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Four-Dimensional Wavelet Compression of
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Abstract—Wavelet-based methods have become most popular
for the compression of two-dimensional medical images and se-
quences. The standard implementations consider data sizes that
are powers of two. There is also a large body of literature treating
issues such as the choice of the “optimal” wavelets and the per-
formance comparison of competing algorithms. With the advent
of telemedicine, there is a strong incentive to extend these tech-
niques to higher dimensional data such as dynamic three-dimen-
sional (3-D) echocardiography [four-dimensional (4-D) datasets].
One of the practical difficulties is that the size of this data is often
not a multiple of a power of two, which can lead to increased com-
putational complexity and impaired compression power.

Our contribution in this paper is to present a genuine 4-D
extension of the well-known zerotree algorithm for arbitrarily
sized data. The key component of our method is a one-dimensional
wavelet algorithm that can handle arbitrarily sized input signals.
The method uses a pair of symmetric/antisymmetric wavelets
(10/6) together with some appropriate midpoint symmetry
boundary conditions that reduce border artifacts. The zerotree
structure is also adapted so that it can accommodate noneven
data splitting. We have applied our method to the compression
of real 3-D dynamic sequences from clinical cardiac ultrasound
examinations. Our new algorithm compares very favorably with
other more ad hoc adaptations (image extension and tiling) of
the standard powers-of-two methods, in terms of both compres-
sion performance and computational cost. It is vastly superior
to slice-by-slice wavelet encoding. This was seen not only in
numerical image quality parameters but also in expert ratings,
where significant improvement using the new approach could be
documented. Our validation experiments show that one can safely
compress 4-D data sets at ratios of 128:1 without compromising
the diagnostic value of the images. We also display some more
extreme compression results at ratios of 2000:1 where some key
diagnostically relevant key features are preserved.

Index Terms—Echocardiography, image coding, multidimen-
sional images, zerotree algorithm.

I. INTRODUCTION

I N medical image processing, there is an abundance of pa-
pers dealing with image-compression algorithms, most of

which are based on wavelets [1]–[7]. The large majority of them
work with two-dimensional (2-D) and three-dimensional (3-D)
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datasets [4], [5], and usually with power-of-two image size.
In practice, however, higher dimensional image datasets, e.g.,
moving 3-D data, are increasingly used in medical imaging, and
often, they come in sizes that are not a multiple of a power of
two. The latter point may matter especially in higher dimen-
sions, as four-dimensional (4-D) data extension by some linear
factor may increase the size of the data (and thus the com-
puting time and hardware requirements) by a factor of. This
raises the questions of whether compression algorithms optimal
for 2-D and 3-D are good enough for 4-D and if simple extension
of power-of-two algorithms to arbitrarily sized data is adequate.
In a preliminary study, we had already found that genuine 4-D
wavelet compression is feasible and yields better results than
lower dimensional approaches [8].

The well-known zerotree algorithm [11] is an improvement
over simple wavelet compression but is mostly done in 2-D; an
extension to volumetric 3-D, termed “octave zerotree,” has been
described in [9] and [10], although results were only reported
for power-of-two data. The goal of this paper is to develop
a practical wavelet compression algorithm for (3-Dtime)
echocardiographic data, and, in particular, to extend Shapiro’s
well-known embedded zerotree algorithm [11] to a genuine
4-D method. While doing so, the major practical difficulty we
had to overcome was to come up with an algorithm that could
correctly handle 4-D data sets, irrespective of their size.

Section II describes our new wavelet algorithm, which has
the ability to process arbitrarily sized data. It also justifies our
design choices and describes the extension of the zerotree al-
gorithm to our particular framework. In Section III, we present
experiments using real datasets from dynamic 3-D echocardio-
graphy. Initially, we examined different strategies to handle ar-
bitrary-size data in a zerotree with respect to image quality, re-
quirements on hardware, computing time, and software com-
plexity. However, evident problems with these algorithms led
us to the development of the genuine 4-D zerotree algorithm
that is presented here. Finally, we compared the image-compres-
sion performance of this optimized 4-D algorithm to a slice-by-
slice or volume-by-volume application of 2-D and 3-D zerotree
wavelet encoding.

II. M ETHODS

A. Wavelet Decomposition and Reconstruction in 4-D

The 4-D wavelet transform is implemented in a separable
fashion by successive one-dimensional (1-D) transformation
along the , , , and dimensions of the data. The 1-D
decomposition amounts to splitting a signal of lengthinto
two subsequences of length 2: the lower resolution signal
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Fig. 1. 4-D (x, y, z, t) dataset after a first 4-D wavelet transform (low-pass
elements light gray) and a second wavelet transform (low-pass elements dark
gray).

approximation (low-pass component) and the wavelet (or
high-pass) component. The splitting process is repeated on
the lower resolution version of the signal until a predefined
decomposition level is reached. In our implementation, the level
of decomposition (number of scales) is specified independently
for each dimension according to the data length available.
The basic structure of the 4-D wavelet transform is shown in
Fig. 1. For the inverse algorithm, the splitting is replaced by
a 1-D merging process and the same sequence of operations
applied but in the reverse order, making the decomposition and
reconstruction algorithms flowgraph transposes of each other.

The difficulty in this application is that the 4-D echocardio-
grams do usually not come in sizes that are powers of two. This
led us to develop a 1-D wavelet algorithm that could handle input
signals of arbitrary length without any additional data storage.
Thanks to this method, we were able to correctly decompose our
data with any desired number of scales. Specifically, we consid-
ered data sets of size 240216 18 18, applying four levels
of decomposition in each of the dimensions.

B. 1-D Algorithm for Arbitrary Sized Data

A wavelet transform uses a pair of analysis filters (low-
pass) and (high-pass). The reconstruction algorithm uses
the complementary filters (refinement) and (wavelet
filter). These four filters define a perfect reconstruction filter-
bank. In the biorthogonal case, the system is entirely specified
by the low-pass filters and , which form a biorthog-
onal pair; the high-pass operators are obtained by simple shift
and modulation: and .

Our approach works for even-length filters that are either
symmetric or antisymmetric with respect to their center (mid-
point symmetry). Since the filters must include a minimum
number of regularity factors, we can assume without loss of
generality that the analysis filters are such that

(1)

where the odd-length factors and are symmetric
with respect to the origin; i.e., (central point

Fig. 2. Illustration of the signal extension rules for wavelet decomposition
using Haar-type even-length filters. In the case of the Haar transform, one has
thatA = a + b, C = c + d, etc., in the low-pass channel andA = a � b,
B = c � d, etc., in the high-pass channel. The input and the subsampled
low-pass channel are extended symmetrically, while the high-pass channel is
extended in an antisymmetric fashion. The nonstandard case is when the size of
the input is odd (b), which results in a center- (anti-) symmetric extension on
the right-hand side, as opposed to midpoint symmetries in all other cases.

symmetry). In other words, we have expressed the decomposi-
tion process as a symmetric filtering operation followed by a
Haar transform, which is the simplest transform to provide the
required midpoint symmetry; i.e., symmetry for the low-pass
and anti-symmetry for the high-pass.

When applying this type of filter to finite-length signals, one
usually implements midpoint mirror symmetric boundary ex-
tensions [12], as shown in Fig. 2(a). This has the desirable fea-
ture of reducing border artifacts. In the standard setup where
the length of the input signal is even, it also yields boundary
conditions that are consistent across all scales. The approach is
entirely reversible because there is a corresponding symmetry
rule that allows one to extend the subsampled low-pass and
high-pass components based on the values within the interval
[see Fig. 2(a)]. Note that the boundary conditions for the Haar
transform are directly transposable to the more general case be-
cause the symmetric factors and in (1) preserve
the boundary conditions of the input.

Here, we have extended this approach to the case where the
size of the input signal is odd. This is possible because in the
odd case, the very last wavelet coefficient happens to be zero
always, as shown in Fig. 2(b). Thus, we are able to split a se-
quence of length 2 1 into 1 low-pass coefficients plus

wavelet coefficients, thus fitting the transformed data into the
available storage space while preserving perfect reconstruction
(one-to-one transform). It is then easy to reconstruct the original
signal exactly by applying the inverse wavelet transform to the
low-pass and high-pass coefficients after extending them out-
side the interval using the symmetry rules in Fig. 2(b).

Another more standard solution would be data expansion to
the next multiple of a power-of-two, but this incurs additional
cost in terms of memory and computing time, especially in
higher dimensions.
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Fig. 3. Comparison of the 9/7 and 10/6 wavelets and their response to a unit step (ideal edge): (a) 9/7 analysis wavelet, (b) 9/7 step response, (c) 10/6 analysis
wavelet, (d) 10/6 step response. The step response of a symmetric wavelet is antisymmetric and vice versa. A response of the type (d) may be more advantageous
than (b) for zerotree wavelet encoding because an edge will produce a rather narrow response consisting of highly correlated wavelet maxima across scale.

C. Choice of the Wavelet Filters

Our implementation requires the use of even-length wavelet
filters where the low-pass operator is symmetric and the
high-pass antisymmetric. We compared several sets of filters
and finally retained the 10/6 filter pair described in [12, p. 127].
The corresponding symmetric components in (1) are

(2)

(3)

The 10/6 filters are both of order three, yielding wavelets
with three vanishing moments. Their frame bounds—analysis
(0.925, 1.065) and synthesis —are
rather close to one, which makes them particularly attractive
in our application. We recall that the constants and
represent, respectively, the minimum and maximum possible
ratios between the norms in the signal and wavelet domains.
In our case, the condition number of the transform is

close to one, which means that the filterbank is very close to
being orthogonal, a property that it shares with the popular
9/7 pair that is now part of the JPEG2000 standard [13]–[15].
Near-orthogonality is a highly desirable feature in image
compression because it justifies the use of uniform quantization
and a ranking of the wavelet coefficients according to their
magnitude (energy preservation property in the transformed
domain).

In addition to our algorithm requirements, there are other
good reasons for using such even-length filters. Villasenor iden-
tified a 6/10 pair (which is not as close to orthogonality as the
one used here) as an excellent candidate for image compres-
sion [16]. He singled it out based on its superior shift-invari-
ance properties. What we feel is perhaps an even stronger ar-
gument is that the corresponding wavelets, which are antisym-
metric, tend to have a better response to step edges in images.
They give rise to one clearly defined maximum at the location of
the singularity, instead of a positive plus a negative alternation,
as is the case with symmetric wavelets. This behavior is illus-
trated in Fig. 3. Practically, this means that an antisymmetric
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wavelet should be better suited for zerotree wavelet encoding
than a symmetric one, because the wavelet coefficient ampli-
tudes will tend to be strongly correlated within a cone-like re-
gion that closely matches the zerotree. In contrast, a symmetric
wavelet will also produce small coefficients at the location of
the singularity; these will be difficult to code efficiently because
they are isolated. Another way to put it is that the midpoint point
symmetry is the one that best matches the structure of a binary
tree—think of the Haar transform, which is even computable
within the tree structure.

D. Zerotree Algorithm in 4-D

A zerotree is a tree with zero-children ending nodes. In 1-D,
a zerotree corresponds to a binary tree with two children el-
ements per parent node; in 2-D, a zerotree corresponds to a
quadtree with four children per parent. “Binary” 3-D and 4-D
trees can therefore be designed that consist of 8 and 16 children
per parent, respectively.

E. Extension of Zerotree Algorithm to Arbitrarily Sized Data

When the size is a power-of-two, the “binary” design of the
tree fits the wavelet decomposition structure well, but in other
image sizes, this tree design matches the wavelet transform only
if data expansion or cropping to a multiple of a power-of-two is
performed. Basically, four strategies are possible to handle this
problem, as depicted for the 1-D case in Fig. 4

1) Expanding the dataset (Fig. 4, left upper panel):When
performing wavelet decomposition levels, data need
to be expanded to the next multiple of 2. While this
is an adequate solution in 1-D, it becomes less viable in
higher dimensions where the number of additional
pixels grows with the th power of the padding size.
In our example datasets, the data size would grow from
240 216 18 18 (64 MB when float datatype is used)
to 240 224 32 32 (210 MB), thus leading to a large
increase in computation time and hardware requirements.
In addition, image padding adds data that need to be en-
coded, thus potentially reducing compression efficiency.

2) Tiling the dataset to the next lower multiple of
power-of-two (Fig. 2, left lower panel):This is less
demanding in terms of hardware requirements and
computing time but has nevertheless a number of dis-
advantages: it forfeits a key advantage of the wavelet
transform by opening the door to “block” or “tile” border
artifacts. This is a well-known problem of the widely
used JPEG standard that becomes predominant at high
compression rates and that we would like to avoid as
much as possible. In addition, the computer algorithm
becomes rather complex, expecially in multidimensions,
where a single “tiling” step per dimension leads in the
4-D case to no less than 16 different “hypercube tiles,”
all of which may have different sizes.

3) Apply a conventional zerotree to the wavelet transform
adapted to arbitrary size data:Due to the mismatch of
wavelet structure and zerotree structure, the children of
one zerotree parent node may belong to different wavelet
subbands. Because different subbands often contain a dif-

Fig. 4. Different apporaches to zerotree decomposition of non-power-of-2
data, displayed for the 1-D case. Boxes show creation of subbands in con-
secutive wavelet decomposition steps. Arrows show connectivity of children to
their parents in the zerotree structure. Note that in our proposed solution (lower
right), wavelet subbands and tree connectivity correspond also in arbitrary
length data.

ferent amount of image energy, this may lead to grouping
of coefficients with largely different values, making later
entropy coding less successful.

4) Use a tree structure with a variable number of children
per parentthat matches the wavelet transform adapted
to arbitrary size data. This appears appealing because it
avoids the mentioned disadvantages of expanding, tiling,
and mismatch between wavelet and zerotree structure.
The modified tree structure is characterized as being
“nonbinary.” It features a variable number of children per
parent, ranging from one to three in 1-D and 1to 3
in dimensions. The fact that all children belong to the
same decomposition level facilitates their compression
by entropy coding methods.

FOR level: Firstlevel DOWNTO Lastlevel
DO
LengthH: SignalLength DIV 2;
LengthL: (SignalLength 1) DIV 2;
LengthLH: LengthL DIV 2;
LengthLL: (LengthL 1) DIV 2;
FOR child: 0 TO LengthH 1 DO
parent: child DIV 2;
IF parent LengthLH THEN
parent: LengthLH 1

END;
parent: LengthLL parent;
ConnectParentToChild (parent, LengthL

child)
END;
Signallength: LengthL

END;
Pseudocode for building a zerotree for ar-
bitrary size data; multiple dimensions
can be handled separately.



ZENG et al.: 4-D WAVELET COMPRESSION OF ARBITRARILY SIZED ECG DATA 1183

(a) (b)

Fig. 5. Zerotree structures for wavelet transform not size 2. (a) Conventional
zerotree with four children per parent. Wavelet decomposition structure and
zerotree structure do not match. (b) Zerotree with variable number of children,
with zerotree structure matching the structure of wavelet transform. Note that in
(b), a parent may have from one (e.g., LLH/LLH) to nine (e.g., LH/LH) children
L, LH, LLH, LLL: subbands of wavelet transform. Arrows: zerotree structure.

F. Building a Zerotree With a Variable Number of Children

The latter method requires a modification of the conventional
algorithm for tree building; however, the tree structure is en-
tirely determined by the size of the data in each dimension, so
that no additional storage is needed for the description of the
modified tree structure. The algorithm given in the text insert al-
lows the construction of parent–child relationships in a zerotree
for arbitrarily sized data, whereby the zerotree topography ex-
actly matches that of the wavelet decomposition performed as
described above. In this zerotree structure, all children of one
tree branch thus belong to the same wavelet subband. The al-
gorithm does not imply data extension, which means economic
use of memory and computation. It is sufficiently simple for
straightforward implementation.

Given the separability of multiple dimensions as to the
parent–child relationship, this algorithm is easily extended to
multiple dimensions. Fig. 5 depicts the structure of wavelet
decomposition and zerotree parent–child relation in 2-D; in
3-D and 4-D, tree building is analogous.

Coefficients are scanned in the-raster sequence typical for
zerotrees, starting in the very low-pass subband. In contrast to
2-D zerotrees, where there are three high-pass subband has three
high-pass subbands per decomposition level, there are seven
high-pass subbands in 3-D and 15 high-pass subbands in 4-D,
requiring somewhat more bookkeeping. A zerotree node was as-
sumed if a parent and all its children were zero, although other
published approaches like stopping after a single zero-parent
coefficient or scanning all details before assuming a zerotree
would be equally applicable in our algorithm.

Coefficient scanning was done in the classical bit-plane
manner [11], with decreasing threshold until a predefined data
length was reached. More recent positional coding strategies,
e.g., as described by Said and Perlman [18], are easy to plug in
at this stage and may further improve compression ability.

G. Coding

The resulting file was further compressed using arithmetic
coding [] (experimentally, Huffmann coding yielded inferior re-
sults).Adaptivefrequency arithmetic coding was rather slow,
while a general fixed frequency model did not perform so well

for the compression of our quantized wavelet decomposition co-
efficients. We therefore first got a frequency model (requiring
about 512 bytes storage space) of the 4-D zerotree. Then, we
used these data for fixed frequency arithmetic coding to com-
press the 4-D zerotree. In this way, we were able to achieve
an average storage space per coefficient that corresponds to the
lower limit predicted by the entropy of the 4-D zerotree.

H. Error Measures

error

hypercube

average error

NrofVoxels

mean square error

NrofVoxels
PSNR

mean square error

The image quality of compressed and decompressed image
files was quantitatively compared using maximum error, av-
erage error, mean square error, and peak signal-to-noise ratio
as parameters, as defined in the insert.

III. EXPERIMENTAL RESULTS

A. Test Data

Dynamic 3-D echocardiographic data (yielding 4-D image
datasets) were chosen for our tests, as this imaging modality is
increasingly used in clinical cardiology. Echocardiograms were
from consecutive patients undergoing echocardiograms for clin-
ical indications and were not selected for image quality.

B. Impact of Handling of Non-Power-of-Two Sized Data

With regard to data size, our 3-D echo system (SONOS,
Philips Medical Systems), which is widely available, features
frame width and height of 240 216 pixels, a fraction of 360
for the dimension, and a dimension corresponding to
the duration of the heart beat; i.e., possibly different for each
data acquisition. For example, one of the datasets used for our
experiments had a size of 240216 18 18 for , , , , as
determined by imaging hardware and patient heart rate, with
256 gray levels, accounting for a storage size of 16 MB when
using 1 byte/pixel.

First, we implemented the simplest possible version of
the wavelet coder where the image is expanded to the next
power-of-two. In our 4-D data, this led to a marked increase
in hardware requirements and computing time, as shown in
Table I. In addition, a degradation of compression efficency
due to the need to encode additional data (“zeros scattered in
the tree”) was observed.
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TABLE I
DATA EXTENSION TO THENEXT POWER-OF-TWO MAY, DEPENDING ONORIGINAL DATA SIZE, HAVE A HIGH COST IN TERMS OFRAM REQUIREMENT AND

COMPUTING TIME (PENTIUM-III, 550 MHZ). IN ADDITION, COMPRESSIONEFFICIENCY DEGRADESBECAUSEADDITIONAL COEFFICIENTSHAVE TO BE ENCODED

Fig. 6. Tiling of data to a power-of-two leading to linear artifacts.

Next, we considered the possiblity oftiling of the datain
blocks with a power-of-two size followed by a conventional ze-
rotree algorithm. We observed the following problems in imple-
menting this approach: Especially at higher compression rates,
visible blocking artifacts arise, as shown in Fig. 6. Tiling in
multiple dimensions also complicates the software substantially.
Some of the 4-D tiles are wide but of little depth, others are
narrow but deep, and so on, thus effectively prohibiting a uni-
form approach for wavelet transform and zerotree building in
different dimensions. In addition, image coherence across tile
borders cannot be exploited by the compression algorithm, and
tile borders are numerous in 4-D. The resulting cost in com-
pression efficiency and reconstructed image quality for this ap-
proach was about 3 dB in peak SNR (PSNR) at several compres-
sion levels, compared to the best strategy described below. An
additional disadvantage is that the “embeddedness” of the ze-
rotree, i.e., the possibility of progressive transmission and suc-
cessive refinement, is forfeited by tiling.

When thewavelet decomposition is adapted to arbitrary
size data,as discussed in Section II, one can either choose
a conventional zerotree with2 children per parents (
number of dimensions) or the strategy proposed in this paper;
i.e., constructing a zerotree with a variable number of children,
which matches the wavelet decomposition structure exactly.
Using a conventional “binary” zerotree leads to a number of
parent nodes without children, as visible in Fig. 4, upper right

panel. While data extension is not necessary in the algorithm,
these nodes have to be coded as terminal nodes, which leads to
some additional cost in compression efficiency. The resulting
loss in image quality was about 1 dB at moderate compression
rates in the 2-D case and increased with higher dimensionality
of the data.

Using azerotree structure adapted to the wavelet decompo-
sition and featuring a variable number of children(1 to 3
per dimension) emerged as the strategy of choice: it could be
performed on data of arbitrary size and yielded the best com-
pression efficiency. This could all be achieved with a rather
modest increase in algorithm complexity. The advantage of this
approach is that the tree matches the structure of the wavelet
transform in that the children of one parent node always belong
to the same wavelet decomposition subband (thus sharing image
energy), a property that is important for optimal performance of
entropy-based coding methods.

C. Influence of the Dimensionality of the Zerotree on
Compression Ability and Image Quality

The genuine 4-D zerotree approach with a variable number of
children, as described above, was then compared to a compres-
sion strategy that separates the data into separate 2-D slices that
are handled individually. Also tested was a 3-D version of the al-
gorithm, after the original 4-D data hypercube was cut into sep-
arate 3-D cubes. Obviously, cutting the 4-D data into lower di-
mensional parts will destroy any “interframe” or “intercube” co-
herence that would be amenable to the compression algorithm,
and a reduced compression power of the lower dimensional ap-
proach is therefore expected. Detailed compression results for
one representative data set are given in Table II. Note that com-
pression efficiency is best for the genuine 4-D approach at all
compression levels, but the difference is especially marked at
very high compression rates, suggesting that exploitation of data
coherence in 3-D and 4-D is especially important in applications
with low-bandwidth requirements.

In addition, reconstructed data were displayed as movies and
printed as still frames shown in Fig. 7. Note that at least some
key image features (left ventricular shape and global contrac-
tile function) remain visible even in 2000-fold compressed data
with the genuine 4-D zerotree approach. Comparing Table II
and Fig. 7, it is also interesting to note that peak SNR is not a
very good surrogate marker for visual image quality: to achieve
a compression rate of 128:1 in 2-D, it was necessary to sacri-
fice most high-pass information, leading to a loss of contours
and a blurred image. In the 4-D 2048 : 1 compression example,
however, important high-pass details that are strongly coherent
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Fig. 7. 4-D dataset compressed with 2-D, 3-D, and 4-D zerotree. There is a marked improvement in image quality with the genuine 4-D approach, especially at
high compression ratios, reflecting the impact of exploiting spatial data coherence in all dimensions.

TABLE II
INFLUENCE OFDIMENSIONALITY OF ZEROTREE AND OFTARGET COMPRESSION

RATE ON IMAGE QUALITY . A GENUINE 4-D APPROACHIS CONSISTENTLY

BETTER, EVEN MORE SO ATHIGH COMPRESSIONRATIOS

in space and/or time like cardiac borders could be preserved, re-
sulting in an improved visual quality despite a lower PSNR, that
is due to suppression of image information without coherence
in space and time by the algorithm. This incoherent information
probably contains an important amount of noise, and noise fil-
tering is a classical example of an image operation that improves
visual image quality but may reduce the PSNR in comparison
to the noisy original image.

D. Clinical Validation

As numerical image quality parameters do not always reliably
reflect clinically relevant visual image quality, compression
quality was also rated by an expert in a series of nonselected
echocardiograms that were acquired in clinical routine. We per-
formed 156 individual compression experiments using various
compression strategies and multiple compression rates. Image
quality was judged by an experienced cardiologist through
review of the original and compressed-reconstructed image
data side-by-side. Each compressed-reconstructed image was
displayed as a moving 2-D loop and was scored using a quality
scale ranging from 1 to 10 (with 10identical to original image,
8 discrete difference visually detectable without loss of diag-
nostic information, 6 moderate image difference detectable,
at most minor loss of diagnostic information, 4marked image
degradation, significant loss of diagnostic information, and 2
most diagnostic information lost). Overall differences in image
quality were analyzed by analysis of variance, and posthoc
testing between individual compression strategies was done
by paired -tests, using a two-sidedvalue below 0.05 as the
criterion for significance. Results shown in Table III demonstrate
that while image quality is (as expected) reduced with increasing
compression, the use of a higher dimensional compression
strategy consistently leads to improved images at all compres-
sion levels. For many current applications, the results in the
32– 128 compression range are interesting, as they document
that higher dimensional approaches allow significant savings in
bandwith and storage with similar or superior image quality.

The very high compression range—while certainly not suf-
ficient for exhaustive diagnosis—may be of interest in certain
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TABLE III
CLINICAL VALIDATION OF COMPRESSIONSTRATEGIES IN 156 INDIVIDUAL COMPRESSIONEXPERIMENTS ONNONSELECTEDCLINICAL ECHOCARDIOGRAMS:

INFLUENCE OFDIMENSIONALITY OF ZEROTREE AND OFTARGET COMPRESSIONRATE ON SUBJECTIVE IMAGE QUALITY . RATING BY AN EXPERIENCED

CARDIOLOGIST, USING A SEMIQUANTITATIVE QUALITY SCALE FROM 1 TO 10 (10= NO DIFFERENCE TOORIGINAL DETECTABLE). THE EXPERT

RATED IMAGES COMPRESSED BYHIGHER DIMENSIONAL ALGORITHMS CONSISTENTLY BETTER AT ALL TARGET COMPRESSIONRATIOS

situations where network limitations are severe, e.g., in areas
where no more than a phone line is available. Our findings in-
dicate notably that global left ventricular function, an important
variable in myocardial infarction, remains visible even in the
very highly (2000) compressed loops using the 4-D algorithm,
while in 2-D at 2000 : 1 compression no cardiac structures were
discernible in any patient.

IV. DISCUSSION

The increased availability of medical imaging technologies
that yield 4-D data, combined with the low-bandwidth require-
ments of telemedicine, pose new demands for image-compres-
sion methods. In this paper, we have shown that genuine 3-D and
especially 4-D algorithms dramatically outperform the standard
lower dimensional zerotree wavelet encoders, mainly because
these cannot fully exploit the coherence of the data in all dimen-
sions. With datasets whose dimensions are not dyadic, this can
be handled optimally through an adaptation of the zerotree algo-
rithm that allows a variable number of children per parent, cor-
responding to the nonexpansive wavelet decomposition strategy
performed on these data.

A potential disadvantage of the 4-D approach compared to a
standard storage of 2-D slices is the fact that if only a single but
highly resolved slice is needed, the entire dataset needs to be
handled anyway. However, this is more important in radiology
than in echocardiography, where single frames alone are rarely
used for diagnostic purposes.

Most current wavelet compression algorithms, including
JPEG2000, use odd-length filters with a central symmetry—the
standard example being the Daubechies’ 9/7 pair. In our case,
we designed our method to work with even-length filters with
midpoint symmetry, which is less standard. There are two
important reasons that support this choice. First, we showed
that these filters were applicable to the decomposition of
signals of arbitrary length, without any additional data storage.
Second, we also show that the midpoint antisymmetry of the
corresponding wavelet (same type as the Haar transform) was
best matched to the structure of the zerotree.

The proposed method is appealing because it improves the
compression ability of conventional approaches, thus on one
side improving image quality at low to moderate compression
rates and or alternatively allowing very high compression rate
while retaining diagnostically important image information; in

addition, it relaxes the requirements for image dimensions but
does not put additional demands on computer memory and com-
putation time. Still, the algorithm is reasonably simple to imple-
ment and flexible enough to allow for the integration of recent
refinements in wavelet coding [17].

With the significant improvement seen not only in numerical
image parameters but also in the expert grading of the recon-
structed loops, the described approach offers itself for a number
of potential applications in medical imaging, ranging from
the space-efficient storage of the typically very large moving
3-D (“4-D”) datasets, to improved high-quality compression
of image loops that may reduce bandwith requirements (and
costs) for image transfer, and finally to some very low-band-
with applications, e.g., telemedicine diagnosis of myocardial
infarction when only limited bandwidth is available but rapid
recognition of major contractility abnormalities may be more
urgent than transmission of the finest structural details of the
heart.

However, there remains much to do in clinical validation of
this approach. In an ongoing study, diagnostic accuracy and in-
terobserver agreement using various approaches are tested in a
larger range of patients using several experts, focusing on the
low–moderate compression range. Another planned analysis is
a more extended comparison of our even-length midpoint-sym-
metric wavelet approach with the standard Daubechies’ 9/7 and
other wavelet filters.
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