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Abstract

The Green and Ampt infiltration formula, as well as the Talsma and Parlange formula, are two-parameter equations that are
both expressible in terms of Lambert W-functions. These representations are used to derive explicit, simple and accurate approx-
imations for each case. The two infiltration formulas are limiting cases that can be deduced from an existing three-parameter in-
filtration equation, the third parameter allowing for interpolation between the limiting cases. Besides the hmiting cases, there 1s
another case for which the three-parameter infiltration equation yields an exact solution. The three-parameter equation can be
solved by fixed-point iteration. a scheme which can be exploited to obtain a sequence of increasingly complex explicit infiltration
equations. For routine use, a simple, explicit approximation to the three-parameter infiltration equation is derived. This approxi-

mation eliminates the need to iterate for most practical circumstances.

© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Due to the many circumstances where infiltration
into porous media plays a role, theoretical equations for
predicting quantities such as infiltration flux and cu-
mulative infiltration are in widespread use. A subset of
these circumstances mnvolves one-dimensional vertical
infiltration, a branch of vadose-zone hydrology that has
a rich history stretching back to the early part of last
century, For a given soil type, the formulas aim to es-
timate /(¢). the cumulative infiltration, 7, that enters the
soil as a function of time, ¢. The archetype problem to
which infiltration laws apply 1s infiltration into an 1m-
tially dry. homogeneous soil where the surface of the soil
is saturated. but not ponded. It is this situation that is
considered below.

In practice, it is useful to have infiltration laws that
are both physically based and easy to implement. The
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latter feature is inherent in explicit expressions for /(7).
whereas the former is a feature of laws that are based on
standard soil properties such as the soil-water diffusivity,
D. and hydraulic conductivity. K. Physically based in-
filtration laws for one-dimensional infiltration typically
use the sorptivity, S. and particular values of the hy-
draulic conductivity, e.g., the hydraulic conductivity at
saturation, K,. or at the surface moisture content. The
sorptivity, we recall, 1s derived from D and the boundary
and mitial conditions that pertain [1-4].

As demonstrated elsewhere [5-8], infiltration laws
have two “limiting ™ behaviors. We remark that they are
limits 1in that they appear to cover the possible range of
infiltration behaviour: they are not formal mathematical
limits. One limit 1s represented by the Green and Ampt
formula [9], which relies on a soil having a rapidly varving
diffusivity and a near-constant hydraulic conductivity.
The other 1s represented by the Talsma and Parlange
[10] result relying on proportionality between D and
dK /d0 (0 being the volumetric moisture content), a re-
lationship that was first proposed in [11]. These imiting
cases are both easily derived from Richards’ equation [8].

The difference in these two formulas fundamentally
relates to different assumptions concerning the behav-
iour of K. The Green and Ampt result assumes that
K ~ [/(0)d6, where ¢ is the soil-water pressure. On the
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other hand, the Talsma and Parlange limit assumes K
varies exponentially with i, a functional behaviour
which is known to be satisfactory for many soils [1]. Tt
has been shown that the Green and Ampt assumption
means that the curvature of K has the wrong sign as it
varies with the moisture content [12] and, thus, it comes
closest to reality when K varies as a step function of the
soil-water pressure head. As a result of the curvature of
the Green and Ampt case, water moves more rapidly
into a Green and Ampt soil than into a Talsma and
Parlange soil (for the same § and Kj).

While the limiting cases are useful for bracketing in-
filtration behaviour, it is not surprising that the behav-
iour of natural soils lies somewhere between them. An
infiltration law that interpolates between the two limits
has been provided [13]. Apart from S and K., it includes
an additional interpolation parameter, ». For 2 = 0, 1t
reduces to the Green and Ampt formula, whereas for
v = | the Talsma and Parlange formula results. It has
been suggested that most natural soils typically are
represented by taking « =~ 0.85 [13]. This interpolation
applies to the situation where there is no ponding at the
soil surface. Other interpolations are available that ac-
count for ponded infiltration [14]. Here, however, we
consider only the non-ponded case.

The main drawback of all those infiltration laws 1s
that the cumulative infiltration is not obtained explicitly
in terms of the time, 7, making their practical application
somewhat inconvenient. Even the Green and Ampt law,
for example. is given implicitly as ¢(/)—meaning that /
must be determined numerically for a given r—rather
than the more useful /(r). In previous investigations
then. we have provided explicit approximations to im-
plicit infiltration formulas. An accurate approximation
(within 1% relative error) to the result of [14] yielding
I(t) explicitly is available [15]. Elsewhere [12]. we showed
that an explicit solution to the Green and Ampt infil-
tration equation was available in terms of the Lambert
W-function [16], and furthermore provided some accu-
rate approximations for evaluating W, In addition to its
role in Green and Ampt infiltration, we will show below
that this function is intimately connected to the three-
parameter infiltration equation.

The purpose of this paper is to re-examine the lim-
iting cases of the Green and Ampt and Talsma and
Parlange infiltration laws making use of the Lambert W-
function, showing the exact results that are available
when this function is used. Next, we show that, based on
approximations to the various branches of the Lambert
W-function. new approximations to the limiting cases
can be deduced from simple analytical iteration schemes.
This approach 1s then applied to the three-parameter
infiltration equation [13]. resulting in a new. very accu-
rate, explicit approximation to that formula. We begin,
however, by providing some background information
on the Lambert W-function.

2. Lambert W-function

Following previously used notation [16], we consider
real values of the function W(x) defined by

Wexp(W)=x, x= —exp(—1), (1)

which has two branches W,(x) = — land W (x) < — 1.
These names follow established usage [16]. The branches
are shown in Fig. 1. The range of the lower branch is
—1 = W_,, while the upper branch W; 1s divided nto
~1< W, <0 and 0< ;. The latter portion of the
upper branch is not used below, although it has been
shown to be a solution for soil profile drainage [17].

In applications, using W to obtain formal solutions to
problems is useful because it means immediately that a
considerable body of W-related work can be drawn
upon. On the other hand. in practical situations where
formulas need to be evaluated W is not directly useful as
it must be computed numerically. Thus, analytical ap-
proximations to W are useful for providing rapid esti-
maltes.

3. Limiting cases
3.1. Green and Ampt

The Green and Ampt infiltration law 1s given by
I =t+In(l+1), (2)

where. as usual [12], 7 is made dimensionless with 57 /2K,
and ¢ with §°/K;. Apparently, Barry et al. [12] were
the first to notice the relationship between W_; and the
Green and Ampt [9] infiltration law into a dry soil. The
relationship is more easily discerned by comparing (1)
and an equivalent form of (2):

(1 + 1) exp|—(1 +1)] = exp[—(1 4+ 1)]. (3)
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Fig. 1. Branches of the W-function, showing the division into W_,, i
and W',
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Hence,
f:—I—H'II—EI.p{—l—”]. {4J

Barry et al. [12,18-20] used this relationship to obtain an
estimate of W_,(x) by extending an earlier approxima-
tion to /(t)—here denoted /z—provided by Brutsaert
[21):

(5)

Remarkably. (5) agrees with the short-time expansion of
(3) up to O(r'?) and differs by a In(s) term in the as-
ymptotic (long-time) expansion. To correct for this
shortcoming, it is convenient to use an iterative scheme
such that the nth approximation is related to the previ-
ous one by

Lh=t+In(l-1+1), n=12,.... (6)

which 1s just a fixed-point iteration scheme to solve (2).
It 1s easy to show that the iteration (6) maintains the
short-time expansion of the initial estimate, /,, whatever
estimate is used. Here, we take /, = /4. Furthermore. the
iteration improves the long-time estimate dramatically.
For instance, Iy has already a small maximum relative

error (defined as max || — approximation /exact|, ¥r = 0
[22]) of 0.36%, but the next approximation:
RN T
h=t+lfe+1+—"__| ;>0 (7)
| +-(21) “/6

has a maximum relative error of 0.036% , comparable to
the 0.025% of Barry et al. [12]. who used a slightly more
complex expression. Subsequent iterations reduce the
error further, roughly by a factor 5 for the first few
steps.

Egs. (4) and (7) also provide a new approximation for
W -

W i(x) = In(—x) - In { — In( — x)

[-2 = 2In(—x)]"*

1 + (-2 = 2In(=x)]"?/6 [

valid for 0 > x > — exp(—1), which has a maximum
relative error of 0.03%.

+4-

(8)

3.2. Talsma and Parlange

The infiltration law of Talsma and Parlange [10] is
{!—.r—Ijexph"—r—l;:—ﬂp[—r—l}. (9)

As for the Green and Ampt case, an explicit expres-
sion for / is available in terms of W :

I=1+1t+ W, [—exp(—1 —1)]. (10)

This relationship between the Talsma and Parlange in-
filtration law and the Lambert W-function has appar-

ently not been recognised before. Following the Green
and Ampt case, it is tempting to use the iteration:

=12 (11)

with the first guess written by analogy with (5) such that
the iteration produces infiltration formulas that have
short-time expansions that are exact to O(¢*?). or

fll’]l 2
1+ (20)'%/3+1/6

However, the relative error for /, is almost 0.2%. which
is significantly larger than in the Green and Ampt case.
The following study of the general case suggests more
appropriate approximations.

I, =t+1-exp(-1,.,).

fu"—_f* {]:]

4. General case

Between the two limiting cases, Parlange et al. [13]
obtained the infiltration formula:

1 + (x— l]exp[—rx!}]

(13)

I—rz{l-r:t)'tln[
¥

where as already mentioned, x is a curve-fitting para-
meter, varying between 0 for the Green and Ampt case
and 1 for the Talsma and Parlange case. As for the
limiting cases, the inversion of (13) to obtain /(1) is
based on the iteration:

1 + (2 — 1)exp(—al, .1‘

1
n=12..:, (14)

which converges for all 7 [23]. By taking the difference
between two successive approximations, (14) vields. for
t — 0,

I.—rztl-::)'llnl

"n_fﬂ |=fn I"!n :_LO[IH—I_IH j}- []S:I

Because the first two approximations differ by a term of
O(r*?), that term remains the same between two con-
secutive iterations and after n iterations the nth ap-
proximation will differ from the first by n-times that
term. However, this also means that the next larger
term, here of order r°, remains unchanged after each
iteration. Hence, if that term is incorrect. which is the
case i our scheme, it will remain so at each iteration.

Taking /y as the first approximation for x = 0 ensures
that all subsequent approximations are correct to
O(r7). I, in (7) is simple enough to be amenable to
analytical manipulations while being very accurate.
However, an obvious extension of the procedure to the
other limit z = 1, starting with (12). was not Very ac-
curate, as indicated already above in Section 3.2. Thus.
for x > 0 we shall use a different approach.

We use the interesting result that, for x = 1/2, (13)
can be inverted:

!,13:;+2In{1+{l—:xp{—r/2}]”}, (16)
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This 1s the only value of « that allowed us to obtain /(1)
exactly in terms of elementary functions (the cases of
=0 and 1 are also exact of course but involve the
transcendental Lambert W-function).

We try an approximation to (13) which will reduce
automatically to (16) for 2 = 1/2 and to (7) for o = 0:

f:r+u—ﬂ‘m{Lﬁlfﬂn—fW1, (17)
where
A2 :
f=exp{ —2a°t : +A{|h,.i} = T (18)
1 +C(2t)"° + 2Bt(2a) '~

We note that to obtain the x = 0 Iimit from (17). the
right-hand side must be expanded in a Taylor series for
small, following which the limit as 2 — 0 is taken.
Equation (17) reduces to (7) when the proper values of
A, B and C are taken; see (19)-(21) below.

[n general, the structure of this approximation is
chosen to match the exact behaviour of the three-
parameter equation in the short-and-long time limits.
The term in brackets on the right-hand side of (18) has
the form of a continued fraction, a standard approach to
generating approximations designed to produce se-
ries expansions [24]. The two B terms are chosen so that
I behaves like r— (1 — ) ' In(x) — Olexp(—at)] when
t — oo, in agreement with (13). The parameters in (18)
are chosen so that 7 is correct to O(+/%) for small ¢, or

1 24— 2u
A=z+=— (19)
1+ (20 (44— 1o
B=—"73 ( . 1) (20)
and

|-
C_E—I__'_’;' (21)

We observe that, whatever the value of A, (17) reduces
to (16) for « = 1/2 and (7) for « = 0.

Eq. (17) 1s in a form to approximate / as given by
(13). Because 4 1s arbitrary, it can be used to minimise
the error of this approximation. The optimal value of /
was determined as a function of 2 by minimising the
maximum relative error. Then, we fitted an approxi-
mation to this numerically determined A(x) and found a
good fit using:

- 3 1 15 15
h=1m0—30 ﬂ:l-;p( ik ) (22)

A plot of (22) 1s shown in Fig. 2. The rapid variation in A
evident near o = 0 1s due to the change in behaviour of /
at large r: it changes from being dominated by In(¢) to
Olexp(—uatz)]. Note that this fit was determined by best-
fitting of (17) to (13), as shown 1n Fig. 3. As shown n

1.6 4
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Fig. 2. Numerically determined A({x)—thin line and (22)—thick line.
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Fig. 3. Thin line (uses left ordinate axis): relative error of the ap-
proximation (17)-(22) for the three-parameter nfiltration equation
(13). Thick line (uses right ordinate axis): relative error of a single
iteration using (14).

this figure, the maximum relative error of the approxi-
mation 1s 0.048%.

Even though the relative error shown in Fig. 3 would
be satisfactory for most applications, this error can be
further reduced by iteration using (14). This error is also
plotted in Fig. 3, where we have used (17)(22) in the
right-hand side of (14) and iterated once. In both the
curves in Fig. 3, there are several discontinuities in slope.
These occur because, for any given 2, there can be more
than one peak (when the relative error is plotted with 1
or I). As x changes, different peaks dominate. The slope
changes, then, signify when the largest peak in the rel-
ative error plot changes.

5. Discussion and concluding remarks

We have obtained relatively simple but very accurate
approximations to estimate the solution of the three-
parameter infiltration equation, /(¢), as defined by (13).
Our main analytical result 1s summarised n (17)-(22),
which has a maximum relative error of less than 0.05%
as shown in Fig. 3. This simple result will be sufficient
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for most practical purposes. If. however, greater
precision is required, (14) can be used for iterative
Processes.

We observe that, since any value of £ can be used in
the approximation (17)+21), other simple. yet poten-
tially useful approximations can be deduced. For ex-
ample, the case of 4 = 2z has the virtue of simplifying
the approximation considerably. Taking this value, and
iterating using (14) for the case of x = 1 gives the ap-
proximation:

I =t+1—exp[—t— (1 - )" (23)
with

1 +(20)"/2
1 +5(2)"% /6

f=exps{ — 2 (24)

which 1s a quite simple expression, yet has a maximum
relative error of only 0.02%. As may be noted from Fig.
3. this relative error is less than the relative error of the
iterated version of (17)+(22). even though before itera-
tion it has a relative error of only 0.048% (compared
with an error of about 0.058% for 4 = 2). The reason for
this is that in each case the maximum relative error
occurs at different times (or, equivalently, values of I),
and the convergence rate of the fixed-point iteration 1s
not uniform over ¢ (or, indeed, 2).

Other related results might not be of sufficient accu-
racy, however. For instance, for ¢ — oo, the one-
dimensional intercept is defined by [ —1t [25.26], a
concept of practical use when it is finite. This 1s the case
when z > 0; for the Green and Ampt caseof x =0, [ — ¢
behaves like In(r) and the one-dimensional intercept
does not exist. It is indeed that difference in behaviour
for x=0 and z > 0 (no matter how small), which 1s
responsible for the rapid vanation of 4 near x = 0 shown
n Fig. 2.

Since / behaves like 1 in the long-time limit, / — r will
have a larger relative error in that limit than / by itself,
since in the latter case 7 will dominate. Here. we find that
using (23) to estimate / —¢ for « = 1, when the one-
dimensional intercept exists, gives a maximum relative
error of 0.03%., which can be compared with the 0.02%
error of (23). Even worse would be to estimate / —r — |
for x=1, 1e., W, , see (10), since as r — oc, I — r+ L.
Here. the maximum error obtained using (23) increases
to 0.2%. Thus. the present expression, largely obtained
from the short time behaviour of /, is excellent to obtain
I, and still quite good for I — t, but some care should be
taken in its use. Even in such cases, however, the itera-
tion (14) could be applied to improve predictions, as we
have already indicated in Fig. 3.

Finally, we have alreadv mentioned that for x =0
and 1, 1.e., the limiting cases, the branches of the Lam-
bert W-function are related to /. see (4) and (10). Thus,
for 0 < z < 1, I provides an interpolation between W,

and W_, which can be used to define a generahsed W
function, W, by

W(x) = (22 — 1)[-1 — In(—x)] + [1 + In(—x)]x — 1,
(25)

valid for —exp(—1) <x < 0. Approximating / using (17)
provides a convenient estimate of W,, which is accurate,
except for o very close to 1, when one or more iterations
should be used, particularly as x — 0. The reason for
this is that the denominator in the relative error vanishes
in this limit, so any imprecision in the numerator is ex-
acerbated.
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