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High-resolution frequency estimation technique for recovering
phase distribution in interferometers
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An integral approach to phase measurement is presented. First, the use of a high-resolution technique for
the pixelwise detection of phase steps is proposed. Next, the robustness of the algorithm that is developed
is improved by incorporation of a denoising procedure during spectral estimation. The pixelwise knowledge
of phase steps is then applied to the Vandermonde system of equations for retrieval of phase values at each
pixel point. Conceptually, our proposal involves the design of an annihilating filter that has zeros at the
frequencies associated with the polynomial that describes the fringe intensity. The parametric estimation
of this annihilating filter yields the desired spectral information embedded in the signal, which in our case
represents the phase steps. The proposed method offers the advantage of extracting the interference phase of
nonsinusoidal waveforms in the presence of miscalibration error of the piezoelectric transducer. In addition,
in contrast to previously reported methods, this method does not require the application of selective phase
steps between data frames for nonsinusoidal waveforms. © 2005 Optical Society of America

OCIS codes: 120.3180, 120.5050.

Phase shifting has now become a well-established
technique in optical interferometry for the detection
of interference phase. The technique functions by
recording N frames of intensity data shifted in phase
with respect to one another. The phase shifts are
provided by a piezoelectric transducer (PZT). One
solves the set of intensity equations at each pixel loca-
tion to compute the phase. However, one of the most
significant sources of error in computing this phase
distribution is inaccurate calibration of the PZT.1

This problem is compounded further by aging of the
PZT, environmental changes, detector nonlinearity,
and multiple beam interference.2 Remedial methods
have been proposed.1 – 5 The algorithm developed by
Carré,3 although it is suitable for sinusoidal waveforms
and first-order calibration errors of the PZT, needs a
careful selection of phase steps for optimum measure-
ments. Surrel1 and Larkin and Oreb4 proposed algo-
rithms that minimize calibration errors for sinusoidal
fringes. The algorithm proposed by Hibino et al.5

offers the possibility of reducing calibration error in
the presence of higher-order harmonics. Hibino et al.5

and Surrel2 showed that kth-order harmonics can
be minimized with phase step 2p��k 1 2� between
acquired data frames.

The objective of this Letter is to propose a novel
approach to obtaining phase measurements in the
presence of PZT miscalibration and multiple-order
harmonics in the sampled waveform. This method,
which permits free choice of the phase shifts from 0
to p, completely avoids imposing conditions on the
phase shift that must be applied by establishing a
high-resolution technique6 for estimating the phase
step. The method works by drawing an analogy
between the frequency that is present in the spectrum
and the linear phase steps that result from use of the
PZT. The method basically explores the fact that
a polynomial can be associated with periodic inten-
sity fringes recorded with a CCD camera. We have

designed another polynomial, called an annihilating
filter, that has zeros at frequencies associated with the
polynomial that describes the intensity fringes. As a
result, the discrete convolution between the filter and
the intensity yields zero. A parametric estimation
of this annihilating filter yields the desired spectral
information that is embedded in the signal, i.e., in our
case, the phase steps. Although it is well known that
a fast Fourier transform is an efficient tool for the esti-
mation of well-separated frequencies, the separation of
closely spaced frequencies in the presence of noise and
fewer samples can be handled with high-resolution
techniques.7 The number of samples required for
estimating the phase steps in our case to minimize
the effect of the kth-order harmonic is 4k 1 2. The
presence of noise necessitates applying denoising
techniques to permit the phase step to be estimated
with reasonable accuracy. Once the phase steps are
estimated at each location of the N data frames,
we have a linear system that is solved by use of a
Vandermonde system of equations to recover the phase
distribution. The proposed method has the added
advantage of working with diverging as well as con-
verging beams. We test the robustness of the method
by introducing noise during the spectral estimation.

The intensity for the N data frames acquired with
the CCD camera can be written as

I �m� � b0 1

kX
k�1

ak exp�ik�w 1 ma��

1

2kX
k�21

ak exp�ik�w 1 ma�� ,

m � 1, 2, . . . ,N , (1)

where w is the phase of the interference fringes, a is
the phase step, ak is the complex Fourier coefficient of
the kth harmonic, i �

p
21, and b0 is the local average
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value for intensity. Equation (1) can be rewritten as

I �m� � b0 1

kX
k�1

bkzkm 1

kX
k�1

bk
��zk��m,

m � 1, 2, . . . ,N , (2)

where bk � ak exp�ikw�, zk � exp�ika�, bk
� �

ak exp�2ikw�, and zk� � exp�2ika�. Parameters zk
and bk can be estimated by high-resolution analysis.
This estimation is based on the observation that
signal I �m� can be annihilated by a specif ic f ilter:

P �z� � �z 2 1�
kY

k�1

�z 2 zk� �z 2 zk�� �
2k11X
k�0

Pkzk. (3)

Then the discrete convolution of Pm � Im vanishes iden-
tically, i.e.,

2k11X
k�0

PkIm2k � 0 ; m [ �2k 1 2, 2k 1 3, . . . ,N� . (4)

Equation (4) can be written in matrix form:
2
66664

I2k12 I2k11 · · · I1
I2k13 I2k12 · · · I2

...
... · · ·

...
IN IN21 · · · IN22k21

3
77775

| {z }
R

2
66664

P0

P1
...

P2k11

3
77775

| {z }
P

� 0 , (5)

where frame index m of I in Eq. (1) has been changed
to a subscript of I in Eq. (5). Equation (5) shows that
at least N $ 4k 1 2 samples are required for extraction
of the roots of polynomial P �z�, enabling us to find the
unknown value zk. Phase step a at each pixel location
can hence be computed from a � ��ln z1�i�.

In many cases k is unknown and can be determined8

by observation of the singular-value decomposition
(SVD) of the R matrix in Eq. (5). For a noiseless
signal the SVD R � USVT results in a diagonal
matrix S with 2k 1 1 nonzero and N 2 2k 2 1 zero
singular values, where U and V are unitary matrices.
If the data are noisy, the M � 2k 1 1 principal values
of S will still tend to be larger than the N 2 M values,
which were originally zero. In addition, the M eigen-
vectors that correspond to the M eigenvalues of RTR
are less susceptible to noise pertubations than the
remaining N 2 M eigenvectors. Figure 1 illustrates
typical singular values for S obtained from the SVD of
matrix R for noise at a signal-to-noise ratio (SNR) of
10 dB and without noise, and when k � 2 in Eq. (1).
Although 18 frequencies were assumed to be present
during the estimation, only five principal values of
S for noisy and noiseless signals show a distinctly
larger magnitude than the remaining values. The
plot thus permits a reliable estimation of the number
of harmonics.

There are various sources of noise9 in optical inter-
ferometry, and the relative contribution of each noise
source depends on the system used and on its applica-
tion. The use of a denoising technique is thus an im-

portant step in reducing the effect of noise. In what
follows, we consider the case in which white Gaussian
noise has been added to the signal. We apply a trun-
cated SVD10,11 to enhance the signal. It involves the
following steps: Matrix R is written in Hankel ma-
trix form, say, R̂, and the SVD of R̂ � ÛSV̂T shows the
M nonsingular principal values of S, which are signifi-
cantly different from zero. After the nonsignificant
N 2 M singular values of S are set to zero, a matrix
Ŝ is formed. A denoised matrix ZM � Û ŜV̂T , which
approximates R̂ in the least-squares sense, is then ob-
tained by use of the f irst M columns of Û , Ŝ, and V̂ ;
Û and V̂ are unitary matrices. Finally, a denoised
signal Im is retrieved by arithmetic averaging along
the antidiagonals (or diagonals) of ZM as follows:

Im �
1

r 2 q 1 1

NX
j�1

ZM �m 2 j 1 1, j � ,

m � 1, . . . ,N , (6)

where r � max�1,m 2 number of rows �R̂� 1 1� and
q � min�number of rows �R̂�,m�. Denoised signal Im
is subsequently substituted into Eq. (4).

The concept of high resolution is tested by simula-
tion of the fringe pattern in Eq. (1); we assume that
k � 2, a � p�4, a61,62 � 0.5, and b0 � 1. Additive
white Gaussian noise with a SNR of 0–100 dB is added
to Eq. (1) and for each noise-level phase step is com-
puted at every pixel of the data frame without and
with application of the denoising described in the pre-
vious paragraph. Figures 2(a) and 2(b) show plots for
a at any arbitrary pixel location, without and with a
denoising procedure, respectively, for 15 data frames.
Figure 2(b) shows that denoising is an important step
in extracting information from noisy data. The accu-
racy in the determination of the number of harmonics
k and of phase step a in the presence of increasing
noise can be improved with an increase in the redun-
dancy of the data frames.

Once phase step a is estimated by the high-
resolution technique, parameter bk can be solved
by use of a linear Vandermonde system of equations

Fig. 1. SVD of R for a SNR of 20 dB and without noise.
Estimation of the value of k is straightforward for a noise-
less signal.
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Fig. 2. Phase step a (in degrees) at arbitrary pixel loca-
tions versus noise (a) without and (b) with application of
the denoising procedure.

obtained from Eq. (2). The matrix thus obtained can
be written as

2
666664

exp�ika1� exp�2ika1� exp�i�k 2 1�a1� · · · 1
exp�ika2� exp�2ika2� exp�i�k 2 1�a2� · · · 1

...
...

... · · ·
...

exp�ikaN � exp�2ikaN � exp�i�k 2 1�aN �
... 1

3
777775

2
66664

bk

bk
�

...
b0

3
77775 �

2
66664

I1
I2
...
IN

3
77775

, (7)

where a1,a2, . . . ,aN are phase steps in frames 1,
2, . . . ,N , respectively. Phase w is subsequently com-
puted from the argument of b1. Figures 3(a) and 3(b)
show typical errors in the computation of wrapped
phase maps of 512 3 512 pixels, without and with the
denoising step, respectively, and assuming a SNR of
30 dB.

In conclusion, we have proposed a new generalized
approach to recovering phase distribution in the pres-
ence of PZT miscalibration and higher-order harmon-
ics. The method, by facilitating a free choice of phase
shifts from 0 to p, overcomes the limitation exhib-
ited by previously suggested methods. The proposed
technique works well with both diverging and converg-
ing beams, as it retrieves the phase steps pixelwise
before applying them to the Vandermonde system of
equations.
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Fig. 3. Error in phase computation (in radians) versus
pixel number in the presence of a signal, with a SNR of
30 dB (a) without and (b) with application of the denoising
procedure.
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