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Fast Parametric Elastic Image Registration
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Abstract—We present an algorithm for fast elastic multidimen-
sional intensity-based image registration with a parametric model
of the deformation. It is fully automatic in its default mode of op-
eration. In the case of hard real-world problems, it is capable of
accepting expert hints in the form of soft landmark constraints.
Much fewer landmarks are needed and the results are far superior
compared to pure landmark registration. Particular attention has
been paid to the factors influencing the speed of this algorithm. The
B-spline deformation model is shown to be computationally more
efficient than other alternatives.

The algorithm has been successfully used for several two-di-
mensional (2-D) and three-dimensional (3-D) registration tasks in
the medical domain, involving MRI, SPECT, CT, and ultrasound
image modalities. We also present experiments in a controlled
environment, permitting an exact evaluation of the registration
accuracy. Test deformations are generated automatically using a
random hierarchical fractional wavelet-based generator.

Index Terms—Elastic registration, image registration, land-
marks, splines.

I. INTRODUCTION

I MAGE registration is the task of finding a correspondence
function mapping coordinates from a reference image to

coordinates of homologous points in a test image [1]. We call
the registration elastic [2] if the family of correspondence func-
tions is sufficiently general, capable of expressing essentially
arbitrary nonlinear relations.1 Image registration is applied
in the areas of motion analysis [4]–[6], video compression
and coding [7], object tracking [8], or image stabilization. It
leads to algorithms for segmentation [9], depth reconstruction
from stereo images [10], [11], and for general 3-D recon-
struction. In the biomedical domain, there is a frequent need
for comparing images for analysis and diagnostic purposes.
This is accomplished by registering the images and aligning
them by warping using the correspondence function identified.
Applications include intra-subject [12], inter-subject [13], [14],
and inter-modality analysis [15], [16], [17], registration with
annotated atlases [18], [19], quantification and qualification of
feature shapes and sizes [20], distortion compensation [21],
[22] and motion detection [23], [24] and compensation [25].
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1Note that elasticity is used here in a wider sense than just the mechanical
linear elasticity [3].

Various nonlinear registration algorithms for brain warping
applications are presented by Warfieldet al.[9]. Bayesian inter-
pretation of elastic matching was reviewed by Gee [19], also in
the context of human neuroanatomy. Articles by Van den Elsen
et al. [26] and Maintz and Viergever [27] contain a very com-
prehensive and detailed classification of available methods for
medical imaging applications. Lester and Arridge [28] treat the
hierarchical aspects of the algorithms.

The deformation models of elastic registration algorithms
fall into two basic categories. The first type are nonparametric,
local methods—the deformation function is basically uncon-
strained and belongs to a very large and unrestrictive functional
space. These methods can be formulated as variational, defining
a scalar criterion that completely determines the final solution
[2]. More generally, they can be also expressed using partial
differential equations (PDE) [29]–[32].

The presented algorithm belongs to a second group of
methods that use parametric models, representing the deforma-
tion by a moderate number of parameters, often in the multi-
scale setting. Specific examples include hierarchical basis func-
tions by Moulinet al. [7], quadtree-splines [5], multiresolution
subspaces [33], [34], and wavelets [35], [36]. Splines are well
suited for this kind of problems; they have appeared in various
incarnations. In this paper we use a multiresolution B-spline
representation, as was initially suggested in the pioneering
work of Szeliskiet al. [10], [5].

A. Proposed Algorithm

The algorithm described in this article is a synthesis of sev-
eral ideas. First, it is a generalization to multiple dimensions of
the unidirectional registration algorithm we described in [22].
Its main features are the use of B-splines to describe both the
image and the deformation, a double multiresolution strategy
(for both the image and the deformation), a scalar pixel-based
difference measure, and an iterative multidimensional opti-
mization algorithm [37], [38]. The deformation model has been
generalized and the whole algorithm re-engineered for faster
execution.

Second, we present the idea of semi-automatic registration,
targeted to more difficult registration problems. We ask an
expert to identify a small number of corresponding points in
both images. The points are also called landmarks [3], [12],
[39], [40]. We add a term to the data part of the criterion, to
steer the algorithm toward the correct solution indicated by the
landmarks.

B. Organization of This Article

In Section II, we describe the concept of registration by min-
imization, the difference measure, the B-spline image model,
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and the structure of the deformation model. In Section III we
justify our choice of B-splines as basis functions for the de-
formation model. We present the optimization method in Sec-
tion IV, where we also describe the multiresolution strategy.
Section V is devoted to the semi-automatic mode incorporating
landmark information into the global criterion. We deal with
implementation issues in Section VI and present experiments
and applications in Section VII. For more details, we refer the
reader to the first author’s thesis report [38] and its associated
web page.

II. PROBLEM FORMULATION

The input images are given as two-dimensional discrete
signals and , where , and is an -
dimensional discrete interval representing the set of all pixel
coordinates in the image. We call and referenceand test
images, respectively. We suppose that the test image is a geo-
metrically deformed version of the reference image, andvice
versa.2 This is to say that the points with the same coordinate

in the reference image and in the warped test image
should correspond. Here, is a continuous

version of the test image and is a deformation (correspon-
dence) function to be identified

A. Cost Function

The two images , will not be identical because of noise
and also because the assumption that there is a geometrical map-
ping between the two images is not necessarily correct. There-
fore, we define the solution to our registration problem as the
result of the minimization , where is
the space of all admissible deformation functions. We have
chosen the SSD (sum of squared differences) criterion

(1)

because it is fast to evaluate and yields a smooth criterion sur-
face which lends itself well to optimization. Minimization of (1)
yields the optimal solution in the ML (maximum likelihood)
sense under the assumption thatis a deformed (warped) ver-
sion of with i.i.d. (independent and identically distributed)
Gaussian noise added to each pixel. The SSD criterion proved
to be robust enough, especially if preprocessing was used to
equalize the image values—we mostly applied high-pass fil-
tering and histogram normalization [22]. In principle, there is no
difficulty in extending our method for more sophisticated pixel-
based similarity measures, such as information-based measures
[41], especially mutual information [17], or weightednorms.
Only the evaluation of the criterion and its derivatives (gradient)
needs to be changed.

2In the multimodal case, which we are not considering here, there can be also
an intensity mapping between the two images.

B. Image Interpolation

In accordance with [22], we choose to interpolate the image
using uniform B-splines:3

(2)

where is a tensor product of B-splines of degree, that is
, with .

C. Deformation Model Structure

So far, we have considered the deformation functionto be
an arbitrary admissible function . We will restrict
it now to a family of functions described by a finite number of
parameters :

(3)

where is a set of parameter indexes and are the corre-
sponding basis functions. This transforms a variational problem
into a much easier finite-dimensional minimization problem, for
which numerous algorithms exist [43]. Moreover, the restriction
of the family of all possible functions can already guarantee
some useful properties, such as the regularity (smoothness) of
the solution. Note that the addition ofin the above equation
makes the set of zero parameters correspond to identity.

D. Existence, Unicity, and Regularization

Note that the criterion is nonnegative and continuous and
is periodic due to boundary conditions. Consequently,has

a minimum; i.e., the proposed problem has a solution. However,
depending on the images at hand, the solution does not have
to be unique and there can be local minima. Fortunately, this
does not pose problems in practice thanks to a multiresolution
approach (Section IV-B) which smoothes out images at coarse
levels and brings us sufficiently close to the solution at fine reso-
lution levels. The algorithm will find a solution if started within
the attraction basin of that solution. The virtual springs (Sec-
tion V) play a role of ana priori information and a regulariza-
tion term; extra regularization can be applied [44] if desired.

III. D EFORMATION BASIS

The purpose of this section is to motivate our choice of (cubic)
B-splines [42] as the most adequate basis functionsto rep-
resent the deformation in model (3). The alternative possibil-
ities that come to mind are polynomials [45], harmonic func-
tions [18], [46], radial basis functions [3], [47], and wavelets
[35], [48], [49].

It is highly desirable to have as few basis functions as pos-
sible to contribute to each particular point, while keeping the

3Uniform symmetric B-splines [42] of degreen are piecewise polynomials
of degreen. The polynomial pieces are delimited by uniformly placed knots.
B-splines of degreen have continuous derivatives up to ordern�1 everywhere.
Their integer shifts form a basis. The first (degree zero) symmetric B-spline is
defined as� (x) = 1 for x 2 (�1=2; 1=2) and 0 otherwise. Higher order
B-splines are defined by recursively as� = � � � ; and their support is
(�(n+ 1)=2; +(n+ 1)=2).
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Fig. 1. Basis functions involved in evaluating the value of a 1-D function at one
point (denoted by a vertical line): (a) radial basis functionsjxj , (b) harmonic
functions, (c) cubic B-splines, and (d) cubic B-spline wavelets.

approximation quality. First, short basis functions have small
overlap. This reduces the interdependency between the coeffi-
cients (parameters) and consequently makes the minimization
problem easier to solve. Small overlap also makes the Hessian
(the matrix of second partial derivatives, needed for some opti-
mizers) more sparse and therefore potentially faster to invert.

Second, the size of the support of the basis functions directly
influences the speed of the calculation. The evaluation of the
deformation function (3) at points costs op-
erations, where is the number of functions contributing
to a single point.4 The cost of evaluating the gradient of the
criterion with respect to the coefficients is higher but asymp-
totically equivalent, because each of the pixels contributes
to exactly components of the gradient. Note that this cost
is independent of the total number of the basis functions
(unless ). The cost of evaluating the Hessian is

operations. (See also Section VI-A.)
Fig. 1 shows the generating functions needed to calculate a

value at one point (denoted by the vertical bar) for various bases;
only functions that are nonzero at that point are considered.
Except for the Fourier basis, we choose basis functions of the

4We assume that the cost of evaluating the basis function itself is constant or
that their values can be precalculated.

same degree (cubic), generating the same space. We see clearly
that the least number of contributing functions (four) is in the
B-spline case. This effect turns out to be even more dramatic in
higher dimensions.

The reasoning above rules out the polynomials because no
fast algorithm is known for their evaluation and the brute-force
evaluation is slow due to their long support. As for the radial
basis functions, although there are algorithms with reduced
asymptotical complexity for evaluation of radial basis functions
[50]–[53], their overhead is still nonnegligible. We decided
against the harmonic (Fourier) basis functions because of their
lack of localization (the fact that any two of them overlap).
Another argument against the Fourier basis is that it cannot
express linear functions (affine deformations). The only two
remaining candidate basis are therefore B-splines and B-spline
wavelets.

A. Splines Versus Wavelets

To make a fair comparison between B-spline and wavelet
bases, we consider compactly supported cubic B-spline
wavelets [54] spanning the same cubic spline space. First, let
us analyze the task of evaluating the deformation at a single
point. For simplicity, we will work in 1-D. There are only
four participating B-splines altogether while there are four
participating B-spline wavelets at each level, plus four scaling
functions (cubic B-splines) at the coarsest level. Second, to
evaluate the deformation at a set of equally spaced points
(this corresponds to a regular grid in multiple dimensions),
the direct B-spline representation is also the most efficient,
the interpolation requiring only four multiplications per pixel.
This is better than all alternatives available when using the
B-spline wavelets, including iterative filterbank and FFT-based
algorithms.

Note that the complexity of evaluation of the gradient of the
criterion corresponds to the complexity of the evaluation of the
deformation because the same type of formula is involved (see
Section VI-A).

B. B-Spline Deformation Model

The B-spline deformation model is obtained by substituting a
scaled version of the B-spline (or tensor product thereof) in (3)

(4)

where is the degree of splines used,is the knot spacing,
and the division is taken elementwise. This corresponds to
placing the knots on a regular grid over the image. We require
the node spacing to be integer, which together with the
separability of implies that the values of the B-spline

are only needed at a very small number of points
and can be precalculated. We can evaluateon the

whole grid with the cost of only multiplications
per pixel.

The B-spline model has good approximation properties and
is fast to evaluate. It is physically plausible, for example cubic
splines minimize the ‘strain energy’ [55], [56]. It can
encode all affine transformations, including rigid body motion.
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Moreover, B-splines are scalable in the sense that any coarse
level deformation can be represented at a finer scale without
any loss of information given an integer ratio between scales.
The expansion operator (Section VI-C) is therefore exact.

IV. OPTIMIZATION STRATEGY

A. Optimization Algorithm

Recall from (1) and (4) that we need to minimize a crite-
rion with respect to a finite number of parameters. To de-
termine which of the many available algorithms performs best
in our context, we tested four local iterative algorithms which
can be cast into a common framework: At each stepwe take
the actual estimate and calculate a proposed update .
If the step is successful, then the proposed point is accepted,

. Otherwise, a more conservative update
is calculated, and the test is repeated.

1) Gradient descent with feedback step size adjustmentwith
update rule: . After a successful
step, is multiplied by , otherwise it is divided by

.5

2) Gradient descent with quadratic step size estimation. We
choose a step size minimizing the following approxi-
mation of the criterion around :

, where is identified from
the two last calculated criterion values. As a fallback
strategy, the previous step size is divided by, as above.

3) Conjugated gradient. This algorithm [43] chooses its de-
scent directions to be mutually conjugate so that moving
along one does not spoil the result of previous optimiza-
tions. To work well, the step sizehas to be chosen opti-
mally. Therefore, at each step, we need to run another in-
ternal one-dimensional minimization routine which finds
the optimal ; this makes it the slowest algorithm in our
setting.

4) Marquardt–Levenberg. The most effective algorithm in
the sense of the number of iterations was a regularized
Newton method inspired by theMarquardt–Levenberg
algorithm (ML), as in [22]. Various approximations of
the Hessian matrix were examined (see also Sec-
tion VI-A).

As the behavior of all optimizers is comparable at the beginning
of the optimization process (see Fig. 2), the main factor deter-
mining the speed is the cost of a single iteration. The evaluation
costs are presented in Table I; for the ML algorithm, the cost of
the Hessian matrix inversion (which grows with the cube of the
number of parameters) must be added. It follows that the gra-
dient descent (GD) iterations are the least costly, the difference
between the two variant being minimal. We therefore recom-
mend to use the GD algorithm with the quadratic step size esti-
mation (which works better than the feedback adjustment) and
we use it for experiments in the remainder of the paper. One ad-
ditional pleasant property of the GD algorithm is its tendency
to leave uninfluential coefficients intact, unlike the ML algo-
rithm. Consequently, less regularization is needed for the GD
algorithm.

5We used� = 10 and� = 15.

Fig. 2. Evolution of the SSD criterion during first 18 iterations when regis-
tering the Lena image, artificially deformed with 2� 4 � 4 cubic B-spline
coefficients and a maximum displacement of about 30 pixels, without multi-
resolution. The optimizers used were: Marquardt–Levenberg with full Hessian
(MLH), Marquardt–Levenberg with only the diagonal of the Hessian taken into
account (MLdH), and gradient descent (GD). The deformation was recovered
in all cases with an accuracy between 0.1 and 0.01 pixels (see also Section VII).

TABLE I
RELATIVE TIMES TO EVALUATE THE CRITERIONE, ITS GRADIENT rE, AND

HESSIANr E, FOR A VOLUME OF 64� 64� 17 VOXELS APPROXIMATED BY

CUBIC SPLINES, AS A FUNCTION OF THESPLINE DEGREEn USED TOMODEL

THE DEFORMATION AND THE SIZE OF THE PARAMETER GRID n . (THE

ABSOLUTE TIME TO EVALUATE E WAS ABOUT 1 s)

Fig. 3. Comparison of gradient descent (GD), conjugated gradient (CG),
and Marquardt–Levenberg (ML) optimization algorithm performances when
registering SPECT images with control grid of 6� 6 � 6 knots. The graphs
give the value of the finest-level SSD criterion of all successful (i.e., criterion-
decreasing) iterations as a function of the execution time. The abrupt changes
are caused by transitions between resolution levels.

Under different constraints, when a small number of param-
eters is sought, the criterion is smooth, and high precision is
needed, the ML algorithm performs the best. This is because its
higher cost per iteration is compensated for by a smaller number
of iterations due to the quadratic convergence. An example of
such a situation is shown in Fig. 3. (See also [57].) Among Mar-
quardt–Levenberg (ML) algorithms, we found the performance
to be superior when using the full Hessian.
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B. Multiresolution

As in [22], we use the multiresolution approach for both
the image and deformation models. We start with the coarsest
resolution versions of both, and alternatively refine the image
and the deformation model every time convergence is reached,
until the finest level. The coarse versions of images are gener-
ated using a reduction operator (see Section VI-C). Conversely,
coarse level solutions are extrapolated to finer levels using an
expansion operator (cubic spline interpolation).

V. SEMI-AUTOMATIC REGISTRATION

We realize that although the multiresolution approach leads
to a very robust registration algorithm, there are cases when it
is mislead by an apparent similarity of features which do not
correspond physically. Therefore, we developed an extension of
the algorithm which can use expert hints. The hints come in the
form of a set of landmarks and are used to gear the algorithm
toward the correct solution.

The idea of a hybrid registration algorithm combining both
local features (points or lines) with global ones (intensities) has
appeared for example in [58], [59]6 and others. However, as
both [58], [59] use essentially local, nonparametric deformation
models, the landmark constraints need to be first interpolated
everywhere to serve as ana priori deformation field. This is in
contrast with our method which only imposes the landmark in-
formation at landmark points where it is really known. Another
difference is that thanks to our parametric deformation model
the additional overhead is negligible.

The landmark information is incorporated in the automatic
process using the concept of virtual springs, tying each pair
of corresponding points together. We augment the data part of
the criterion with a term , corresponding to the poten-
tial energy of the springs, and minimize the sum of the two:

. The spring term is

(5)

where is the number of springs, are weighting factors cor-
responding to their stiffnesses, and, resp. , are the land-
mark positions in the reference, resp. test images. The spring
factors control the influence of the particular landmark pairs.
We propose to start with all and adjust them experi-
mentally to get the most satisfactory results. We should aim for
a compromise between too small that does not succeed in
making the algorithm to converge to the right solution, and
too high that forces the solution to a landmark position that is
perhaps not sufficiently precise.

As an example, we tried to register an MRI slice from an
atlas7 with a sample MRI test image.8 The atlas is a labeled and
annotated collection of images. To identify the same structures
in the test image, we register it with the unlabeled version of
the atlas. Once the geometric correspondence is established, the

6We thank the reviewers for bringing this to our attention.
7Courtesy of Harvard Medical School, http://www.med.harvard.edu/

AANLIB/home.html.
8We use a proton density MR image from the Visible Human project http://

www.meddean.luc.edu/lumen/meded/grossanatomy/cross_section/index.html.

structures and their labels from the atlas can be projected onto
the test image. Prior to registration, the histogram of the test
image was matched to that of the reference. The unsupervised
registration correctly registers some of the structures but misses
others; in particular the skull boundary (see Fig. 4). We then
identified several landmarks in both images (Fig. 5). Using this
minute hint, the semi-automatic algorithm could recover a plau-
sible deformation, even though the landmark information alone
(using e.g., thin-plate splines) would not have been enough [38].
We gave the weight 1.0 to all landmarks except the landmark
at the bottom left part of the skull which had a weight of 0.2.
This made the final positions of the landmarks coincide with
the target ones to within about 2 pixel for the least weighted
landmark and about 1 pixel for all the others.

Adding the spring term privileges likely solutions based on
our a priori knowledge and makes the problem better-posed.
The points need not to be image-dependent landmarks. For ex-
ample anchoring the four corners of the image prevents the so-
lution from degenerating. In this way, the springs play in part
the role of a regularization factor.

The landmarks are added when the automatic algorithm
cannot solve the problem by itself and an input from a human
expert is needed. For this reason, we decided to accept the land-
mark data as trustworthy and definitive. This is unlike in [58],
[59], where the landmarks come from an automatic process,
such as iterative closest-point algorithm (ICRP), and therefore
cannot be regarded as definitive. However, it is possible to give
a certain feedback to the expert, for example the value of the
criterion in landmark neighborhoods. This could be also used
to reject misplaced landmarks.

VI. I MPLEMENTATION ISSUES

The purpose of this section is to describe some specific as-
pects of our implementation. These are mostly independent of
the main philosophy of the algorithm but can have a major im-
pact on its performance.

A. Explicit Derivatives

For the optimization algorithm, we need to calculate the par-
tial derivatives of , as they form the gradient vector
and the Hessian matrix . Starting from equation (1),
we obtain the first partial derivatives

(6)

as well as the second partial derivatives

(7)

From (1) defining the SSD criterion, we get
and . The derivative

of the deformation function (4) is simply
. The deformation model is linear and all its

second derivatives are therefore zero; that is the reason for the
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Fig. 4. Reference MRI proton density brain slice from the atlas (a) with and (b) without labels. The sample test slice of a corresponding region (c). The
superposition (in red and green) of the two images (d) before and (e) after the registration. The deformation field (f). Cubic splines were used with knot spacing
of h = 32. The image size was 512� 512 pixels. The difference between images is only partially corrected by the unsupervised registration. Misalignment of
several structures is clearly visible.

simplicity of (7). The partial derivatives of in (6) and (7) can
be calculated from (2) as a tensor product

Second-order partial derivatives of are obtained in a similar
fashion.

The Marquardt–Levenberg approximation of the Hessian as-
sumes that the term is negligibly small or that
it sums to zero on average, which justifies omitting this term
from (7); see [43]. Another simplification is to consider only
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Fig. 5. Reference (a) and test (b) images with superimposed landmarks (in
red). The superimposed images after registration using the semi-automatic
algorithm (c) and the deformation field found (d). Corresponding anatomical
structures are well identified; the alignment is clearly superior to that in Fig. 4.

diagonal terms . Obviously, this diagonal Hessian
approximation only makes sense if the basis functionsdo
not overlap too much. This is another argument for the B-spline
model.

B. Gradient Calculation as a Convolution

Similarly to the case of evaluating the deformation, the use
of an integer step sizeleads to computational savings here too.

Fig. 6. From top to bottom: The original slice of anatomical MRI brain image,
original superimposed over the true deformation, the recovered deformation
versus the true deformation, and the mask used to calculate the warping index
(bottom left).

The expanded expression for can be transformed
into a discrete separable convolution
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Fig. 7. Evolution of the optimization process. The left column displays the evolution with respect to the number of iterations, while the right columnrepresents
the same quantity respect to time. The first row shows the SSD criterionE, the second row the warping index$. The step changes correspond to the changes in
the model and image resolutions. We observe good correlation between all four graphs.

, where we have substituted
for the first two factors in (6), , and

indicates downsampling as defined by the formula, with
elementwise multiplication . The convolution kernel is
separable and the convolution can be calculated as a sequence
of unidimensional convolutions .
Because of the downsampling, calculating one output value
at step consists of a scalar product with a filter of length

and shifting this filter by .

C. Multiresolution Spline Representation

To deploy the multiresolution strategy (see Section IV-B),
we need to specify expansion and reduction operators. We will
use the same approach for both the deformation model and
the image model. The expansion can be performed exactly;
we choose to do optimal reduction in the sense [60]. Both
expansions and reductions can be performed efficiently using
FIR and recursive IIR filters. To cope with the finite extent
of our signals, we put extra B-splines outside the interval of
interest. This allows for complete control of the signal within
the interval of interest; see [38] for details.

D. Fast Spline Calculations

It is essential to take full advantage of the properties of
splines. First, specialized routines are used to calculate the
values of a B-spline of a specific order using a minimum
number of operations. Second, as we are using tensor products
of B-splines as our basis functions, many operations can be

Fig. 8. Geometrical error after registration (green) with superposed contours
of the original MRI image (red). The maximum (green) intensity corresponds
to an error of 1.5 pixels.

performed in a separable fashion, reducing the complexity of
operations from , where is the number of dimensions
and the size of the data, to . This is the case for the
prefiltering step required to find the B-spline coefficients, and
also for the interpolation of values of a function given by its
B-spline coefficients. Third, the compact support of B-splines
simplifies many of the infinite sums in the expressions given
earlier, reducing them to sums over just a small number of
elements.
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Fig. 9. Examples of randomly generated fractal-like deformations for various
Sobolev exponentsr. Observe how the deformation gets smoother with
increasingr.

E. Stopping Criterion

To get a fast optimization algorithm, particular attention has
to be paid to the stopping criterion. This holds for both GD and
ML algorithms. Classically, the relative and absolute improve-
ment of the criterion value is compared with a fixed threshold
[43]. For our class of problems, we found it to be advantageous
to base the stopping criterion on the changesof parameter
values. We stop when the step size falls below ana priori given
threshold . The size of a step that fails gives an indication of
the accuracy of the result and is therefore easy to set. Typically,
we would use the threshold of pixels for the
finest level an slightly more for coarser levels, as there is usually
not enough details and coherence between levels.

F. Masking

A substantial gain in speed comes from considering only im-
portant pixels when calculating the data criterion (1) and its
derivatives. It is possible to determine ana priori mask of signif-
icant pixels, for example 1050% of the total number of pixels,
and to consider only those pixels in subsequent calculations. The
contributions of individual pixels to the change of the criterion is
directly proportional to the amplitude of the directional deriva-
tives at the respective points; see (6). Therefore, a reasonable
strategy is to construct the mask by thresholding the gradient of
the image at each multiresolution level.

Fig. 10. Deformation recovered using progressively smaller (coarser)
deformation spaces (left column), and the corresponding residual error (right
column). The knot spacingh and warping index$ are shown. Cubic splines
were used.

VII. EXPERIMENTS

This section presents a series of experiments in a controlled
environment to assess the accuracy, speed, and robustness of our
algorithm. We show the SSD criterion (1) we minimize, and also
a warping index ; that
is, the mean geometric error between the true and the recovered
deformation. The mean is only calculated over a region, the
part of the image containing useful data (object); an example of
a region can be seen in Fig. 6, bottom left.

A. Registration of MRI Brain Slices

To illustrate the behavior of the algorithm, we show its per-
formance when recovering a known deformation of a two-di-
mensional (2-D) slice of an anatomical spin-echo MRI volume
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Fig. 11. Ideal (best achievable) versus attained warping index when recovering
the randomly generated hierarchical deformation (r = 2) applied on a MRI
image (see Fig. 10) as a function of the search space.

Fig. 12. Final geometric error as a function of the smoothness (regularity)
of the deformation (highr corresponds to smoother functions) and the spline
degree of the deformation model. The “ideal” warping index corresponds to the
projection into the cubic spline space. The values shown are arithmetic means
of 60 experiments. The standard deviation of the warping index$ is about 0.25
pixels.

Fig. 13. Final geometric error as a function of the grid spacingh (crate ) in
pixels and the smoothness of the deformation (highr corresponds to smoother
functions). The values shown are arithmetic means of 60 experiments.

of the brain.9 We use here artificially deformed images because
the knowledge of the ground truth permits us to better judge the
performance of the algorithm.

The original image of size 256 256 pixels is shown in Fig. 6,
top left. We use a cubic spline control grid with one knot for
every 32 pixels. We warp the image with a deformation be-
longing to the warp space and consisting of displacements up
to 15 pixels (1 pixel corresponds to approximately 0.9 mm).
The warped image is superimposed on the original in Fig. 6,
top right. Then the automatic registration algorithm is run. The
stopping threshold is set to 0.5 pixels for all levels except the
last, where we set it to 0.1 pixels. The recovered deformation
was used to warp again the original image. Its warped version

9First author’s brain. Images courtesy of Arto Nirkko from Inselspital Hos-
pital, Bern, Switzerland.

Fig. 14. Final geometric error as a function of the SNR. The values shown are
arithmetic means of 60 experiments. Error bars indicate one standard deviation.

Fig. 15. Warping index of the deformation used as a starting point (top) and
of the recovered deformation (bottom). The initial guess (starting point) varies
from identity (� = 0) to the true deformation (� = 1:0).

Fig. 16. Scatter plot of the dependence between the original and final warping
indexes. The data is based on 142 experiments.

is shown superimposed on the image warped with the true de-
formation in Fig. 6, bottom right. We note that the deformation
was well recovered with no perceptible difference.

The spatial distribution of the resulting geometrical error is
shown in Fig. 8. The maximum error is about 1.5 pixels, while
the mean geometric error (warping index) over the total of
the brain is about 0.4 pixels. We generally observe that the error
is concentrated in areas with little detail in the image. Other,
high-contrast regions such us edges are resolved much more
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Fig. 17. The superposition of the slices of anatomical MRI images before the registration (a), after the registration (b), and the resulting deformation field (c).
Quadratic splines were used with knot spacing ofh = 64.

precisely than indicated by the value of, often with subpixel
accuracy. On the other hand the agreement in the zones with
low-contrast will be worse and often only coincidental, since
there is little or no information to guide the algorithm.

The evolution of the optimization can be studied from the
graphs in Fig. 7. We observe the steady and correlated descent of
the observable criterion being optimized () and of the warping
index ( ), the quantity measuring the quality of the registration.
The abrupt changes in the curves are caused by the transitions
between levels of the multiresolution progression; they are small
thanks to the accuracy of the spline model.

Note that the final values of both and depend strongly
on the preset stopping threshold, which in turn influences the
optimization time. The threshold value is a subjective compro-
mise between the accuracy and computation time. It is perfectly
possible to stop optimizing only after 7 s and skip the finest res-
olution level altogether, if the precision of pixels is
acceptable. On the other hand, after about 4 more min of iter-
ation, the error descends to less than 10pixels. However,
in the authors’ opinion, such super subpixel accuracy is almost
never achievable on real images, because of the noise and the
unknown characteristics of the acquisition process.

B. Deformation Generator

We have implemented a fractional wavelet based random
deformation generator. It yields deformations with a prescribed
smoothness (regularity), characterized by a Sobolev exponent
—the maximum number of (fractional) derivatives in the

sense. This is guaranteed if the Fourier transform decreases
asymptotically at least as . We express the random
displacement in an orthogonal wavelet basis. We
use orthonormal symmetric fractional B-spline wavelets [61],
[62] of degree , which have precisely the desired
regularity and Fourier decay at infinity. We let the wavelet coef-
ficients be random (zero mean, independent, and normally
distributed) with standard deviation decreasing as , where

denotes the scale. This makes the Fourier spectrum of the
displacement decrease as required over the whole frequency
range and ensures that the (mean) displacement belong to the
Sobolev space [63].

To obtain corresponding 2-D deformation fields, we use sep-
arable 2-D wavelet transforms with the same basis functions and
the same decrease of amplitude of the coefficients in each com-
ponent as in the 1-D case. We can observe in Fig. 9 how the
deformation gets progressively more smooth and regular with
increasing .

C. Out-of-Space Deformation

The true deformation is not guaranteed to lie in the space
where we are looking for it and can therefore never be recovered
exactly. The associated error is called an approximation error.
We performed various experiments to compare the approxi-
mation error with the overall registration error. We generated
a random hierarchical deformation using the wavelet method-
ology from the previous section (with ) and projected
it into the space with knot spacing . We deformed the
MRI image (Fig. 6) with this deformation and tried to recover
it in spaces with knot spacings . Fig. 10 shows the
recovered deformations and the residual differences between
the reference image and the warped test images for different
values of the knot spacing. We observe that the deformation
can be recovered almost completely when we search in the
correct space ( ); important errors arise when we search
in different, coarser spaces. Ultimately, for , we can
express only deformations close to affine, which is obviously
not enough to capture all the details of the true deformation.

We now compare the error that our algorithm yields with the
smallest error it could possibly achieve, given the search space.
To find the best achievable approximation of some deformation,
given the knot spacing and spline degree, we will use the fact
that the warping index is in fact the (Euclidean) distance.
Therefore, the best approximation is an orthogonal projection of
the deformation onto the search space which can be calculated
easily.

The warping index resulting from the registration process
is compared with the best achievable one in a given space in
Fig. 11. We see that although the ideal values are not attained,
the difference is within the range of half a pixel. In real situa-
tions, the true deformation space is not known. However, thanks
to the good approximation properties of splines, we can reason-
ably expect that by using a sufficiently small value of, we can
reduce the approximation error to an acceptable value.
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D. Choosing the Spline Degree

The choice of the spline degree for the image and deforma-
tion models is a trade-off between the accuracy and speed. Here
too we generated hierarchical random deformations (see Sec-
tion VII-C) with varying smoothness and applied them on the
MRI image. We recover the deformations in spline spaces with
grid spacing pixels for linear, quadratic, and cubic
spline deformation models, with pixels. We observe
(see Fig. 12) that higher order splines perform better, while
the difference between linear and quadratic is much more im-
portant than between quadratic and cubic splines. The sample
registration times were 20.1 s, 26.7 s, and 48.9 s, for linear,
quadratic, and cubic splines, respectively. This indicates that
to use quadratic splines for the deformation model might be a
good compromise between approximation properties and speed.
Note that the task of recovering fastly changing deformations is
doubly difficult, as they cannot be represented well by the de-
formation model and they do not have a pronounced effect on
the image because of its lack of details at small scale in many
regions. Note also that as the deformation gets smooth, the geo-
metric error of the recovered deformation gets almost as small
as the minimum achievable error.

E. Choosing the Grid Spacing

Thanks to the properties of our deformation model and the
optimization algorithm, the grid spacing and thus the number
of parameters influences the execution time only mildly. There-
fore, the main criterion for choosing the grid spacingshould
be the estimated intrinsic resolution (smoothness) of the defor-
mation to be recovered. A control grid that is too coarse is not
able to express the deformation in all details. On the other hand,
too fine a control grid is overcompensating for true image dif-
ferences and noise. The effect of the grid spacing is less pro-
nounced for smoother deformations; see Fig. 13.

F. Noise Dependence

We added various levels of noise to the test images (i.e., after
the warping has been performed) to demonstrate the influence
of the SNR (signal to noise ratio) on the registration results. We
used 60 random deformation with , cubic splines with
knot spacing , and stopping criterion . We
observed that for SNR better than 10 dB, the influence of the
noise is very small (Fig. 14).

G. Starting Point

The following experiment evaluates the robustness of the al-
gorithm with respect to the starting point. Here, we tried to re-
cover the deformation from Section VII-A (MRI images) opti-
mizing only at the finest level. We linearly varied the starting
point of the optimizer between identity and the true deforma-
tion and observed the attained warping indexfor a stopping
threshold of pixels. Fig. 15 shows the warping index of
the deformation used as a starting point and the warping index of
the recovered deformation. We observe that although the final
result does depend on the starting point, it is most likely only
the influence of the stopping criterion. The algorithm therefore
proves to be very robust, even without the help of a multireso-
lution: it converged in all cases to the desired solution. On the

Fig. 18. Reference MRI image from a heart sequence with superimposed
contours (a). The same contours over another image (the test image) from the
same sequence before the registration (b) and after (c). The deformation field
(d). Quadratic splines were used with knot spacing ofh = 64, image size was
256� 256 pixels.

other hand, the elapsed time and the number of iterations dif-
fered significantly, from 2 iterations when starting from the true
solution, to several hundreds when starting from identity.
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Fig. 19. First line presents original images number 6, 9, 11, and 14 from a sequence of originally 60 images of myocardical perfusion MRI. The second line
presents the difference images between the original images and their immediate predecessors; movement artifacts can be clearly seen. On the third line you can
see the difference images from the motion corrected sequence using our algorithm; the movement artifacts are significantly reduced. The same effectis also visible
comparing the differences of the sequence images with the first image of the sequence on the original (fourth line) and corrected (fifth line) sequences.

H. Statistical Distribution of Errors

To evaluate the behavior of the algorithm on a larger set of test
cases, we generated a series of random hierarchical deforma-
tions (see Section VII-B), warped the MRI slice with them, and
applied our registration algorithm to recover the deformation.
We used the stopping threshold pixels and a warping

space which contained the deformation. We then compared the
warping index corresponding to the recovered deformation with
the initial warping index, that is, the distance between the true
deformation and identity. In Fig. 16 we present the scatter plot
describing the relation between the initial and final warping in-
dexes. We observe that the algorithm gives results with accuracy
consistently better than 0.1 pixels.
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I. Experiments With Real Data

We applied our algorithm to various problems involving med-
ical images of several modalities. We developed a registration
procedure for ECDf10 and Xenon inhalation SPECT images [64]
in the view of atlas creation [37]. Fig. 17 shows the resulting
alignment obtained after registering two slices of anatomical
(spin-echo) MRI images of two different subjects.11

To further illustrate the use of our algorithm, we present regis-
tered MRI images from a heart beat sequence;12 see Fig. 18. The
extracted deformation field can be used to extract trajectories
of various points in the heart which is important for diagnostic
purposes. Analyzing this field also permits the determination of
the velocity and derived parameters, such as the accumulated
displacement, and strain. We also analyzed standard 2-D ultra-
sound sequences of the heart [65]. The algorithm proved to be
robust to the occasional change of structure (topology) due to
the underlying 3-D nature of the true movement.13

Another technique for assessing cardiac performance is my-
ocardial perfusion by MRI [66], [67]. A sequence of MRI im-
ages14 is acquired with at high speed to assess the diffusion of
the agent. A role of the registration is to compensate for the
(heart) motion to provide the time profiles of the intensities
at each tissue point. The profiles are subsequently analyzed to
yield the physical (absorption) parameters of the tissue. Fig. 19
shows a few selected images of the sequence. It also shows dif-
ferences between images; we observe a significant amount of
motion artifacts. Most of these artifacts are compensated for in
the corrected sequence, where each of the images was registered
with (and warped toward) its already corrected predecesor. Ide-
ally, the corrected sequence should appear static, except for the
movement of the agent. In this application, a number of virtual
springs with carefully chosen weights was used, to make the de-
formation compensate for the movement of the tissues, but not
for the movement of the contrast agent.

Let us end with a 3-D example: the registration of two com-
puter tomography (CT) head volumes.15 Due to the large size
of the original volumes (512 512 45 voxels), it was im-
practical to perform the registration directly. We chose instead
to perform the registration on reduced volumes (128128
45) which took about 10 min to complete16 with the control
knots placed every 8 8 8 voxels and stopping threshold
of pixels. We then interpolated this deformation to the
original volume size.17

10ECD (Technetium Ethylene Cysteine Diethylester) is a radioactively
marked intravenously injected agent.

11Images courtesy of Arto Nirkko, Inselspital Hospital, Bern, Switzerland.
12LECB, NIH, http://www-lecb.ncifcrf.gov/flicker/.
13Analyzing directly 3-D ultrasound heart sequences would avoid this

problem. However, 3-D heart sequence acquisitions are much more rare in the
clinical use.

14Courtesy of J.-P. Vallée, Unité d’imagerie numérique, University Hospital,
Geneva, Switzerland.

15Images courtesy of Philippe Thévenaz, EPFL, Lausanne, Switzerland. The
images were acquired using the same machine and the same protocol, but not
preregistered.

16On a 700 MHz Pentium based computer.
17Registering directly the undecimated volumes on the same computer takes

about 3 h with very minor increase in quality as relatively smooth deformations
are sought. We are currently working on a optimized reimplementation of the
algorithm that should reduce these times considerably.

Fig. 20. Axial, sagital, and coronal views of the two CT brain volumes (one
in red, second one in green) after the registration.

Fig. 21. Axial, sagital, and coronal views of the two CT brain volumes (one
in red, second one in green) after the registration. The volumes are aligned, and
the large and medium-scale differences were compensated by the registration.
This permits to identify more subtle differences.

We observe that it is difficult to do any meaningful compar-
ison of the volumes prior to registration; see Fig. 20. However,
once the registration is performed, even small differences are
clearly apparent (Fig. 21). Moreover, the deformation field itself
can provide valuable quantitative information about the relative
sizes and shapes of various parts of the anatomy from the two
volumes. Note that the control grid spacing must be adapted to
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the task at hand because it influences the amount of differences
compensated for by the registration and warping.

VIII. C ONCLUSIONS

We developed a fully automatic elastic registration algorithm.
We extended the idea from [22] to multidimensional data, and
streamlined the algorithm to accelerate it. We designed a new
step-prediction formula for the gradient descent algorithm and
showed its efficiency for our application. A double multiresolu-
tion strategy brings speed and robustness and additionally elim-
inates the need for an initial rigid registration as the coarse grid
deformation itself plays this role.

We introduced the concept of virtual springs, yielding a semi-
automatic registration method, capable of using expert hints in
the form of landmarks to solve particularly difficult problems
where the fully automatic algorithm may be mislead. This is a
powerful combination of the ideas of manual landmark registra-
tion and the pixel-based registration using splines.

We applied the algorithm to a wide range of artificially
generated problems involving deformations with varying
smoothness applied to anatomical MRI images to demonstrate
the algorithm’s speed, robustness, and accuracy. Furthermore,
we presented several medical applications using various image
modalities.

We believe that by producing a specialized program taking
advantage of a specific configuration, the run time can be de-
creased by an additional factor of 2 to 10. This will enable truly
interactive operation of automatic and semi-automatic elastic
image registration with numerous applications in medicine, bi-
ology, and any other field where deformed images need to be
compared.
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[2] R. Bajcsy and S. Kovǎcič, “Multiresolution elastic matching,”Comput.
Vis., Graph., Image Process., vol. 46, pp. 1–21, 1989.

[3] F. Bookstein,Morphometric Tools for Landmark Data: Geometry and
Biology. Cambridge, U.K.: Cambridge Univ. Press, 1997.

[4] A. Mitiche and P. Bouthemy, “Computation and analysis of image mo-
tion: A synopsis of current problems and methods,”Int. J. Comput. Vis.,
vol. 19, no. 1, pp. 29–55, 1996.

[5] R. Szeliski and H.-Y. Shum, “Motion estimation with quadtree splines,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 18, pp. 1199–1207, Dec.
1996.

[6] A. Spinei, D. Pellerin, and J. Hérault, “Spatiotemporal energy-based
method for velocity estimation,”Signal Process., vol. 65, pp. 347–362,
1998.

[7] P. Moulin, R. Krishnamurthy, and J. Woods, “Multiscale modeling and
estimation of motion fields for video coding,”IEEE Trans. Image Pro-
cessing, vol. 6, pp. 1606–1620, Dec. 1997.

[8] J. Weese, G. P. Penney, D. Paul, T. M. Buzug, D. L. G. Hill, and D.
J. Hawkes, “Voxel-based 2-D/3-D registration of fluoroscopy images
and ct scans for image-guided surgery,”IEEE Trans. Inform. Technol.
Biomed., vol. 1, pp. 284–293, Dec. 1997.

[9] S. Warfield, A. Robatino, J. Dengler, F. Jolesz, and R. Kikinis, “Non-
linear registration and template-driven segmentation,” inBrain Warping,
A. W. Toga, Ed. New York: Academic, 1999, pp. 67–84.

[10] R. Szeliski and J. Coughlan, “Spline-based image registration,”Int. J.
Comput. Vis., vol. 22, pp. 199–218, 1997.

[11] O. Faugeras and R. Keriven, “Variational principles, surface evolution,
PDE’s, level set methods, and the stereo problem,”IEEE Trans. Image
Processing, vol. 7, pp. 336–344, Mar. 1998.

[12] B. McGregor, “Automatic registration of images of pigmented skin le-
sions,”Pattern Recognit., vol. 31, no. 6, pp. 805–817, 1998.

[13] M. Gabrani and O. J. Tretiak, “Surface-based matching using elastic
transformations,”Pattern Recognit., vol. 32, pp. 87–97, 1999.

[14] U. Kjems, S. C. Strother, J. Anderson, I. Law, and L. K. Hansen, “En-
hancing the multivariate signal of O water PET studies with a new
nonlinear neuroanatomical registration algorithm,”IEEE Trans. Med.
Imag., vol. 18, pp. 306–319, Apr. 1999.

[15] C. Nikou, F. Heitz, and J.-P. Armspach, “Robust voxel similarity metrics
for the registration of dissimilar single and multimodal images,”Pattern
Recognit., vol. 32, pp. 1351–1368, 1999.

[16] F. Maes, A. Collignong, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual infor-
mation,” IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 187–198, Apr.
1997.

[17] P. Thévenaz and M. Unser, “Optimization of mutual information for
multiresolution image registration,”IEEE Trans. Image Processing, vol.
9, pp. 2083–2099, Dec. 2000.

[18] J. Ashburner and K. J. Friston, “Nonlinear spatial normalization using
basis functions,” inBrain Warping, A. W. Toga, Ed. New York: Aca-
demic, 1999, pp. 254–266.

[19] J. Gee, “On matching brain volumes,”Pattern Recognit., no. 32, pp.
99–111, 1999.

[20] J. Martin, A. Pentland, S. Sclaroff, and R. Kikinis, “Characterization
of neuropathological shape deformations,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 2, Feb. 1998.

[21] K. V. Asari, K. Sanjiv, and D. Radhakrishnan, “A new approach for non-
linear distortion correction in endoscopic images based on least squares
estimation,”IEEE Trans. Med. Imag., vol. 18, p. 345, Apr. 1999.

[22] J. Kybic, P. Thévenaz, A. Nirkko, and M. Unser, “Unwarping of unidi-
rectionally distorted EPI images,”IEEE Trans. Med. Imag., vol. 19, pp.
80–93, Feb. 2000.

[23] F. Yeung, F. Levinson, D. Fu, and K. J. Parker, “Feature-adaptive motion
tracking of ultrasound image sequences using a deformable mesh,”IEEE
Trans. Med. Imag., vol. 17, pp. 945–956, Dec. 1998.

[24] D. Suter and F. Chen, “Left ventricular motion reconstruction based on
elastic vector splines,”IEEE Trans. Med. Imag., vol. 19, pp. 295–305,
Apr. 2000.

[25] P. Rösch, J. Weese, T. Netsch, M. Quist, G. Penney, and D. Hill, “Ro-
bust 3D deformation field estimation by template propagation,” inProc.
MICCAI, 2000, pp. 521–530.

[26] P. A. van den Elsen, E.-J. D. Pol, and M. A. Viergever, “Medical image
matching—A review with classification,”IEEE Eng. Med. Biol., pp.
26–39, Mar. 1993.

[27] J. Maintz and M. A. Viergever, “A survey of medical image registration,”
Med. Imag. Anal., vol. 2, no. 1, pp. 1–36, 1998.

[28] H. Lester and S. R. Arridge, “A survey of hierarchical nonlinear medical
image registration,”Pattern Recognit., vol. 32, no. 1, pp. 129–149, Jan.
1999.

[29] G. Christensen, S. Joshi, and M. Miller, “Volumetric transformation of
brain anatomy,”IEEE Trans. Med. Imag., vol. 16, pp. 864–877, Dec.
1997.

[30] M. Miller, S. Joshi, and G. Christensen, “Large deformation fluid dif-
feomorphisms for landmark and image matching,” inBrain Warping,
A. Toga, Ed. New York: Academic, 1999, pp. 115–132.

[31] G. Christensen and H. Johnson, “Consistent image registration,”IEEE
Trans. Med. Imag., vol. 20, pp. 568–582, July 2001.

[32] G. Hermosillo. (2002) Variational methods for multimodal image
matching, Ph.D. dissertation. INRIA. [Online]. Available: ftp://ftp-sop.
inria.fr/robotvis/html/Papers/hermosillo:02.ps.gz

[33] O. Musse, F. Heitz, and J.-P. Armspach, “Topology preserving de-
formable image matching using constrained hierarchical parametric
models,”IEEE Trans. Med. Imag., vol. 10, pp. 1081–1093, July 2001.

[34] F. Heitz, P. Perez, and P. Bouthemy, “Multiscale minimization of global
energy functions in some visual recovery problems,”Comput. Vis.
Graph. Image Process., vol. 59, no. 1, pp. 125–134, 1994.

[35] H. Yoshida, “Removal of normal anatomic structures in radiographs
using wavelet-based non-linear variational method for image matching,”
Wavelet Applicat. Signal Image Process., vol. 3458, pp. 174–181, 1998.

[36] Y. Wu, T. Kanade, C. Li, and J. Cohn, “Image registration using wavelet-
based motion model,” inInt. J. Comput. Vis., J. Le Moigne, Ed., 2000,
vol. 38, pp. 129–152.



1442 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 11, NOVEMBER 2003

[37] J. Kybic and M. Unser, “Multidimensional elastic registration of images
using splines,” inProc. ICIP Vancouver, BC, Canada, 2000, vol. II,
pp. 455–458.

[38] J. Kybic. Biomedical image processing by elastic warping, Ph.D. disser-
tation. Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzer-
land. [Online]. Available: http://cmp.felk.cvut.cz/~kybic/research.html.

[39] K. Rohr, H. S. Stiehl, R. Sprengel, W. Beil, T. M. Buzug, J. Weese, and
M. H. Kuhn, “Point-based elastic registration of medical image data
using approximating thin-plate splines,” inVisualization in Biomedical
Computing, K. H. Höhne and R. Kikinis, Eds. Berlin, Germany:
Springer-Verlag, 1996, pp. 297–306.

[40] F. L. Bookstein, “Principal warps: Thin-plate splines and the decompo-
sition of deformations,”IEEE Trans. Pattern Anal. Machine Intell., vol.
6, pp. 567–585, June 1989.

[41] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Image registration
by maximization of combined mutual information and gradient informa-
tion,” IEEE Trans. Med. Imag., vol. 19, pp. 809–814, Aug. 2000.

[42] M. Unser, “Splines: A perfect fit for signal and image processing,”IEEE
Signal Processing Mag., vol. 16, pp. 22–38, Nov. 1999.

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C, 2nd ed. Cambridge, U.K.: Cambridge Univ.
Press, 1992.

[44] J. Kybic, P. Thévenaz, and M. Unser, “Compensation of unidirectional
geometric distortion in EPI using spline warping,” inProc. IEEE Int.
Conf. Image Processing, Kobe, Japan, 1999, pp. 168–172.

[45] N. Sicotte, R. Woods, and J. Mazziotta, “Automated image registration
using a 105 parameter nonlinear model,” inNeuroimage, Proc. 2nd Int.
Conf. Functional Mapping of the Human Brain, vol. 3, June 1996, pp.
153–165.

[46] S. Kiebel, J. Ashburner, J. Poline, and K. Friston, “MRI and PET coreg-
istration—A cross validation of statistical parametric mapping and au-
tomated image registration,”Neuroimage, no. 5, 1997.

[47] M. Fornefett, K. Rohr, and H. S. Stiehl, “Elastic registration of med-
ical images using radial basis functions with compact support,” inProc.
Computer Vision and Pattern Recognition (CVPR’99), Fort Collins, CO,
1999, pp. 402–407.

[48] Y. Amit, “A nonlinear variational problem for image matching,”SIAM
J. Sci. Comput., vol. 15, no. 1, pp. 207–224, 1994.

[49] Y.-T. Wu, “Image registration using wavelet-based motion model and
its applications,” Ph.D. dissertation, Univ. Pittsburgh, Saint Louis, MO,
1997.

[50] D. Sutter and F. Chen, “Using a fast multipole method to accelerate the
evaluation of splines,”IEEE Comput. Sci. Eng., vol. 3, pp. 24–31, July
1998.

[51] R. K. Beatson and G. Newsam, “Fast evaluation of radial basis functions:
I,” Comput. Math. Applicat., vol. 24, no. 12, pp. 7–19, 1992.

[52] R. K. Beatson and M. J. D. Powell, “An iterative method for thin-plate
spline interpolation that employs approximations to the lagrange func-
tions,” in Numerical Analysis 1993, D. F. Griffiths and G. A. Watson,
Eds. Essex, U.K.: Longman, 1994, pp. 17–39.

[53] C. R. Anderson, “An implementation of the fast multipole method
without multipoles,”SIAM J. Sci. Comput., vol. 13, no. 4, pp. 923–947,
July 1992.

[54] M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline
wavelet transforms,”Signal Process., vol. 30, no. 2, pp. 141–162, Jan.
1993.

[55] I. Schoenberg, “Spline functions and the problem of graduation,”Proc.
Nat. Acad. Sci., vol. 52, pp. 947–950, 1964.

[56] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh,The Theory of Splines and
Their Applications. New York: Academic, 1967.

[57] P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to
subpixel registration based on intensity,”IEEE Trans. Image Processing,
vol. 7, pp. 1–15, Jan. 1998.

[58] P. Cachieret al., “Multisubject nonrigid registration of brain MRI
using intensity and geometric features,” inProc. MICCAI, Utrecht, The
Netherlands, 2001, pp. 734–742.

[59] P. Hellier and C. Barillot, “Cooperation between local and global ap-
proaches to register brain images,” inProc. IPMI, 2001, pp. 315–328.

[60] M. Unser, A. Aldroubi, and M. Eden, “TheL2 polynomial spline
pyramid,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15, Apr.
1993.

[61] M. Unser and T. Blu, “Fractional splines and wavelets,”SIAM Rev., vol.
42, no. 1, pp. 43–67, 2000.

[62] P. Flandrin, “Wavelet analysis and synthesis of fractional Brownian mo-
tion,” IEEE Trans. Inform. Theory, vol. 38, no. 2, pp. 910–917, Mar.
1992.

[63] S. Mallat,A Wavelet Tour of Signal Processing. San Diego, CA: Aca-
demic, 1998.

[64] I. Kanno and N. Lassen, “Two methods for calculating regional cerebral
blood flow from emission computed tomography of inert gas concentra-
tions,” J. Comput. Assist. Tomogr., vol. 1, no. 3, pp. 71–76, 1979.

[65] M. J. Ledesmay-Carbayo, J. Kybic, M. Desco, A. Santos, and M. Unser,
“Cardiac motion analysis from ultrasound sequences using nonrigid reg-
istration,” in Proc. MICCAI, W. J. Niessen and M. A. Viergever, Eds.,
Utrecht, The Netherlands, Oct. 2001, pp. 889–896.

[66] J.-P. Valléeet al., “MRI quantitative myocardial perfusion with compart-
mental analysis: A rest and stress study,”Magn. Reson. Med., vol. 38,
pp. 981–989, 1997.

[67] , “Quantification of myocardial perfusion with FAST sequence and
Gd bolus in patients with normal cardiac function,”J. Magn. Reson.
Imag., vol. 9, pp. 197–203, 1999.

Jan Kybic (M’00) was born in Prague, Czech Republic, in 1974. He received the
Bc. (B.Sc.) and Ing. (M.Sc.) degrees with honors from the Czech Technical Uni-
versity, Prague, in 1996 and 1998, respectively. In 2001, he received the Ph.D.
degree in biomedical image processing from Ecole Polytechnique Federale de
Lausanne (EPFL), Switzerland, for his dissertation on elastic image registration
using parametric deformation models.

Between October 2002 and February 2003, he held a post-doc research posi-
tion in INRIA, Sophia-Antipolis, France. Currently, he is with Center for Ma-
chine Perception, Czech Technical University. His research interests include
signal and image processing in general, image registration, splines and wavelets,
speech processing and enhancement, computer vision, numerical methods, al-
gorithm theory, and control theory.

Michael Unser(M’89–SM’94–F’99) received the M.S. (summa cum laude) and
Ph.D. degrees in electrical engineering in 1981 and 1984, respectively, from the
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

From 1985 to 1997, he was with the Biomedical Engineering and Instrumen-
tation Program, National Institutes of Health, Bethesda, MD. He is now Pro-
fessor and Head of the Biomedical Imaging Group at EPFL. His main research
area is biomedical image processing. He has a strong interest in sampling theo-
ries, multiresolution algorithms, wavelets, and the use of splines for image pro-
cessing. He is the author of 90 published journal papers in these areas. He was
on the editorial board ofSignal Processing.

Dr. Unser is an Associate Editor for the IEEE TRANSACTIONS ONMEDICAL

IMAGING. He has been on the editorial boards the IEEE TRANSACTIONS ON

IMAGE PROCESSINGfrom 1992 to 1995 and the IEEE SIGNAL PROCESSING

LETTERSfrom 1994 to 1998. He serves as regular chair for the SPIE Conference
on Wavelets, which has been held annually since 1993. He received the 1995
Best Paper Award and the 2000 Magazine Award from the IEEE Signal
Processing Society.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


