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Abstract

Stochastic differential equations for solute transport are constructed from corresponding determin-
istic transport equations by re-interpreting their physical parameters as random [unctions of space and
time. A partial differential equation for the ensemble-average solute concentration then can be de-
rived from the stochastic transport equation by a cumulant expansion method used in non-equilibrium
statistical mechanics. Examples of this approach are given for both conservative and reactive solutes
moving through inhomogencous porous media. The resulting ensemble-average transport equations
are shown to be similar formally to their local-scale, deterministic analogs; but they exhibit additional,
ficld-scale physical parameters ansing from correlations among fluctuating, local-scale convective or
reactive properties of the solute. Some unresolved conceptual issues attending the interpretation of the
ensemble-average solute concentration and the field-scale parameters are discussed bricfly.

1. Introduction

A significant body of research has begun to emerge in which the hypothesis is
made that the transport properties of a porous medium in nature can be modeled
as random functions parameterized by space and time coordinates [for reviews sece
Dagan (1986, 1987) and Sposito et al. (1986)]. The motivation for this approach
is the observed, large variability of fundamental quantities, like the hydraulic
conductivity (Sudicky, 1986) or the dissolved solute velocity (Biggar and Nielsen,
1976), at the field scale in natural porous media. This variability is pictured to have
a random character, such that the transport properties of a single field-scale unit are
represented as “sample-realizations” of random functions, or stochastic processes
(Karlin and Taylor, 1975).

In their classical, non-stochastic setting, the transport properties of porous media
are important because they figure directly in the partial differential equations which
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296 Stochastic differential equanions in the theory of solute transport

describe the time evolution of concentration variables for matter that moves by
various mechanisms through these media. For example, the transport of a reactive
dissolved solute with concentration, ¢(x, r), might be described with the equation
(cf. van Genuchten and Alves, 1982):
de -1v. P =

E=(R V:D-V-R"v-V =D>)c(x,?) (1.1)
where D is a dispersion tensor, R is a “retardation factor” for a linearly-adsorbing
solute, v is a (uniform, constant) solute velocity, and b is a “decay constant” for
a first-order loss rate (e.g., biodegradation) of the solute. If now the transport
properties D, v, R°!, and b were 1o be interpreted as random functions because
of their spatial variability, they would be replaced in (1.1) by sample realizations.
A uscful notation 1s, e.g.,, V(x, 1; w) to denote a stochastic solute velocity that
depends on space and time coordinates, with the argument w distinguishing it
from a non-random velocity. Particular values of w indicate particular samples, or
rcalizations, of V(x, r; w): V(x, 1; wy), V(x, 1; wy), etc. Thus (1.1) could be rewritten
in a stochastic context:

% =[R'a;w)V-D-V-R ' ;w) Vx,t;w) - V — b(xyw)]elx,r;w) (1.2)
where D has been left, as is customary, as a non-random coefficient because of its
significantly smaller observed spatial variability as compared to the solute velocity
(Dagan, 1984, 1987). The solution of (1.2) is a random function (a stochastic solute
concentration) because the coefficients in (1.2) are random functions.

Equation (1.2) is an example of a stochastic partial differential equation. The
general recipe for constructing such equations follows the procedure used to arrive
at (1.2): the corresponding non-stochastic transport equation is written down, then
one or more of its coeflicients are modeled as random functions. Because of
this representation of the coefficients as continuous random functions, there is an
infinite number of possible solutions that satisfy the stochastic partial differential
equation under given boundary and initial conditions. Evidently the statistical
properties of the random coefficients must be prescribed in order to find ways
10 solve the resulting stochastic diffcrential equation in a well-defined way. The
ensemble-mean solution and its relationship to the low-order statistical properties
of the coefflicients are of particular relevance, as will be discussed below.

In this chapter, an introduction to the application of stochastic differential
cquations like (1.2) to the theory of solute transport will be presented. Emphasis
will be placed on physical significance more than mathematical manipulation, with
the hope that the relevance of the stochastic approach to transport in heterogeneous
porous media can be appreciated. The basic mathematical techniques are outlined
in Section 2, followed by physical examples in Sections 3 and 4. Section 5 closes
the chapter with a discussion of two important (and unresolved) conceptual issues
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arising from the interpretation of stochastic differential equations in an average
sense.

2. The cumulant expansion

2 1. Physical motivation

As stated above, a stochastic differential equation could be solved for all possible
realizations of its coefficients to yield all possible realizations of its solution. In
practice, this arduous task is seldom attempted and one looks instead for a way to
calculate the ensemble average of the solution. This average is simply the product
of the solution, indexed by w, with the probability density function for w, integrated
over all w. Conceptually, each realization of the solution of a stochastic differential
equation corresponds to a specific example of the physical process governed by the
equation (e.g., solute transport). This specific example, indexed by a value of w, is
assumed to occur in a finite fraction of a hypothetical infinitude of identical copies
of the system to which the stochastic diflerential equation applies. The f[raction
associated with a given w is equatable to its probability density function in the
ensemble, and the product of this fraction and the corresponding realization of
the solution, summed over all values of w, is the ensemble-average solution. If the
probability density function is not too broad, it will be sensible to interpret the
ensemble-average solution as that to be observed in a single measurement.

A variety of mathematical techniques to derive ensemble-average solutions of
stochastic differential equations has been described [see, e.g., reviews by van
Kampen (1976), Winter et al. (1984), and Dagan (1987)]. One of the more physically
transparent methods is the cumulant expansion (van Kampen, 1976, 1981, chapter
14). The essence of this approach is the assumption that a random coeflicient in
a stochastic diflerential equation has fluctuations in time whose root-mean-square
amplitude, o, and autocorrelation time, 7., combine to make the product a7, small
When this condition is met, a partial differential equation for the ensemble-average
solution of a stochastic differential equation can be derived that is exact to order
(atc)? (van Kampen, 1976). This partial differential equation is similar in form
to the original stochastic differential equation, but it exhibits coeflicients that are
modified by the random fluctuations inherent in the stochastic equation. So long as
aT. IS small, this will be the only effect of the fluctuations on the ensemble-average
equation.

2.2. Outline of the expansion

Consider the stochastic differential equation:

2 < Uo+ 0] yx.5:0) (« > 0) e
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where y(x, f; w) is a realization of the solution [like the solute concentration,
c(x, t; w)], Ap is a non-random (“sure”) operator, and A4;(r) is a random operator
acting on y(x, r; w). For example, if (2.1) were a solute transport equation and the
only mechanism of transport were convection via the stochastic velocity V(x, r; w),
then, Ap = —v -V and A(r) = —¥(x, r; w) - V, where v is the ensemble-average of
Wx, t;, w), assumed uniform and constant, and:

v(x, i w) = Vix,w)—v (2.2)

is the fluctuation about the average. If A; = 0, the formal solution of (2.1) would
be:

exp(Aof) y(x, 0)
= [1 + Aot + JAG" + - ] y(x,0) (2.3)

where “powers” of Ap mean repeated applications of the operator. Equation (2.3)
shows how the solution y(x, 1) is propagated in time from the initial condition,
y(x, 0).

The sure operator exp(Apt) is termed the “propagator” in this context. It can be
used to eliminate the non-random part of (2.1) by the transformation:

y(x,1)

Y(x,f,w) = exp(Aolr) u(x, 1, w) (2.4)

On differentiating both sides of (2.4) with respect to time and substituting the result
into (2.1), one finds the stochastic differential equation:

% = A, () u(x, ;W) (t > 0) (2.5)
where:
Aj(r) = exp(—Aot) A1 (r) exp(Aor) (2.6)

The problem of solving (2.1) thus has been reduced to that of solving (2.5).
The initial condition for the latter is arbitrary, but usually it is taken to be the
sure function y(x, 0) as appears in (2.3). The randomness in y(x, 7; w) then comes
entirely from that of A;(r) in (2.5). [Random initial conditions are straightforward
to consider if they are statistically independent of y(x, 7; w).] In the cumulant
expansion approach, one notes that a formal solution of (2.5) like that in (2.3) is
possible, and one then develops an expansion of the ensemble average of:

I
exp [/ﬂ Ay (1) df']

to derive the approximate partial differential equation (van Kampen, 1976):

d foa .
R0 = [ o denar ute,n) 27)
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where ( ) represents an ensemble average. The corresponding approximate equa-
tion for {y(x, 1)) is (van Kampen, 1976):

e [Au + f ArOA\ ))dr'] (1)) 28)

under the assumption that (4,(r)) = 0.

Equation (2.8) is the partial diffcrential equation of principal interest. It shows
that the time evolution of ( y(x, 1)) is governed by a sure operator, Ag, plus the time
integral of the covariance function, (ﬁf (1A (1)). This latter quantity is of order of
a’1., where a® measures the magnitude of the covariance function and 7. s the
time scale over which it decays to zero. Hence (y(x, 7)) is estimated to order (at.)?.
The fluctuations in 4;(7) lead, in this order of approximation, to a coefficient in
the partial differential equation for (y(x, r)) in addition to those contributed by
the sure operator, A, in the corresponding non-random diflerential equation. This
cocflicient will be time-dependent so long as 1 < 7., when the time-covariance
function gives a non-negligible contribution to the integral in (2.8). After the time
corrclations decay, the integral term is eflectively a constant like the sure operator.

3. Tracer solutes

3.1. The stochastic velocity field

In order to apply (2.8) to the movement of a tracer solute (i.e., a solute for
which the only transport mechanisms are convection and dispersion), it is necessary
o prescribe the statistical properties of the stochastic velocity field, V(x, r; w). It
is sufficient for illustrative purposes to assume that V(x, r; w) is a divergence-free,
wide-sense stationary, random function of position and time (Doob, 1953):

V-¥=0 (3.1)

(V(x,1)) =v (Vi(x,0) vi(x',1")) = Tji(x —x',t = ') (3.2)

where v is uniform and constant, v(x, 1; w) is defined by (2.2), and the covariance
tensor I';; depends only on diflerences between space coordinates and time.

An important entity in the application of (2.8) is the Fourier transform of
Lij(x, r), denoted Sj(g,7). If ¥;(q, r) represents the Fourier transform of v;(x, 1),
then:

(Vi(g.1) ,¥j(q’,1")) = 6(q +q') Sij(g,t = ') (3.3)

where &(g) is a Dirac delta “function” (Sposito and Barry, 1987). Since v is uniform,
the condition in (3.1) implies:

q-v(g,sw)=0 (3-4)
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which can be used to show that:
g-S-k=k-5-¢=0 (3.5)

for arbitrary k, where S(g,7) is the tensor whose elements are Sj;(¢,7) [cf. Batchelor
(1986, p. 27)]. Equation (3.4) also can be applied to (3.3) to help interpret
it physically. The vector v(q,f; w) can be decomposed quite gencrally into a
component along g and one along a vector b in the plane perpendicular to g:

Y(g6w) =¥ | (g.60)§+ ¥ L (g.50)b (3.6)

where b and § are unit vectors and b - § = 0. The condition (3.4) implies ¢ ||= 0
and, therefore, that:

Sij(g.1) = bibj(v» L (g.0) ¥ L (—¢,0)) (3.7)

according to (3.3) and (3.6). Equation (3.7) shows that the Fourier transform of the
velocity covariance tensor depends only on the Fourier components of the velocity
fluctuations that are perpendicular to g.

In real space, the implication of (3.7) is that only the components of v(x, 1; w)
whose divergence vanishes identically are important to I';j(x —x', t — 1'). A well
known theorem of vector calculus then can be invoked to express these components
in terms of the curl of a vector potential which itself is expressible as a volume
integral of the curl of the velocity component along b (cf. Gupta et al., 1977). If the
solute velocity is described mathematically by the Buckingham-Darcy equation:

Vix,t;w) = —K(x,t; w) Vo(r, 1; w) (3.8)

where K is a random hydraulic conductivity and ¢ is a random water potential
(Dagan, 1984, 1987), then the curl of V is related directly to the spatial gradient of
K (Gupta et al,, 1977). The conclusion can be drawn from this conceptual analysis
that spatial variability in K 1s connected intimately both with “vorticity” in V and
with the Fourier component ¢» L (g, 1; w) which appears in (3.7).

A simple model based on (3.8) can make this point more concrete. If the small
random fluctuations in K and ¢ are denoted éK and &9, respectively, and if K and
@ are uncorrelated random fields, then:

K = (K) + éK Vo= (Ve)+ Vg
y = ~(KV9) = —(K)(Ve) (39)

and (2.2) can be combined with (3.8) to yield an expression for the velocity
fluctuation:

b= —6K(Vp) — (K)Vép ~ v6InK — (K)Vé¢ (3.10)
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accurate to first order in the fluctuations. The Fourier transform of (3.10) is (in an
infinite spatial domain):

Y =vhlnk —ig(K)bp (3.11)

where éx is the Fourier transform of éK and ¢ is that of ¢. The application of
(3.4) 10 (3.11) yields the condition:

fv-q\ dInk
bp = —i ( ) (3.12)
q> ) (K)
so that (3.11) becomes:
pV=[—-(v-¢)q]élnk (3.13)

The corresponding component along the vector b is:
by L= [vi—¢g;(v-¢)]0Ink (3.14)

so that (3.7) becomes:
Si(@:1) ~ [vi = @0 - @) [y — 4 )] (61 K(g,1) 6 1n K(~g,0)) (3.15)

Equation (3.15) is a model expression for an element of S(g,7) in terms of the
(uniform) mean solute velocity and the Fourier transform of the 8 In s covariance
function. This model expression (with r = 0) has been used widely in applications
(Dagan, 1987). It shows how fluctuations in the log hydraulic conductivity determine
the covariance of ¥(x,r;w) when (3.8) applies.

3.2. The ensemble-average transport equation

For a tracer solute, y(x,r;w) = c(x,1;w) and the appropriate definitions of the
operators Ay and A4, (r) are (Sposito and Barry, 1987):

Ao=(V:-D-V—-»-V) Ai(0) = —#(x,;w0) - V (3.16)

where D is a local (i.e., not field-scale) dispersion tensor. The resulting special
case of (2.8) 1s complicated to write down entirely in real space, but Fourier

transformation can be used to derive the relatively simple expression (Sposito and
Barry, 1987; Kabala and Sposito, 1991):
o(c)

== [V-@+F)- Vi(ex,0) - (- 6)- Ve, 0) (317)

where:

F() = f.;.f f S(g:1') exp [~(g-D-q)¢'| cos(v-qr') ag® ar (18
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60 = [ [Gar)-a) exp [~@-D-a)] sine-ar) ag’ar (3.19)

with G(r) = 0 when (3.5) applies. Equation (3.17) has the form of a non-stochastic
convection-dispersion equation, but it features the additional dispersion coefficient,
F(r). This additional coeflicient arises solely from the solute velocity fluctuations
occurring at field scales, as represented by the tensor S(g. 7).

Equation (3.18) embodies three time scales implicitly. One is that of the decay
of S(g,1), denoted 7, which is the time constant for temporal correlations in the
fluctuations of the solute velocity to disappear. Another is (¢ - D - ¢)~', the time
scale over which local dispersion takes place in a spatial region whose characteristic
length is ¢~'. A third is (v - ¢)~', the time scale for convection of the solute.
Gelhar and Axness (1983) have studied (3.18) in the limit, 7. >t > (¢ - D- -q) ",
whereas Dagan (1984) has considered the opposite limit, 7. > (g-D -¢q)™' > .
These two long-correlation-time models assume that the solute velocity fluctuations
are "frozen” while the solute is propagated through the porous medium by local
convection and dispersion. It is not difficult to show quite generally in this case that
F(¢) will increase with time (initially at least) as the solute samples the static velocity
fluctuations. These latter fluctuations are enormous compared to the pore-scale
velocity fluctuations that produce D, so F(r) > D after t =~ {/v, where £ is the
length scale of the spatial velocity correlation (Sposito and Barry, 1987).

A simple model calculation will illustrate this point. Suppose that v = vx; and
that Sy;(g.r) depends only on g3 because of stratification, with x3 defining the
vertical direction. Suppose further that the spatial velocity fluctuations are periodic
along x3 (a kind of regular stratification), so that Sy,(¢3,0) x é(g3 = 27 /a), where a
is the period of the fluctuations [cf. Given and Molz (1986) and Sposito and Barry
(1987)]. Then:

¢ —47%Dast’ a’ —472D3st
Fi(t dt’ = 1 —
() -/D P ( a? 4m2Dq;3 =P a?

which increases with time until r >> (a/27)*/Ds3, the local dispersion time scale.

(3.20)

4. Reactive solutes

4.1. Ensemble-average transport equations

The extension of (2.8) to reactive solutes is a straightforward application of the
recipe developed in Section 3.2. Given a postulated stochastic differential equation
like (1.2), an identification of sure and stochastic operators can be made, and
a parual diflerential equation for the ensemble-average solute concentration can
be derived which is analogous to (3.17) for a tracer solute (Kabala and Sposito,
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TABLE 1

Specific examples of the sure operator Ay and the stochastic operator Ay(r) in (2.1)

Transport mechanisms Ao Ay (1)
Convection and dispersion V.D-V-».V -v(x,w)-V
Convection, dispersion rv I:} V-u-V —di(x,t;w)-V

and linear adsorption

Convection, dispersion V-D-V—-=v».V-b —¥(x,1;w) - V — b(x)
and first-order decay

1991). Examples of the sure and stochastic operators that represent two kinds
of reactive solute are presented in Table 1. For a solute that is transported
by convection and local dispersion and which reacts with the solid matrix via
linear adsorption/desorption on a time scale that is short compared with that for
convection, the stochastic parameters are ®~'(x;w), the inverse of the retardation
factor, and U(x,f;w) = V(x,r;w) R~(x; w), the retarded velocity field. With the
decomposition:

R Mw) =r +F(rw) Ux,t;w) =u+ u(x,r;w) (4.1)

where r = (R™') and u = (U) are uniform and constant mean values, the forms
of the operators Ay and A,(r) are determined as in Table 1. The resulting partial
differential equation for {c(x,r)) is then (Kabala and Sposito, 1991):

a(‘) = [V-¢D+F) - V| (ctx,0)) — @ - G) - V{c(x, 1))
+(V:-V-4-V-V+V-E-V-V)c(x,r1)) (t > 0) (4.2)

where (with F dia gonal):

= ] / dg® exp(—rg-D -q7) - {[S¥(qT) — D,,ZDﬂqu"(q}] cos(u - g7)

~ 2 _ID;jS{" @.t — 7) + DiS}" (¢,0)] ¢j sin(u -q7)} d7 (43)

Gi(t) = f /dq?' exp(—rq .D- q7)q;Si (g, 7) sin(u - gT) dT (4.4)
0

Aji(t) = B,-;Dﬂfu ]dqjs”'(q) exp(—rgq .D -qT7) cos(u -gr)dr (4.5)

Ei0 = [ [ o expi-ra-B-ar) - {2DiyS" @ sinta-47)
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— [DiiS}" (g,t — 7) + DjiS;" (g,1)] cos(u -q7)} dT (4.6)

under the assumption that S(g,?) is a diagonal tensor. The first two terms on the
right side of (4.2) are analogous to the right side of (3.17), but with the replacement
of the tracer velocity by the retarded velocity. The last two terms arise because
of correlations between the spatial fluctuations in ®~'(x; w) and cross-correlations
between U(x, t;w) and R~ (x; w). They are of higher order in D than the terms in F
or G and probably are less significant in the same way that the term in rD is. [The
functions S (¢) and S (¢, 1) are Fourier transforms of covariance functions and are
defined analogously to §*“(g, ) and Sj;(g,) in (3.3).]

For a solute that is transported by convection and dispersion while undergoing a
first-order decay process, (2.2) and the stochastic decay constant:

B(x;w) = b + b(x;w) 4.7)

are relevant to the construction of Ag and A4,(¢) in Table 1. The resulting partial

differential equation for the ensemble-average solute concentration is (Kabala and
Sposito, 1991):

% = (V- (D +F) - Vic@,0)) — (v — G) - V{c(x,0))

+ (b + H){c(x,1)) (t > 0) (4.8)

where F and G are defined in (3.18) and (3.19) and:
. ——
Hi)y= f qu3 exp(—q -D -qT)
0

[Sbb(q) cos(v - q7) + ¢ - S*°(g, 1) sin(v - qr)] dr (4.9)

with $?°(¢) and S*°(¢,r) defined analogously to S¥(g.,t) in (3.3). In this example,
the effects of velocity correlations produce the field-scale dispersion and convection
parameters F and G, while spatial correlations in B(x;w) and cross-correlation
between B(x;w) and V(x,r;w) lead to the field-scale decay parameter, H (7). If (3.5)
applies, G vanishes and H depends only on autocorrelation in B(x; w).

4.2. Effective transport parameters

[t is evident from the formal appearance of (3.17), (4.2) and (4.8) that the
field-scale or “eflective” solute convective velocity i1s either v — G or u — G. This
vector can be shown to be the same as the rate at which the solute plume center-
of-mass moves through a porous medium (Kabala and Sposito, 1991). Similarly, the
ficld-scale dispersion coefficient can be shown to be either D + F or rD + F, equal
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to one-half the time-derivative of the second central spatial moment of (c(x,1))
(Freyberg, 1986; Kabala and Sposito, 1991).

For a linearly-adsorbing solute whose (stochastic) convective velocity is every-
where divergence-free, the effective velocity is the same as the ensemble average,
(VR~1). This ensemble average in general is not equal to the quotient, (V)/(R),
which sometimes is interpreted as the effective velocity of a linearly-adsorbing so-
lute (Kabala and Sposito, 1991). The relation between the eflective velocity and the
tracer velocity ¥ can be found readily for ensemble averages:

VR = wr + (5(x,1)F(x)) (4.10)

Equation (4.10) is simply a rearrangement of the definition of the covariance
function (Rao, 1984):

cov(X,Y) = (XY) — (X)(Y)
= (XY) (4.11)

where X and Y are random variables. An important implication of (4.10) can
be deduced by incorporating the definition of the field-scale retardation factor
(Roberts et al., 1986):

()
(V|R-1)

The field-scale retardation factor is the ratio of tracer to physical solute velocities.
An appeal to (4.10) applied to |V| shows that:

R(t) =~ {1 - {(f’((? ;%i(;;n]} (4.13)

R(1) = (4.12)

In the absence of correlations between |V| and R~', the field-scale retardation
factor will be uniform and constant, equal simply to the inverse of (R-1). In the
presence of correlations, and under the assumption of wide-sense stationarity, R
will be uniform but time-dependent. If [V| and R~' are correlated negatively,
then R() > r~', as has been observed in field studies of reactive organic solute
movement through aquifers (Roberts et al., 1986).

5. Physical significance of the ensemble-average transport equation

5.1. The ensemble-average concentration

Partial differential equations like (3.17) are model results whose accuracy must
be evaluated by comparison of the solution {(c(x,7)) with experimentally-measured
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solute concentrations. Less sensitive tests of these equations, such as their predic-
tions of spatial moments for a tracer plume (Freyberg, 1986; Barry and Sposito,
1990), are of heuristic value; but the ultimate validity of ensemble-average transport
equations depends on the physical meaning of their fundamental variables and
parameters. As outlined in Section 2.1, the concept of the ensemble-average solute
concentration presupposes a hypothetical infinitude of identical porous media, over
which an arithmetic average of solute concentrations at fixed points of space and
time is performed to calculate (c(x,7)). If identical values of the concentration at
the same position and time in different members of the ensemble are denoted with a
single value of w, then a knowledge of the probability density function for w suffices
to perform the averaging process.

The concentration variable appearing in (1.2) or (3.17) is formally a resident
concentration (Kreft and Zuber, 1978; Sposito and Barry, 1987), which is defined
as the mass of solute per unit volume of fluid contained in a volume element
of a porous medium at a given time. This concentration variable figures directly
in the balance of solute mass, and it is measurable locally if a fluid sample is
withdrawn from a porous medium at a rate much larger than the solute convective
velocity at the point of sampling. It is evident that the experimental resident solute
concentration is always a volume average in the sense (Baveye and Sposito, 1984):

clx,t) = /r:(.r + £, 1) m(€,x,1) d3§ (5.1)

where x is the point in space associated with ¢ and m(£,x,r) is a "weighting
function” whose mathematical properties depend on the experimental method used
to measure the solute concentration. The integral in (5.1) is over all space, such
that:

/ m(€,x,t) d*€ = 1 (5.2)

For example, if a cylinder of porous medium of volume V(x), radius R and altitude
h is sampled to obtain the concentration:

e | @R EEV ()
€)= { 0 £ ¢ V)

The physical quantity defined in (5.1) is to be related in some way to (c(x,1))
in (3.17), (4.2), or (4.8). Mathematical conditions under which an equality between
(c(x,r)) and ¢(x,7) might be found have been discussed at length by Dagan (1984,
1987). If such an equality exists, c¢(x,f;w) i said to be an "ergodic” stochastic
process, but general postulates leading to its ergodicity are not known (Sposito et
al., 1986). In an intuitive sense, it is evident that (c(x,t)) is unlikely to approximate
C(x,r) very well unless the weighting function encompasses a large enough region of
space to include all the possible variability in the solute concentration (at a given

(5.3)
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instant) that would be encountered in a survey of all members of the ensemble from
which (c(x, 7)) is calculated. Dagan (1987) has cited the pungent counter example of
a tracer plume, comprising sinuous bands of solute separated by solute-free zones,
which is sampled either in a band or in between bands to obtain €(x,r). These data
will not be represented well by (c(x,r)), which must refer to an average of the two
cxtremcs.

5.2. The field-scale dispersion coefficient

Equation (3.17) exhibits a time-dependent, ficld-scale dispersion coeflicient, F(I),
that is determined by correlations in space and time among the fluctuations in the
solute velocity. The mathematical form of (3.17), as applied to some region of
space, is that of an initial-value problem whose full solution requires a prescription
of {¢(x,0)) = (x). As shown by Sposito and Barry (1987, equation 34) for the case of
a factorizable (c(x, 1)) in an infinite spatial domain [with (3.1) and (3.2) assumed]:

(C,‘(I;',O) s

o0 R 2
aré)™ [ i) exp[ s ’”]dn (=123 64

where:
@i(r) = [] [Dii + F;,-(r’)] dr’ (i =1,2,3) (5.5)

Equation (5.4) illustrates how the solute concentration depends on the initial spatial
distribution of solute.

Neither (2.8) nor (3.17) is dependent on the absolute value of time: "time zero”
is chosen arbitrarily and the variable t in these equations is elapsed time measured
from this arbitrary reference, with the reference concentration taken as a sure
function (cf. Dagan, 1984). Suppose that "time zero™ is selected to be the instant, 7,
at which a tracer solute is injected into a porous medium, so that f(x) is the initial
configuration of the injected plume. At some f; > 7o, the plume concentrations
are described by (5.4) with r = ;. Now consider the possibility of injecting tracer
into a second, identical porous medium with f(x) = (c(x,#;)) in the first medium.
For this second medium, "time zero” corresponds to #; in the first medium, but
the time evolution of (c(x,7)) should be the same if the two media are identical.
Equation (5.5) can be applied to the second medium, but f;(n) and 7 are interpreted
differently from in the first medium. B

It follows also that ¢;(r) and, therefore, F(¢) will be different in the two porous
media because the values of ¢ are different, even though the values of (c(x,r))
are not. This situation is the logical end of the fact that (3.17) is an initial-value
problem, and it would not be paradoxical except for the time-dependence of F (7).
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Since f(f) changes with elapsed time, it is dependent on what initial condition is
chosen with which to describe the solution of (3.17). That at f, cannot be favored
as the “true” initial condition over that at r; because (3.17) does not depend on an
absolute time. Thus different choices of initial condition in describing (c(x,r)) will
produce differing values of the field-scale dispersion coeflicient. Stated alternatively,
the value of F(r) will depend not only on intrinsic properties of the porous medium,
but also on how the solute transport process is observed.
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