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Noise Reduction by Fuzzy Image Filtering

Dimitri Van De Ville, Member, IEEEMike Nachtegael, Dietrich Van der Weken, Etienne E. Kerre,
Wilfried Philips, Member, IEEEand Ignace Lemahiesenior Member, IEEE

Abstract—A new fuzzy filter is presented for the noise reduc- Therefore, this paper presents a new technique for filtering
tion of images corrupted with additive noise. The filter consists of narrow-tailed and medium narrow-tailed noise by a fuzzy

two stages. The first stage computes a fuzzy derivative for eightdif- gyer Two important features are presented: first, the filter
ferent directions. The second stage uses these fuzzy derivatives to '

perform fuzzy smoothing by weighting the contributions of neigh- estlmate_s a “fuzzy der_|vat|ve" in order to be less sensitive to
boring pixel values. Both stages are based on fuzzy rules which local variations due to image structures such as edges; second,

make use of membership functions. The filter can be applied it- the membership functions are adapted accordingly to the noise
eratively to effectively reduce heavy noise. In particular, the shape |evel to perform “fuzzy smoothing.”

of the membership functions is adapted according to the remaining g construction of the fuzzy filter is explained in Section .

noise level after each iteration, making use of the distribution of the = h pixel that i d. the first st t f
homogeneity in the image. A statistical model for the noise distribu- or.ea(.: PIXElINALIS Processed, Nerst s "flge. computes a l_JZZy
tion can be incorporated to relate the homogeneity to the adapta- derivative. Second, a set of 16 fuzzy rules is fired to determine
tion scheme of the membership functions. Experimental results are a correction term. These rules make use of the fuzzy derivative
obtained to show the feasibility of the proposed approach. These as input. Fuzzy sets are employed to represent the properties
results are also compared to other filters by numerical measures small,positive, andnegative. While the membership func-
and visual inspection. . .. . . -
tions forpositive andnegative are fixed, the membership

Index Terms—Additive noise, edge preserving filtering, fuzzy function forsmall is adapted after each iteration. The adapta-

image filtering, noise reduction. tion scheme is extensively explained in Section Il and can be
combined with a statistical model for the noise. In Section 1V,
|. INTRODUCTION we present several experimental results. These results are dis-

cussed in detail, and are compared to those obtained by other

- . i fifters. Some final conclusions are drawn in Section V.
a promising research field [1]. Fuzzy techniques have al-

ready been applied in several domains ofimage processing (e.g.,
filtering, interpolation [2], and morphology [3], [4]), and have
numerous practical applications (e.g., in industrial and medicalThe general idea behind the filter is to average a pixel using
image processing [5], [6]). other pixel values from its neighborhood, but simultaneously
In this paper, we will focus on fuzzy techniques for imagt0 take care of important image structures such as edgés.
filtering. Already several fuzzy filters for noise reductionmain concern of the proposed filter is to distinguish between
have been developed, e.g., the well-known FIRE-filter frof@cal variations due to noise and due to image structure.
[7]-[9], the weighted fuzzy mean filter from [10] and [11], In order to accomplish this, for each pixel we derive a value
and the iterative fuzzy control based filter from [12]. Mosthat expresses the degree in which the derivative in a certain
fuzzy techniques in image noise reduction mainly deal witirection is small. Such a value is derived for each direction
fat-tailed noise like impulse noise. These fuzzy filters are abf@rresponding to the neighboring pixels of the processed pixel
to outperform rank-order filter schemes (such as the medil¥ @ fuzzy rule (Section II-A).
filter). Nevertheless, most fuzzy techniques are not specif- The further construction of the filter is then based on the ob-
ica”y designed for Gaussian(-"ke) noise or do not produé@l’vation that a small fuzzy derivative most Ilkely is caused by

convincing results when applied to handle this type of noiseise, while a large fuzzy derivative most likely is caused by
an edge in the image. Consequently, for each direction we will
apply two fuzzy rules that take this observation into account
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Fig. 1. (a) Neighborhood of a central pixel, v). (b) Pixel values indicated
in gray are used to compute the “fuzzy derivative” of the central fixely) 30— . . T .
for the NW -direction. » Gaussian ———
Laplacian -
TABLE | Uniform

PIXELS INVOLVED TO CALCULATE THE Fuzzy

DERIVATIVES IN EACH DIRECTION Z 20 |- 4 %
direction position set w.r.t. (z,y) ;§ 15 {
NW | (z =1y —1) | {-11),(00),(1-1)} £ ;
S
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SW | (@=1,y+1) | {(1,1),(0,0),(-1,-1)} s|
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Fig. 3. Relationship between the homogenegityand the noise leveb
NE (x+1,y—1) | {(-1,-1),(0,0),(1,1)} empirically measured by patches of sirex 9 (V = 9). The accuracy of is
shown by the standard deviation @fitself.
N (17?]_ 1) {('170)7(0’0)7<170)}

derivative valueV yw (z, y) will be large, but also derivative
In our approach, we start by looking for the edges. We try f@lues of nelghbc(j)rmg pllxels perpend|cullar_to the g_dge’§ direc-
provide a robust estimate by applying fuzzy rules. tion can expected to be large. For example, in¥H& -direction

Consider thé x 3 neighborhood of a pixdlz, 1) as displayed W€ can calculate the valudsyw (z, v), Vaw (¢ — 1,y + 1)
X g pixe, ) Pay andVyw(z + 1, y — 1) [see Fig. 1(b)]. The idea is to cancel

in Fig. 1(a). ivati [ [
A simple derivative at the central pixel po_gut the ef_fect _(IJ_Lonefden\_/fatlve valu?c Vr\thChdtur'nS (_)ut to Ibe high
siton (z,y) in the direction D (D € dir = ue to noise. Therefore, if two out of three derivative values are

the small, it is safe to assume that no edge is present in the con-
sidered direction. This observation will be taken into account
when we formulate the fuzzy rule to calculate the fuzzy deriva-
tive values.

{NW, W, SW, S, SE, E, NE, N}) is defined as
difference between the pixel &t, y) and its neighbor in the
direction D. This derivative value is denoted W p(z, ¥).

For example _ . .
In Table I, we give an overview of the pixels we use to cal-
Vn(z,y)=I(z,y—1) — I(z, y) culate the fuzzy derivative for each direction. Each direction
column 1) corresponds to a fixed position (column 2); the sets
Vaw(e ) =l =1y -1) ~Iw.y). (@) ) corresp position { )

in column 3 specify which pixels are considered with respect to
Next, the principle of the fuzzy derivative is based on ththe central pixelz, y).

following observation. Consider an edge passing through theTo compute the value that expresses the degree to which the

neighborhood of a pixél:, y) in the SW — N E direction. The fuzzy derivative in a certain direction is small, we will make
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Fig. 5. Histogram of the homogeneity 8fx 9-blocks for the “cameraman”
testimage. The 20% percentjle, % of the most homogeneous blocks shifts to
the left as the image is more corrupted, it&99% equals 0.96, 0.90, 0.82, and
0.66 for these cases.

setsmall. These rules are implemented using the minimum to
represent thenp-operator, and the maximum for tke&-oper-

ator. A defuzzification is not needed since the second stage, i.e.,
the fuzzy smoothing, directly uses the membership degrees to
small.

The robustness we try to achieve by the fuzzy derivative is by
combining multiple simple derivatives around the pixel and by
making the parametet adaptive. The proper choice &f will
be discussed later.

B. Fuzzy Smoothing

To compute the correction ter for the processed pixel
value, we use a pair of fuzzy rules for each direction. The idea
(b) behind the rules is the following: if no edge is assumed to be
Fig. 4. Original test images. (a) “Cameraman.” (b) “Boats.” present in a certain direction, the (crisp) derivative value in that
direction can and will be used to compute the correction term.

use of the fuzzy setmall. The membership functiomy(u) The first part (edge assumption) can be realized by using the

for the propertysmall is the following [see Fig. 2(a)]: fuzzy derivative value, for the second part (filtering) we will
| have to distinguish between positive and negative values.
1-—, 0<|u/|<K For example, let us consider the directidfi’. Using the
mi(u) = K : @ valuesV iy, (z, y) andV yw (z, v), we fire the following two
0, ul > K rules, and compute their truthnes§,;; and A yy:

whereK is an adaptive parameter (see Section IlI).
For example, the value of the fuzzy derivatN&,,,, (z, y) for ~ Afy: if Viw (z, y)issmall and V yw (z, y) ispositive
the pixel(z, y) in the NTW-direction is calculated by applying then cispositive

the following rule: Ay if VR (2, y) issmall and Vv (2, y) isnegative

if (VNw(.’L', y) issmall and VNV[/(:I; -1, y+ 1) then cis negative.
issmall)or

(Vaw(z, y)issmall and Vaw(z + 1, y — 1) For the propertiepositive andnegative, we also use linear

membership functions [see Fig. 2(b) and (c)]. Again, we im-

is small) or plement theanD-operator andbr-operator by respectively the
(Vyw(z—1,y+1)issmalland Vyw(z+ 1,y — 1) minimum and maximum. This can be done for each direction
issmall) D e d’”" ' ' ' '
then ngm y) is small. 3) The final step in the computation of the fuzzy filter is the

defuzzification. We are interested in obtaining a correction term
Eight such rules are applied, each computing the degree of mel)-which can be added to the pixel value of locatian v).
bership of the fuzzy derivative§ 5 (z, y), D € dir, to the Therefore, the truthness of the ruls§ and\,,, D € dir (so
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Fig. 7.
Fig. 6. MSE (mean squared error) for (a) “cameraman” and (b) “boats ( 20.)
5).

for all directions) are aggregated by computing and rescalin
the mean truthne):ss as ?oglllov%s 4 puting cgmputed, and the hypothesis comes in: the percentifethe

I most homogeneous blocks is determined. We assume this per-
A= Z (AL = Ap) ) cen'qle is a measure for_ the homogeneity of “t)_/plcal_” noise in
Dedir the image. Using a statistical model for the noise distribution,

) . o we will show that there is a linear relationship between the ho-
wheredir contains the directions andrepresents the ”Umbermogeneity and the standard deviation.

of gray levels. So, each directions contributes to the correctionyssmens noise sample&;, i = 1 M, independently
(2l - L | 7

termA. and identically distributed, with a probability density func-

tion (PDF) fx(x;0) and cumulative density function (CDF)
1. ADAPTIVE THRESHOLD SELECTION Fx(z;0). Since a change of the standard deviation rescales

Instead of making use of larger windows to obtain better ré2€ PDF, the maximum and minimum #f samples are scaled
sults for heavier noise, we choose to apply the filter iterativelffj@ Same way. This establishes a linear relationship between
The shape of the membership functiemall is adapted each the homogeneity and the standard deviation. This can also be
iteration according to an estimate of the (remaining) amount @grived more formally. \We assume the ex2pectat|on Val{E]
noise. The method assumes that a percentagéhe image can {0 be zero, and the variande[X *] to be o= If we scale the
be considered as homogeneous and as such can be used toR¥3f-with a factory, we can obtain the following general result:
mate the noise density. 1

We start by dividing the image in small x N nonoverlap- fx(z;00) =~ fx(z/a;0) (6)
ping blocks. For each block, we compute a rough measure

for the homogeneity of this block by considering the maximum Fx(v;00) = Fx(z/a;0). ()
and minimum pixel value Next, we define the maximum and minimum of thé samples
maXz y)eB I(‘T7 y) - min(m,y)GB I(‘T7 y) as

Xmax = max X7
This measure is commonly used in the context of fuzzy image 7
processing [13]. Next, a histogram of the homogeneity values is Xmin = min Xi
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for which we can derive the CDFs as S
. = 1.5 - 1
Fy,..(1:0) = F¥ (z;0) ‘ol a=15
M 12+ ll‘\ = 2.5
Py, (2:0) =1— (1= Fx(a;0))". 1 =
Using (6) and (7), we can show thB{X ,.,] and E[X ,;,] are <
scaled according te, i.e.,
6l
E[Xmax;aa] = aE[Xmax;a]
al
E[Xmin;aa] = aE[Xmin;a]- ol
Therefore, there is a linear relationship between the (expectation ol T
\éalu_e of the) homogeneity of the M samples and the standard ¢t Bt mation L oEe®
eviationo
(@
o=(1—pu)ym 8 2 S R
] | a=15 -
where~,, is the slope. Note the correspondence.of 1 to . Q=2 1
o = 0. : o' —_2,5 77777
The value of the factof,; can be determined empirically. oo ‘= ]
A large number of synthetic patches (of si¥ex V) are gen- ol
erated. Each patch consists of noise with the presumed distri-
bution. The effective noise level and the homogeneity of each ol
patch are measured. The mean value and standard deviation are
calculated for the whole test set. This experiment is done for 10 _
several noise levels, resulting in the relationship between the o
homogeneity and the noise level. Fig. 3 shows the result for the % 1 2 s 4 5 6 7 8 9 10 11 12 13 14 15
case ofV = 9 and 200 experiments for several noise levels. The iteration
errorbars indicate the standard deviation on the noise level esti- (b)

mates: We carried out this experiment for Gaussian, Laplaciapig. . parametek for “boats.” (8)s = 5. (b) & = 20.
and uniform noise, obtaining&, of, respectively, 52.1, 41.8,
and 75.2.

Next, we use the hypothesis that at least a percentafjthe f'
blocks were originally homogeneous (before the noise degral
dation). The histogram of the homogeneity of the blocks in the
image is computed, and a percentilef the most homogeneous
blocks is obtained. The valyg, of this percentile is related to
our estimate for the noise variangeby the linear relationship
we derived before. A final amplification factar (see later for
its choice) is used to get the parameter

K =a0c = ol — pup)yne. 9)

a b
This scheme is applied before each iteration to obtain the pa-__ @ - ®

rameterk’, which determines the shape of the membership funcw'?f
tion small. |
Compared to the direct calculation of the variance of (a part
of) the image, the current scheme distinguishes between block
containing mainly noise and blocks containing both image
structure and noise. This is done by the sorting operation of thes
histogram operation on the homogeneity values. As a result |
the estimate of the noise variance is based on smooth block
only, for as long as the initial hypothesis remains true.

(© (d)
) . . . Fig. 9. (a) “Cameraman” with additive gaussian noise £ 5). (b) After
The proposed filter is applied to grayscale test images (8-bifiener filtering ¢ x 3). (c) After fuzzy mean (FM). (d) After proposed fuzzy
L = 255), after adding Gaussian noise of different levels. SucHilger (a = 1).
procedure allows us to compare and evaluate the filtered image

2We also note that the standard deviation of the estimated homogeneit)_ag‘?’-“']St the original one. Fig. 4 shows two representative test
very low. images: “cameraman” and “boats.”

IV. RESULTS
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(b)

(d)

Fig. 11. (a) “Boats” with additive gaussian noise £ 20). (b) After Wiener
filtering (3 x 3). (c) After AWFM2. (d) After proposed fuzzy filtero( = 2).

Fig. 10. Detail images of the results of Fig. 9.

Fig. 5 shows the normalized histogram of the homogeneity i
of “cameraman,” for the original image, but also for the imageg®
corrupted with different noise levels, i.e.,= 5, ¢ = 10, and :
o = 20. Using the 20% percentile and (8), the estimates f
the noise levels are, respectively, 5.2, 9.4, and 17.7. For thews
noise levels our filter is applied using different values for the‘_.
amplification factora, namelya = 1.0 — 3.0. To evaluate the  Casliii i
results, we computed the mean squared error (MSE) between () (b)
the original image and the filtered image.

Figs. 6 and 7 show a plot of the MSE as function of the
number of iterations for added noise with= 5 ando = 20.

Notice that for low noise levels (Fig. 6), one iteration is suf-
ficient to efficiently remove the noise. Also, a low amplication
factor a gives the best results. The MSE of “cameraman” sur
prisingly increases with the number of iterations, this is mainly
due the image content, i.e., the grass is very similar to noise ar_,
gets increasingly filtered. For otherimages, such as “boats,” thi
increase does not occur. Therefore, images with low noise leve
and containing fine textures should be treated carefully.

For high noise levels (Fig. 7), the results of “cameraman”
are much more stable. A few iterations (3—4) are sufficient {82 1%
effectively smooth out the noise. Also, a somewhat higher value
of a gives better results. curves could also be determined using the estimata high

Fig. 8 shows the parametéf for the “boats” test image. noise level corresponds to a higher valuexpivhile a low noise
SinceK depends on the estimate for the remaining noise levelrel corresponds to a lower value @f
o, we expect this curve to decrease as iterations go on. BasetlVe also compared our fuzzy filter with several other filter
on an estimate for the “natural” or “acceptable” amount of noigechniques: the mean filter, the adaptive Wiener filter [14], fuzzy
(depending on the application), we could use the estimate ofmedian (FM) [15], the adaptive weighted fuzzy mean (AWFM1
as a stop criterion as it gets sufficiently low. Another possiblend AWFM2) [10], [11], the iterative fuzzy filter (IFC), modi-
stop criterion could be when the chanfewith respect to the fied iterative fuzzy filter (MIFC), and extended iterative fuzzy
previous iteration is small. filter (EIFC) [12]. Table Il summarizes the results we obtained.

The parameten. affects the amount of smoothing which isQuite different results are obtained between “cameraman” and
applied by the filter. Based on our observations of the MSEboats.” For “cameraman,” the proposed filter performs very

(©) (d)
Detail images of Fig. 11.
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filter is able to preserve the very small details (such as the narrow
ropes). On the other hand, the proposed filter gives a more “nat-
ural” image without the “patchy look” of the adaptive Wiener

Finally, we like to show a practical application of the fuzzy
filter. In particular, this image restoration scheme could be
used to enhance satellite images. Of course, since the original
image is already corrupted by noise, it is not possible to obtain
a numerical measure which indicates how “good” the image is.
Fig. 13 shows the original image and the results after fuzzy fil-
tering with different parameters. Depending on the application
(e.g., visual inspection, segmentation), one could prefer lighter
or heavier filtering (by choosing correspondingly).

V. CONCLUSION

This paper proposed a new fuzzy filter for additive noise re-

MSE filter.
calperamarn boats
c=510c=1010c=2010=5|c=10]0c=20
noise image 24.9 97.0 371 25.1 99.4 389
Mean filter (3 x 3) 170 178 213 40.1 48.1 81.3;
Adaptive Wiener filter (3 x 3) | 424 56.2 112 176 31.3 84.8
Adaptive Wiener filter (5 x 5) | 66.8 79.6 126 32.0 42.6 74.0
FM 16.8 56.4 151 14.4 38.8 120 )
AWFM1 189 215 342 60.0 7.7 160
AWFM2 123 132 175 18.9 22.7 45.1
IFC 49.2 80.6 173 18.7 40.6 83.3
MIFC 19.2 80.6 170 18.7 40.7 824
EIFC 49.2 80.6 171 18.7 41.0 83.8
Proposed filter (o = 1.0) 18.6 51.2 124 134 316 67.0
Proposed filter (o = 2.0) 21.2 47.6 105 13.0 28.4 59.1
Proposed filter (a = 3.0} 25.2 56.0 107 157 30.7 60.8

Fig. 13.

(a) Original satellite image of a part of Greece. (b) Result after
adaptive Wiener filtering (best result with x 5 support). (c) Result after

duction. Its main feature is that it distinguishes between local
variations due to noise and due to image structures, using a fuzzy
derivative estimation. Fuzzy rules are fired to consider every di-
rection around the processed pixel. Additionally, the shape of
the membership functions is adapted according to the remaining
amount of noise after each iteration. Experimental results show
the feasibility of the new filter and a simple stop criterion. Al-
though its relative simplicity and the straightforward implemen-
tation of the fuzzy operators, the fuzzy filter is able to compete
with state-of-the-art filter techniques for noise reduction. A nu-
merical measure, such as MSE, and visual observation show
convincing results. Finally, the fuzzy filter scheme is sufficiently
simple to enable fast hardware implementations.
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