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Stochastic differential equations in the theory of
solute transport through inhomogeneous porous
media
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Abstract

Stochastic diffcrential equations for solute transport arc constructed from corrcsponding detcnnin­
istie tl1lnsport equations by rc-interpreting their physical parameters as random funetiom of space and
time. A p3rtial dilfercntial equation for the ensemble-average solute conttntration thcn can be de­
rived (rom the Mochastie tl"l!lnspon equation by a cumulant o:pansion ml:thod used in non-equilibrium
~atiuial mechanics.. Examples 0( this approach are gr.·en for bol:h consefVlltive and reactive solutes
lDOYing through inbomogeneous poroU5 media. The resultinll ensemble-averill: tl"3nsport equations
arc NlOWn to be 5imilar formally to their kM:;a1-scale, deterministic analogs; but they ahibit additional,
field.-scale ph)'Sical parlmeten arising from correlation. amonl f1uetuatinr;, local.-scale convective or
reactive properties of the aolute. Some unresolved conceptual issues allendinllthe interpretation 0( the
ensemble-average solute concentl"l!ltion and the lield-scale p3rameters are discu~ briefly.

I. Introduction

A significant body of research has begun to emerge in which the hypothesis is
made that the transport properties of a porous medium in nature can be modeled
as random functions parameterized by space and time coordinates (for reviews sec
Dagan (1986, 1987) and Sposito e( at (1986}). The motivation for this approach
is the observed, large variability of fundamental quantities, like the h)'draulie
conductivily (Sud icky, 1986) or the dissolved solute velocity (Biggar and Nielsen,
1976), at the field scale in natural porous media. This variability is pictured to have
a random character, such that the transport propenies of a single field-scale unit are
represented as "sample-realizations" of random functions, or stochastic processes
(Karlin and Thylor, 1975).

In their classical, non-stochastic setting, the transport properties of porous media
are important because they figure directly in the partial differential equatiOns which

295



296 Stochastic dijJerenlial equations in lhe theory ofSO/life transport

(1.1)

describe the time evolution of concentration variables for matter that moves by
various mechanisms through these media. For example, the transport of a reactive
dissolved solute with concentration, c(x, I), might be described with the equation
(cr. van Gcnuchlcn and Alves, 1982):

Dc -1 = _I
- ~(R \I·D·\I-R ,·\I-b)c(xt)
01 '
~

where D is a dispersion tensor, R is a "retardation faclor" for a linearly-adsorbing
solute, )' is a (uniform, constant) solute velocity, and b is a "decay constant" for
a first-ordcr loss ralc (c.g., biodegradation) of the solute. If now the transport
properties D, 1', R- 1

, and b were to be interpreted as random functions because
of their spatial variability, they would be replaced in (1.1) by sample realizations.
A useful not.ation is, e.g., V(r, I; w) to denote a stochastic solute velocity that
depends on space and time coordinatcs, with the argument w distinguishing it
from a non-random velocity. Particular values of w indicate particular samples, or
realizations, of V(r, t; w): V(r, I; WI), V(r, t; W2), etc. Thus (1.1) could be rcwrillen
in a stochastic context:

Dc =
01 ~ IR- 1(x;w)\I. D· \I - R- 1(x;w) V(x,I;W)' \1- b(x;w)J C(X,I;W) (1.2)

where D has been left, as is customary, as a non-random coefficienl because of its
signil1cantly smaller observed spatial variability as compared to the solute velocity
(Dagan, 1984, 1987). The solution of (1.2) is a random function (a stochastic solute
concentration) because the coefficients in (1.2) arc random functions.

Equation (1.2) is an example of a stochastic partial dirTeremial equation. The
general recipe for constructing such equations follows the procedure used to arrive
at (1.2): the corresponding non-stochastic transport equation is wrillen dO\o,'ll, then
one or more of its coefficients arc modeled as random functions. Because of
this representation of the coefficients as continuous random functions, there is an
infinite number of possible solutions that satisfy the stochastic partial difTerential
equation under given boundary and initial conditions. Evidently the statistical
properties of the random coefficients must be prescribed in order to find ways
to solve the resulting stochastic dirTerential equation in a well-defined way. The
ensemble-mean solution and its relationship to the low-order statistical properties
of the coefficients arc of particular relevance, as will be discussed below.

In this chapter, an introduction to the application of stochastic dirTerential
equations like (1.2) 10 the theol)' of solute transport will be presented. Emphasis
will be placed on physical significance more than mathematical manipulation, with
the hope that the relevance of the stochastic approach to transport in heterogeneous
porous media can be appreciated. The basic mathematical techniques arc outlined
in Section 2, followed by physical examples in Sections 3 and 4. Scr:tion 5 closes
the chapter with a discussion of two important (and unresolved) conceptual issues
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arising from the interpretation of stochastic differential equations in an average
sense.

2. The cumulant expansion

2/. Pllysical mQlil'anon

As stated above, a stochastic differential equation could be solved for all possible
realizations of its coefficients to yield all possible realizations of its solution. In
practice, this arduous task is seldom allemptcd and one looks instead for a way to
calculate the ensemble average of the solution. This average is simply the product
of the solution, indexed by w, with the probability density function for w, integrated
over all w. ConccplUally, each realization of the solution of a stochastic differential
equation corresponds to a specific example of the physical process governed by the
equation (e.g., solute transport). This specific example, indexed by a value of w, is
assumed to occur in a finite fraction of a hypothetical infinitude of identical copies
of the system to which the stochastic differential equation applies. The fraction
associated with a given w is equatable to ils probability density function in the
ensemble, and the product of this fraction and the corresponding realization of
the solution, summed over all YJlues of w, is the ensemble-average solution. If the
probability density function is nOl too brood, it will be sensible to interpret the
ensemble-average solution as that to be observed in a single measurement.

A variety of mathematical techniques to derive ensemble-average solutions of
stochastic diITerential equations has been described [sec, e.g., revie.....s by van
Kampen (1976), Winter et a!. (1984), and Dagan (1987)]. One of the more physically
transparent methods is the cumulant expansion (van Kampen, 1976, 1981, chapter
14). The essence of this approach is the assumption that a random coefficient in
a stochastic differential equation has fluctuations in time whose root-mean-square
amplitude, 0, and autocorrelation time, Tc , combine to make the product aTc small.
When this condition is met, a partial diITerential equation for the ensemble-average
solution of a stochastic differential equation can be derived that is exact to order
(OTc)2 (van Kampen, 1976). This partial diITerential equation is similar in form
to the original stochastic differential equation, but it exhibits coefficients that are
modified by the random fluctuations inherent in the stochastic equation. So long as
OTe is small, this will be the only cffect of Ihe f1uCtu3lions on the ensemble-average
equation.

22 Outline a/the expamion

Consider the stochastic differential equation:

iJy
at ~ lAo +A,(I)] y(x,t;w) (I> 0) (2.1)
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where y(z, tj w) is a realization of the solution [like the solute concentration,
c(x, t; w»). Ao is a non-random ("sure") operator, and At(l) is a random operator
acting on y(x, t; w). For example, if (2. I} were a solute transport equation and the
only mechanism of transport were convection via the stochastic velocity V(x, t; w),
then,Ao = -J" V andAI(t} = -ii(r, t; w)· V, where .. is the ensemble-average of
V(x, I; w), assumed uniform and constant. and:

ii(x,t;w) == V(x,';w) - J' (2.2)

is the fluctuation about the average. Ir AI =0, the formal solution of (2.1) would
be,

y(r,l) ~ cxp(Aot)y(r,O)

= [I +Aot + ~~2 + ...J y(z,O) (2.3)

where "powers" of Ao mean repealed applications of the operator. Equation (2.3)
shows how the solution y(r, t) is propagated in time from the initial condition,
y(r, 0).

The sure operator exp(AoJ) is termed the "propagator" in tbis contexl. It can be
used to eliminate the non-random part of (2.1) by the transformation:

Y(x,I;W) =cxp(Aot)u(x,I;w) (2.4)

On differentiating both sides of (2.4) with respect to time and substituting the resull
into (2.1), one finds the stochastic differential equation:

flu •
fll ~A,(t)u(r,t;w) (t > 0) (2.5)

wherc:

.4,(1) =cxp(-Aot)A,(t) cxp(Aot) (2.6)

The problem of solving (2.1) thus has been reduced to that of solving (2.5).
The initial condition for the latter is arbitrary, but usually it is taken to be the
sure function y(x, 0) as appears in (2.3). The randomness in y(x, I; w) Ihen comes
entirely from that of A1(I) in (2.5). (Random initial conditions arc straightforward
to consider if they are statistically independent of y(x, t; w).J In the cumulant
expanSion approach, one nOles that a formal solution of (2.5) like that in (2.3) is
possible, and onc then develops an expansion of the ensemble average of:

exp [it AI(I') dl/]

to derive the approximate partial differential equation (van Kampen, 1976):

fl(u) r'. .
7fC = J. (A,(I)A,(t'»dr'(u(r,t» (2.7)
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where ( ) represents an ensemble a\·erage. The corresponding approximate equa·
tion for (y(x, I») is (van Kampen. 1976):

a~) = [Ao + 1,'(A,(I)A,(/'»)dl'] (*,/» (2.8)

under the assumption that (A](t»):: O.
Equation (2.8) is the partial differential equation of principal interest. It shows

that the time evolution of (y(x, t») is governed by a sure operator.Ao. piUS the time
integral of the covariance function. (A(t)AI(I»). This latter quantity is of order of
a2r... where 0'2 measures the magnitude of the covariance function and r .. is the
timc scale over which it decays to zero. Hcnee (y(x, I») is estimatcd to ordcr (ar,)2.
The nuctuations in A1(1) lead, in this order of approximation, to a coefficient in
the partial differential equation for (r(x, t») in addition to those contributed by
the sure operator, A o• in the corresponding non·random differential equation. This
coefficient will be time~ependent so long as t < re • when the time-covariancc
funclion gives a non-negligible contribution to the integral in (2.8). After the time
correlations decay. the integral term is effectivcly a constant like the sure operator.

3. Tracer solutes

3.1. The stochastic \'elociry field

In order to apply (2.8) to the movcment of a tracer solute (i.e., a solute for
which thc only transport mechanisms arc convection and dispersion). it is necessary
to prescribe the statistical properties of the stochastic vclocity ficld, V(x, t; w). It
is sufficient for illustrative purposes to assumc that Vex, t; w) is a divcrgence-free.
wide-sense stationary. random function of position and time (Doob, 1953):

'J. V= 0

(V(x, I)} = • (Vj(x, t) Vj(x', t'») = rij(X - x' ,t - I')

(3.1 )

(3.2)

where,. is uniform and constant. ,,(x, t; w) is defined by (2.2), and the covariance
tensor rij depends only on differences between space coordinates and time.

An important entity in the application of (2.8) is the Fourier transform of
rij(X, I), denoted Sij(q,t). If 'l/Ji(q. r) rcprescnts the Fourier transform of Yj(x, I).
then:

(¢;(q, I) ,¢j(q' ,1'») = '(q + q') Sij(q, I - 1') (3.3)

where 6(q) is a Dirac delta "function" (Sposito and Barry, 1987). Since ,. is uniform.
the condition in (3. t) implies:

q ''I/J(q,I;W):: 0 (3.4)
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which can be used to show thai:

- -
q·S·k=k·S·q=O (3.5)

for arbitrary k, where S(q,/) is the tensor whose clements arc Sij(q,t) [ef. Batchelor
(1986, p. 27)). Equation (3.4) also can be applied to (3.3) to help interpret
it physicalJy. The vector 'l/J(q,t; w) can be decomposed quile generally inlo a
component along q and one along a vector b in the plane perpendicular to q:

,p(q,I;W) =,p II (q,I;W)q +,p.L (q,I;w)b (3.6)

where band ij arc unit vectors and b . ij =O. The condition (3.4) implies 1jJ 11= 0
and, therefore, thai:

S;j(q,I) = b;bj(,p.L (q,I),p.L (-q,O») (3.7)

according to (3.3) and (3.6). Equation (3.7) shows that the Fourier transform of the
velocily covariance tensor depends only on the Fourier components of the velocity
fluctuations thai arc perpendicular toq.

In real space, the implication of (3.7) is that only the components of I'(x, t; w)
whose divergence vanishes identically arc importanl to rij(x - x', I - I

J
). A well

kn~l1 theorcm ofvcctor calculus then can be invoked to express thesc components
in terms of thc curl of a vector potential which itself is expressible as a volume
integral of the curl of the velocity component along b (d. Gupta et al., 1977). If the
solute velocity is described mathematically by the Buckingham-Darcy equation:

V(X,I;W) = -K(x,l;w) V¢(X,I;W) (3.8)

wherc K is a random h)'draulic conductivity and ¢ is a random water potcnlial
(Dagan, 1984, 1987), then the curl of Vis related directly to the spatial gradienl of
K (Gupta et aI., 1977). Thc conclusion can bc drawn from this conceptual analysis
thai spatial variability in K is connected intimately both with "vonicity" in V and
with the Fouriercomponent1P.l (q, I; w) which appears in (3.7).

A simple model based on (3.8) can makc this point morc concretc. If the small
random fluctuations in K and ¢ arc denotcd 6K and 6¢, respectively, and if K and
¢ arc uncorre!ated random ficlds, then:

K " (K) +OK 'V¢ =('V¢) + 'V,¢

, = -(K'V¢) = -(K)('V¢) (3.9)

and (2.2) can be combined with (3.8) to yield an expression for the velocity
fluctuation:

,= -'K('V¢) - (K)'V,¢" "InK - (K)'V,¢ (3.10)
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accurate to first order in the nuclUations. The Fourier transform of (3.10) is (in an
infinite spatial domain):

'" ~ "In ~ - iq(K)''P (3.11)

where 6,., is the Rmricr transform of 6K and 6tp is that of 6¢. The application of
(3.4) to (3.11) yields the condition:

''P ~ -I (' .q) 'ln~
q' (K)

so that (3.11) becomes:

t/J = II' - (I" q)q)6In,.,

"
The corresponding component along the vector b is:

(3.12)

(3.13)

blt/J.l~(Vi-q";(V·q)lblnli (3.14)

so thaI (3.7) becomes:

S'i(q, I) " I,"~ - <i;(, . q)l ['I - qiC' . q)l (Oln ~(q, I) OIn ~C -q, D)} (3.15)

Equation (3.15) is a model expression for an clement of S(q,/) in tcrms of the
(uniform) mean solute velocity and the Fourier transform of the 6 In,... covariance
function. This model expression (with I = 0) has been used widely in applications
(Dagan, 1987). It sho\\'S how nuctuations in the log hydraulic conductivity determine
the covariance of v(.r,t;w) when (3.8) applies.

3.2 The ensemble-aw.>rage transport equation

For a tracer solute, y(;r,t;w) = C(.r,I;W) and the appropriate definitions of the
opcratorsAo and A I(t) arc (Sposito and Barry, 1987):

(3.16)

(3.17)

where D is a local (i.e., not field-scale) dispersion tensor. The resulling special
case of (2.8) is complicated to write down entirely in real space, but Fouricr
transformation can be used to derive the relatively simple expression (Sposito and
Barry, 1987; Kabala and Sposito, 1991):

o(e) --ifI = [". (D + F)· "1(e(x,/» - (, - G)· "(e(x,I»

where:

F(I) =l'JSeq, 1') exp [-(q . D . q)t'] cos(v· qt') dq3 dt' (3.18)
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(3.19)G(I) =1,'J(5(0,1') ·0) exp [-(0 ·D ·oV] sin(, ·O,')dq'dt'

wilh G(I) = 0 when (3.5) applies. Equation (3.17) has the form of a non-stochastic
convection-dispersion equation, bUI it features the additional di~pcrsion coefficient,
F(l). This additional coefficient arises solely from the solute velocity fluctuations

occurring at field scales, as represented by the tensor S(q,t).
Equation (3.18) embodies three lime scales implicitly. One is that of the decay

of S(q,t). denoted Te• which is the lime constant for temporal correlations in the
lluctuations of the solute velocity to disappear. Another is (q. D· q)-I, the time
scale over which local dispersion takes place in a spatial region whose characteristic
length is q-I. A third is (v· q)-I, the time scale for convection of the solute.
Gclhar and Axness (1983) have studied (3.18) in the limit, T~ ,. 1 ,. (q. D· qr l ,

whercas Dagan (1984) has considered thc oppositc limit, T~ ::> (q . D . q)-I ::> t.
These two long-correlation-time modcls assume that the solutc velocity fluctuations
are "frozen" whilc the solute is propagatcd through thc porous medium by local
convection and dispersion. It is not difficult to show quitc gencrally in this case that
F(l) will increase with time (initially at least) as the solute samples the static velocity
fluctuations. These laller fluctuations are enormous compared to the pore-scale
velocity fluctuations that produce D, so F(/) :> Dafter t :::::: ltv, whcre l is thc
lcnglh scale of thc spati~1 velocity correlation (Sposito and B~rry. 1987).

A simple model calculation will illustrate this point. Suppose that v = vii and
that Sl1(q,l) depends only on q3 because of stratification, with i 3 dcfining the
vertical direction. Suppose furthcr that the spatial velocity fluctuations arc periodic
along.h (a kind of regular stratification), so that SIl(q3, 0) ex: 6(q3 ± 2K/a), whcre {!

is the period of the fluctuations [cf. Gliven and Molz (1986) and Sposito and Barry
(1987»). Then'

FIl(t) IX t exp (-411"2~331') Wi = ~2 [I _exp (-41T
2

2
D33

1
)] (3.20)

Jo a 411" D33 a

which increases with time until t :> (an1f)2/D13. the local dispersion time scale.

4. Reactive solutes

4.1. Ensemble-average rransport equations

The extcnsion of (2.8) to reactive solutes is a straightforward application of the
recipe devcloped in Section 3.2. Given a postulated stochastic differential equation
like (1.2), an identification of sure and stochastic operators can be made, and
a partial differential equation for the ensemble-average solute concentration can
be derived which is analogous to (3.17) for a tracer solute (Kabala and Sposito,
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TABLE I

Specific exa.mplai olthc: sun: opc:r.uorA. and the slocbaslK: ope:ralor A 1(1) in (21)

303

nanspon mechanisms

Convection and dj$pe~ion

Conveetion, di$JlCl"$ion
and linear adwrplion

Convection, dispcRion
and 6m-ordcr decay

rV·D·'V-",·V

'Q'·D·V-,..V-b

_V(X,f;W)'V

-ii(z,/;w).V

_V{Z,I;W). V -li(z)

1991). Examples of the sure and stochastic operators that reprcsenl IWO kinds
of reactive solute are presented in Table 1. For a solute that is transported
by convection and local dispersion and which reacts with the solid matrix via
linear adsorption/desorption on a time scale that is shan compared with that for
convection, the stochastic parameters arc R-I(x;W), the inverse of the retardation
faclOr, and U(.I',I;W) == V(x,t;W)J?-I(X;w), the retarded velocity field. With the
decomposition:

U(x,t;W) = u + u(x,t;w) (4.1)

where r = (~?-I) and u = (u) are uniform and constant mean values, the forms
of the operators Ao and Al(t) are determined as in Table 1. The resulting panial
dilTcrenlial equation for (C(.I',/») is then (Kabala and Sposito, 1991):

a~;) ~ Iv. (tD + F)· VI (c(r,l)) - (u - G)· V(c(r,I»

+ (V· V ·A . V· V + V· E· V· V)(c(r,I» (I> 0) (4.2)

where (with F diagonal):

Fjj == itJdq3 exp(-rq . D . qr) . {1st'" (qr) - D;i 2;= Djjq]s" (q)1 cos(u . qr)
I

- :L)DjjSf (q,1 - r) + Di;Sj (q,t») qj sin(u . qr)} dr (4.3)

i

Gi(l) =ifJdq3 exp(-rq .D . qr) qjstt(q, r) sin(u . qr) dr (4.4)

A;j(t) =DuDjj ifJdqJs"(q) exp(-rq· D ·qr) cos(u ·qr)dr (4.5)

E;j{I) =f. Jdq' crp(-tq . D . qr) . {WliDjjS" (q)q; sin(u . qr)
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- [DiiSj' (q, f - r) + Dff5i' (q, t)J cos(u . qr)} dT (4.6)

under the assumption thai S(q,t) is a diagonal tensor. The first lwO terms on the
right side of (4.2) arc analogous to the right side of (3.17), bUI wilh the replacement
of the tracer velocity by the retarded velocity. The last two terms arise because
of correlations between the spatial fluctuations in :n-1(.r;w) and cross-eorrelalio~

between V(x, r; w) and !R-l (x; w). They arc of higher order in D than the terms in F

or G and probably arc less significanl in the same way thai the term in rD is. [The
functions S" (q) and 5'" (fI, t) arc Fourier transforms of covariance functions and arc
defined analogously 10 5 I1U (q, 1) and Sij(q,t) in (3.3).]

For a solute Ihat is transported by convection and dispersion while undergoing a
first-order decay process, (2.2) and the stochastic decay constant:

B(x;w) = b + b(x;w) (4.7)

are relevant to the construction of Ao and A\(t) in Table J. The resulting partial
differential equation for the ensemble-average solute concentration is (Kabala and

Sposito, 1991):

0(') --
- ~ (V· (D + F)· V('(X,/») - (, - G)· V('(X,I»

01

+ (b + H)(,(x,/») (I> 0)

where F and G arc defined in (3.18) and (3.19) and:

H(t) =II Jdl exp(-q· D· qT)

[sbb(q) cos(I" qT) + q' SI'b(q,t) sin(v· qT)] dT

(4.8)

(4.9)

with sbb(q) and S"b(q,l) defined analogously to Sii(q,t) in (3.3). In this example,
the effects of velocity correlations produce the field-scale dispersion and convection

parameters F and G, while spatial correlations in B(x;w) and cross-correlalion
betwecn B(x;w) and V(x,I;W) lead to the field-scale decay paramctcr, H(t). If (3.5)
applics, G vanishes and H depends only on autocorrelation in B(x; w).

4.2. Effective transport parameters

It is evident from the formal appearance of (3.17), (4.2) and (4.8) that the
field-scale or "elTective" solute convective velocity is either v - G or u - G. This
vector can be shown 10 be the same as the rate at which the solute plume center­
of-mass moves through a porous medium (Kabala and Sposito, 1991). Similarly, the

field-scale dispersion coefficient can be shown to be eithcr D + F or rD + F, equal
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to one-half the time-derivative of the second central spatial moment of (c(x,t)}
(Freyberg, 1986; Kabala and Sposito, 1991).

For a linearly-adsorbing solute whose (stochastic) convective velocity is every­
where divergence-free, the effective velocity is the same as the ensemble average,
(VR~I). This ensemble average in general is not equal to the quotient, (V}/(R),
which sometimes is interprcted as the effective velocity of a linearly-adsorbing so­
lute (Kabala and Sposito, 1991). The relation between the effective velocity and the
tracer velocity V can be found readily for ensemble averages:

(Vlr') = ,,+ ('(r, l) i(r» (4.10)

(4.13)

Equation (4.10) is simply a rearrangement of the definition of the covariance
function (Rao, 1984):

<ov(X, Y) = (XY) - (X)(Y)

= (xi') (4.11)

where X and Yare random variables. An important implication of (4.10) can
be deduccd by incorporating the definition of thc field-scale retardation factor
(Roberts et al., 1986):

_ (WI)
R(I) = (ivill I) (4.12)

The field-scale rctardation factor is the ratio of tracer to physical solute velocities.
An appeal to (4.10) applied to IVI shows that:

R(I) = ,-I {I _[(,(r,l)i(r»]}
(V II I)

In the absence of correlations between IVI and R- 1
, the field-scalc retardation

factor will be uniform and constant, equal simply to the inverse of (R- 1). In the
presence of correlations, and under the assumption of wide-sense stationarity, R
will be uniform but time-dependent. If IVI and :R~l are correlated negatively,
then R(t) > r-1, as has been observed in field studies of reactive organic solute
movement through aquifers (Roberts et aI., 1986).

S. Physkul significance of the ensemble-average transport equation

5.1. The ensemble-average concentration

Partial dilTerential equations like (3.17) arc model resullS whose accuracy must
be evaluated by comparison of the solution (c(x,t)} with experimentally-measured
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solute concentrations. Less sensitive tests of these equations, such as their prcdic.
lions of spatial moments for a tracer plume (Frcybcrg, 1986; Barry and Sposito,
1990), arc of heuristic value; but the ultimate validity of ensemble-average transport
equations depends on the physical meaning of their fundamental variables and
parameters. As outlined in Section 2.1, the concept of the ensemble-average solute
concentration presupposes a hypothetical infinilUdc of identical porous media, over
which an arithmetic average of solute concentrations at fIXed points of space and
time is performed to calculate (c(x, t»). If identical values of the concentration at
the same position and lime in different members of the ensemble are denoted with a
single value of w, then a knowledge of the probability density function for w suffices
to perform the averaging process.

The concentration variable appearing in (1.2) or (3.17) is formally a resident
concentration (Kreft and Zuber, 1978; Sposito and Barry, 1987), which is defined
as the mass of solute pcr unit volume of fluid contained in a volume element
of a porous medium al a given time. This concentration variable figures directly
in the balance of solute mass, and it is measurable locally if a fluid sample is
withdrawn from a porous medium at a rate much larger than the solute convective
velocity at the point of sampling. It is evident that the experimental resident solute
concentration is always a volume average in the sense (Baveye and Sposito, 1984):

(5.1)

(5.2)

where x is the point in space associated with c and m({,x,t) is a "weighting
function" whose mathematical properties depend on the experimental method used
to measure the solute concentration. The integral in (5.1) is over all space, such
that:

Jm({,x,t) d3
{ = 1

For example, if a cylinder of porous medium of volume V(x), radius R and altitude
h is sampled to obtain the concentration:

( E Vex)

( ¢ Vex)
(5.3)

The physical quantity defined in (5.1) is to be related in some way to (c(x,t»)
in (3.17), (4.2), or (4.8). Mathematical conditions under which an equality between
(C(X,/») and c(x,t) might be found have been discussed at length by Dagan (1984,
1987). If such an equality exists, c(x,t;w) is said to be an "ergodic" stochastic
process, but general postulates leading to its ergodicity are not known (Sposito et
ai., 1986). In an intuitive sense, it is evident that (C(X,/») is unlikely to approximate
,(x, I) very well unless the weighting function encompasses a large enough region of
space to include all the possible variability in the solute concentration (at a given
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instant) that would be encountered in a survey of all members of the ensemble from
which (C(XI/)} is calculated. Dagan (1987) has cited the pungent counter example of
a tracer plume, comprising sinuous bands of solute separated by solute-free wnes,
which is sampled either in a band or in between bands to obtain c(x,t). These data
will not be represented well by (c(x,t)}, which must refer to an a....erage of the two
extremcs.

5.2 The field-scale dispersion c~fficient

(5.4)(i= 1,2,3)

Equation (3.17) exhibits a time-dependent, field-scale dispersion coefficient, F (I),
that is determined by correlations in space and time among the fluctuations in the
solute velocity. The mathematical form of (3.17), as applied to some region of
space, is th3t of an initial-value problem whose full solution requires a prescription
of (c(x , O)} == (x). As shown by Sposito and Barry (1987, equation 34) for the case of
a factorizable (c(x, I)} in an infinite spatial domain (with (3.1) and (3.2) assumedl:

(Ci(XI,I)) =

(4rr¢I)-" l:{;(ry) cxp [-«i -4: -ry)2] dq

where:

(5.5)(i = 1,2,3)¢i(l) =[IDo + Fo(I'») dl'

Equation (5.4) iIIustratcs how the solute concentration depends on the initial spatial
distribution of solute.

Neither (2.8) nor (3.17) is dependent on the absolute value of time: ~time zero"
is chosen arbitrarily and the variab~ t in these equations is ebpsed time measured
from this arbitrary reference, with the reference concentration taken as a sure
function (cr. Dagan, 1984). Suppose that "time zero" is selected to be the instant, 10,

at which a tracer solute is injected into a porous medium, so that f(x) is the initial
configuration of the injected plume. At some I) > 1o, the plume concentrations
are described by (5.4) with I "" 1\. Now consider the possibility of injecting tracer
into a second, identical porous medium withf(x) = (C(X,II)} in the first medium.
For this second medium, "time ...ero" corresponds to II in the first medium, but
the time evolution of (c(x, I») should be the same if the two media are identical.
Equation (5.5) can be applied to the second medium, butfi(71) and I are interpreted
differently from in the first medium.

II follows also that ¢Ji(I) and, therefore, F(/) will be different in the t'lo'-'O porous
media because the values of I arc different, even though the values of (C(.r,/)}
arc not. This situation is the logical cnd of the fact that (3.17) is an initial-value
problem, and it ...."Quld not be paradoxical except for Ihe time-dependcnce of F(/).
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Since F(l) changes with elapsed time, it is dependent on what initial condition is
chosen with which to describe the solution of (3.17). That al to cannOi be favored
as the "truc" initial condition over thaI at,\ because (3.17) docs not depend on an
absolute time. Thus different choices of initial condition in describing ('(X,I)} will
produce differing values of the field-scale dispersion cocflicicnl. Stated allcrnativcly,
the value of F(r) will depend not only on intrinsic properties of the porous medium,
bUI also on how the solute transport process is observed.
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