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Abslract

Subsurface contamination by organic chemicals is a pervasive environmental problem. susceptible 10 remedialion by natural or
enhanced atlenuation approaches or more highly cnginccl\."'<1 methods such as pump-and.lreal. amongsl others. Such rcmedialion
approaches. along ""ith risk assessmcn! or the pressing need 10 address complex scienlific queslions. ha\'c drivcn Ihc development of
integrated modelling lools that incorporale physicaL biological and gcochcmic-..I processes.

Wc providc a comprehensi\'e modelling framework. including geochemical reactions and interphase lllass transfer processes such
as sorplion/desorption. non-aqueous phase liquid dissolution and mineral prt"cipital'ltion/dissolution. all of which can be in equi­
librium or kint"ticillly controlled. This framework is used 10 simulate microbially Ill<.,<!iated transformation/degradation processes
and the attend.mt microbial population growth and decay. Solution algorithms. particularly the split-operalOr (SO) approach. are
described. along with a brief rCsume of numcrical solution methods. Some of the available numerical models arc described. mainly
those construct<.'<1 using a\ ailable flow. transport .llld geochemical reaction packages. The general modelling framework is illustrated
by pertincnt examples. showing the degradation of dissolved organics by microbial "ctivity limited by the availability of nutricnts or
electron acceptors (i,e.. changing redox states). as well as concomitant s<.'Condary re,lctions, Two field-scale modelling examples arc
diSl.:ussed. the Vejen hmdfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by
injection of a dissolved organic compound. A summary is provided of current and likely fmure clmllenges to modclling of oxidisable
organics in lhe subsurface.
© 2002 Elsevier Science Ltd. All rights rt"serVt"d.
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I. Introduction

Organic liquids. such as solvents or petroleum prod­
ucts. are widespread. potentially carcinogenic contami~

nants of soil and groundwater (1.21. Over the past 20
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years. numerous investig'lIions into the fate of organic
contaminants in the subsurface have been carried out.
accompanied by remediation elTorts aimed al. e.g..
protl.'Cting valuable water supplies. White the pump­
and-treat method has been widely used [3). it is not al­
ways successful. Being intrusive it incurs costs that may
be high in comparison 10 olher approaches. such as
subsurface b.arriers 141 or biostimulalion (5-7J. Methods
thai rely on biological approaches. where organic con­
taminants degrade to more benign forms. have become
more widely employed. Natural. or intrinsic. attenua­
tion refers to C:lSCS where in silu microbial species
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sorption energy coeflicient [Ll M- l }

concentration 1M L~l]

concentration switch value {M L 3}
dispersivity IL)
hydrodynamic dispersion cocflicient tensor
[L'T-',
effective molecular diffusion cocflkient
[L'T-'J
real-valued function
magnitude of gravitational acceleration
IL T-'l
Heaviside step function
inhibition factor [M L-31
interphase mass exchange 1M L-3 T-lj
non-advective transport vector (M L l T- l ]

first-order degradation nile [T-I)
second-order degradation rate [L-J M-IT- ' ]
first-order biomass decay coefllcient (T I]
mass transfer nile coefficient (NAPL phase to
aqueous phase) [T-I)
unit vector oriented opposite to gra'~tational

accelemtion
permeability tensor [L2]
hydraulic conductivity tensor [L T- 1]

half-saturation constant for inhibition of
biomass growth 1M L-Jj
Freundlich sorption capacity coefficient
ILJ"f M-IIf]
half-saturation constant for inhibition of the
degradation rate of an organic chemical
1M L-'I
half-saturation constant 1M L-JI
partition coefficient IL-3 M-lj
Monod half-saturation constant 1M L-JT I]
j = I or 2. p;trameter in Freundlich-Lang­
muir interpolation
reaction operator 1M L 3T-I)
transport operator [M L-3 T-Ij
counter
number of species produced during biomass
decay
Freundlich sorption energy coefficient
number of inhibiting species
number of species used in the microbial de­
gradation
number of degradable solutes
number of NAPL-phase species
number of sorbed-phase species
pressure 1M L 1T-2)
measure of electron activity in an aqueous
solution

pH measure of hydrogen Ion activity III an
aqueous solution

q volumetric nux (L T-I)
Q sorption monolayer capacity coefficient
r stoichiometric coefficient
JI biological or chemical reaction sourceJsink

term 1M L-IT-1]

[I' mass sourcc term (M L 3T- l j
S. specific stomtivity IL I)
r time [7]
,. mean pore fluid flow velocity vector IL T- 1)

Vm Michaelis-Menten maximum reaction rate
[M L-IT-1J

x Cartesian coordinate [Ll
Y' degrader mass yielded per mass of solute

species I degraded
distance in the vertical direction ILJ

Greek
cr: indcx indicating an arbitrary fluid phase
P Toth heterogeneity parameter
(j Kronecker delta function
1:1.1 numerical time step [TJ
I"a allowable error magnitude
t. splitting error magnitude
o volume fraction
I index indicating an arbitrary species
II dynamic viscosity {M L~l T- 1]

11m specific microbial population growth rate fT-lj
11TJ\ll maximum microbial population growth rate

W'l
p density [M L-J]
1> piezometric head (L)
w mass fmction

Subscripts
e equilibrium
I direction I. 2. 3 or x, y. ::
J as fori
1 longitudinal
t transverse

SlIperscriplS
a aqueous phase
m microbial population
n non-aqueous phase
s solid phase

AbbreL'iatimu
ASO ahernating split operator
ATP adenosine triphosphate
BTEX benzene. toluene. ethyl benzene. xylencs
DOC dissolved organic carbon
ELLAM Eulerian-Lagrangian localised adjoint

method



D. A. 80rry ('/ Ill. I Adl'tJllNS ill IV<I/<'r R,'sullrc('.< 25 (2002) 945-983 87

EP$ cxtracellular polymer substances
FD finite difference
FE finite clement
GIM global implicit method
ISO iterative split operator
LEA local equilibrium assumption
LNAPL less dense than water non-aqueous phase

liquid
MOC method of characteristics

NAPL
ODE
SO
SRB
SSO
TCE
TEAl)
TIC
TVD

non-aqueous phase liquid
ordinary differemial equation
split operator
sulfate-reducing bacteria
sequcntial split operator
trichlorocthylenc
terminal electron acceptor process
tOlal inorganic carbon
total variation diminishing

naturally degrade the organic contaminants to innocu­
ous compounds. Thus. monitored natural attenuation is
offen Ihe remediation scheme of choice since it would
normally be the cheapest approach. Enhanced natural
allenuation. where natural processes arc enabled or
stimulated, may also prove relatively inexpensive in
suitable circumstances. As such, it has become an ac­
ceptable option to regulatory bodies (8-101.

Due to the number of physical. chemical and bio­
logical processes that interact. sometimes subtly, during
natural allenuation and aquifer cleanup by intrinsic or
enhanced bioremediation. cleanup assessment calls for
an integrated modelling approach. Whcther microbial
activity is responsible for breaking down organic con­
taminants such as dissolved petroleum products directly
or whether it is employed more indirectly to alter geo­
chemical conditions (e.g.. such that metal precipitation
occurs), predictions about the combined biogeo­
chemicaVhydrodynamic system become very difficult if
isolated aspects of the lOla I problem arc considered
separately. An exception to this is for highly engineered
approaches, based on marked stimulation or modifica­
tion of some specific aspect of the subsurface system.
These can be analysed using targeted and more simpli­
fied modelling, analysis and optimisation. In other cir­
cumstances, integrated modelling might well be
necessary. For example, techniques th,lI promote bio­
remediation by stimulation of SIX-cific microbial popu­
lations would likely need to consider changes in redox
state and nutrient availability due to changes in micro­
bial mass and distribution. As a consequence of biosti­
mulation. the microbial populations could grow enough
10 occupy a significant part of the pore space and cause
bioclogging [111. Ultimately, the hydrodynamic prop­
erties of the porous medium arc altered, adding an extra
degree of complexity to the integrated modelling ap­
proach. However. as of now. only very few allempts
have incorporated bioclogging phenomena into inte­
grated. mechanistic models (12-14). and none has been
applied to a field-scale problem.

Simulating natural and engineered subsurface en­
vironments using mechanistic groundwater flow and
contaminant transport models is 1I well-established
practice [15 251. The last few decades has seen a rise of

easily accessible computational power and in the extem
and frequency of reported groundwater contamination
problems by organics. These circumstances have moti­
vated the rapid development of mathematical modelling
tools [26,27J to assist in quantifying the transport and
fate of these contaminants, Ideally. stich modelling ef­
forts should be capable of describing complex interact­
ing processes, including those of a physical. chemical or
biological nature \28.291. Further. the availability of
comprehensive models allows groundwater scientists
and engineers 10 create rational frameworks in which to
fonnulate and integrate knowledge that has been other­
wise derived from theoretical work. laboratory investi­
gations and field experiments.

Direct data acquisition in the subsurface is typically
very expensive. so field data sets arc usually sparse.
Furthennore. important model parameters vary mark­
edly in space (30-32J_ so field-scale models cannot be
\'alidatoo on strictly detenninistic grounds even if the
process description is an excellent representation of re­
ality (33). On the other hand. subsurface biogeochemical
systems arc often so complex that they preclude heuristic
description. and models must be used to improve under­
standing of them. Consequently. modelling helps predict
the future state of such systems and aids in the design of
rcmedilll strategies which account for the operative
transport and reaction processes.

The overall goal of this work is to provide a com­
prehensive, realistic framework for modelling complex
subsurfacc systcms that comprise multiple. interacting.
physical. chemical and biological processes. with the
main focus being on oxidis...ble organic contaminants.
Our objectives are (a) 10 pro\'ide a general trans­
port modelling framework: (b) to detail approaches for
modelling physical. chemical and biological processes
that arc operati\'e in the subsurface: (c) 10 discuss
strategies used to solve the given model formulation: (d)
to outline numerical methods that may be used to ap­
proximate the fonnulated models: (e) to summarise a
few examples of complex biogeochemical models of
subsurf:u...e systems; (f) to prO\'ide examples of biogeo­
chemical modelling; and (g) to summarise some impor­
tant open issues in the modelling of complex subsurface
systems,
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1./. COfuer/:ar;o/l equations

Summing Eq. (I) over all species I and combining with
Eqs. (2) and (3) yields the ~-phase mass-balance equation

Note that the final identity in Eq. (2) states that reac­
tions all occur within a phase and that interphase mass
transfer occurs as a separate process. Some models di·
rectly react a species within an organic phase with an
aqueous phase species (i.e.. direct degradation of the
organic liquid). an approach that might be used for
some microbially driven degradation re'lctions. Such an
approach would need to be split into an interphase
transfer and a reaction in the formalism presented here.

For convenience. we introduce the definitions

(4)

2.1. Flow mllJ lransporl processes

As mentioned. Darcy's law [351 is used to approximate
momentum conscrvation

k'
0'," = q' = - _. ('\71)' + p'g\7=), (5)

I"

where q is the Darcy flux vector. or volumetric flu,'(: k is
the effective permeability tensor: J' is the dynamic vis­
cosity: p is the fluid pressure: g is the magnitude of
gmvitational acceleration. which is assumed to be ori­
ented in the -k direction: and =is a spatial coordinate
aligned with k.

The complex geochemical systems of concern in this
work cannot be described adequately without knowing
the fluid velocity field. on-aqueous phase liquids
(I APLs) are often the contaminams that prompt the
development and application of such models. APLs
typically originate at or near the ground surface (e.g..
accidemal spillage). and tmnsport through the unsatu­
rated zone affects their biogeochemical interactions.
These conditions require multiple fluid systems to be
considered. The modelling of the full dynamics of threc­
fluid phases. multi-species biogeochemical systems at a
field scale that is adequately resolved in space and time
is a significant computational ch"lIenge with many open
questions [34.36-40].

Three potential avenues could simplify the general
multi-phase flow problem discussed above. First. the
dynamics of NAPL release and fate arc usually char­
acterised by widely varying time scales. Thus. the rela­
tively short-term flow and redistribution resulting from
a short-duration NAPL release can be modelled sepa­
rately using" multi-phase now simulator run until the
NAPL becomes essentially immobile. or measured. The
immobile NAPL distribution can then be used as input
into a model that uscs it as a contaminant source and
may include dynamic equations to represent changing
fluid saturations with time. Second. the saturated zone
concentration conditions immediately down-gradient of
the NAPL sourcc can be represented as boundary con­
ditions in the model. which may be time dependent.
Third. unsaturated zone transport processes. such as the
diffusion of oxygen. can be approximated as a boundary
condition in a saturated zone model. Obviously. these
simplifications are not applicable in all circumstances.
For instance. a pooled L APL floating above a sea­
sonally varying water table undergoes a continual pro­
cess of smearing and pooling. dynamic processes that
clearly will affect dissolulion of its constituent compo­
nents [41-44). E\'en so. they can be applied in a large
number of pnlctical cases.

(3)

2. Theory

L .I" = .,.. L!/" = [1"'.

where I is time.°is a volume fraction. p is density. w is a
mass fraction. ,. is a mean pore fluid flow velocity vector.
j represents non-advective transport. J represents in­
terphase mass exchange. ,jf represenls biological or
chemical reactions and !I' represents a mass source (e.g..
direct injection ofspccies I). The superscripts are species
and phase indices.

The following identities apply to Eq. (I)

2:0'= I, L..1"=O, LW"= I,
, ,

L j" ~ 0 L.>\''' ~ 0 (2)

Transport and fate of organics in the subsurface en­
vironment are affected by a wide range of physicaL
chemical and biological processes. We provide a con­
servation equation framework for describing these
complex systems and outline sets of closure relations.
including process suhmodels. needed 10 produce wcll­
posed models of these complex systems. The process
submodels are grouped into Imnsporl. inlerphase mass
transfer. biological. and chemical processes. There are
numerous process suhmodcls available in the literature.
so only a selection is provided. Nonetheless. many spe­
cific cases can be considered by using various subsets of
the model fonnulations provided.

Fundamental conservation equations for porous
medium systems include conservation of mass. mo­
mentum and energy (34). We focus on the saturated zone
under isothermal conditions. and take Darcy's law as a
suitable statement of momentum conservation. in which
case only conservation of mass equations are required.
The conservation of mass for a species. in a phase CI: is

~ (0' p'w") = - '\7 . (0' p'w",,') - '\7 . j" + of"a,
+.>\''' + Y". (I)
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where C'~ = p'w'·. i.e. (mass of chemical species I in the
aqueous phasc)/(volumc of the aqueous phase).

Eq. (8) can be funher developed by specifying the
standard form of the hydrodynamic dispersion for a
water-saturatl.'d porous media (48.49] in place of t.
gWlllg

2.3. I. NAP L-(1(/III.'UII.\· phasl.'
The equilibrium model yields the aqueous phase

concentration in equilibrium with a NAPL and can be
written in a general form as

c;a=j(C1".j= 1. .... 11.... ). (II)

where C~ represents an equilibrium concentration and
"... is the number of species in the APL phase. For
single component NAPls. the ,lqUeoUS solubilities are
readily available from tabulated sources and may be
cstimated. For multi-component APL systcms. Rao­
ult's law (51.52) is typically used. ail hough it is limited.

L' /.,
O;j = o;Ald + (til-til) 1',,( +.5,P~rr (10)

and (f is now the possibly spatially and temporally
varying volumetric fraction of the aqueous phase. In Eq.
(10). which employs the summation convention. d l is the
longitudinal dispersivity. (Jl is the transverse dispersivity.
and Od,- is an effective molecular diffusivity for species I

that accounts for the effects of tortuosity. As we mention
later in Section 5. careful selection of dispersivity values
is required since biodegradation rates of dissolved or·
ganic comaminants arc strongly dependent on redo.'<
conditions. which may vary markedly over short length
scales.

In Eq. (I). we identify gencml terms for interphase
mass transfer. J". and biological/chemical reactions.
dI". The laller represents the convcrsion of one species
into another while thc former involves the movemem of
a species from one phase to anothcr. One could model
interphase mass transfcr as reactions directly. Howe\'er.
we keep both categories. as interphase mass tmnsfer is
often modelled as a physical process mther than as a
reaction. Or. if it is modelled as a reaction. it is done
semi-empirical1y. e.g.• a species is sorbed to a soil
without specifying the surface reaction that binds the
species to thc soil. In this section. we discuss the first
elass of interphase mass tmnsfer. i.e .. no detailed bio­
logic••1 or chemical reactions arc considered. Next. in
Section 2.4. a morc detailed. reaction-based modelling
approach is presentcd. The main differencc between thc
approaches is that interphase transfer is usually mod­
elled with <I focus on physical processes and limitations.
whereas for reactions biogeochemical processes and
microbial activity arc thc primary concern.

Three types of interphase mass transfer can exist in
the systems undcr consideration: NAPl-aqueous phase
mass transfer (i.e.. NAPL dissolution). sorption/
desorption and precipitation/dissolution of inorganic
minerals. Thcsc mass transfer relationships have in
common the need to specify two components: an equi­
librium model and a mte model [34.501.

2.3. Interphase mass lral/sfi"

(9)

(7)

(6)

+ .f'~ + JI" + .<j"".

where

where" is an index representing the APL phase (47J.
Eq. (7) shows Ihat NAPL saturation changes only as a
result of interphase mass exchange under the simplified
conditions outlined above. Closure of Eq. (7) requires
explicit specification of the right-hand side: approaches
for doing so arc discussed below.

An imponant characteristic of this class of problems
is that they involve multiple species. For example. dif­
feretll microbial consortia likely dominate degradation
under different redox conditions. Even though multiple
species are typically involved. the aqueous phase solu­
tion usually remains dilute due to the low solubility of
organic ,ornponents and rebtively low concentrations
of solutes in groundwater. Thus. non-dilute effects on
such things as density and vis,osity typic<llly can be ig­
nored. Undcr such conditions. Eq. (I) becomes

where S. is the specific storage coellicient representing
the elastic storage of the system. the superscript a de+
notes the aqueous phase. I/J is the hydraulic head and K
is the effective hydraulic conductivity tensor. which will
depend upon the fmction of static NAPL present if this
is simulated as an internal source term. For dissolution
of APL from the vadose lone. the NAPL source
would be simulated via the boundary condition at the
water table.

The volumetric fmction of an immobile APL, and
hence that of the water phase. can be developed in time
by noting that Eq. (4) reduces to

In order to fOl;;us on the geochemical complexities. we
will restrkt our considerutions to cases in which we can
apply some of the above simplifications. In these cases.
we need resolve only the saturated zone flow and
groundwater velocity. The classic groundwater !low
equation. derived by combining Eqs. (4) and (5) along
with a linear compressibility closure relation. is 145.46]

S, ~; ~ \7. (K. \74» + (.f' ;.'1").
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where Q' is the sorption monolayer c"pacity cocllicient
and b' is a sorption energy cocllicicnt [64].

The Toth model is

( 17)

(16)

( 18)

since the NAPl morphology must be resolved and de­
veloped over time at sub-grid-scale levels. Without such
detailed descriptions. one uses corrcl.uions of dissolu­
tion. as determined from careful laboratory experi­
ments. However. caution is urged in the use of such
laboratory correlations. They arc often collcctl..-d under
homogeneous conditions whereas they are applied to
heterogeneous field-scale problems kno\\n to have
strikingly dilTeretll APL morphologies 134].

where II is a TOIh hcterog(+neity parameter (68.69]. Note
that when fl' = I the Toth model reduCt."S to the lang­
muir model.

Yct another model which generalises some of these is
the Langmuir Freundlich interpolation [181

where K~ is the partition coeflicient. "hich depends
upon solid and solute properties (63).

The Freundlich model is 164]

w;' = K;(C;"r'. (15)

where K; is the Freundlich sorption c<lp<lcity coefficicnt
and II} is the Freundlich sorption energy coefficient (c.g..
(65.66]). Although the literature reports values of II}
betwccn 0.7 :lIld 1.8. Iypically it is less than and close to
unity 167).

The Langmuir model is

where I. and 12 are additional fitting par:lmeters. For
11 = I ;ll1d 12 = ~ I. Eq. (18) reduces to Eq. (16) whereas
taking 11 = IIr. 11 = I and then Jelling K; = -Q'(b')";
gives Eq. (15).

1.3.1. SQrplioll/(/('.~QrpliQII

Equilibrium models for sorptionfdesorption (hereaf­
ter simply sorption) are of the general form

w~' =f(C;. J= 1, .... 11.. ). (13)

where the superscript s specifics Ihe solid phase and II" is
the number of sorbing species. For dil ute systems. mult i­
component effects arc typically ignored and one of four
standard equilibrium models is often lIsed: linear. Fre­
undlich. langmuir or Toth. A summary of other sorp­
tion isotherms is available elsewhere [18).

The linear model is the simplest and of the form (e.g..
[62))

w~=K'C· (14)
< P <'

(12)

The standard. rate-limited NAPL dissolution model
can be £iven as

where k~a is a mass-transfer rale coefficient. which is the
product of a mass transfer coefficient and the s(X"Cific
interfacial area between the two phases. Correlations for
k::. cast in terms of a non-dimensional Sherwood
number. as a function of system properties such as the
Reynolds and Schmidt numbers. arc available for cer·
tain well-characterised systems (34.53 57). Since these
correlations include only a relatively small fraction of
the potential system dependencies. they should be
viewed as rough approximations [34.57).

Note th;lI Eqs. (II) and (12) are sl;llldard forms.
applic:lblc to dilute aqueous phases. For non·dilute
aqueous phases. such as those with a chemical or bio­
logical surfaCl:llll. alternative models accounting for
micelle formation and interchange across the NAPL­
aqueous phase itllerface are more appropriate [58].
Surfactant systems are slower to achieve equilibriulTI
than non-surfactant systems [59].

NAI'L dissolution is an extremely complex process
because (;1) many NAPLs are complex mi;'\turcs. which
complicates the equilibrium model needed: (b) the
common rate model used. while simple in basic fonn.
has a cocflicient that depends upon many additional
parameters and space and time: (c) mass transfer occurs
across the interfacial area bemccn the two phases of
concern. which is nOl an accessible quantity in standard
multi-phase models: and (d) NAI'L-aqueous phase mass
transfer is an inherelllly unstable process. giving rise to

the formation of complex dissolution fingering patterns
in most natural systems (47.54.58.6O.61j.

lest one get caught in the substantial details of
NAPL dissolution modelling. wc can e,..:traci certain
primary issues and thus simplify matters. at least con­
ceptually. NAPL dissolution is primarily affC(;ted by the
morphology of NAPL distribution. which evolves in
space and lime across a wide range of scales. An aque­
ous phase in contact with a NAPl phase approaches
equilibrium relatively rapidly al typical groundwater
velocities. say on the order of a centimetre of travel
distance 1571-an insignificant distance for field-scale
problems. Still. equilibrium concentrations arc seldom
observed in the field because of the complexity of NAPl
distributions :lOd Ihe manner in which water samples are
typically collected. which a"er<lge over relatively large
regions.

It would seem Ihat modelling m;lss transfer at the
field scale could be accomplished adequately by ap­
proximating the original morphology of the APL
distribution and tnlcking it with time. assuming local
equilibrium at local phase contacts. While a reasonable
conclusion. NAI)l-aqueous phase mass transfer under
this conceptual model is a classical problem of scale.
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where k;a is a first-order mass transfer coefficient. A
third typical model is the two-site model. which assumes
two types of sites on the solid phase~one represented
by the local-equilibrium model and the second repre­
sented by the first-order model [90-92J.

While these three models are the commonly utilised
and can be easily accommodated into the type of field­
scale simulators of interest in this work. they cannot
simulate adequately many systems. Higher resolution
modcls include two-scale surface and pore diffusion
models. whereby the sorption process is represented by a
diffusional process into a solid particle of specified,
usually spherical. geometry [93-96J. Extensions to both
first-order and diffusion models havc been advanced by
representation of the sorption process as the sum of a
series of parallel processes. including cases in which
model parameters are chosen from correlated or un­
correlated probability density functions [69.97J. These
so-called parallel process models arc computationally

demanding and. 10 our knowledge. have seen lillIe use at
the field scale.

Finally. we mention that in some circumstances
sorption/desorption can be modelled as an "ion-ex­
change process". In this case the geochemical modelling
approach based on the law of mass action. as discussed
in Section 2.4.1. can be used, with solid phase surface
complexes treated as reaction products [98.99). This
modelling approach would not need to involve charged
species. Rather. in a geochemical model one would de­
fine "reactions" wherein the exchange was quantified,

2.3.3. Precipitmionldissolutiol/
Precipitation/dissolution. hereafter simply precIpIta­

tion. is a common geochemical process that involves
mass exchange between the aqueous phase and an in­
organic solid mineral phase. For a simple single species
model. it can be modelled in a simple manner by re­
moving (adding) mass of a given species when concen­
trations exceed (reduce below) a given concentration
(e.g., solubility of the species).

Precipitation reactions can involve [IDOJ (a) simple
salts. which tend not to undergo protolysis reactions or
to form complexcs; (b) oxides and hydroxides, which are
common components of natural waters; and (c) car­
bonates. which are also a common and an important
class of compound for natural waters. The chemistry of
the latter two classes of solids is more complicated than
that of the former because of the larger number of re­
actions in which these compounds can take part. such as
complexation and i11leractions with a gas phase. and
because of heterogeneous solid-phase characteristics.
Because precipitation and associated geochemical reac­
tions that influence precipitation in natural aquatic
systems are common. comprehensive geochemical
models include the full range of important processes.
which vary from system to system. As a result. standard
practice is to model precipitation within a comprehen­
sive geochemical structure. as discussed below in Section
2.4.1.

Precipitation also influences directly physical flow
through porosity changes. In the modelling examples
presented in Sections 8 and 9. this possibility is ignored.
However. in some circumstances. it will be a vital factor.
e.g., self-sealing systems [to IJ. A practical application of
this is clogging of in situ zero-valent iron walls used for
remediation of halogenated organic compounds [102J.
Since the evolution of the solid phase is formally rep­
resented in Eq. (I). this equation can be specialised to
account for mineral precipitation. Indeed, with appro­
priate changes in notation. the volume fraction occupied
by any given mineral satisfies an expression identical to
Eq. (7). The precipitation rate may depend on aqueous
phase chemistry. surface reactions and microbial ac­
tivity. Changes in the solid phase volume fraction
(and hence that occupied by the fluid phase) can be

(20)

( 19)

The linear sorption equilibrium model is the simplest
and. perhaps. the most commonly used. particularly in
analytical modelling. However. it has been found inad­
equate to describe many subsurface systems [70-73). The
Freundlich model is frequently used and adequately
describes most systems. Its power-law form leads to self­
sharpening fronts for the typical case of I1f < I (for a
monotonically decreasing concentration oriented in the
direction of flow) and to increased complexity in the
solution methods needed compared to the linear case
[741. The Langmuir model is applicable to cases in which
sorption is limited to a finite capacity represented by. for
example, a monolayer of solute coverage on the solid
phase. The Toth model is a flexible non-linear model
that can represent some non-linear distributions that are
not adequately represented by either of the simpler
Freundlich or Langmuir models [34J. Some multi-solute
sorption models exist as well [75J. although they have
received limited use for dilute subsurface systems
[76,771·

Besides the models presented above. there has been
considerable work on sorption of organic compounds by
sediments and soil organic matter [78.79J. We do not
review these modelling efforts in any detail, except to
note that several efforts have correlated organic sorption
to relevant octanol-water partition coefficients and
proportion of organic carbon in the soil. and have been
based on the linear isotherm (Eq. (14)) [63,80-87).

A variety of rate models exist to describe the rate at
which sorption occurs. Two of Ihe most common
models are the local-equilibrium model [70.88].

f,a = -0' •(dW~' ) OC'd
, P deJa at'

<

and the first-order model [73.89J

.1'" = -O'p'k'a(w" - w"). ,. '
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determined by variations in the sum of the total volume
fraction occupied by all minerals. We remark. in pass­
ing. that a similar approach could be taken 10 model
biofilm growth.

2.4. BiQgeochemical reaction mOOdlillg

Inlcrphasc mass tmnsfcr can be either in equilibrium
or modelled as timc-depcndcnt processes [103). Simi­
larly. a kinetic biochemical reaction requires some
amouni of lime to reach completion. In a numerical
model. the advcctive transport lime scale for a solute 10
traverse a given computational cell can be compared
with the mass Imnsfer and kinetic reaction time scales.
The dimensionless numbers thai result arc the ratio
Sherwood llumbcr:Pcdcl number and the Damkohler I
number (104--108]. For flow systems with negligible ad­
veclion, such that diffusion is the dominant transport
mechanism, the corresponding dimensionless numbers
are the Sherwood and Damkohler II numhcrs. respec­
tively. Interphase exchange and reaclion processes thai
do not occur are characterised by an infinitely large
characteristic time and dimensionless numbers of zero
[1091. Large values of these numbers result when the
characteristic time scale is small compared to the ad­
vective (or diffusive) transport time scale. in which case
the mass transfer process is in equilibrium or the bio­
chemical reaction has run to completion. In numerical
models. dimensionless numbers can be used to evaluate
the appropriate form of a process model that is needed
and give guidance regarding effecti\'e numerical methods
needed to resolve the reactions.

Organic chemiC'dIs can react with other chemical
species directly. often as a result of microbial activity.
Reactions alTecting a given organic chemical are some­
times referred to as primary reactions. Note that this
specificiltion of "primary" reactants dilTers from that
used in solving equilibrium geochemical equations [110].
Furthermore. as a result of degradation. aqueous phase
chemical composition will change. Consequcntly, fur­
ther reactions. also called secondary reactions. will take
place. [n either circumstance. computation of the
evolving aqueous and solid phase chemical composition
is a basic modelling task.

While it is reasonable in many cases to model aque­
ous speciation reaclions as equilibrium reactions. kinetic
approaches to microbially mediated reactions are the
norm, The latter case is considered in detail in Sections
2.4.2 and 2.4.3. while the former case is discussed briefly
below.

2.4. J. Equilibrium and kinelic geocht'mislr)'
Many thorough descriptions of equilibrium geo­

chemistry arc available (18.100.1 10-1 14J. Briefly. chem­
ical species in natural waters arc typically at dilute
concentrations. As concentrations decrease. the activity

of the species increases. Activity changes with ionic
strength. as modelled by. e.g .. the Davies equation [115).
For fixed temperature and for any given chemical re­
action. the lall' ojmau acliOll states that the distribulion
between the activities of reactants and producls is fixed
and is described by a temperature-dependent equilib­
rium constant. The equilibrium constant is a simple
function of the Gibb's free energy of formation and the
temperature (116). As concentrations increase beyond
the solubility product. mineral precipitation can occur.
On the other hand. mineral dissolution C'dn take place in
under·saturated solutions. The law of mass action also
applies to precipilation/dissolution reactions by noting
that activity of any mineral is identically unity. An al­
ternative solution method for equilibrium geochemistry
calculations is thaI based on minimising the Gibb's frcc
energy. Both approaches give similar results under rea­
sonable conditions [117].

Computer packages for equilibrium reaction calcu­
lations have been available for more than two decades
(l18-1221. They rely on databases containing the defi­
nition of the reactions among aqueous components!
species. mineral and gas phases and their reaction con­
stants. It is worth remembering that these databases
arc not :llways consistent and should be checked in any
given application [123.124). Addilionally. in applica­
tions. uncenainty arises from lack of knowledge of
chemical and mineral consliluents composing the soil­
water system.

Reaction kinetics for abiotic systems (typical ap­
proaches for biological systems arc discussed in Ihe next
section). including precipitation. rely on determination
of reaction rate constants. Any given reaction (or se·
quence of reactions) can be chamcterised by rate ex­
pressions depending on forward and reverse reaction
mtes 1100.117.125]. At equilibrium. the ratio of these
reaction rates is equivalent to the reaction's equilibrium
constant. Once the reaction rates arc known. com­
putation of the reaction evolution involves solution of
first-order ordinary differential equations (ODEs) with
general form as given by Eq. (7). For precipitation. a
similar approach is followed although the situation is
more complex as transport processes can affect the rate
at with chemical species are transported from a mineral
surface (126). In that case. the reaction rate could be
controlled by advection. so affecting Ihe forward and
reverse reaction rales. This kinetic modelling approach
depends on the principal oj microscopic rel'ersibilil)'
[lOll.! 171. a concept Ihat relics on detailed knowledge of
all elementary processes in an overall reaction (100).

For microbially mediated reactions. a range of rate
models is available: these are discussed next.

2.4.1. Microbially mediated chemical mmsformlllions
Organic chemicals in aqueous systems are subject 10

both abiotic and biotic reactions ,Illd transformations.
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Often. howcver. biological activity will be the major
factor in contaminant transfonnations as degradation
rates could be accelerated by several orders of magni­
tude relative to non-mediated reactions (if they occur at
all) and so this aspect of organic fate will be considered
in some dctail. Indeed. the existence of such reactions
plays a central role in procedures such as (active) bio­
remediation. monitored natural attenuation. and con­
taminant source and product identification. Modelling
of such systems requires an understanding of several
factors: the set of reacting species. type of pathway
for each-c.g.. growth or decay: species reactants and
products. redox conditions. existence of inhibitory
compounds. and the presence and concentration of
other potentially limiting species. such as nutrients and
vitamins. Other factors. such as substrate availability
and microbial movement can also ,lfTect the rate at
which contaminants are degraded or transformed.

Clearly. when microbial populations are changing.
the rate of contaminant removal and production of new
reactants will vary according to the microbial mass.
amongst other things. Fundamental to tractable mod­
elling of microbial growth and decay is that the bio­
logical mass is conceptualised as a chemical species.
composed of various elements such as carbon. hy­
drogen. oxygen. nitrogen. potassium. phosphorus. etc.
Thus. the microbial mass reacts as a chemical species
and is subject to chemical thennodynamic principles. as
we shall discuss in Section 2.4.3. In Ihis simplified ap­
proach. however. reaction kinetics are dinicult to predict
and nonnally would be detennined by reference to ex­
periments.

It is clear th'll m.IIlY open issues remain regarding the
construction of complete. realistic models of the bio­
degradation process for any given class of compound.
However. an evolving set of models of varying com­
plexity arc now commonly used to ,lpproximate complex
microbial degradation processes. We will summarise
several of these. progressing from least sophisticated to
more sophislk:ated.

A common model is the instantaneous reaction
model [127-1291. where. for example. a Iwo-species re­
action equalion may be given as

rlCI~ + r2C2~ - r J C3;o + r~C". (21)

In Eq. (21). r is a stoichiomelric l:onsti\nt. and the in­
tegers 1-4 are spet:ies qualifiers. The instantaneous re­
action model assumes that the biochemical reaction
takes place sufficiently quickly such that the actual rate
is not important and. furthennore. Ihat the limiting
factor in the eXlent of the reaction is the availability of
one of the reactants. Over a time slep. dr. equations for
the reactants on the left-hand side are

(24)

(26)

(23)
if Cia ~ r 1C2• /r2'
if Cia> r I C2a /r2'

where ", is the number of inhibiting species. Once again.
the microbial mass is assumed to be constant. and thus

where J~,', is a maximum reaction rate coellicient, and Km

is a half-saturation coeflieicnt. The Michaelis-Menten
equal ion is first order at relatively low substrate con­
centrations and zero order at relatively high substrate
concentrations (e.g.. [132\). The circumstances to which
Eq. (25) pertain are the same 'IS those above for Eq. (24).

The Michaelis-Menten model Cim be extended. again
without recourse to specific microbial reactions. to ac­
count for circumstances where other organic or inor­
ganic species also redu(.'C the reaction rate for a
particular species. e.g.. electron acceptors might be
limiting the degradation of an oxidisable contaminant.
In Ihat case. Eq. (25) is extended 10

where kj is a first-order biodegradation rate. This model
assumes that the only factor alTecting the biodegrada­
tion rate is Ihe concentration of substrate present: this
may be the case under some circumstances but often is
not. The model in Eq. (24) formally applies to the Sil­
uation where the microbial mass is constant (i.e.. growth
and decay rates arc equal). Assuming that the carbon in
the organic compound is used for cell growth. break­
down products from microbial dec'ly. which are not
explicitly modelled. are produced at a rate proportional
to the loss in Eq. (24).

As concentrations increase. it is often expet:ted that
the degradation rate plateaus: this behaviour is not ex­
hibited by Eq. (24). It is. however. a feature of the
Michaelis-Menten model (130]. which is routinely used
to model enzyme-substrate reactions (131)

v,c,a
" .. __II' m (25)
. - K' + 0·'

m

The case of more than IwO real:tants with a single re­
al:tant limiting can be modelled by a trivial extension to
this fonnulation. A key aspet:t of the instantaneous re·
action model is that the concentmtion of at least one of
the reacting species is zero for all limes everywhere in the
domain. Second. it is highly efficient due to the naturally
decouplcd nature of the solution procedure; such algo­
rithm issues arc discussed below (Section 3).

A host of kinetic reaction models of differing com­
plexity can be built. For a sek-ctcd organic chemical
species. the simplest case is to assume that any depen­
dency of the transformation rate of the organic substance
between the substance and any other chemical or micro­
bial population is neglected. A commonly applied mi­
crobial degr<ldation kinetic model is the first-order model

(22)
if cia ~ /'1 C 20 /r2'
if Cia> r IC

2a /r2'
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breakdown products from microbial decay are assumed
10 be different chemical species than those appearing in
Eq. (26).

Michaelis-Menten model [133]. but it includcs the
growth and decay of a degrader population [134.135}.
For a single chemical species and microbial population
it can be wrillcn as

where II;" is a specific growth rate based on species I. and
K: is thc corrcsponding Monod substratc half-saturation
constant.

Eqs. (29) and (30) do not allow for limitations such as
nutrients or other inorganic (e.g.. electron acceptors) or
organic species that might be needed for microbial
growth. Similarly to Eqs. (27) and (28). they focus on a
single (organic) species and do not explicitly account for
the production of breakdown products. The standard
Monod growth model has been extended [136,137] to
handle the case in which thc rate of microbial growth is
limited by the concentration of onc or more species
other than a single growth substrate. A formulation of
this approach is

2.4.3. Microbial populatio/l kinetics
In Ihis section we extend the foregoing models of

organic degradation to include microbial population
growth and decay. The key assumption is that microbial
mass can be modelled as a chemical species. such that
reactions can be specified for ils growth and decay. If
considered necessary, Ihe microbial population can also
be transported and undergo mass transfer 10 or from the
solid phase. leading \0 a general transport equation
being used for each distinct microbial population.

We note Ihat, since our interest is in aquifers and soil
profiles. the models considered here are macroscopic
descriptions of microbial growth dynamics aimed at
simulating laboratory- or field-scale processes. Thus.
many of the complex interdependencies at the micro­
scopic scale are commonly neglected and described by
empirical formulations based on classical descriptions
[130.133]. For instance. a simple approach is based on a
conceptual extension 10 the first-order model. Eq. (24).
A second-order model, in terms of substrate concen­
tration and microbial biomass. respectively. can be
written as.

, c,,·rm.
i!J'. = -0" 1

1m '-' •

Y'(K: + C")

,c,"rm" n, co.
[]f'" = -0" 1

1m
'-' IT =":-=

Y'(K' + C'") K* + cta's l..,l s

(29)

(30)

(31 )

}f'· = -O"k;C'·C''''', (27)
(32)

,WIn. = -Y'.W" - O"kdC''", (28)

where k2 is a sccond·order rate coeHicient for species I.

the superscript m is an index corresponding to the mi­
crobial degrader species. Y' is the degrader mass yielded
per mass of solute species I degraded, and kd is a first­
order biomass decay coefficient, which represents de­
grader loss. The term decay refers to a unidirectional
kinetic reaction involving the chemical species C"".
wherein other chemical species are produced. In this
instance. the reaction rate is characterised by the value
of kd . 11 is assumed that the chemical species released as
as result of degradation are different to C"". otherwise
this would need to be included in Eg. (27). Note that Y'
will change according to the mass units used. If. say.
concentrations are measured in mol I-I. then Y' will be a
stoichiometric ratio. whereas if gl-I is used then Y' will
additionally account for the molecular weights of C"
and C"". Breakdown products are produced at a rate
proportional to O"kdCm

". For the case where the de­
grader population is nearly constant (Y'k2C" ~ kJ ). the
second-order model reduces to Eq. (24) by selling
k: = k2C"·. Of course. in this case the degrader con­
centration need not be computed.

While many biological reaction rates are well repre­
sented by Eq. (25). it does not explicitly account for the
growth and decay of a microbial degrader population.
The Monod growth model is similar in form to the

(33)

oJP}o =,J,jf,a for j= I, ... ,I/prod, (34)

where. again. "i is the number of potentially limiting
species. "J« is the number of species produced during
degradation of the microbial population. IIprod is the
number of species used in the microbial degradation of
the 1 species and r is a stoichiometric factor (or a ratio of
factors). Eq. (32) models the entire biomass. both active
and inactive. This model could easily be extended to
account explicitly for living and decaying biomass. in
which case two rate equations would be used. The
summation in Eq. (32) assumes that the microbial
population growth rate can bc represented as the sum of
growth rates due to the group of (organic) chemical
compounds suspectable to breakdown by that microbial
species. i.e.. the summation is over all species I of this
type. Eq. (34) quantifies the loss of the IIprod (usually
inorganic) species that are included in the degradation
reaction of the organic species I. In Eqs. (33) and (34) we
assumed that species mass is measured in moles. in
which case the rate of usage of any species is propor­
tional to the stoichiometry of the reaction that produces
or decays biomass. The coefficients on the right side of
these equations should be adjustcd by thc appropriate
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This equation assumes that the set ofspccies in Eq. (31)
limiting the production of biomass also limit its decay. If
this assumption does not apply then the appropriate set
of species would be used in the product.

Another common extension to the Monod growth
model is made to :lccount for a reduction in a specific
growth ratc by two or more substrates competing for the
same enzymatic system. which is expressed as (138)

molecular weight if mass is measured in grams. We note
also that the second-order model given by Eqs. (27) and
(28) could be clttended to a multi·species version similar
to Eqs. (31)-(34).

For multiple substrates-as accounted for in the
summation in Eq. (32)-cxpressions of the form given in
Eqs. (31) and (34) are written. while Eq. (32) for the
microbial population growth rate and Eq. (33) for the
rate of species production from microbial decay arc
wrillen once only.

While Eq. (32) presents the standard decay tenn (kd )

typically used by most models that quantify microbial
growth and decay. an alternative is to use a Monod-type
expression that creates a rate dependency of this term on
electron acceptor availability (e.g.. oxygen) 1134]. lead­
ing to

where II;"', is the maximum growth rate for the micro­
bial population on the I solute species. and II, is the
number of degradable solutcs present. Other mathe­
matical forms to represent competitive inhibition are
possible. all of which relate inhibition of growth and/or
substrate transformation to the concentration of the
inhibitor species [1391.

BiodegTlldation modelling can be extended further to
consider multiple populations of microorganisms. It is
possible that the chemical formulas (and thus stoichi­
ometry) rcpresenting the various microbial populations
would change. as would the parameters used to model
the reaction rates. In general. this case can be modelled
by writing expressions of the form in Eqs. (31)-(34) for
each microbial population.

A typical scenario in modelling biodegradation is that
of a sequence of redox states. each of which involves a
different microbial population. If. say. oxygen is present.
then aerobic degradation would be expected to take
place in preference to anaerobic degradation (Section 7).
In such circumstances. an additional inhibilion factor
might be added to the right side of Eq. (36) to reduce the
growth rate under appropriate circumSlilnces. For in­
stance. if oxygen is present. we could inhibit Ihe growth
of a microbial population relying on anaerobic condi-

Org;mic chemicill degradation characteristically has
physical transport and reactive processes occurring si­
mulwneollsly. The reactive processes routinely consti­
tute complex biogeochemical problems involving many
individual organic species. Determination of the con­
centration of each solute species generally requires so­
IUlion for each phase in which they reside; a solution
that requires the formulation and computalion of a
separate conservation equation for e:lch unique species­
phase combination. The concentration of one or more
microbial species in the aquC'Ous phase. and usually on
the solid phase as well. must also be detennined through
an appropriate set of conservation equations. The net
result is that a large syslem of transpoTl equations must
be solved for most problems of interCSI.

A second feature of the geochemical problems of in­
lerest in Ihis work is the complcxilY of the inorganic
reaClions typically considered. including precipitation.
complexation. acid-base reactions and redox reactions.
all of which :lffect speciation in subsurface waters [100].
Such considerations further increase the number of
species that must be considered to represent subsurface
systems accurately. While sophisticated geochemical
models exist. they do not typically include eflicient. high
resolution, three-dimensional fluid flow and species
transport solvers. nor the full range of interphase ex­
change and biological reaction models of interest.

The net result of these considerations is that state-of­
the-art modelling of complex biogeochemical processes
in the subsurface environment is out of necessity most
often accomplished by combining multiple models­
e.g.. a flow model. a transport model. interphase mass
transfcr models. biological lransformation and growth
models. and geochemical models. Although a range of
numerical schemes exists (25.110.117.142.1431. the need
to combine models and simulale a large number of
species under a variety of circumstances leads to the
conclusion that (SO) algorithms arc the most appro­
priate method to soh'e this challenging class of prob­
lems. Indeed. with few exceptions (e.g.. [1441). the SO
technique (e.g.. {I6.25.1 06.11 7.145-155)) has become the

tions by forcing the specific growth rates due all perti­
nent organic chemical species to zero while oxygen is
present. This is achieved by multiplying the right side of
Eq. (36) by I - %(C"~l~ - c:';;!~). where .'A' is the
Heaviside step function [14O}. When the conccnlration
of oxygen is above c:';~. Ihe spt."Cific growth rate is
zero. This empirical approach is just one that could be
used. For example. a thennodynamicJkinetic compari­
son procedure is available [141). Another simple inhi­
bition factor is discussed in Section 7.3 while switch
values are employed in Section 8.

3. Solulion algorithms

(35)

(36)
C"

·'(C")}fin' = - '\"' Y'.H'a - (fk c,a IT .
L d K' + Cia

J t= I S
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(43)

where Lt and i, approximate the transport and reaction
operators that uncouple the solution procedures, while
limiting the splitting error. Given f. > 0, the stopping
criterion is based on computation of f" a suitable norm
of the difference between computed concenlrations for
successive iterations. The iterative nature of the algo­
rithm can further reduce the splitting error to whatever
tolerance is needed. While the ISO algorithm is more
accurate than either the 550 or ASO algorithms, the
increased accuracy comes at the expense of additional
computational effort per step.

A key aspect of all the SO methods presentcd here is
that all the reaction computations (L,) are carried out for
each grid cell (in a spatially discretised domain) inde­
pendently from the neighbouring grid cells. allowing for
easy implementation on parallel computer architectures.
However. obtaining good performance in a parallel
processing environment is not trivial, nor is it the focus
of this work. Load balancing and communication issues
for all steps in the algorithm will in general require
careful consideration. Note that, within this step. each
grid celt is treated as a closed system. That is. the total
concentration ofeach chemical component. consisting of
the sum of aqueous. sorbed. precipitatcd and gas-phase
concentrations. does not change. although the distribu­
tion within these phases and the concentration of species
will vary.

L, is used (0 represent both interphase mass transfer
processes and biochemical reactions. As we have noted
already, the rates at which mass transfer and reactions
proceed in relation to the rate al which the chemicals are
transported provide the critcria for choosing an appro­
priate (mathematical) solution technique 10 describe

ISO Algorithm
ForIE {/o,to+L'!.t}.
Letrn=l,
While f, > fa, repeat.
Slep 1. Let tJ:.+l(X./o)C;,:'+l(X, 10) = Ir(x, 10)C"'(X, to),

Solve :1(tt+IC;:~I) =L1 +L,. (42)

Step 2. Let e:.+l(X, 10)C:+1(x, to) = lr(x,to)C'"(x.to).

S l o((/' ",)_"o ve ot ..+1 C",+l - L, + L,.

Step 3. Let !II = !II + I,

The ASO algorithm requires more computational effort
than the SSO algorithm. but the splitting error, f •• is
0(L'!.t2 ) [148], at least for linear reactions [106.153].

The iterative SO (ISO) algorithm dccouples the
transport and reaction operators as is the case with
other SO algorithms. but unlike the other algorithms it
iterates through the steps unlil some error tolerance is
reached [168]. The ISO algorithm is

(39)

(41 )

(40)

ft'(x, to + L'!.t)

a (.. )Solve 01 O'C" = L,.

Step 3. For t E {to + L'!.1/2, 10 + L'!.t},
Let Ir(X,lo + L'!.t/2)C'"(x, 10 + L'!.t/2) ­

C'"(x. to + L'!.t).

Solve ~ (O'C'") - Lot - ,.

ASO Algorithm
Step 1. For I E {to, to + L'!.//2}.
Let O"(x,to)C'"(x,to) = lr(x.to)C'"(X,/o),

°(.. )Solve at Ire" = L,.

Step 2. For 1 E {/o. to + L'!.t}.

Let O"(x.to)C'"(X,/o) = O"(X,/o + I1t/2)c,a(x,to + L'!.1/2),

SSO Algorithm
FortE {to, to + 6.t}.
Step t. Let O"(x.to)C'"(x,to) = Ir(x, to)C'"(x, to).

a . "
Solve 01 WC") ~ L,. (37)

Step ,2. Let lr(x,to)C"(x, to) = Ir(x, to + 6./)
C"(x, to + 6.t).

Sol" ~ WC") ~ L,. (38)
vI .

where L1 is a transport operator. and LT is a reaction
operator. The SSO algorithm is common and easy to
implement but has a splitting error f. = O(.6.t) [148].

The alternating SO (ASO) algorithm. also known as
Strang splilling [167). is summarised by

standard method for solving such combined physico­
biogeochemical problems. It involves separating the
processes (e.g., flow, transport of individual chemical
components/species. chemical reactions, microbial ac­
tivity) within the numerical model and solving each
submodel independently. The technique enables use of
available, well tested, transport, flow and reaction
packages, as well as associated graphical user interfaces
for setting up problems and interpreting results. The
effort involved in developing such models is focussed
mainly on interfacing between existing models and is
much less than developing a model from scratch.

Three types of SO algorithm arc commonly used, all
of which uncouple the solution of the transport and the
reaction (and mass transfer) operators [106,117,145.
146,148.150..-153,156-166]. This uncoupled nature al­
lows for the straightforward combination of multiple
models into a single simulator. However, SO approaches
lead to an additional source of numerical error, usually
proportional to L1I, the numerical time step of the dis­
crete approximation.

The sequential SO (SSO) algorithm is summarised by
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accurately the reactive processes. Under the assumption
that all reactive processes proceed rapidly in comparison
to groundwater flow and transport, interphase mass
transfer processes can be represented using the local
equilibrium assumption (LEA), and biochemical reac­
tions proceed to completion. While the LEA can reduce
the number of equations requiring solution, it can lead
to modifications in the SO algorithms and complicate
the use of well-established component models.

The SO algorithms outlined above, or variants of
them, are important aspects of the solution of complex
biogeochemical problems. While the algorithmic dis­
cussion above was presented in terms of two differential
operators, it is necessary in some circumstances to ex­
tend these algorithms to more than two operators. This
would be the case if. for example, scparate codes were
used for transport, interphase mass transfer, biological
reactions and geochemical reactions. Subdividing L, and
L1 into component parts would extend the algorithms.
General crror analysis for all $0 methods and conver­
gerlCe theory for ISO remains to be developed for a wide
range of conditions of practical importance, although
recently encouraging progress has been reported [169].
Splitling errOL and thus the appropriate choice of al­
gorithm, depends upon the relative magnitude of each
operator in the overall system. In generaL as the con­
trast in the magnitude of the operators grow, the split­
ting error decreases. Conversely, operators of a similar
magnitude arc expected to have the largest splitting er­
rors. In such cases, the ASO or 1$0 algorithm would
usually be a better choice than the simpler SSO algo­
rithm. In certain cases, it may be advantageous to use a
fully coupled approach [1171.

4. Numerical approximations

The models of interest in this work require numerical
approximations. These approximations involve discret­
isation in space and time. The purpose of this work is
not to COlllment on the details of modern numerical
methods, as several olher efforts in this special issue are
focused on this topic. However, it is worthwhile to an­
notatc the features of any state-of-the-art simulator:

• the fluid flow solver should be able to handle hetero­
geneous conditions and the evolution of a trapped
NAPL phase, be mass conservative, accommodate ir­
regul<lrly shaped domains <lnd have locally conserva­
tive velocity fields:

• the transport solver should be able to resolve sharp
fronts without excessive numerical dispersion or os­
cillations. be locally and globally mass conservative.
and accommodate irregularly shaped domains:

• the interphase mass transfer and reaction solvers
should be flexible in terms of the number and range

of species handled and the processes accounted fOL
and use robust and accurate time-integration meth­
ods: and

• ideally. all components would include spatial and
temporal error estimation and control through adap­
tion of the solution discretisation andlor order of the
approximation method. overall error control on the
operator-splitting algorithm and be suitable for par­
allel processing.

Although most of the clements outlined have been
accomplished individually we know of no single sub­
surface reactive biogeochemical flow and transport
simulator that approaches this entire list of specifica­
tions. Indeed, Ihis level of sophistication reqUIres a
considerable amount of additional work.

Correct modelling of physical processes is particu­
larly important for natural al1enuation, as predictions of
the fate of organic contaminants often rely heavily on
physical transport. Solving the advection-dispersion
equation numerically, i.e.. Eq. (8) without the reaction
or source terms, is the first. esscntial stcp in modelling
the fate and transport of multi-component organic
contaminants in groundwater. Unfortunately. obtaining
an accurate numerical solution for the advection-dis­
persion equation is difficult [170.1711. No single tech­
nique yet yields completely satisfactory solutions under
all hydrogeological conditions. In the groundwater
modelling community. most solution techniques f,lll
into three categories, i.e., Eulerian, Lagrangian and
mixed Eulerian-Lagrangian [172,173]. Here, we brielly
summarise the evolution of these approaches and asso­
ciated numerical methods-much fuller discussions of
these issues arc available elsewhere in this special issue
[174J.

• Finile differcn('(' or fillitc clell/Cill (Eulerian) mcthods
[106, I75-1 78). For advection-dominated problems.
slandard Eulerian methods are susceptible to exces­
sive numerical dispersion andlor artificial oseill<l\ion.
To mitigate these difficulties. very fine spatial and
temporal discretisations may be required.

• Par/iclc tracking-bascd (Lagrcmgicm) methods [49.
I79-185]. This approach. as typified by the random­
walk partiele mcthods, is highly ellkient and virtually
free of numerical dispersion. However. it can lead to
local mass balance errors [1841 and to numerical in­
stability in non-uniform media with multiple sinks!
sources and complex boundary conditions [1861.

• M ixell Eulerian-Lagrangian 1IU'lhods [186-200]. These
combine particle tracking for advection and finite-dif­
ference (FD) or finite-clement (FE) methods for non­
advcctive terms. They suffer from some of the same
numerical difficulties as the random-walk particle
methods and. depending on the approach used. do
not guarantee mass conservation. For this reason,
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more recent efforts have focused all developing rnass­
conservative Eulerian-Lagrangian schemes, such as
the Eulerian-Lagrangian localised adjoit1l method
[193.197.201).

• Towl-I'uriation-diminishing (TVD) methods (e.g" [171.
202-215]). TVD methods are essentially mass conser­
vative higher order FD (or finite-volume) methods.
They are typically implemented with a flux limiter
10 suppress spurious oscillations while preserving
the sharp concentration fronts.

• Multi-grill method.~· [216-219]. These methods use a
sequence of nesled meshes with increasing fineness
to attain convergence to a desired level of discrct­
isation error [220,221 J. Related families of methods
include local grid refinement and domain decomposi­
tion [222-225).

5. Scale issues

Scale effects pervade the hydrological sciences. For
example. a practical problem is to incorporate the effect
of heterogeneity of medium properties into flow and
transport simulations which. by necessity. operate on a
discrctisation length scale. Not surprisingly. scale issues
arc manifest under many titles. including upscaling,
homogenisation. effective medium theory and stochastic
transport theory.

One major thrust of dealing with the effect of hy­
draulic conductivity heterogeneity on solute Iransport
has been to determine macroscopic dispersion coeffi­
cients analytically [226-228]. This approach. while
appropriate for plumes dominated by physical flow
processes. is not likely to be directly useful for numerical
modelling of non-linear reactive transport given the
sensitivity of microbial degradation of organic com­
pounds to redox state. For contaminant plumes. redox
state can vary markedly over short distances. As has
been noted [229-232}. mixing between contaminated and
native groundwater largely controls the rate of degra­
dation of the contaminant. For example. if aerobic bio­
degradation dominates. then the degradation rate will be
controlled by availability of oxygen (and perhaps nitrate
if facultative bacteria arc involved). The flux into a plume
thus depends on oxygen diffusion. geometrical factors
such as the contaminant plume surface area. as well as
geochemistry and oxygen recharge rate. In shallow
aquifers. boundary conditions arc likely to be changing
and in enhanced remediation schemes the system will be
subjected to relatively large changes. Upscaling of non­
linear processes under such conditions is a significant
challenge. Nonetheless. investigators have reported
studies of relatively simple biodegradation models [233­
235] where the effects of heterogeneity have been com­
puted. It is unclear whether these approaches would be

suitable for complex geochemical systems with many
chemical constituents. mineral types and microbial spe­
cies. such as those of concern in this work.

6. Examplt,s of available simulators

As mentioned, we know of no single simulator which
covers the complete range of the processes discussed
above. For example. reactions included in many of the
earlier [13.16.127.236-241] but also the more recent
biodegradation models [242-246] are limited to a small
number of aqueous species that are directly involved in
the primary biodegradation reaction. Apart from the
model of Malone et al. [247] and BIONAPLJD [2461.
both of which allow the simulation of equilibrium and/
or kinetic dissolution of organic compounds from multi­
component NAPL mixtures. biodegradation models
typically do not include the option of mass transfer
processes. Previously. most comprehensive geochemical
codes had no transport capabilities [118-122] or were
lacking the option to simulate kinetic reactions [248­
253]. However. in the recent past numerous models and
applications have combined biodegradation reactions
and the resulting secondary geochemical reactions [254­
2581. For instance. the RTJD model [243]. which has
become a widely applied reactive transport model. is a
modular reactive package that makes use of the implicit
ODE solver LSODA [259.260] to solve kinetic reaction
problems. While it does not a priori have any geo·
chemical reactions included. it allows the definition of
arbitrary kinetic reactions and thus, in principle. the
inclusion of secondary reactions that occur in the
aqueous phase.

Detailed overviews of biogeochemical/flow/transport
models are available through several process- or appli­
cation-specific studies in the literature as well as through
comprehensive model surveys [18,20.261.262]. which list
and compare model capabilities. More recell! reviews of
biodegradation models and/or of biogeochemical mod­
els arc also available [29.263-268]. In addition. Table I
gives examples of models that have significant geo­
chemical capabilities and can also include biodegrada­
tion reactions of organic compounds. It was compiled
from models that

• include a three-dimensional transport simulator:
• have previously been applied to problems involving

the fate of organic compounds:
• can solve both equilibrium and kinetically controlled

geochemical reactions: and
• allow a flexible definition of reactive processes.

The combination of the latter two attributes assures
that users can relatively easily adapt the numerical
simulator to a broad range of conceptual hydrogeo-
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Table I
Example, of available simulator:;

Model and reference Model application Solution method Saturatcd!Unsaturated Advection >cherne MICrobial modelling

CRUNCI-I (144,275)
PI-ITJD [m]
PHAST [270]
MIN3P [279)
TBC [282)
H BGC IBD [284,285)

[274)
[273J
[276,277)
[278)
[280,281 )

[283J

SO/GIM
SO
SO
GIM
SO
SO

Yes/No
Yes/No
YesINo
Yes/Yes
Yes/No
Yesl'Yes

FDrrVD
FDrrVDIMOC
I'D
FD
FD
FE

No
Ye,
Yo;

No
Ye,
Yes

chemical modelling problems. For example. in the
PHREEQC-2-based [269] models PHAST [270] and
PHT3D [271.272]. proccsses such as microbial activity
and NAPL-dissolution can be defined within the reac­
tion database file [273).

reducing, sulfate reducing. iron reducing and, finally.
methanogenesis. Reaction rates decrease according to
the difference in redox potential (distance between each
half of the redox couple). This well-known sequence is
discussed fully elsewhere [IOO}. Note that pc refers to the
reduction (upper) part of the diagram.

7. Biogeochemical modelling illustrations 7. I. Biodegradmioll modelling

The foregoing modelling section (Section 2) presents
a framework for simulating transformations of organic
chemicals in groundwater. In this section. we focus on
the detailed formulation of models for describing such
transformations. providing some examples which show
the effects of dilfcrent assumptions. The SO framework
conveniently allows separating classes of processes.
Here. we discuss first biogeochemical modelling, before
subsequently combining it with physical transport in
Sections 8 and 9.

Microbially mediated degradation of dissolved or­
ganic compounds is strongly dependent on the redox
state. Indeed, typically. we can expect the redox se­
quence shown in Fig. I to be followed, i.e., aerobic de­
gradation occurs first as it is the most energetically
favourable, followed by anaerobic degradation under
the following sequence: nitrate reducing, manganese

Biochemical activity capable of transforming organic
compounds into inorganic constituents plays a sub­
stantial role in the evolution of groundwater quality in
both contaminated and uncontaminated aquifers. The
main role of the biological activity within the transfor­
mations is to enhance reaction rates (relative to com­
parable abiotic reactions), accelerating reactions by
factors of 109 or more [52]. However, only thermody­
namically possible reactions can be carried out by the
organisms. Thus. the degradation of many contami­
nants may only occur within a reasonable time frame
through the cata[ysing function of bacteria. Generally.
these bacteria are attached to the aquifer matrix with
a negligible portion present in the aqueous phase
[2861. The biomass, together with extracellular polymer
substances, forms, depending on its concentration. a
more-or-Iess uniform coverage of the solid surface. The

Fe(ll!) oxide-+Fe(ll)

15 --p,105

SO.-Reduetion (-25 kJ eq-I)t

Oxidation of organic matter

Oxidation of BTEX

01-reduction (-125 kJ eq-l)+

Denitrification (-I 19 kJ eq·l) t

Mn(lV)-+Mn(ll)

+- -10 -- -5 --0

o "2 "_ 0
U 0

" 0",0

+Free energy gain<:<l if cuupletlloo,idalion of organic malter. pH. 7

Fig. I. R~dox sequenl"C (afler [I OOJ) ,howing organics (below dashes) that donate electrons and species that accept electrons (abov~ da,h~,). For ~a(;h

redox state. an estimate of the energy gained for oxidation of orgamc mailer is ,hown (pH 7 assumed).
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(45)

Table 3
E~ron-llClX"pling reactions

Cl-hO + 0.1 NO} + 0.302

- 0.5HCO} + 0.IC~H102N + O.4H- + 0.2H20

Assuming a lower (10%) efficiency. balancing the oxi­
dation/mineralisation of DOC under sulfate-reducing
conditions leads to

CH 20 + 0.02NH~ + 0.4550;-

-- 0.9HC0:l + 0.02CsH70 2N + 0.45H 25

+ O.06H,O + O.02W (46)

Table IV of [29} contains the reaction formulas for
biodegradation of CH 20 for the complete redox se·
quence given in Fig. I. Those formulas are written for
arbitrary proportions of electrons being diverted to
microbial growth and energy generation.

(44)

0+ + 2NAOII + 11-1' - 211 20 + 2NAO+
NO} + 2.SNAOH + 3.SW - O.5N2 + 31'hO + 2.5NAO'
SO~ + 4NAOI-I + 51-1' _ HS- + 41-hO + 4NAO'
FdJOH + O.5NAOH + 2.SI-I' ..... Fel + + 21-1 10 + O.5NAO'
MoO, + NAOH + 31-1' _ Mill. + 21110 + NAO'
CO2{g) +411' + 4NADIt - CH.(g) + 21'110 + 4NAO'

10NAOH + 5H1COJ + H~ + 9H+­

- CsH10l + 10NAO-'- + IJH 20

The electrons gained in oxidation of organic species
(e.g.. Table 2) are diverted between the electron-ac·
cepting step (according to the reactions listed in Table 3)
and biomass generation according to Eq. (44). The ratio
of this diversion depends on the microbial efficiency
(fraction of oxidiscd organic carbon that is incorporated
into biomass). the determination of which is experi­
mentally based. Depending on both the organic sub·
strate and the electron acceptor. the efficiency can vary
significantly. For the electron-accepting reactions which
yield the most energy. i.e.. oxygen and nitrate reduction
(Fig. I). ellkiency can be as high as 50---70'% while it c<ln
be as low as 5% for CO2 fixation (265). Degradation of
toluene and xylene under sulfate-reducing conditions
has been investigated (289). Using I·C-Iabelled substrate.
it was found thai only about 10% of the organic carbon
was converted to cell material while 9IJO/o of organic
carbon was utilised as an energy source and converted to
carbon dioxide. Clearly. the stoichiometry of the overall
reaction (in which the intermediate NAD+ reducing step
is formally eliminated) depends on the efficiency of the
microorganisms. For a given efficiency. balancing the
reaction leads. in the above·mentioned case (oxidation!
mineralisation of dissolved organic carbon (DOC). i.e..
CH 20. under aerobic conditions. 50% efficiency). to the
following reactionTable 2

Oxidation reactions for selccted oxidiSilble organic compounds/con­
tamin11l1\S

biomass attached to the solid phase typically consists of
a rather structured base film with well-defined bound­
aries and of a surface film as a transition zone to the
bulk liquid (287). Within the surface film advection is the
dominating transport mechanism. while within the base
film diffusional transport dominates.

Modelling of redol( chemistry as affected by microbial
degradation reactions involves detailed descriptions of
electron transfers within the base film. The electron now
in reactions where organic substances act as electron
donors. e.g.. petroleum hydrocarbons. can be described
by IwO steps. The first step is the oxidation of an organic
substrate which has diffused inlo the microbial base film.
In this step, electrons are transferred to electron carriers
such as reduced nicotinamide adenine dinucleotide
(NADH) 1265.288). The oxidation reactions for some
common organic contaminants are listed in Table 2. In
each reaction. an electron transfer occurs to form
I AOH on the right-hand side.

The electrons gained in this first step can now be
further transferred 1288] either to extracellular electron
acceptors (02, NO}, etc.). or they can be used to form
new biomass. Respiration. the transfer of electrons to
extracellular electron acceptors, involves the (re)oxida­
tion of NADH. Several such reactions are collected in
Table 3. In a soil solution. reaction products appearing
in this table would be subject to further reactions.

Electron-accepting reactions produce energy. which
can then be stored as adenosine triphosphate and, to­

gether with NADH. reinvested to generate new biomass.
Assuming a simplified chemical composition for bio­
mass (C~H102N). the reaction in which the electron flow
is diverted towards the generation of new biomass is
described by [265]

DOC. i.e.. CillO
CUlO + 2NAO' + 21110 _ 2NAOU + 31-1" + HCO;

"'~c.l-t. + 15NAO' + 18H20 - ISNADlI + 2111+ + 6HCO)
Toluene:
C 11-1. + 18NAO' + 2lH10 - 18NAOI-I + 2SI-I+ + 7I-1CO;
El hylbc:nzenclxylencs
CiBID + 21 NAt)+ + 24H jO ..... 21 NAOH + 29H+ + 8HCO)
Phenol
C.UsOH + 14NAO' + I7l1 jO _ 14NAOI-I + 2QW + 6HCO,
Naphthalene
C,,1I1 -t' l~NAO+ + JOH20 - 2~NADII + l41-1' + IOHCO)
Phenanthrene:
CI.II .. + 331'-1AO- +42H20 - 33NAOH + 4711+ + 14HCO;
Dibenzoruran
CllHiO + 27NAO+ + 35U l O _ 27NADI-I + 391-1+ + 12HCO)
Molasses
C.HljO. + 12NAD' + 12I-I jO _ 12NADH + 18H+ +6I-1CO)
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(47)

under aerobic conditions. or. under sulfate-reducing
conditions

This expression is also obtained by combining the first
equation in Table 2 wilh the first equation in Table 3.

Alternatively. again for a conSlant microbial mass.
DOC degradation under sulfate-reducing conditions can
be described by combining Eqs. (46) and (48) or by
combining the DOC oxidation reaction from Table 2
with the sulfate-reducing reaction in Table 3

(53)

During biomass growth both organic substrate and
electron acceptors arc consumed at rates qUilfltified ac­
cording to the models presented in Section 2.4.3. Thus.
for a known reaction stoichiometry and knowledge of
appropriate rate parameters. the actual nltes can be
determined. In the following we consider several mi­
\:robial1y mediated degradation models. At present. no
chemical transport is considered. however. Details of the
five cases considered arc presented in Table 4 (models
used and initial conditions) and Table 5 (parameter
values). ote: in these examples no sorption reactions
are included.

In case I. we consider microbially mediated DOC
degradation under aerobic conditions using two differ­
ent approaches. Case Ia considers bacterial growth and
decay using the the detailed stoichiometry derived from
Eqs. (45) and (47). respectively. For comparison. in case
I b we again consider baclerial growlh and dCC'J.y but use
a simpler model based on Ihe stoichiometry taken from
Eq. (49). The latter simplification is made in most bio­
degradation models.

For this first example. we demonstrale in some detail
how the modelling approach presented in Section 2.4.3
is applied. We note that no transport is involved. the
aqueous phase volume fraction is taken as constant. no
sources arc present and that interphase mass transfer
does not occur. The transport Eq. (8) becomes

~(O'C') ~ ""', (51)
dl
an expression that we now combine with appropnate
forms of Eqs. (31 )-(34).

For case lb. the primary chemical species involved
are CH 20 (DOC) and 0(0). as well as the microbial
population represented by Cs H70 2 N. with concentra­
tions [<11:0. COlO) and c<,H,o:1'-. respectively. The com·
bination of Eqs. (31) and (51) give

dc<"'l:o JI~lIl0ec,II,0:N CC":O
= -dt yClI,O (K;":u + ('CillO)

C<>IO)
X (52)

( K;'<O) + COlO)) :

where the concentration of 0(0) has been included as a
rate-limiting factor while yell:O = 0.1 from Eq. (45).
The microbial population growth rate is. from Eq. (32)

7.2. Microbial kinetin'

the quantification of the biodegradation reactions. we
next discuss rate expressions where changes in biomass
concentrations. i.e.. microbial growth and decay. arc
explicitly quantified.

(50)

(49)

(48)

,
CSH70 2N + 3H20 + 2.5S0~

_ 5HCOJ + 2.5HS + 1.5H+ + Ii'•
We consider first the case where microbial growth and
decay are balanced. such that the microbial population
size is constant. Then. microbial degmdation of DOC
under aerobic conditions can be described by combining
Eqs. (45) and (47) with nitrification (Le.. NH: + 202 ­
NOJ + H10 + 2H·). The overall reaction becomes

CH20+02 - HCOl + H t

The reactions given in Eqs. (45) and (46) describe the
stoichiomcuy of microbial growth (reprcscnled by
C~H,02 ) under different redox condilions. NOle thai.
due to the difference in C valence between CSH, Ol N and
HCOi. the conversion of organic carbon into biomass
consumes less oxidation capacity (273] than the con­
version of biomass into inorganic carbon. However. the
decay of bacteria is also consuming oxidation capacity.
e.g..

CSH,Ol '+ 502 + 3H l O - 5HC0i" + 'H; + 4H'

The above biodegradation reactions arc irreversible and
proceed at variable rates. Based on the given stoichio­
metric relationships and appropriate reaction rate pa­
rameters. kinetic reaction models as described in Section
2.4.2 can easily be developed. Further. from the stoi­
chiometry of an overall reaction. such as Eq. (SO). the
stoichiometric coefficients can be used dirC(;tly to com­
pute the (proporlional) consumption or production of
the other chemicals involved in this reaction as long as
any fUrlher. secondary reactions are neglected. Altcr­
mHively. the biodegradation reaction could be assumed
to be instantaneous. as we have presented in Eq. (21).
We recall that. in this case. the reaction rate is limited
only by the availability of either the electron acceptor or
donor. i.e.. the reaction is assumed to proceed at an
infinite rate until either of these is depleted (127.128.
290.291).

So far. we have assumed that the biomass concen­
tration remains constant with time (although it can vary
spatially) throughout the model domain. Since the dy­
mimics of biomass growth will play an important role in
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Tabk 5
Par.unclers used in the balch-type modelling examples

Parameter CaSl;S ell§(' e,~ e.~ e~

la.b 2 3 4 S

p.;:t,O (d ') 2S
11:;--.... (d I) 0" S
I'~- (d ') 10 '0
1'~.wIII (d I) 10 5
1'::--..",h (d I) 0.2
1f.:',lb ,.,f (d ') 2
I(~,,·""·tr (0 'J I
kJ (0 ') 0.1 0.1 0.1 0.1 0.1

K~ (moll ') '0 '
K:-'" (m.)ll ') '0 ' 10 '
K~lt,O (moll I, 10 '
K""~lmoll ', '0 '•
K"-(rnoll-', 10'•
KO t ' (moll " '0 ' 10 ' 10-1

•
K-Imoll l ) 10' 10 '•
K"- (moll I) 10 '•
K- (moll " 2 x 10 • '0 '
K""'" (moll II 5 x 10 •-Kt-(molllj '0 '

10'
'0 •

Table 4
Initial concentrations of aqLM:Ous components.. bacterial mass
miner~b u~ in the balch modelling uampks

(54)

,

, --, ..-~
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,
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" • - 00_1<'-'''l
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• • ", •
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•
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(HCO)") and hydrogen ions (H+) arc produced at the
exactly the same ratc as CH 20 is degraded-we do not
write expressions for these species.

Case Ia in\'olves the same rale expressions as case lb.
ex:cepl Ihal species released by decay of microbial mass
arc included in the simulation. Thus. the same ratc ex­
pressions apply as in case Ib. with an additional rate
expression as given by Eq. (33). The actual spt."'Cies that
arc produced will depend on the chemical composition
of the aqueous phase at the time of release. In general.
these are not known a priori. but arc calculated by
standard equilibration methods as described in Section
2.4.1. In terms of the clemetlls that compose the mi­
crobial mailer. however. e,'(act rate expressions can be
wrillell. For example. each mole of Csl'h02 degraded
yiclds a mole of N. thus from Eq. (33) we have

with similar expressions for C. Hand O.
For given initial concentrations (Table 4). we can

compute. using Ihe geochemical model PHREEQC-2
1269]. the temporal development of DOC. oxygen. mi­
crobial and inorganic carbon concentrations in a closed
batch-type system. We recall that the vllrious reaction
rates dcscribed above will affect all other species in so­
lution since other (cquilibrium) reactions will be initio
ated. For example. as N is recycled from microbial
degradalion. in principle it can speciate to produce ni·
trale or ammonia. As shown in Fig. 2. in both cases the
complete mineralisation of 0.1 mmol of DOC eventually
consumes 0.1 mmol of oxygen (01) and produces 0.1
mmol of inorganic carbon. In both cases. too. during an

,.,.

2
4

o

0.2

CaSo."
S
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B(c'Causc case 1b docs not model the species produced
from microbial decay. thcre is no cx:pression corre­
sponding to Eq. (33). Eq. (49) shows that bicarbonate

Fig. 2. Modellin!! cx~mp1c (case I): Simulalioll of rnicrobi;llly ca·
wlys.cd m;ncrali,allon of DOC under "crobi.: conditions in a closed
balch·system. Case la ,,~\:ounts for the detailed rLxll).1 reactions and
stoichiometry of bacterial gro"'lh :md de.:ay following Eqs. (45) ;md
(47). In (';IS<" lb. a simplified model b:lsed on the stokhiomctry from
Eq. (49) is used. NOll'" thai O:\)'gcn in the middle plot is 0(0).
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initial lag period microbial concentrations arc relatively
small and growth does not affect aqueous concentra­
tions of DOC and oxygen. The length of this lag period
depends largely on the initial bacterial concentration
(Table 4) and on 1J~1I:0. the parameter controlling the
maximum degradation rate (Table 5). Arter this lag
period concentrations stan to change rapidly. In both
cases DOC is depleted after 3-4 days and the (net) mi·
crobial growth then stops abruptly. At that time. ap­
proximately 0.035 mmoll- l of oxygen (02) have been
consumed in case la, whereas oxygen is fully depleted in
case Ib. In both cases the microbial mass subsequently
decays at the rate given by the final tenn in Eq. (32). In
case la the decay thereby consumes the remaining 0.065
mmoll I of O2 (Fig. 2) and produces more inorganic
carbon. The comparison between the two cases dem­
onstrates that. for conditions where biomass concen­
trations change rapidly, a significant difference in
the dynamics of oxygen consumption is possible. The
magnitude of this difference, of course, depends on the
parameters (such as rate constants) used.

The nitrogen concentrations in the uqueous phase are
shown for both cases in the middle panel of Fig. 2. The
model approach used for case 1a considers transfer of
nitrogen from the aqueous phase into biomass whereas
no nitrogen is removed from the aqueous phase in case
lb. During bacterial decay. nitrogen is transferred back
into the aqueous phase. Note that the simpler approach
used in case lb is not mass conservative with respect to
carbon as a result of neglecting the changes of microbial
mass in the underlying reaction equations. This can be
seen in the lower plot of Fig. 2. where the total carbon
concentrations. i.e. the sum of carbon contained within
DOC (CH 20). biomass (C~H,01 ) and inorganic car­
bon (HCO). etc.) is plotted versus time. ote Ihat the
third panel shows the concentration for case 1a as 0.1
mmoll- 1•

In reutity. contamination rarely consists of a single
organic compound but of a mixture of compounds
with differing physicochemical properties. Thus. several
models huve been proposed to account for the simulta­
neous uptuke of multiple substrates. e.g.. benzene. tol­
uene. ethylbenzene and xylenes (BTEX). by the same
bacterial group. One model (262). which has been
adopted in other applications (263.282.293-296). sug­
gests modelling the rate of growth of a microbial pop­
ulation as the sum of growth rates due to different
dissolved organic compounds. as was mentioned in
Section 2.4.3. The uptake rates JI:" will normally differ
for different substrates. In this way. it is possible to
model degradation of different electron donors at dif·
ferent mtes so that benzene, for example. degrades more
slowly than toluene.

Case 2 extends the model approach used in case la
and demonstrates the joint uptake of four different
BTEX compounds by one microbial group under sul-

:F_:.:..:.:..~.:,,:----------T:'1'.".....~.::!-:..=:_:.I!:'Jr:"
or ••. _.

") J " ,,;-~ _.~~.~_.--- fu"
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•

\ • ~ " » " » » ~--
Fig. 3. Modelling e~ample (case 2): Simulation or BTEX mineralisa­
tion under sulratc-rroucing conditions.

fatc-reducing conditions. Different initial amounts of
organic compounds were assumed to be present (see
Table 4). As can be seen in Fig. 3, for the chosen pa­
rameters (Table 5). toluene and ethyl benzene degrade
first. followed by xylene while degradation of benzene
takes significantly longer. The rate of sulfale consump­
tion decreases once toluene and ethylbenzene are de­
pleted and slows down even further when only benzene
is left to degrade. As in the previous casco we considered
nitrogen uptake into biomass but. unlike there. nitrogen
was not depleted at any point in time and thus did not
limit the removal rate of the organic compounds.

7.3. Multiple haclerial groups allll groll'th ;lIhibil;OIl

In active remediation schemes. contaminant degra­
dation might be dominated by one particular bio­
geochemical process, e.g., anaerobic biodegradation,
involving only one bacterial group [297). However, un­
der natural conditions, a range of terminal electron ac·
ceptor processes (TEAPs) would be ex~ted. Where
contaminants degrade naturally. the number of micro­
bial populations involved might vary in space and time
as electron acceptors become locally depleted (Fig. I).
That is. microbial groups will typically be associated
with a particular electron acceptor. e.g.• iron· or sulfate­
reducing bacteria. Generally. microbial groups associ­
ated with more thennodynamically favorable electron
acceptors will out-perfonn those using less favorable
electron acceptors.

We mentioned in Section 2.4.3 that inhibition tenns
might be used to describe mathematically the sequential
use of electron acceptors. For example. aerobic condi­
tion would inhibit the growth of sulfate-reducing bac·
teria. This can be modelled by multiplying the growth
rate expression. Eq. (36). for these bacteria by
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Fi,. S. Modelling c\.ample t~-asc J); SimulatIon of lolucllC mincrall­
salion under sutfalc-rOOoclnl! condl1lons uSing Ihree dlfferem biomas§
inhibition constants K"", (moll I).

redox sequence. e.g.. growlh ofSRB can be inhibited by
the presence of oxygen. nilrate and Fe(3) minerals.

AnOlher mechanism Ihal. under some circumstances.
is thought to affect microbial growth is the diffusive
Iransport of reactants into biofilms. In order 10 cir­
cumvenl solving pore-scale diffusi\'e lranspon equa­
tions. a simple formul:uion for gro"1h inhibition by
excessivc biomass accumulation has been proposed
1291J. Once again. an inhibition term is used of the form
given in Eq. (55). except that the parameler K,'nh is re­
named Kb«J and the microbial concentration used. In the
case where a microbial cOllcentration becomes much
larger than Kb«J. the growth term conceptually repre­
sents a situation where the real biofilm thickness be­
comes irrelevant as the metabolic aClivity occurs
predominantly in the upper layers of a bio/ilm that is
more exposed to the nutrient-bearing aqueous phase.
Because only the surface layer is rcceiving nutrients, the
specific growth rate for the entire microbial mass re­
duces, Other. similar approaches arc also available [15].

Thc simulations shown in Fig. 5 dcmonstrate the
influcncc of Kbw on the maximum bacterial concentra­
tions. For Kt",o = 10 4 moll I the resulting simulatcd
biomass concentrations arc vcry similar to the unin­
hibited case. while a Kt::.o of 10 6 moll-I leads to a very
strong inhibition and almost negligible contaminant
removal within the simulation time. This simple example
involves only one TEA J> and Ihe difference between
uptake of toluene and sulfate is a constanl (sloichio­
metric) faclor.

7.4. Geochemical rt'SpOIlS('
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,

_._._._.
• M_, ,

• • SooI""'-_,

'" '. - •,
,

/"
.#--~~

" -',, . " ,
'" " ,

"/ -'-'. . ,, --'-• "
._._._._.-

•• ,
'" " • " • " •

ur--------------.:..~..cr.=",c.c.=.
.. """ .......1."

__ Sull...

. " TIC

. '

'C 0.8

1o.~ , ,.'
- 1-',-------------- ....
'-' IH ,~.-~'. .' "-

112 .~ .. ,
"

.".

where C"lJ<n is the aqueous oxygen concentration. Note
that in the modelling results presented here we took
C''")J<n as the concentration of 0(0) (i.e.. aloms of oxy­
gen) rather than concentration of the molecules O2 .

~~gn> needs 10 be much smaller than typical oxygen
concentrations under aerobic conditions. The Monod­
type inhibition term I~~',m will then remain vcry small so
long as oxygen is present in significant amounts but
rcaches its maximum value of unity (growth not inhib­
ited) when oxygen is depicted. Note thai the mathe­
matical fonn of the inhibition term is similar 10 Ihal

used in models that directly describe the contaminant
destruction rates withoul explicitly considering the mi­
crobial population changl..'S (e.g.. [2981). Inhibition terms
of this form have also been applied for biogeochemical
transformations such as mineralisation of organic mat­
ter in aquatic sediments [2991.

The sequenti,ll consumption ofoxygen and sulfate for
the mineralisation of toluene is demonstrated in the
third simulation example (case 3. Fig. 4). Toluene is only
mineralised partially by the oxygen that is initially pre­
sent in the system. For the period between the third and
the seventh days the example demonstrates the effcct of
nitrogen limitation on the microbial population growth
and thus on the toluene degradation rate. During this
period the growth rate is limited to the magnitude of the
decay rate as nitrogen is only available from decaying
bacteria. The microbial popul:lIion is thus constant in
this period. After a further lag period resulting from the
small initial concentrations of SRB (sulfate-reducing
bacteria). toluene is further reduced during growth of
SRB until sulfate is also depleted. The inclusion of
multiple inhibition terms of this form into a growth
equation can then be used for modelling a predefined

Fig. 4. Modelling namplc leasc J): Simulalion of totucnc mincrali~

salion b) sequential rroucllon of o\)'gcn and sutfal.... NOle lhal o:\)"~n

in 11K top 1*01 is 0(0).
So far. we have discussed biodegradation of selected

organic substrates with a focus on the main (or pri-
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mary) reactants. For many practical cases. however.
limiting the reactive system to these species is insuffi­
cient to describe degradation. This is mainly because
(a) additional information about the fate of the reac­
tion end products is desired and. perhaps more im­
portantly. (b) the primary reactants are simultaneously
involved in other reactions that proceed independently
(but at a comparable time scale) or in response to the
biodegradation reactions. The former point is of par­
ticular interest for applying natural attenuation as a
remediation scheme. There. the geochemical changes
resulting from the biodegradation reactions are used to
demonstrate the occurrence of aHenu3tion processes
(8). Where the contaminants (e.g.. BTEX) are oxidised.
this typically includes changes in alkalinity. total in­
organic carbon (TIC) and of reduced forms of electron
acceptors such as sulfide or ferrous iron. These and
other spt..'Cies might undergo further reactions. e.g .. they
can form mineral precipitates such as sidcrite (FeCO l ).

iron sulfide (FeS) or pyrite (FeS2)' Thc qucstion whe­
ther these (secondary) reactions proceed and. if so. at
what ratc. is more difficult to solve than the more
simple c.."lSCS presented above. The occurrence and rate
of these reactions depend on the pH of the ground­
water. which can in lOrn change during biodegradation
of organic contaminants. In these cases. geochemical
models based on thermodynamic principles are essen­
tial tools for predicting of the fate of aqueous species
and minerals.

We illustrate these interactions with another example
(case 5). where we take a closer look at the fate of the
reaction products. Again, we simulated the degradation
of toluene. For simplicity. we assume that the degra­
dation itself is the rate-limiting step and reactions of
inorganic chemicals and minerals can be approximated
as equilibrium reactions. Here. oxygen and the mineral
gocthite, FeOOH. serve as electron acceptors and are
used sequentially by the same facultative microbial
group. The most significant geochemical changes oc­
curring during the first, aerobic biodegradation stage
are. besides the consumption of toluene and oxygen
(Fig. 6). the increase in TIC concentration and the de­
crease in pH. The lalter is somewhat buffered through
the presence of calcite (CaCO j ). resulting in a release of
calcium into the aqueous solution. Once oxygen is de­
pleted completely. the electron acceptor consumption
switches to goethite. Iron reduction of toluene is a hy­
drogen-consuming process. so the pH increases with on­
going mineralisation of toluene. As the model includes
the possibility of siderite precipitation. the Fel'" con­
centration in the aqueous phase remains low. TIC is
partially removed from the aqueous phase by precipi­
tation of siderite and calcite. the lalter also decreasing
the C'dlcium concentrations in the aqueous solution.
For the maximum uptake rates assumed in this simu­
lation. the rale of microbial decay is greater than the

'I ~B--- ~- ---'----~- ---~---~!::::~:=J
'I E?---- ~-:-- -;-- --~ ---~ :~':'::"1~:E; ~

rc-..~ _: ~ : : ~~~~
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Fig. 6. Modelling example (case 5): Simulation of toluene mincmli·
saliOll 1l11d its geochemical response under sequential aerobic/iron·
reducing conditions. Note that oxygen in the lOp plot is 0(0).

growth ratc (during iron reduction). so the total bacte­
rial mass decreases.

8. Application: modelling biogeochemistry in a landfill
plume

Landfills typically contain a mixture of organic and
inorganic pollutants and generate leachate for which
natural attenuation is the favoured remediation strategy
(300J. Successful natural altenuation is documented
pollutant mass reduction. a difficult task given con­
straints imposed by the plume complexity and limited
hydrogeochemical data collection 130 I). Thus. modelling
the fate of organic compounds in groundwater systems
that arc heterogeneous physically and biogeochemically
is vital to any natural attenuation feasibility study [302].

Here. we illustrate how a model that can simulate
transport and biogeochemical processes was used to
determine the redox zonation in groundwater down­
stream from a landfill. The landfill has been described
elsewhere (300) and a comparison between model results
and field observations has been performed recently
(303). Such a model can be used to determine the spatial
zonation of redox environments. These range from
aerobic rcspimtion at the plume fringes to denitrifica­
tion. iron reduction. sulfate reduction and. finally.
methanogenesis close to the landfill border. i.e., the full
sequence of TEAPs will be displayed. For landfill leac­
hate plumes with a mixture of oxidisable organic wastes.
degradation of DOC generally determines the spatial
distribution of redox environments. Other specific
organic chemicals are present in much lower concen­
trations and therefore do not contribute as much to
reduction capacity. However. these low concentration
chemicals are possibly of much more interest because
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Fig. 7. OOOel"\cd dislriblltion of DOC downstT<'am of the Ve;en
landfill (adaptl"d from 13031J.

use of TEAPs is simulated using two types of inhibition
functions to specify the conditions under which bacterial
groups arc active. Thjs is done by specifying TEAP
concentrations for each bacterial group. For example.
for SO~ reduction. all other possible TEAPs are as­
signed switch value concentrdtions. For highcr room;­
potential species-01 • 0) and Fe(OHh-boundary
switch values need to be specified for each e1cctron ac­
ceptor. For SO~ itself. a boundary switch value is
needed as well. Only if the SO~- concenlr.lIion is higher
than its own TEAP switch value concentration and all
other higher redox-potential species have concenlrations
less than their switch values. will the inhibition function
have a wlue of unity. Othcrwise it is zero and the bac­
terial group is not active (Section 2.4.3). In modelling
tenns. different microbial populations C;ln thus be ··ac·
tive" at the same time. although electron acceptors are
consumed strictly in sequence. Alternatively. a gradual
change from using one e!cctron acceptor to the next
would result where the rate is a gradual function of
concentration. e.g.. as modelled by Eq. (55). [n the re­
sults presented here. this gradual ilpproach was used
specifically to model the effcct of inhibition due to pH
changes. An optimal pH is specified for each bacterial
group. Any deviation from this optimum results in a
decrease in the calculated rate (268).

We will present two simulations conducted 10 cali­
brate some of the process parameters. Most of the pa­
rametcrs in the biodegradation model are unknown and
many of them are interdependent. e.g.. the initial con­
centration of the microbial population and the maxi­
mum growth nue both will determine the biomass
concentration at any given time. To fit a given biomass.
starting with a high initial biomass would require low­
ering the maximum growth mte and vice versa, More­
over. even for this fairly wcll.-eharacterised sitc. the
biogeochemical data are not enough to permit calibra­
tion of all parameters. It is. therefore. important to de­
fine targets for the modelling/calibration. These were to
reproduce the observed zonation of the main TEAPs
and. based on the calibrated biodegradation parameters.
to estimate the effcctive rate of degradation in the vari­
ous redox lones. These measures of biodegradation arc
Important for documenting natural attenuation of other
chemical compounds as well. since the zonation defines
the coverage of an aquifer where a certain type of bio­
degradation is likely to dominate. Together with
knowledge of the effcctive degradation rate. onc can
ascertain the relati\'e importance of redox zones in re­
ducing mass of contaminant species.

The following two simulations (S I and 53) represent
a simulation time of 13 years. the time period from onset
of possible leaching from the landfill to the time when
measurements of the plumes were carried out. By this
time. the plumes had reached a quasi steady state. The
simulations assume (a) a steady. albeit non-uniform
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they can be dctrimcnlal to water resources. Some of
these arc more easily (perhaps only) degraded in an­
aerobic environments whereas others degrade preferen­
tially in aerobic environments. It is thus important to
quantify the spalial and temporal evolution of redox
zonation as well as the residence time in each zone.

The modelling objectives were 10 simulate the de­
gradation of DOC in this aquifer. the effect of de­
gradation on the creal ion of a sequence of redox
environments and the coupling of organic degntdation
10 the geochemical system.

Fig. 7 shows :1 cross-seclion through the main pari of
the observed DOC plume at the Vejcn landfill. The
aquifer is sandy with pore water velocities of 50-150
m yr- l . The plume was shaped by the leachate input and
low-perme'lbility units beneath and at the border of the
landfill [3031. Furthermore. uncontaminated ground­
water from below thc landfill mixes with the DOC plume
along the cross-section.

As mentioned in Section 5. the success of any reactive
transport modcl dcpends on reliably simulating the flow
field together with knowledge of the dispersion param­
eters. such that correct mixing of reactive contaminants
cnsues. Information on movcment and spreading of
non-reactive tracers is therefore very useful. For the
Vejen landfill. differenl hydrogeologic'll interpretations
resuhed in very different fits to the observed chloride
(CI) plumc (267]. However. the simulations still did not
match many of the fine details of the observed Cl plume.
leading to uncertainties in the physical transport mod­
elling that arc transferred to the reactivc transport
simulations.

More detail on thc model used in the current example
is available elsewhere (268]. It is essentially identical to
the approach discussed in Section 7.3. The model as­
sumes the presencc of multiple bacterial groups with
thcir own C<lpabilities for using onc specific TEAP. i.e..
Orreducing. NO, -reducing_ Fe(3)-reducing. SO~-­

reducing ,lltd CH4 -producing biomasses. The sequential



D.A. 8mr)' <'1111. I A/kilnc<,s in Water ReslJurces 25 (2002) 945-983 107

source at the landfill boundary of all components and
(b) a steady-state flow field.

The distributions of 02> NO), Fe(OH}h 50;- and
CJ-L are shown in Fig. 8 for simulation 51. The distri­
bution of Fel + is also included. because re-oxidation of
Fez+ occurs at the fringes of the Fe(3)·reduction zone.
The distribution of the increase in biomass concentra­
tions for the various TEAPs are shown in Fig. 9, to­
gether with the simulated DOC (i.e.. CHzO) plume. The
actual rate parameters used to produce 51 are not im­
portant. as the discussion will focus on how relative
changes in rate and switch value parameters affect the
redox zonation.

The distribution of 0rreducing biomass shows that
O2 is used as a TEAP ncar the water table for the first
180 m. where infiltrating O2 mixes with DOC. A close
inspection of the Fe(OHh concentrations at the
boundary of the Fe(3)-reducing zone shows that re­
oxid:lIion of Fe2+ occurs in a thin layer (difficult to see in
figure). The consumption of O 2 when it mixes with DOC
and the re-oxidation of FeH explains the limited vertical
extent of O2• The simulated distribution of O2 largely
depends on the transverse dispersivity. as discussed in
Section 5. Nitrate also infiltrates the water table and has
a similar distribution to O 2• Both Oz and NO) were
initially present in the aquifer. This initial aquifer oxi-

dation capacity can still be seen in the low permeability.
slightly upward-sloping clay lens beneath the landfill.
which retains high concentrations of both species.
Fe(OHh is almost depleted in a zone stretching about
250 m out from the landfill. The reduction of 50~- is
limited by the presence of Fe(OHk The concentration
of Fe(OH») must be less than 2 x 10-' molar (switch­
value) before 50;--reduction is initiated. The Fe(OH)J
concentration is below this switch value in two zones. as
shown by the distribution of the increase in SO; ­
reducing biomass. Growth of the CH~-producing bio­
mass is suppressed by the presence of Fe{OHh in the
same manner. The C~ plume is due to transport of
leachate into the aquifer from the landfill.

In simulation 53, the maximum growth rate of the
Fe(OHlJ-reducing biomass was increased by a factor of
5 while the switch value for 50~- -reduction is increased
such that the Cl-I4-producing biomass starts degrading
at 50;- concentrations that arc a factor of 10 higher.
Predicted distributions of O2, NO). Fe(Ol-ih. and CH 4

arc shown in Fig. 10. The distributions of the biomass
concentration increase for the TEAPs are shown in
Fig. II. together with the simulated DOC plume. In this
case. Fe(OI-l)) is totally depleted within the first 180 m.
The NO) concentrations are slightly higher. and the
vertical extent of this zone has increased. This is coupled
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Fig. 8. Distribution of redm; species. simulation 51.
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Fig. 9. Distribution of CHID and increases in biomass concentrations. simul;llion SI.

with a decrease in the size of the DOC plume because of
increased consumption of DOC with Fe(OHh as the
TEAP.

Due to the depletion of Fe(OH)3. the 50;--reducing
biomass is now activated over a larger area. In these
areas. 50;- is reduced and HS- is produced. This
changes the Fe2-t- plume because of precipitation of FeS.
due to the HS- production. The peak concentration of
Fc2+ has moved fUriher down-gradient compared to the
location of the same peak in 51. The CH4 plume is larger
because the plume is now produced by both landfill
leachate and microbially driven degradation within the
aquifer.

Further detailed simulations are available [303),
where a comparison of simulated and measured plumes
ofTEAPs, cationic species (CaZ-t. Mg2~, a+ and K-+-)
and pH based on simulation 53 are given.

Fig. 12 shows more detail of the simulated DOC
plume from 53, which can be compared with the ob­
served plume in Fig. 7. The simulation and observation
agree reasonably well. To show the amount of atten­
uation that has taken place by degradation, Fig. 13
shows the simulated DOC plume as if no degrlldation
had taken place. Clearly, the DOC plume is longer in
the non-reactive case, and the aquifer is alTccted by
DOC more than 500 m downstream. Elsewhere [303J,
equivulent or effcctive DOC half-lives were calculated
for the various redox zones. These ranged from 100

days to 1-2 days. going from the methanogenic to the
aerobic zone.

9. Appliclltion: modclling the creation of in situ reacth'c
'lones

For the Vejen landfill (Section 8), the fate of the or­
ganic substances was the main interest in the modelling
study because the organic compounds themselves rep­
resent the actual (health) risk. The quantitative des­
cription of the fate of organic substances can also be of
substantial interest in cases where the dcgradation of
non-toxic organic compounds is used within an engi­
neered in situ remediation system to create a favourable
(i.e.. reducing) geochemical milieu for the attenuation of
contaminants. Two emerging and increasingly applied
applications where the engineered fonnation of reducing
zones is applied are (a) the enhanced remediation of
chlorinated hydrocarbons, where electron donors for
substanees such as TCE are injected 1304,305] and (b)
the removal of heavy metals [306]. In the latter case, the
goal is to induce a sulfate-reducing environment such
that precipitation (i.e., immobilisation) of metal sulfides
occurs.

For natural attenuation. the main role of numerical
modelling is typically the detailed analysis of observa-



I).A. Sorry,'IIII. I Adl"'II!I'f',~ ill WillI" Rl'sOU'Ct'J 25 (20M) C).Ij-98J ,~)

0, I\lJ 'In, JM1
',OI-l> • ,~

l",-l> ,
1.:otAl.l'

.~. ,-,
'-"~,

,
•'" • <lI-l>' .. '"

,~-

• ..- • ...- ••llI:.ao<
lllW....• -• :.001:,," • .~

" "
~.. :.~

'" "• ". ~~r:f '" • ". '00 I:!I '""'"~.
Fc(OlI), IMl so: -,.fi-_.'..~ .g-....., ,-, , .-0 ., .....,

0 .,• i
.~-

~
....., ...-,- ,-

w " ,-,-, ,..-
O~t. 'oJ

"'00 ~.""~m '00 '00 • '00 '00 m '00
i.I,,,,,,,,,~ m

("II, !\I I fo:' IM1
J-.OOI:.o" , '<;It..."

I <oF.o" I.oot.oo.l, /OOt.o... ,
0 ., 0 JO

,~,

~ I 'Ot.-O:.<
~ l.00fr00l

-' 1(j(I(-t)O •" " -.~, (j(lf-o.;'

" ", '00 '00 I:!I '"
, '00 h0:..1I(' i':t0;••""...

Fig. 10. DistributIOn of redo.\ species. simulalion S3.

- IMI

"""'""'" 'M,..... ·1___
, ..... ,..-,...., ,.... , ~<igf.-

•JO
,....

j '" ,..-, ~ , ,....
• ,.... • ~UIOE-ooo
w ,.... w,.... -10l11E~

000&0<100 ...-'0-- 20
0• '00 ht::DRaIlCf~ '" '" '00

~""", ~ ""
FE(OH},.r~~ing ,J::t. s<t.·-redoong 'M'- ...-,...., lOO~-OOO, , -IOOt:-ooo

lJ<.11:-OOO 100t:.....
0

!.~
.OOF......,.... ,-• • ,--w ..... w
IlIl(.....

20
0

..... "'.
~o.OOF._

'00 ~_JOO '" "" '00 ~UII"'~ '" ""'M, 1'"
Ol.-~ ..... Clip ,~..... ,....

~, ..... ,~,
.1 JO

~

1 JO
,....,-• • L_,....

• .,.... ~ ,-w - ......
-000£_

"'."0 , •
'00 re..~ I:!I '" .. '00

iWManC'~
...

Fig. II. Dislribution of CH10 and increases in biomass conccmmlions. ~imLlI~tion S3.



110 D.,4. Do,ryel Ill. I Adr""teJ i/1 W"lt'. Rt'.wlIues 25 (2001) 945-983

E

.2••
~w

• 100 15.
200 ""

Disl::ancc: 1m]

Fig. 12. Simulated distribution of CII~O. simulation 53.

lUClrngl')

'·00

'.00
15.00

:--------------
" ,~-

'.00'.00
15.00

1O•.~.

"

Fig. 13. Simulated distribution of CH10 assuming no degradation.

tions whereas, for engineered systems. the emphasis
shifts towards predictive modelling and the exploitation
of models as design lools [307}. e.g.. in order to optimise
remediation schemes. The second field-scale modelling
application presented here describes an application of
the laller type.

In Ihis example. we model the geochemical changes
that occur in a metal-contaminated aquifer in response
to the injection ofdiluted molasses (~HI206)' Although
the focus of this paper is on organic contaminants in
groundwater. a catcgory thai that would not normally
include molasses. the modelling approaches involved are
similar. The modelling was motivated by a recent field
investigation and accompanying laboratory experimen­
tation. The overall integratcd ficld/laboratory/modelling
project is too largc to report in detail herc. so we focus
on its modelling aspects.

The molasses is added in dissolved form through
pulsed injection into a row (or curtain) of wells per­
pendicular to the main groundwater flow direction.
Given that the aquifer's physical propertics are fixed.
the main paramcters. i.e.. design variables for effi­
ciently creating and maintaining a reducing zone arc
the distance between wells. injection rates. length of
injection periods. length of period between injec­
tions and substrate concemration. As in the previous
case, physical. chemical and biological processes in­
teract in a complex manner. The processes underlying
the conceptual and numcrical model of thc problem
nrc

• advective-dispcrsive transport of molasses. organic
degradation products and inorganic chemicals;

• sorption of molasses;
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• microbially mediated, kinetically controlled oxida­
tion ofmolasscs under sulfate-reducing and methano­
genic conditions as well as sulfide production:

• aqueous complexation reactions among inorganic
chemiC-dis (LEA):

• reductive dissolution of metal oxides: and
• kinetically controlled precipitation of metal-sulfides.

Prediction of metal mobility and, thus. the efficiency
of the in situ remediation scheme, requires accurate
prediction of the aquifer's redox state and pH. Model­
ling the physical processes IlfTecting metal transport and
mobility is a vast research area by itself and so, in the
present example. we focus on modelling of the hydro­
chemical changes resulting from the injection of the
degradable organic compound. From this base we pre­
dict metal transport/mobility. The numerical model
PHT3D (Table I) was used for the subsequently des­
cribed simulations. In PHT3D. the kinetic reactions in­
cluded in the simulations. such as microbial growth and
decay. lIre added to the (standard) PHREEQC-2 dat­
abase that otherwise contains all relevant equilibrium
reactions. As demonstrated in Section 7 for a range of
batch-type problems. a consistent degTlldation model
was developed from the governing reactions and their
stoichiometry. as described below.

9.1. Degrtulatiofl model

Minemlisation reactions of organic compounds typ­
ically either produce or consume H~. depending on the
TEAP. In the case presented here. however, the full
minemlisation reaction (i.e.. the dominant TEAP­
sulfate reduction-coupled to the oxidation of molasses)
does not indicate changes in pH

(56)

However. laboratory column testing provided mea­
surements that exhibited a strong decrease in pH ncar
the injection source, indicating buildup of acidic relic­
tion intermediates. A similar. although less pronounced.
tendency was obsented during a trial injection at the
field site. In order to reproduce these observations and
their potential impact on the efficiency of the remedia­
tion scheme. the production of organic acid intennedi­
ates was represented in a rcfined degradation model by
including acetate as a breakdown product

(57)

and the subsequent mineralisation of acetate as II second
step

C~HJ02 + SO~- + H+ --0 2HC03 + H1S (58)

The combination of Eqs, (57) and (58) gives Eq. (56).

During molasses injection cycles. bacterial mass will
increase, while, once the injection is paused. bacterial
mass will decrease. in which case bacterial decay con­
tinues to promote reduction in the aquifer. In order to
investigate these dynamic changes in bacterial mllSS.
explicit simulation of bacterial growth and decay was
included in the degradation model. Two parallel de­
gradation pathways were included: (a) dircct. complete
mineralisation of molasses. as given in Eq. (56) and (b)
the two-step transfonnation involving acetate and its
subsequent degradation. Eqs. (57) and (58). Thus. for
this latter case, carbon (from molasses) is diverted be­
tween HCOj (or other inorganic CO~ species). acetate
and microbial mass (with an estimated efficiency of
2(010). As part of a model calibration. the ratio between
HCO; production and acetate formation was adjusted
such that the observed temporal developmcnt of the pH
during the trial injection was replicated. The key pa­
rametcrs of the degradation model. the maximum up­
takc rates for molasses and acetate. were filled based on
observed data of the tempoml changes for sulfate. sul­
fide and alkalinity during the field trial. The relative
mtes of these relict ions affect to what extent acetate will
accumulate. In the model approach used in the simula·
tions presented here. Le.. where bacterial growth and
decay is explicitly modelled. the accumulation depends
on the ratio (here 5.5) of the maximum uptake rates for
molasses and acetate.

A range of simulation scenarios was set up to inves­
tigate the influence of crucial design parametcrs so as to
find a robust. safe design for the remediation scheme.
While not applied here, optimisation tools using meth­
ods such as gmdient methods [308J. simulated annealing
[309.310J or genetic algorithms [311.312] amongst other
methods (313) might ultimately be coupled to the pro­
cess model to obtain the most efficient solution for a
given remediation design.

9.2. Model simll{m;OIu

In the particular remediation sccnario discussed here.
a line of wells is located transverse to the main flow
direction in the aquifer. Molasses-enriched water is in­
jected for short periods (five days). alternating with 35­
day long periods without injection, In addition, active
wells alternate with their neighbours such that in fact
each individual well operatcs only five out of 80 days. In
this scheme, mixing betwccn injected water and back­
ground water results from both longitudinal (0.1 m) lind
transverse (0.01 m) dispcrsivity as well as through
chromatographic effects caused by differcntial sorption
between molasses (retardation factor of 1.2) and other
reactants (no retardation). The effects of this pulsed in­
jection and the propagation of the resulting geochemical
changes downstream C.lll be seen in Figs. 14 and 15.
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Hematite (FC20J) and sulfate are consumed as a result
of the oxidation of acetate whereas sulfide. carbon di­
oxide and methane arc produced. The pH·lowering ef­
fect thai occurs near the injection wells (lOp plOI of Fig.
15) during transformation of molasses (0 acetate is evi­
dent in Fig. 14 (second plot). However. further down­
stream of the injection zone the pH recovers to
approximately the background value. This can also be
secn in Fig. 16 where the temporal development of
molasses and acetate concentrations as well as the pH is
shown in comparison for three selected locations (WI:
injection welL W2: 25-m downstream of an injection
well and W3: 50-m downstream of an injection well), as
also indicated in Figs. 14 and IS. The remediating effect
of the in situ reducing zone can be seen in the contour
plots for dissolved In and for ln$. The former is largely
removed from the aqueous phase through the precipi­
tation of ln$ (bottom plot).

9.3. Carbon bllt/gel

The geochemical modelling approach used for the
simulations conserves. to within numerical errors. mass
of all chemical clements. It also tracks their spatial and
temporal partitioning between aqueous. mineral and
biophases (i.e.. bacterial mass). As an example. Fig. 17

shows the carbon budget within the modelled domain.
Before the start of the molasses injcction. all carbon is
present as carbon dioxide. i.e.. in dissolved form and in
only one valence state. The cyclic injcction of molasses
leads to a stepwise. monotonic increase in the total mass
of carbon. Within each cycle. the mass of molasses is
completely transformed whereas acetate accumulates for
a few injection cycles then reaches a dynamic equilib­
rium between newly formed and degraded biomass. The
simulations for the presellled scenario show that bacte­
rial mass stores only a relatively small fraction of carbon
and thus is not capable of contributing significantly to
sulfate·reducing activity in periods without molasses
injection. Siderite (FeCOJ ) was included in the reaction
database for the simulation but it did not fonn. The
dominant form of carbon remains carbon dioxide. al·
though some methane forms. Results from other simu­
lations (not shown here) indicate that for a lower mixing
efficiency between background water and injected water.
the amount of carbon converted to methane increases.
accompanied by a reduction in the amount carbon di­
oxide. This means that a lower fraction of the total mass
of injected molasses is used for sulfate reduction and
thus for the formation of metal·immobilising sulfides.
Again. this result underlines the important role of
physical ftow and mixing processes in the fate of organic
chemicals in ilquifers.
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10. Concluding remarks

Modelling subsurface environments has continued to
develop al a rapid rate over the last two decades. We
now can simulate multi-dimensional. heterogeneous
systems involving multiple fluid phases. scores of
chemical spe1;ies. imcrphasc exchange of mass. detailed
geochemical reactions within fluids and to solids, and
biologically mediated transformations. In the foresee­
able future. modelling applications incorporating these
processes will become routine. Even now. such model­
ling is being used increasingly for predictive purposes.
for cV:lluating risks to human and ecological health. and
for designing environmental restoration approaches.
However. the field is not yet characterised by robust and
reliable models of complex subsurface systems. Con­
ceptually. the modelling process involves model formu­
lation of appropriate sets of conservation equations and
closure relations: discretisation to reduce the dilTerential
equation models to algebraic approximations: algo­
rithms to solve the resultant discrete forms of a model:
and non-linear and linear al~ebraic solution methods.
Each of these areas must mature in order to model the
target problems considered in this work.

Multiple aspects of model fonnulation deserve addi­
tional study. These aspects include conservation and
closure relations for multiple fluid phase systems. in­
terphase mass exchange models. and biological mod­
els for complex. multi-species. multi-organism systems
typiClll of natural subsurface systems. To give just one
example. biologically enhanced dissolution. including
the elTect of natuTllI and applied surfactllnts_ will alTect
source-tenn modelling. as will spalial distributions and
temporal changes in APL physical pro}Xrties. Fur­
thcmlOre. e\'en in cases where current modds are ade­
quate. issues of scale are almost always a concern.
Models are often developed based upon controlled
laboratory conditions involving homogeneous systems.
while the nlltural systems of interest arc orders of
mllgnitude larger in SCllle. heterogeneous and sparsely
characterised. Such a situation presents a significant
challenge as both the parameters and the form of model
closure relations arc subject to change. Clearly. this
challenge alTccts aspects of data collection. data reli­
ability. a need to combine muiliple scales and types of
data. inverse problem solution methods and optimal
knowledge processing-all activc and important arcas of
research.

While computational resources continue 10 evolve at
a rapid rate. we believe both nUlllerical solution methods
and computational advances will play important roles·in
advancing the resolution and reliability of geochemical
models. On the numerical side. continued maturation of
methods will be crucial to estimate and control errors
through dynamic adaptation in the order of the nu­
merical approximation scheme and discretisation. On

the computational side. the availability of computa­
tional resources will grow in part because of faster
processors and larger memory. but also bec:.tuse of an
increased reliance on distributed memory parallel pro­
cessing. It will be important to produce simulators that
run efficiently on these evolving architectures. Because
simulators arc difficult and time consuming to produce.
the continucd evolution of modern software tools and
simulation cnvironments will be necessary to specd the
rate of modelling advancemcnts.

For biogeochemically complex environments. it is
clear that microbially mediated degradation modelling
is. to a certain extent, somewhat semi-empirical. This is
particularly so with regard to scaling of biochemical
reactions. the interplay of these with relevant physical
processes and the apparent reaction rates that are ob­
served or deduced. An improved basis for modelling
scllie-dependent microbially induced degradation of or­
ganic chemicals would have immediate practical benefits
in predictions of natural and enhanced attenuation. risk
'lsscssmenl. and so on.

More generally. active collaborations among experi­
mentalists. theoreticians. and numerical modelers would
hasten the rate of development and application of sub­
surface biogl.'OChemical models. Such groups should
cross disciplinary boundaries and include chemists. mi­
crobiologists. engineers. geologists, mathematicians.
computer scientists and others thaI can contribute to
these challenging problems. Each of these c1asscs of re­
searchers has an active and important role to play. A
process of routine model-data comparison and detailed
mechanistic evaluation will be needed to improve cur­
rent models.

In the past 20 years much progress has been made in
the development of models and their application to a
variety of oxidisable organic contamination problems.
This period has also seen major gains in readily avail­
able computational power. the availability of numerous.
well-tested packages for now. transport and reaction.
and a growing need to intcgratc biological. chcmical and
physical processes alTecting the fate of oxidisable or·
ganies in the subsurface. While acknowledging this
progress. these remarks are intended to bring attemion
to the significant challen~es that can now be addressed.
The future is bright. but much hard work remains.
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