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Noise Reduction by Fuzzy Image Filtering
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Abstract—A new fuzzy filter is presented for the noise reduc-
tion of images corrupted with additive noise. The filter consists of
two stages. The first stage computes a fuzzy derivative for eight dif-
ferent directions. The second stage uses these fuzzy derivatives to
perform fuzzy smoothing by weighting the contributions of neigh-
boring pixel values. Both stages are based on fuzzy rules which
make use of membership functions. The filter can be applied it-
eratively to effectively reduce heavy noise. In particular, the shape
of the membership functions is adapted according to the remaining
noise level after each iteration, making use of the distribution of the
homogeneity in the image. A statistical model for the noise distribu-
tion can be incorporated to relate the homogeneity to the adapta-
tion scheme of the membership functions. Experimental results are
obtained to show the feasibility of the proposed approach. These
results are also compared to other filters by numerical measures
and visual inspection.

Index Terms—Additive noise, edge preserving filtering, fuzzy
image filtering, noise reduction.

I. INTRODUCTION

T HE application of fuzzy techniques in image processing is
a promising research field [1]. Fuzzy techniques have al-

ready been applied in several domains of image processing (e.g.,
filtering, interpolation [2], and morphology [3], [4]), and have
numerous practical applications (e.g., in industrial and medical
image processing [5], [6]).

In this paper, we will focus on fuzzy techniques for image
filtering. Already several fuzzy filters for noise reduction
have been developed, e.g., the well-known FIRE-filter from
[7]–[9], the weighted fuzzy mean filter from [10] and [11],
and the iterative fuzzy control based filter from [12]. Most
fuzzy techniques in image noise reduction mainly deal with
fat-tailed noise like impulse noise. These fuzzy filters are able
to outperform rank-order filter schemes (such as the median
filter). Nevertheless, most fuzzy techniques are not specif-
ically designed for Gaussian(-like) noise or do not produce
convincing results when applied to handle this type of noise.
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Therefore, this paper presents a new technique for filtering
narrow-tailed and medium narrow-tailed noise by a fuzzy
filter. Two important features are presented: first, the filter
estimates a “fuzzy derivative” in order to be less sensitive to
local variations due to image structures such as edges; second,
the membership functions are adapted accordingly to the noise
level to perform “fuzzy smoothing.”

The construction of the fuzzy filter is explained in Section II.
For each pixel that is processed, the first stage computes a fuzzy
derivative. Second, a set of 16 fuzzy rules is fired to determine
a correction term. These rules make use of the fuzzy derivative
as input. Fuzzy sets are employed to represent the properties

, , and . While the membership func-
tions for and are fixed, the membership
function for is adapted after each iteration. The adapta-
tion scheme is extensively explained in Section III and can be
combined with a statistical model for the noise. In Section IV,
we present several experimental results. These results are dis-
cussed in detail, and are compared to those obtained by other
filters. Some final conclusions are drawn in Section V.

II. FUZZY FILTER

The general idea behind the filter is to average a pixel using
other pixel values from its neighborhood, but simultaneously
to take care of important image structures such as edges.1 The
main concern of the proposed filter is to distinguish between
local variations due to noise and due to image structure.

In order to accomplish this, for each pixel we derive a value
that expresses the degree in which the derivative in a certain
direction is small. Such a value is derived for each direction
corresponding to the neighboring pixels of the processed pixel
by a fuzzy rule (Section II-A).

The further construction of the filter is then based on the ob-
servation that a small fuzzy derivative most likely is caused by
noise, while a large fuzzy derivative most likely is caused by
an edge in the image. Consequently, for each direction we will
apply two fuzzy rules that take this observation into account
(and thus distinguish between local variations due to noise and
due to image structure), and that determine the contribution of
the neighboring pixel values. The result of these rules (16 in
total) is defuzzified and a “correction term” is obtained for the
processed pixel value (Section II-B).

A. Fuzzy Derivative Estimation

Estimating derivatives and filtering can be seen as a
chicken-and-egg problem; for filtering we want a good indica-
tion of the edges, while to find these edges we need filtering.

1Other fuzzy filters, such as the smoothing fuzzy control based filter [12], also
take care of edges, butafter instead ofsimultaneouswith the noise filtering.
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(a)

(b)

Fig. 1. (a) Neighborhood of a central pixel(x; y). (b) Pixel values indicated
in gray are used to compute the “fuzzy derivative” of the central pixel(x; y)
for theNW -direction.

TABLE I
PIXELS INVOLVED TO CALCULATE THE FUZZY

DERIVATIVES IN EACH DIRECTION

In our approach, we start by looking for the edges. We try to
provide a robust estimate by applying fuzzy rules.

Consider the neighborhood of a pixel as displayed
in Fig. 1(a).

A simple derivative at the central pixel po-
sition in the direction (

) is defined as the
difference between the pixel at and its neighbor in the
direction . This derivative value is denoted by .
For example

(1)

Next, the principle of the fuzzy derivative is based on the
following observation. Consider an edge passing through the
neighborhood of a pixel in the direction. The

(a)

(b)

(c)

Fig. 2. Membership functions (a)small, (b) positive, and (c)negative.

Fig. 3. Relationship between the homogeneity� and the noise level�
empirically measured by patches of size9� 9 (N = 9). The accuracy of� is
shown by the standard deviation of� itself.

derivative value will be large, but also derivative
values of neighboring pixels perpendicular to the edge’s direc-
tion can expected to be large. For example, in the -direction
we can calculate the values ,
and [see Fig. 1(b)]. The idea is to cancel
out the effect of one derivative value which turns out to be high
due to noise. Therefore, if two out of three derivative values are
small, it is safe to assume that no edge is present in the con-
sidered direction. This observation will be taken into account
when we formulate the fuzzy rule to calculate the fuzzy deriva-
tive values.

In Table I, we give an overview of the pixels we use to cal-
culate the fuzzy derivative for each direction. Each direction
(column 1) corresponds to a fixed position (column 2); the sets
in column 3 specify which pixels are considered with respect to
the central pixel .

To compute the value that expresses the degree to which the
fuzzy derivative in a certain direction is small, we will make
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(a)

(b)

Fig. 4. Original test images. (a) “Cameraman.” (b) “Boats.”

use of the fuzzy set . The membership function
for the property is the following [see Fig. 2(a)]:

(2)

where is an adaptive parameter (see Section III).
For example, the value of the fuzzy derivative for

the pixel in the -direction is calculated by applying
the following rule:

(3)

Eight such rules are applied, each computing the degree of mem-
bership of the fuzzy derivatives , , to the

Fig. 5. Histogram of the homogeneity of9 � 9-blocks for the “cameraman”
test image. The 20% percentile� of the most homogeneous blocks shifts to
the left as the image is more corrupted, i.e.,� equals 0.96, 0.90, 0.82, and
0.66 for these cases.

set . These rules are implemented using the minimum to
represent theAND-operator, and the maximum for theOR-oper-
ator. A defuzzification is not needed since the second stage, i.e.,
the fuzzy smoothing, directly uses the membership degrees to

.
The robustness we try to achieve by the fuzzy derivative is by

combining multiple simple derivatives around the pixel and by
making the parameter adaptive. The proper choice of will
be discussed later.

B. Fuzzy Smoothing

To compute the correction term for the processed pixel
value, we use a pair of fuzzy rules for each direction. The idea
behind the rules is the following: if no edge is assumed to be
present in a certain direction, the (crisp) derivative value in that
direction can and will be used to compute the correction term.
The first part (edge assumption) can be realized by using the
fuzzy derivative value, for the second part (filtering) we will
have to distinguish between positive and negative values.

For example, let us consider the direction . Using the
values and , we fire the following two
rules, and compute their truthness and :

For the properties and , we also use linear
membership functions [see Fig. 2(b) and (c)]. Again, we im-
plement theAND-operator andOR-operator by respectively the
minimum and maximum. This can be done for each direction

.
The final step in the computation of the fuzzy filter is the

defuzzification. We are interested in obtaining a correction term
, which can be added to the pixel value of location .

Therefore, the truthness of the rules and , (so
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(a)

(b)

Fig. 6. MSE (mean squared error) for (a) “cameraman” and (b) “boats.” (� =

5).

for all directions) are aggregated by computing and rescaling
the mean truthness as follows:

(4)

where contains the directions andrepresents the number
of gray levels. So, each directions contributes to the correction
term .

III. A DAPTIVE THRESHOLDSELECTION

Instead of making use of larger windows to obtain better re-
sults for heavier noise, we choose to apply the filter iteratively.
The shape of the membership function is adapted each
iteration according to an estimate of the (remaining) amount of
noise. The method assumes that a percentageof the image can
be considered as homogeneous and as such can be used to esti-
mate the noise density.

We start by dividing the image in small nonoverlap-
ping blocks. For each block , we compute a rough measure
for the homogeneity of this block by considering the maximum
and minimum pixel value

(5)

This measure is commonly used in the context of fuzzy image
processing [13]. Next, a histogram of the homogeneity values is

(a)

(b)

Fig. 7. MSE (mean squared error) for (a) “cameraman” and (b) “boats.” (� =

20.)

computed, and the hypothesis comes in: the percentileof the
most homogeneous blocks is determined. We assume this per-
centile is a measure for the homogeneity of “typical” noise in
the image. Using a statistical model for the noise distribution,
we will show that there is a linear relationship between the ho-
mogeneity and the standard deviation.

Assume noise samples , , independently
and identically distributed, with a probability density func-
tion (PDF) and cumulative density function (CDF)

. Since a change of the standard deviation rescales
the PDF, the maximum and minimum of samples are scaled
the same way. This establishes a linear relationship between
the homogeneity and the standard deviation. This can also be
derived more formally. We assume the expectation value
to be zero, and the variance to be . If we scale the
PDF with a factor , we can obtain the following general result:

(6)

(7)

Next, we define the maximum and minimum of thesamples
as
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for which we can derive the CDFs as

Using (6) and (7), we can show that and are
scaled according to, i.e.,

Therefore, there is a linear relationship between the (expectation
value of the) homogeneity of the samples and the standard
deviation

(8)

where is the slope. Note the correspondence of to
.

The value of the factor can be determined empirically.
A large number of synthetic patches (of size ) are gen-
erated. Each patch consists of noise with the presumed distri-
bution. The effective noise level and the homogeneity of each
patch are measured. The mean value and standard deviation are
calculated for the whole test set. This experiment is done for
several noise levels, resulting in the relationship between the
homogeneity and the noise level. Fig. 3 shows the result for the
case of and 200 experiments for several noise levels. The
errorbars indicate the standard deviation on the noise level esti-
mates.2 We carried out this experiment for Gaussian, Laplacian,
and uniform noise, obtaining a of, respectively, 52.1, 41.8,
and 75.2.

Next, we use the hypothesis that at least a percentageof the
blocks were originally homogeneous (before the noise degra-
dation). The histogram of the homogeneity of the blocks in the
image is computed, and a percentileof the most homogeneous
blocks is obtained. The value of this percentile is related to
our estimate for the noise varianceby the linear relationship
we derived before. A final amplification factor (see later for
its choice) is used to get the parameter

(9)

This scheme is applied before each iteration to obtain the pa-
rameter , which determines the shape of the membership func-
tion .

Compared to the direct calculation of the variance of (a part
of) the image, the current scheme distinguishes between blocks
containing mainly noise and blocks containing both image
structure and noise. This is done by the sorting operation of the
histogram operation on the homogeneity values. As a result,
the estimate of the noise variance is based on smooth blocks
only, for as long as the initial hypothesis remains true.

IV. RESULTS

The proposed filter is applied to grayscale test images (8-bit,
), after adding Gaussian noise of different levels. Such a

procedure allows us to compare and evaluate the filtered image

2We also note that the standard deviation of the estimated homogeneity is
very low.

(a)

(b)

Fig. 8. ParameterK for “boats.” (a)� = 5. (b)� = 20.

(a) (b)

(c) (d)

Fig. 9. (a) “Cameraman” with additive gaussian noise (� = 5). (b) After
Wiener filtering (3� 3). (c) After fuzzy mean (FM). (d) After proposed fuzzy
filter (� = 1).

against the original one. Fig. 4 shows two representative test
images: “cameraman” and “boats.”



434 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 4, AUGUST 2003

(a) (b)

(c) (d)

Fig. 10. Detail images of the results of Fig. 9.

Fig. 5 shows the normalized histogram of the homogeneity
of “cameraman,” for the original image, but also for the image
corrupted with different noise levels, i.e., , , and

. Using the 20% percentile and (8), the estimates for
the noise levels are, respectively, 5.2, 9.4, and 17.7. For these
noise levels our filter is applied using different values for the
amplification factor , namely . To evaluate the
results, we computed the mean squared error (MSE) between
the original image and the filtered image.

Figs. 6 and 7 show a plot of the MSE as function of the
number of iterations for added noise with and .

Notice that for low noise levels (Fig. 6), one iteration is suf-
ficient to efficiently remove the noise. Also, a low amplication
factor gives the best results. The MSE of “cameraman” sur-
prisingly increases with the number of iterations, this is mainly
due the image content, i.e., the grass is very similar to noise and
gets increasingly filtered. For other images, such as “boats,” this
increase does not occur. Therefore, images with low noise levels
and containing fine textures should be treated carefully.

For high noise levels (Fig. 7), the results of “cameraman”
are much more stable. A few iterations (3–4) are sufficient to
effectively smooth out the noise. Also, a somewhat higher value
of gives better results.

Fig. 8 shows the parameter for the “boats” test image.
Since depends on the estimate for the remaining noise level

, we expect this curve to decrease as iterations go on. Based
on an estimate for the “natural” or “acceptable” amount of noise
(depending on the application), we could use the estimate of
as a stop criterion as it gets sufficiently low. Another possible
stop criterion could be when the changewith respect to the
previous iteration is small.

The parameter affects the amount of smoothing which is
applied by the filter. Based on our observations of the MSE-

(a) (b)

(c) (d)

Fig. 11. (a) “Boats” with additive gaussian noise (� = 20). (b) After Wiener
filtering (3� 3). (c) After AWFM2. (d) After proposed fuzzy filter (� = 2).

(a) (b)

(c) (d)

Fig. 12. Detail images of Fig. 11.

curves, could also be determined using the estimate: a high
noise level corresponds to a higher value of, while a low noise
level corresponds to a lower value of.

We also compared our fuzzy filter with several other filter
techniques: the mean filter, the adaptive Wiener filter [14], fuzzy
median (FM) [15], the adaptive weighted fuzzy mean (AWFM1
and AWFM2) [10], [11], the iterative fuzzy filter (IFC), modi-
fied iterative fuzzy filter (MIFC), and extended iterative fuzzy
filter (EIFC) [12]. Table II summarizes the results we obtained.
Quite different results are obtained between “cameraman” and
“boats.” For “cameraman,” the proposed filter performs very
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TABLE II
RESULTS OF THE NEW FUZZY FILTER FOR THE

TEST IMAGES “CAMERAMAN ” AND “BOATS”

(a) (b)

(c) (d)

Fig. 13. (a) Original satellite image of a part of Greece. (b) Result after
adaptive Wiener filtering (best result with5 � 5 support). (c) Result after
fuzzy filtering (� = 1, 5 iterations). (d) Result after fuzzy filtering (� = 3,
5 iterations).

well. Only the fuzzy median (FM) gives a better MSE for .
A closer inspection of Fig. 9 shows that the proposed filter better
preserves details such as the grass (right side, just below the
building) and the background (left side, small buildings). Also
the face is slightly sharper. The detail images in Fig. 10 con-
firm these results. Note that the grass is better preserved by the
proposed filter than using the fuzzy mean. The “boats” image
provides a different result. For low noise levels ( ), the pro-
posed filter still performs best, but for higher noise levels, the
AWFM2 filter gives the best results. Fig. 11 shows the filtered
images. The detail images of Fig. 12 reveal that the AWFM2

filter is able to preserve the very small details (such as the narrow
ropes). On the other hand, the proposed filter gives a more “nat-
ural” image without the “patchy look” of the adaptive Wiener
filter.

Finally, we like to show a practical application of the fuzzy
filter. In particular, this image restoration scheme could be
used to enhance satellite images. Of course, since the original
image is already corrupted by noise, it is not possible to obtain
a numerical measure which indicates how “good” the image is.
Fig. 13 shows the original image and the results after fuzzy fil-
tering with different parameters. Depending on the application
(e.g., visual inspection, segmentation), one could prefer lighter
or heavier filtering (by choosing correspondingly).

V. CONCLUSION

This paper proposed a new fuzzy filter for additive noise re-
duction. Its main feature is that it distinguishes between local
variations due to noise and due to image structures, using a fuzzy
derivative estimation. Fuzzy rules are fired to consider every di-
rection around the processed pixel. Additionally, the shape of
the membership functions is adapted according to the remaining
amount of noise after each iteration. Experimental results show
the feasibility of the new filter and a simple stop criterion. Al-
though its relative simplicity and the straightforward implemen-
tation of the fuzzy operators, the fuzzy filter is able to compete
with state-of-the-art filter techniques for noise reduction. A nu-
merical measure, such as MSE, and visual observation show
convincing results. Finally, the fuzzy filter scheme is sufficiently
simple to enable fast hardware implementations.
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