discarded,12: unbind(curABcast) (l 1S
13: create_module(prot) otherwise it is delivered by rDeliver(m) (line 21).
14: curABeast +- prot
15: for all m E undelivered do
16: ABcast(nil, seqNumber, m) 5.2.2 Proof

17: upon Adeliver(nil, sn, m) do
18: if (sn = seqNumber) then It is easy to see that the replacement protocol sat-
19: if (m C undelivered) then isfies weak stack-well-formedness and weak protocol-
20: undelivered ÷- undelivered \ m
21: rAdeliver(m); operationability.
22: procedure create-module(p)
23: createp Weak stack-well-formedness This property is
24: bind p
25: for all s C services required by p do trivially ensured by the fact that the unbind of line 12
26: if no module is bound to service s in stack i then is immediately followed by a new binding triggered by
27: find a module q providing service s
28: create_module(q) line 13. D

5.2 Our Solution Weak protocol-operationability If a module
newABcast is created and bound in stack i (line 13),
then stack i has Adelivered the message (newABcast,

Below we describe an algorithm for replacement of sn, prot) (line 10). Since the uniform agreement prop-
all protocols that satisfy the specification in Section 5.1 erty of atomic broadcast ensures that a message Ade-
(see Algorithm 1 and Figure 4). Then, we prove that livered in a correct stack is also Adelivered by all other
it satisfies our generic correctness properties and some correct stacks, all non-crashed stacks eventually create
additional specific properties. module newABcast. D

In addition, we need to prove properties specific to the
5.2.1 The Replacement Algorithm replacement of atomic broadcast: we need to prove that

Replacement of the Atomic Broadcast (ABcast) the properties of atomic broadcast (Sect. 5.1) are sat-
protocol is initiated by the call changeABcast(prot), isfied across the replacement protocol (assuming that
where prot is the new ABcast protocol (see Al- each ABcast protocol satisfies the properties of Sec-
gorithm 1, line 5). This call triggers a call tion 5.1).
ABcast(newABcast, seqNumber, prot) (line 6), where The first observation is that, since the protocol
newABcast indicates the request to replace the ex- change is handled by ABcast, the protocol identified
isting ABcast protocol, and seqNumber identifies the by the sequence number sn in stack i is the same as
current version of the ABcast protocol. The global the protocol identified with sn in stack j. So we can
variable seqNumber is initiated to 0 (line 4) and incre- unambiguously identify a protocol by a sequence num-
mented with every replacement of ABcast. ber sn.

The lines 7-9 define a call rABcast(m):
firstly, the message m is added to the set Validity Consider a correct process Pi that executes
undelivered of undelivered messages, then the ABcast(m) using protocol sn of stack i. Since the AB-
call ABcast(nil,seqNumbcr,m) is made, where nil cast protocol satisfies validity, the only reason for m
indicates an ordinary call of the ABcast primitive, not to be Adelivered is the replacement of the protocol

The lines 10-16 implement the Adeliver primitive for sn by a new protocol sn' > srn (by line 18, m can be
the messages with tag necwABcast, and the lines 17-21 discarded). However, if rm is discarded by line 18, m
for the messages with tag nil, as follows, is reissued by the new protocol sn' (line 16). By the

validity property of the new protocol, m is eventually Contrary to other solutions, it does not require ad-
Adelivered by pi. D ditional mechanisms such as barrier synchronization

(Graceful Adaptation [6]) or group membership (Mae-
Uniform agreement Consider a process pi that stro [20] and Appia [15]). Note that even if the barrier

Adelivers m using protocol srn. of stack i. Since the synchronization is run in parallel with message flow in

ABcast protocol satisfies uniform agreement, all cor- Graceful Adaptation, the use of barrier synchroniza-
rect processes eventually Adeliver m, unless n is dis- tion should be avoided because of its implementation
carded by line 18. However, the protocol sn can only complexity in an asynchronous network. The second
be changed by issuing an ABcast with the same pro- main advantage of our solution is that the application
tocol sn. By the uniform total order property ofsr, if on top of the stack is never blocked, which is not the

pi Adelivers m before a protocol change message, then case in the Maestro solution.
every process Adelivers the protocol change message
only after it has Adelivered m. So no stack discards 6 Performance
m by line 18 in the context of the protocol sn, i.e., all
correct processes eventually Adeliver m. E In this section, we present measurements showing

the impact of updating the atomic broadcast protocol
Uniform integrity Since every atomic broadcast on the overall performance of our group communication

protocol satisfies integrity, we have only to prove that stack (see Figure 4).
the replacement of atomic broadcast does not lead
some message m to be Adelivered twice, i.e., by two 6.1 Instrumentation
different protocols sn and sn'. Let sn < sn', and as-
sume that m is Adelivered by protocol srn. Since m is Our implementation uses SAMOA [22] -a Java pro-
Adelivered by the protocol sn, message m is not reis- tocol framework that we have designed in our previous
sued at line 16. Moreover, since m i issued by the work. The framework can be used to implement net-
protocol sn, line 18 prevents m from being Adelivered work protocols as a collection of modules as described
by a protocol different from sfr. in Section 2.

We have made performance tests using a cluster of 7
Uniform total order Let message m be Adelivered

PCs running Red Hat Linux 7.2 (kernel 2.4.18), where
Uniformetoalrmessagemby process pusAdelivered each PC has a Pentium III 766 MHz processor and
before message rm' by process p using stack i. The uni- 128MB of RAM. All PCs are interconnected by a 100
form total order property trivially holds if the two mes- Base-TX duplex Ethernet switch.
sages are Adelivered by the same protocol. So assume
that m is delivered in stack i by protocol sn and m' by 6.2 Benchmark
protocol sn', with sn < sn'. Since stack i has changed
its ABcast protocol, it must have Adelivered a proto- In our experiment, we have compared the average
col change message (newABcast, sn,prot) at line 10 latency [19] of Atomic Broadcast (ABcast), which is
(after m and before m'). Assume now that stack j defined as follows. Consider a message n sent using
Adelivers m'. Stack i Adelivers m' by protocol sn'r ABcast. We denote by t-(m) the time between the
so because of line 18, stack j can only Adeliver m' .so~~~~~~~~~~ ~~~moment of sending m and the moment of deliveringr mby protocol sn'. So stack j must have Adelivered the .message~~~~~~~~~~,(reABat sr.prt,eoeAeieigm on machine (stack) i. We define the average latency ofmessage (newABcast, sn, prot)before Adelivering m m as the average of t (m) for all machines (stacks) i.(otherwise m' would be delivered by the same proto- I o e i
col sn) (*). However, the protocol sn satisfies the uni- (stcks mesaer so 4Mbowere A ur7 acon-
form total order property, and has Adelivered m before (stantla bmall mesesAcks) Int dleco
(newABcast~~~sn Prt.S.tc a nyAeie stant load by all machines (stacks). In the middle of

the experiment, any process triggers the replacement of(newABcast, sn, prot) after it has Adelivered m ABcast and continues to issue ABcast messages. We
By (*) and (**), if stack j it has Adelivered m', it must consider that the replacement starts when any process
have Adelivered n earlier. El triggers a replacement and finishes when all machines

have replaced the old modules by new modules.
5.3 Comparison with Existing Solutions In our experiment, we replace the Chandra-Toueg

ABcast [5] protocol by the same protocol, while per-
Our solution has advantages over existing solutions. forming all steps of the replacement algorithm (e.g.,

Firstly, the replacement protocol only requires ABcast. unbinding the old module, creating a new module, etc).

1800 3000 ~~~Duringreplacement, n=7 --m-
Normal, with relcmn ayer, n=7 --m

++ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Normal,withoutreplcmn layer, n=7
0600 +DUan relcment, n=3
+ + ~~~~~ ~~~~~2500----------------Nor al,with-rxlch e layer,n-rS---

+ +
+ -------------- ----- No~~~~~~~~~~~~~~~~~~~~~~rmtal,without replcm n layer, n--3

0400 ++ +

0200~~~~~~~~~~~~+20

8100 ++

1000 +++++-~~~~~~~~~~~~~~+ ++~> 00

+
+ ++++ 1~~~~~~~~~~~~~~~~~~~~500

400 ++ ++
#+ +4

0000 200 30 400 5000!+~600 00 000 900 0001 2 0 4 0 60 7 0 9
0)~ ~ +tltl+ Timat o ABat[ma Lod[mg

placemnt alorith. of ddinga repacemet layr (aproximtely 5%) i

++H# *le~ ~ ~ lst duigashr eio apoimtl nescn)Thebenchmark was execu~~~~~~~~~~tefo several-------values-----of-the prameers.Figue 5 hows he rsult of n ex
permen whr-heipc-o-h-epaeen-sceal-onlso

visible.Thefigureshows the average latency of atomic~~~~~~~~~~~~~~~~~~~~~~4------------------------- ------

broadcastasa function of the time (in milliseconds) at00-------------------- ---------------

Weshowthe result of s~~~~TieverABaltexermenswthte oflclupae.Lepoosed aovlsppoahoshi

aregshow onLthenvrtcyal axi frctia give time tim on thee6 atnya fnto f h od

tenc inceasearund 500, bu qucklystablizenaroqupcommnicatione middlewar systlem usingce the
Toirachlthe leveito headsefretheexcreplacment.hMore- SAdmoAulprotocl framewor.Oiure middlwstarteenoyst
ovceer,theeinloritruto nte evc viaiity.a cleargsearepationeofconcerns uapdatemabele 5%prtoos

It soulbeaddd tht te rlatvelylare lteny cno be implementedI alsousual,wit the ovrhepacementhal

valus ar duto no-optmizd atmicbroacas al- gorthmduimplemenote sero(aparately andexyeutedcindthe
grThm (e.g,consensusas executedfonmeessagalesano akrudfe aesvrlepeietnaLN

notimontmhessae identifiers). erplcmetisceal Th resultsouhsei xeietsaevroecuaig
Fiil. higure6 shows th eargelatencyasafnto of athload Teoehamfswthnintefycewe ifrn

frordvarostaagrupcsizesn (fth 3imorn miis7),owher ath imlmnaosofdtrbedgemntptclss
loadish the nuomiberofaBcast callssupereod.Theeprmn negligibe. lwaepoool ntefl smr
isolidhgrph rahiepr 75meenshenrale lBastec valers,ei.e., Wefiulplantouwrkein thea fupdtues on mofwregeneicle-,
angrou comacmunicationrstack withoutd atrepacment placement auiesglorithmsytocalownrepacementocofdiatlarge
laye.Tedaashedrs grahics representethe latency balefoe stoproblmtolsWehavesflyoua alredy deignlfedxanblgo-
theorepntlacemen in cangou ommunictationveagstac -wit grithm tomreplac tconsensus warpoclsy[16], asnothers
ao repacementlayer.i Thabefdorettedgahr epreseent.oethelentarbuildaingbockofcoucrngroupdcomuniabl rtioncmid
latencr urnthere placementt(i.e.,iafterthesrie repilace-ty dleare.ipeetda sa,wt h elcmnl

Acknowledgments [11] J. Magee, J. Kramer, and M. Sloman. Constructing
distributed systems in Conic. IEEE Transactions on

We would like to thank Richard Ekwall for his com- Software Engineering, 15(6):663-675, June 1989.
ments on an earlier version of the paper. We also thank [12] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H.
Sergio Mena for the implementation of several modules Cheng. Composing adaptive software. IEEE Cor-
of our adaptive group communication middleware. 37(7):56-64, 2004.

[13]S. Mena, A. Schiper, and P. T. Wojciechowski. A step
towards a new generation of group communication sys-

References tems. In Proc. Middleware '03, volume 2672 of LNCS.
Springer, June 2003.

[1] M. Bickford, C. Kreitz, R. van Renesse, and R. L. Con- [14] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flex-
stable. An experiment in formal design using meta- ible protocol kernel supporting multiple coordinated
properties. In Proc. DISCEX-II '01: the 2nd DARPA channels. In Proc. ICDCS '01: the 21st IEEE Interna-
Information Survivability Conference and Exposition. tional Conference on Distributed Computing Systems,
IEEE, June 2001. Apr. 2001.

[2] G. S. Blair, L. Blair, V. Issarny, P. Tuma, and [15] J. Mocito, L. Rosa, N. Almeida, H. Miranda, L. Ro-
A. Zarras. The role of software architecture in con- drigues, and A. Lopes. Context adaptation of the com-
straining adaptation in component-based middleware munication stack. In Proc. the 3rd Workshop on Mo-
platforms. In Proc. Middleware 2000, volume 1795 of btle Distributed Computing (MDC '05), June 2005.
LNCS. Springer, Apr. 2000. [16] 0. Riitti, P. T. Wojciechowski, and A. Schiper. Dy-

[3] T. Bloom and M. Day. Reconfiguration and module namic update of distributed agreement protocols.
replacement in Argus: theory and practice. Software Technical Report IC-2005-012, School of Computer
Engineering Journal, 8(2):102-108, 1993. and Communication Sciences, Ecole Polytechnique

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The Federale de Lausanne (EPFL), Mar. 2005.
weakest failure detector for solving consensus. Journal [17] A. Schiper. Dynamic Group Communication. To ap-
of the ACM, 43(4):685-722, 1996. pear in ACM Distributed Computing, 2006.

[5] T. D. Chandra and S. Toueg. Unreliable failure de- [18] N. Sridhar, S. M. Pike, and B. W. Weide. Dynamic
tectors for reliable distributed systems. Journal of the module replacement in distributed protocols. In Proc.
ACM, 43(2):225-267, 1996. ICDCS '03: the 23rd IEEE International Conference

[6] W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting. on Distributed Computing Systems, May 2003.
Constructing adaptive software in distributed systems. [19] P. Urban. Evaluating the Performance of Distributed
In Proc. ICDCS '01: the 21st IEEE International Agreement Algorithms: Tools, Methodology and Case
Conference on Distributed Computing Systems, Apr. Studies. PhD thesis, School of Computer and Com-
2001. munication Sciences, Ecole Polytechnique Federale de

[7] V. Hadzilacos and S. Toueg. A modular approach to Lausanne (EPFL), Aug. 2003.
fault-tolerant broadcasts and related problems. Tech- [20] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd,
nical Report 94-1425, Department of Computer Sci- and D. Karr. Building adaptive systems using Ensem-
ence, Cornell University, Ithaca NY, 1994. ble. Software Practice & Experience, 28(9):963-979

[8] J. Hallstrom, W. Leal, and A. Arora. Scalable evolu- 1998f
tion of highly available systems. Transactions of the 19 .

IEICE: the Institute for Electronics, Information and T. Wojcichowski anda0. It on cOr S' ~~~~~ofdynamic protocol update. In Proc. EMIOODS
Communicati'on Engneers, IEICEIIEEE Joint Spe- '05: the 7th IFIP Conference on Formal Methods forcial Issue on Assurance Systems and Networks E86- Open Object-Based Distributed Systems, volume 3535

B(10) 215421e66R.C Chang. Developing dynamic- of LNCS. Springer, June 2005.[9] .-F Le anR.-. Cang Deelopng ynaic- [22] P. T. Wojciechowski, O. Ruitti, and A. Schiper.reconfigurable communication protocol stacks using [PTOjciechowski fri asnd iper.,<,. , \ ~~~SAMOA: A framework for a synchronisation-Java. Software Practi0ce & Experience, 35(6):601-620, augmented microprotocol approach. In Proc. IPDPS

[10] X.Li0 R. van Renesse M. Bickford C. Kreitz and '04: the 18th IEEE International Parallel and Dts-[10X.LuR.vnRnseM. Bikod C. Kriz and
tributed Processing Symposium, Apr. 2004.R. Constable. Protocol switching: Exploiting meta-

properties. In Proc. Workshop on Applied Reliable
Group Communication (WARGC '01), Apr. 2001.

