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MOMS: Maximal-Order Interpolation
of Minimal Support

Thierry Blu, Member, IEEE, Philippe Thévenaz, and Michael Unser, Fellow, IEEE

Abstract—We consider the problem of interpolating a signal
using a linear combination of shifted versions of a compactly-sup-
ported basis function ( ). We first give the expression of the ’s
that have minimal support for a given accuracy (also known as “ap-
proximation order”). This class of functions, which we call max-
imal-order-minimal-support functions (MOMS) is made of linear
combinations of the B-spline of same order and of its derivatives.

We provide the explicit form of the MOMS that maximize the
approximation accuracy when the step-size is small enough. We
compute the sampling gain obtained by using these optimal basis
functions over the splines of same order. We show that it is already
substantial for small orders and that it further increases with the
approximation order . When is large, this sampling gain be-
comes linear; more specifically, its exact asymptotic expression is
2 ( ) . Since the optimal functions are continuous, but not dif-
ferentiable, for even orders, and even only piecewise continuous for
odd orders, our result implies that regularity has little to do with
approximating performance.

These theoretical findings are corroborated by experimental ev-
idence that involves compounded rotations of images.

I. INTRODUCTION

T HIS paper deals with the problem of finding a good
interpolation model for fitting the uniform samples (not

necessarily perfect) of a signal. The prevalence of interpolation
in digital image processing stems from a basic inconsistency
between the world of natural phenomena, modeled by contin-
uously-defined variables, and the world of computers, where
discrete—and in practice, finite—data reign. This is especially
true of imaging where such models may include general
transformations such as rotations or translations [1], data
reduction and magnification [2], Cartesian-to-polar coordinate
conversions [3]–[5], data reslicing or resampling [6]–[8], image
warping [9], [10], gradient estimations [11], and many others.
Common to all these operations is the need to access the value
of a signal in between samples.

The Classical Approach to Interpolation:The usual tech-
nique for mapping a discrete signal onto a continuously-de-
fined signal is to express it on a basis made of shifts of
a function , according to

(1)

is chosen so as to satisfy theinterpolation condition
, where is Kronecker-delta; this ensures that
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. The parameter that appears in this formula-
tion is a sampling step—or the inverse of a sampling frequency.
As this step-size gets smaller, it is usually required that the
interpolated function gets closer to some function
that shouldideally represent the samples.

The Shannon-Whittaker theory tells us that the choice
and yields the exact reconstruction , pro-

vided that the bandwidth of this ideal function is limited
to somefinite interval . Unfortunately, life is not
ideal. Band-limited functions do not exist in practice, if only be-
cause no real signal is of infinite length. Moreover, the cardinal

function is not amenable to practical applications, because
of its infinite support, the slow convergence of a sum of shifted

’s, and correlatively, a strong instability in the presence of
noise.

Practitioners have long consideredfinite-supportinterpola-
tors . They have designed them to be close to the, with
the hope that this would bring good approximation characteris-
tics [12]–[14]. Others observed that what we will call “approxi-
mation order” improves quality [15]–[17]. An example is that of
Keys’ cubic kernel which has a free parameter; its optimization
turns out to be the one that provides the highest approximation
order [18]. In order to provide computationally efficient algo-
rithms, these kernels were chosen to be piecewise-polynomial
and of short support. Indeed, the size of the support is the most
crucial single element that rules the computational complexity
of an interpolation algorithm. This is because the evaluation of

at some point requires the computation of terms in
(1), if denotes the length of the support of . Furthermore,
this number increases exponentially with the dimension of the
problem.

The weaknesses of this approach are twofold. Regarding the
computational cost, the “small supportinterpolation” prop-
erty appears much too restrictive, given that infinite support
can be implemented at almost no additional computational cost
[19]. Regarding the approximation quality, it is not ensured that
“closeness” to the is truly beneficial. To be more specific,
the problem lies inhowto measure this closeness. We have been
investigating these issues in some depth [20], [21] and have
proposed satisfactory solutions that are summarized in the fol-
lowing paragraphs.

Our Approach to Interpolation [22], [23]: A fast implemen-
tation of (1) can be devised, provided that itself can be
expressed as an—arbitrary—linear combination of shifted ver-
sions of a finite-support function . A consequence of this
change of basis is that (1) becomes

(2)
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where , in general. Yet, we still require consistency
between the samples of the interpolated function , and
the measures . This implies that for
every integer . Thus, the interpolation method consists of a
two-step algorithm.

• The first step involves prefiltering the discrete databy
the low-order all-pole filter ,
which provides . This apparently unstable
filter can be implemented very efficiently by factorization
into a causal part and anticausal part ; the are first
filtered by in the forward direction, and then filtered
backwardby . This results in a fast and stable algorithm.

• The second step is similar to (1), with the difference that
we use (2) instead. Obviously, the cost of this step is di-
rectly given by the size of the support of . The smaller
the support, the more efficient the interpolation algorithm.

Numerous experiments [19], [23], [24] have shown that the ad-
ditional cost of prefiltering is almost negligible compared to the
second step. We thus claim that it is unnecessary—and detri-
mental to quality—to require that the support of the interpo-
lating function be of finite size, or, equivalently, that the
auxiliary function in (2) satisfy the interpolation condition.
This means that the choice of the function is essentially
free, except that, for computational efficiency purposes, we re-
quire that its support be as small as possible. Of course, the
matching between the interpolated data and the measures is still
taken into account—in the definition of the prefilter.

Approximation Issues:The interpolation problem can also
be reformulated in the following way: find the function in

(3)

such that . At this stage, one must realize that
interpolation is not the only method for approximating in
an arbitrary function ; and depending on how we measure
the closeness between two functions, it might not be the op-
timal method. For example, if we choose the norm, then
the optimal approximation of within is , the
orthogonal projection of onto , which is in general dis-
tinct from the solution provided by the interpolation method.
It is only when the function is Nyquist-band-limited and when

that interpolation and orthogonal projection agree. A
fair evaluation of the approximation quality of , i.e., of ,
must thus consider the distance ofto , that is to say, the
orthogonal projection error .

A rough evaluation of the approximation quality is given by
the rate of decrease of the approximation error as , also
known as “approximation order” in approximation theory [25].
In mathematical terms, the property con-
stitutes a definition of as the approximation order of. As
can be expected, the approximation order of both the interpola-
tion and the least-squares approximation methods coincide. A
useful example is that of splines of degreewhich have order

.

A. Results and Organization of the Paper

We first give a short account of approximation theory and of
our previous contributions to this matter. In particular, we intro-

duce the Fourier approximation kernel as the fundamental quan-
tity for studying the approximation error (see Section II).

In wavelet theory, the order of approximation is identi-
fied—and often, hidden—as theregularity order; i.e., the
number of regularity factors that divide the scaling
filter [26]. Since noncentered splines of degree are known
to be the smallest scaling functions that haveregularity order

, one may wonder whether these splines are also the smallest
functions that haveapproximationorder . The answer is yes,
but it turns out that the splines are not the only functions that
reach this minimum. The full class of such functions, which
we call maximal-order-minimal-support functions (MOMS), is
characterized in this paper (see Section III).

A finer estimation of the approximation error takes into ac-
count the proportionality constant between and

as . Unser [27] found a simple expression
for this asymptotic approximation constant. Here, we minimize
this expression within the MOMS class, yielding new func-
tions which we call O-MOMS (see Section IV). In other words,
among all the ’s that are compactly supported in , the
O-MOMS of order is the one that yields the smallest asymp-
totic approximation error , whatever the function

. We also show how to design other kinds of MOMS kernels:
suboptimal MOMS (SO-MOMS) and Lagrange-type interpola-
tors “I-MOMS” (see Section V).

Our theoretical claims (influence of the approximation order,
optimality of the O-MOMS) are consistently confirmed by prac-
tical experiments (see Section VI). There, we rate the interpola-
tion behavior of several MOMS kernels.

These results point out that, belying a widespread opinion, it
is definitely not necessary for the approximating function to be
regular to achieve a good approximation scheme; on the con-
trary, we show that thebest approximation of a function
is not more than continuous. Depending on the evenness of
the approximation order, it may in fact have points of discon-
tinuity. Even used in a suboptimal method—interpolation—the
O-MOMS perform significantly better than any other kernel of
the same size [23]. A nontrivial by-product of our findings is
that the best kernels (used in interpolation or in orthogonal pro-
jection) are piecewise-polynomial and can be expressed using
derivatives of a spline of the same degree.

B. Notation

When not otherwise stated, we often omit the range of in-
teger values for infinite summations, as well as the range of real
values for integrals. Thus, should be understood as
and should be understood as .

The conventional inner product between two
functions , , is denoted , and the associated Eu-

clidean norm is .
The Fourier transform of is .

Let be a positive real number; the Sobolev space
is defined as the collection of functions satisfying

. By analogy to this definition of
regularity, we extend to noninteger values of by
equating it to . The smoothness of
a function can thus be characterized by the maximum



BLU et al.: MOMS: MAXIMAL-ORDER INTERPOLATION OF MINIMAL SUPPORT 1071

such that ; this regularity exponent indicates that
has derivatives in for all . There is also

a direct connection withpoint-wisesmoothness: if
with , then has at least continuous
derivatives [28].

The Riemann zeta function is defined as ,
which is convergent for .

Most of the asymptotic expansions are presented with “”
and “ ” terms: writing is equivalent to writing

. In the same spirit, writing
is equivalent to writing

(i.e., not necessarily 0).
Noncentered B-splines of degree, denoted , are piece-

wise-polynomial functions that are compactly supported within
. Their exact expression is given by the formula

where, by definition, is the one-sided power function
. Their Fourier transform takes the simpler form

II. A PPROXIMATION USING FUNCTIONSSHIFTED BY INTEGERS

A. Approximation Order and Strang-Fix Theory

The notion of approximation order is crucial in approxima-
tion theory since it governs the rate of decrease of the approx-
imation error as . Specifically, the approximation order
is defined as the exponent such that the difference between
the function and its orthogonal projection onto
tends to 0 with ; i.e., . For this
property to hold, it is necessary to assume that and its th
derivative belong to .

In the case where is the space of -band-limited func-
tions, then and it turns out that

, where is any positive number smaller than the
Sobolev regularity order of the function [29]. Moreover,
if is indefinitely differentiable—this is the case of any
band-limited function—then the convergence of to
is faster than any monomial .

Here instead, we assume that is compactly supported.
Thus, the decrease rate of the approximation error cannot be
infinite and is necessarily integer. More specifically, we will see
(in Section III) that the support of must be at least of length

, for to decrease with .
To check the approximation order of , Strang and Fix es-

tablished in 1974 [25] the equivalence betweenth order of ap-
proximation and the following conditions:

(4)

The Strang-Fix conditions (4) can also take the following form
[30, Proposition 4.4]:

and such that (5)

This condition implies that any polynomial up to degree
belongs to . Yet another equivalent form of (4) is

and
polynomial of degree

such that (6)

In the rest of this paper, we will use the latter condition as an
equivalent formulation of the approximation order.

B. Approximation Kernel and Asymptotic Constant

When the sampling step is not small, or, equivalently,
when the spectrum of the function has a significant
content at high frequencies, the approximation error has to
be characterized not only by a (integer) number, but by a
function: the Fourier approximation kernel . When the
approximation method is the orthogonal projection onto,
the expression of this kernel is

(7)

We have recently shown [20], [21] that

(8)

where if . More remarkable, this term
cancels on the average over all possible shifts of the function;
i.e., if we denote , then

Finally, we also know that the correcting term in (8) van-
ishes when satifies Nyquist’s band-limitation constraint.

The approximation efficiency of a function space gener-
ated by shifts of is thus directly given by the closeness
of to 0 in the frequency region where the functions to
approximate are prominent; e.g., in for functions
that comply with Nyquist sampling hypothesis.

When satisfies Strang-Fix conditions of order, it is
easy, using (8), to find the asymptotic equivalent of the approx-
imation error as . The result takes the form

(9)

where is given by [27]

(10)

In image-processing applications, it is more frequent for the
sampling step to be fixed than to be tunable, perhaps made
to decrease toward zero. However, it can easily be checked
that the behavior of the approximation of smooth functions
when is also that of low-pass functions of decreasing
bandwidth when the step-size is kept constant. Thus, for very
low-pass signals—typically, images—the asymptotic constant
provides quite a reliable quality measure. This justifies the
approach chosen in Section IV where we shall minimize
this constant. Our choice will be further strengthened by the
empirical finding that the function that minimizes the
asymptotic constant also tends to minimize the approximation
Fourier kernel over the full Nyquist spectral range.
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III. M INIMAL -SUPPORTKERNELS: MOMS

We now answer a question of consequence: Which are the
smallest-support functions that have a given approximation
order ? Minimizing the support is indeed essential, as it en-
sures better localization, and hence fewer large-scale artefacts
for a given approximation accuracy. In addition, as pointed out
in Section I, it is computationally more efficient to have a small
support, especially in higher dimensions.1

Theorem 1: (MOMS) For a given approximation order, the
smallest-support kernel is piecewise-polynomial of degree

and its support is of size. Moreover, the full class of
these minimum-support functions is contained within an-di-
mensional vector space parametrized as

(11)

where , and where is an arbitrary shift parameter cor-
responding to the lower extremity of the support of . We
can also write (11) using Fourier variables

(12)

where is a polynomial of degree .
Some remarks on this result2 are as follows.

• The solutions to our problem are neither trivial, nor have
an infinite number of degrees of freedom. This will prove
extremely convenient in the sequel, where we address
some design problems.

• The most obvious, and also smoothest member of the
family is the B-spline of degree . This proves that
B-splines have the smallest support for a given order.

• The minimal-support functions are piecewise polynomials
with uniform knots. Moreover, due to the multiresolution
property of B-splines, the MOMS can be seen to enjoy a
related, though less simple, multiresolution property.

• The computational cost ofth-order MOMS interpolation
is exactlythe same as that ofth-order spline interpola-
tion. This is because these functions all have the same sup-
port and the same degree.

The simple Fourier expression (12) makes it possible to
express the asymptotic approximation constant. Using the
first-order equivalent of in the neighborhood of , that is

, we find

(13)

From this equation, we can easily obtain the asymptotic constant
for the spline of degree , , which
first appeared in [27].

1For our experiments inD > 1 dimensions, the kernel' that we consider
is obtained through a tensor product of the one-dimensional kernel'(x), i.e.,
' (x ; x ; . . . x ) = '(x )'(x ) . . .'(x ).

2After this paper was written, we became aware that Theorem 1 had already
been published by Ron [31] in a more mathematically abstract and general con-
text—the theory of exponential B-splines.

IV. OPTIMAL SMALLEST-SUPPORTFUNCTIONS: O-MOMS

We now design in (13) in such a way as to minimize .
This is equivalent to minimize

under the constraint . Rewriting this expression in
terms of with , we have

(14)

which involves the Riemann Zeta function defined in the nota-
tion part of this paper.

A. Solving the Minimization Problem

Numerical Method:This problem is obviously quadratic and
can be rewritten in matrix form as: Minimize under the
constraint , where

for
and even

otherwise

The matrix involved, , is positive definite since
implies for all ; that is to say,
because is a finite-degree polynomial. The solution is thus
unique and takes the form . Un-
fortunately, the numerical matrix method tends to be ill-condi-
tioned for values of that are large but still of interest.

Analytical Method: We show now that an analytical ap-
proach based on polynomials and continued fractions will
enable us to find the explicit solution of our problem. Let

be the MOMS of order that minimizes the asymp-
totic approximation constant . Let us also denote by

and the polynomial associated to ac-
cording to (12), and the corresponding approximation constant,
respectively. The functions are called optimal-MOMS or
O-MOMS. The result is as follows.

Theorem 2: (O-MOMS) The O-MOMS are specified
entirely by the induction relation

(15)

which is initialized by . Moreover, the
minimal constant is given by the explicit expression

(16)

(See the proof in Appendix B.) Some remarks concerning this
result are as follows.

• The induction (15) shows that the coefficients of
are positive and that this polynomial is even. We can thus



BLU et al.: MOMS: MAXIMAL-ORDER INTERPOLATION OF MINIMAL SUPPORT 1073

TABLE I
SAMPLING GAIN OF O-MOMS OVER B-SPLINE OF SAME DEGREE

deduce that its coefficients of even power (up to ) are
all strictly positive; i.e., they do not vanish.

• When is even, , which implies that the
optimal basis function, , is continuous and that its
first derivative is discontinuous. Whenis odd,

, which implies that is discontinuous. This
has an instructive and somewhat counterintuitive conse-
quence: As far as approximation is concerned, there is
no link betweenregularity andquality! In particular, this
tends to invalidate interpolator design based on regularity;
such an approach has moreover proved unsuccessful in a
recent publication [32]. This does not mean that regularity
is a useless parameter. For some applications it is indeed
necessary to have a differentiable model, but this require-
ment should not be misinterpreted as a condition related
to the accuracy of the approximation.

B. Asymptotical Approximation Gain

By construction, the optimal kernels minimize the
asymptotic constant among all MOMS. It is interesting to
compare the minimal constant with that of splines in such a way
that it reflects the gain in sampling density brought by using
O-MOMS instead of splines.

Assume that we wish to reconstruct a function using
either B-splines of order (i.e., of degree ) with sam-
pling step-size , or O-MOMS of the same order with sampling
step-size , such that the approximation error is the same
in both cases. We want to find the relation betweenand .
Assuming that in both cases the oversampling of is large
enough, we get the approximation error from (9) which provides

with obvious notations for
the spline and O-MOMS asymptotic constants and . We
finally obtain the sampling gain

(17)

Theorem 3: (Asymptotic gain) When the order is large,
the sampling gain of O-MOMS over splines that have the same
approximation order,increases linearlywith . Specifically

(18)

Proof: A basic application of Stirling’s formula,
, provides

. Taking the
logarithm of in (17), we readily obtain (18) after some
manipulations which involve and

.

TABLE II
O-MOMS OF ORDERS1 TO 6

This theorem shows that the gain is quite substantial, and
that it even tends to infinity as , which we did not
expecta priori. This linear behavior is to be compared with
the constant—asymptotic—gain, namely, of spline versus
Daubechies approximation [21].

C. Examples

The first six O-MOMS are shown in Table II with their
asymptotic constant relative to that of the spline of same
order. The asymptotic gain of O-MOMS over splines of same
order is given in Table I for orders ; the figures clearly
confirm the asymptotic linear behavior that we have predicted
in Theorem 3.

The optimal fourth-order function is plotted in Fig. 1 where
it is compared to the cubic B-spline. Note the cusp at
which indicates that is not continuously differentiable.
Moreover, the plot of the ratio of the approximation kernels of
the cubic O-MOMS and the cubic spline in Fig. 2 shows that
the approximation using is always better than that using

. The gain in apprroximation error even exceeds 6 dB
over half of the sampling bandwidth. According to (8), using
the optimal function instead of a cubic spline for reconstruction
(here ), we expect at least a 6 dB SNR gain for signals
whose frequency content lays essentially in the first half of the
frequency domain. Obviously, this gain increases dramatically
when the signal is more low-pass.

V. OTHER DESIGNS

A. Suboptimal MOMS (SO-MOMS)

Because the O-MOMS are discontinuous for even degrees
(i.e., odd orders), it might be useful to design suboptimal in-
terpolators that have a continuous derivative, while minimizing
the asymptotic approximation constant among their class. Those
suboptimal-MOMS or SO-MOMS, thus satisfy the same min-
imization problem as the O-MOMS in Section IV, with the re-
striction that is of degree at most in (14).
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Fig. 1. Optimal function' (solid) and B-spline function (dashed) forL = 4.

Fig. 2. Ratio between the optimal approximation kernel and the corresponding
B-spline kernel forL = 4.

While a systematic analysis of those SO-MOMS is possible,
we prefer to restrict ourselves to the case which are
of most interest to us. The corresponding interpolators are still
short and their degree is not too large, so that the interpolation al-
gorithm is reasonably fast. Note that for , the SO-MOMS
are the B-splines of same order.

Case : If we let in (12), then
the asymptotic constant takes the form

which is minimal for and
We thus have

(19)

The loss over the discontinuous O-MOMS
approximation constant is the price to pay for having a contin-
uously differentiable interpolator.

Case : If we let in (12),
then the asymptotic constant takes the form

which is minimal for and
. We thus have

(20)

The loss over the continuous O-MOMS ap-
proximation constant is the price to pay for having a twice-con-
tinuously-differentiable interpolator. As a consequence, we rec-
ommend SO-MOMS only in operations that require some depth
of differentiation. Moreover, notice that, for orders smaller than
five, SO-MOMS coincide with B-splines of same order.
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TABLE III
SO-MOMSOF ORDERS1 TO 6

We have summarized the values of the SO-MOMS in
Table III, with their asymptotic constant, expressed in function
of that of the spline of same order.

B. Interpolating MOMS (I-MOMS)

It is also possible to constrain the MOMS to be interpo-
lating. Note however that the interpolation condition is unneces-
sarily restrictive and that it leads to marquedly suboptimal inter-
polation. This is confirmed by our experiments (see Section VI).
Accordingly, we are generally not in favor of this condition, ex-
cept for applications where memory is tight and the image array
needs to be stored in byte format.

Due to the size of the support of, the interpolation condi-
tions add up to constraints if is in-
teger, and to constraints otherwise; these equations match the

degrees of freedom of the MOMS. In fact, these interpolators
derive from Lagrange’s interpolation formula [17], [33], [34]:
If we denote , then

if
otherwise,

which can be shown to belong to the class of MOMS of order.
We can obtain the polynomial defining these I-MOMS

directly, by expressing the interpolation condition in the Fourier
Domain as

Since is of order , we have that
when . This precisely means that

(21)

Our polynomial is thus given by the first coefficients of the
development of in Taylor series around
the origin. For example, if , the I-MOMS are centered:
The first six I-MOMS are given in Table IV with their asymp-
totic constant, expressed in function of that of the spline of same

TABLE IV
I-MOMS OF ORDERS1 TO 6

order. Note that these functions are discontinuous for odd or-
ders.

VI. EXPERIMENTS

The theoretical results that we have obtained in the previous
sections are of special relevance to image processing. As
observed in [34] and [35], the state-of-the-art interpolation
method that performs best uses splines as basis functions. We
will show that we can obtain visible improvement by using
cubic O-MOMS instead of cubic splines in an interpolation
experiment; the results for O-MOMS of other degrees also
show the same trend [23], [24]. This is a very practical issue
since, as indicated in introduction, there is no penalty from the
point of view of computational cost [19]. The algorithms are
essentially equivalent: The functions are cubic polynomials,
have the same support, and the recursive prefilters have the
same degree.

Description of the Experiments:To demonstrate experimen-
tally the superiority of the new interpolators, we rotated im-
ages using the most direct method, i.e., we implemented the
following steps: interpolation of the discrete image into

; rotation by the angle, giving
; and finally, resampling at the integers

to get the discrete image .
We have used four sets of images: 1) a circular

symmetric test image that exhibits increasingly high frequencies
near the center, which provides a direct insight of the behavior
of the interpolation method with respect to spatial frequencies;
2) “Lena,” which is significantly more low-pass than the other
images, and thus is more robust to interpolation; 3) “Barbara,”
which has a strong texture content; and 4) a boat image “La
Cornouaille,” particularly interesting for its thin straight lines.

To amplify the differences, we applied 15 successive rota-
tions by an angle of , and the final result was finally com-
pared to the original. This was repeated for each interpolators.
The final cumulative results are shown in Figs. 3 and 4, and the
obtained SNR are computed. By increasing the order, we can
saturate the SNR at a limit value that depends on the high-fre-
quency content of the image. For reference, the measured satura-
tion levels are 6 dB for the concentric circles, 37 dB for “Lena,”
34 dB for “Barbara,” and 40 dB for “La Cornouaille.”

Influence of the Approximation Order:The rotated images in
Fig. 3 confirm earlier practical findings [34]–[36] that a higher
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Fig. 3. Comparison between three interpolation methods of increasing order: 15 rotations of the top images by an angle of2�=15. The higher the approximation
order, the better the quality.

order is beneficial to quality. Note that cubic splinesorder
win over the linearorder and keys order methods,
not only because they are of higher order but also because they
are not constrained to satisfy the interpolation condition.

We made our experiments on a Power Macintosh G4/450
MHz. The computation time for the rotation experiment corre-
sponding to a nonoptimized implementation of the linear, Keys,
and cubic spline kernels was 5 s, 12 s, and 14 s, respectively.3

3A specialized implementation developed in our group at EPFL is actually
faster than Keys’ interpolation [24]

Influence of the Approximation Constant:We then set the ap-
proximation order to fourand compared the interpolation results
using kernels that have the smallest size, i.e., the cubic MOMS.
Once again, the theoretical prediction is confirmed by the exper-
iment: among interpolators that have the same order, the smaller
the asymptotic constant (see Tables II and III), the better the
quality.

As expected, the cubic I-MOMS suffers from the interpo-
lation condition, which makes it as fast as Keys’ kernel (12 s
in our experiment) but hinders approximation accuracy. This is
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Fig. 4. Comparison between three interpolation methods of same order(L = 4), same support, and of decreasing asymptotic constant: 15 rotations of the top
images by an angle of2�=15. The smaller the asymptotic constant, the better the quality. Remarks: The interpolation condition of the cubic I-MOMS is detrimental
to accuracy; the cubic spline is the smoothest cubic MOMS, but does not provide the highest quality; the cubic O-MOMS minimizes the asymptotic constant among
cubic MOMS and gives the best results, even though it is not smooth.

a constraint from which cubic B-splines and cubic O-MOMS
are free. As it appears, the higher regularity of the spline does
not seem to be at play since the cubic O-MOMS has a better
performance, despite being barely continuous. Moreover, it re-
quires the same computation time. Note that the gain in SNR is
quite large, which shows that a careful design can really bring
a dramatic improvement. A visual inspection reveals that, com-
pared to cubic spline, the cubic O-MOMS interpolation is more

faithful to the thin lines of the boat image, and to the striped pat-
tern of Barbara’s trousers.

VII. CONCLUSION

We have shown in this paper how to design basis functions so
that they have the largest approximation order for a given sup-
port. This defines the class of MOMS which are optimal in this
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respect and also have the same fixed computational cost. The
MOMS are intimately related to the B-splines of same order.
We were able to further minimize the asymptotic approximation
constant [27] among this class of functions, which provided us
with the O-MOMS. A practical image rotation experiment has
shown that, used as interpolators, these new basis functions are
superior to the B-splines of same order which, until now, were
considered the state-of-the-art in interpolation. The only disad-
vantage of the O-MOMS is that, unlike B-splines, they are not
very regular. This is why we also designed SO-MOMS to ad-
dress this regularity issue.

The set of new basis functions that we have presented in this
paper should be especially attractive for biomedical image pro-
cessing, where quality is a key concern.

APPENDIX A
PROOF OFTHEOREM 1 (“MOMS”)

Let be an th-order kernel that is compactly supported
within . That is, it satisfies (6). Let us define the function

by

(22)

where the differentiation is taken in the sense of distributions.
Thus, we have

(23)

Then, we have the following properties:

i) is compactly supported within .
This is a consequence of

(Strang-Fix condition of order 1) which is equivalent to
in the distributional sense. Because

of this identity, we also have the following alternative
definition of :

According to this expression, the support of is con-
tained within . But, according to the ini-
tial definition (22), we also have support .
Hence, we conclude support .

ii) satisfies the Strang-Fix conditions of order .
To prove this, we differentiate (6). This yields

.
We replace the first term of this equation by (since

is a polynomial of degree ) and in the
second term by its expression (23). Sinceis compactly
supported, we easily obtain

Now, if spans the entire set of polynomials of degree
, then spans the entire set of polynomials of

degree . This also means that for all polynomial
of degree , there exists a constant such

that . In addition, we see
that if , then ; thus,

. Integrating over yields to
. Thus, satisfies the Strang-Fix

conditions of order .
Thanks to these properties, we can reason by induction on the

approximation order, setting . This induction
process yields a set of distributions
that enjoy the following properties:

i) is compactly supported within .
ii) satisfies Strang-Fix conditions of order .
iii) is linked to through the Fourier relation-

ship

This expression is obtained directly by taking the Fourier
transform of (23). Note that it can also be written as the
convolution .

Conversely, if we take a distribution that has
zeroth-order approximation and that is supported within ,
then defined by is compactly sup-
ported within and has approximation order.

Now, minimizing the support of means finding the
smallest such that exists. Of course, this is possible only
if , which yields as a single-point distribu-
tion. This shows that the minimum size of the support of
is as claimed in the first part of the theorem.

Finally, we know from distribution theory [37, Th. XXXV]
that the only distributions that have a support of zero-measure
are finite linear combinations of the Dirac distribution and
of its derivatives at this point. Thus, for the minimal-sup-
port function , there exist constants such that

, where the sum is finite
and where because . This means that

. Since we must
restrict ourselves to functions, the summation has to run
from 0 to . This provides the final result (11) of our
theorem.

APPENDIX B
PROOF OFTHEOREM 2 (“OPTIMAL-MOMS”)

Fourier Version of the Minimization Problem:Instead of the
Matrix , we use the function defined by the entire series

(24)

This series converges in the complex plane for :
within the convergence disc, a classical relation provides

[38]. A straightforward consequence of
(24) is that

even
otherwise.

(25)
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Replacing by in (25) allows to rewrite (14) as

which becomes

after some rearrangements.
Finding the polynomial of degree that minimizes

the quadratic functional under the constraint
yields the following equivalent conditions:

and , which are valid for . The
conditions above are clearly equivalent to requiring that the
polynomial series is lacunary in the powers

. We can thus express our solution
under the following form: There exist a polynomial of de-
gree , and an entire series,

, such that

(26)

and . Note that if another polynomial of degree
satisfies (26), then, because of theunicityof the solution

of our minimization problem, we have .
We will see next that the continued-fraction of involves
precisely such a polynomial .

Also note that, as a consequence of the minimiza-
tion of the quadratic form, we find a simplified ex-
pression for . Specifically, we have

, that is
to say, .

The Continued Fraction of and its Link with
: Decomposing the entire function in a continued

fraction consists of iterating the following process:
and so forth.

In the end, is given by the continued fraction

(27)

the continued fraction of is known in [38], so is that
of . Thus, the coefficients in (27) are given by

for and .
If we keep the first terms only we get the “th conver-

gent” of , which can be written as the rational fraction
. The continued fraction theory tells us that these

polynomials satisfy the following constitutive properties:

• Induction equations [38]

(28)

initialized by and .
• and , which can

easily be shown using the induction relations (28) satisfied
by and .

• By construction, the difference between and its th
convergent is , that is to say,

(29)

where is entire.
If we replace by in (29) and let , we observe

that we obtain two polynomials of degree , and
of degree such that

, where is entire. This is exactly
the form of (26) which we know to have a unique solution such
that . Consequently, we have

Moreover, using the induction relation (28) and the known value
for , we get . Thus, replacing
by the corresponding value of for ,
we easily get the induction (15) for .

Asymptotic Constant:Finally, in order to eval-
uate the asymptotic constant , we need to com-
pute , where is the entire series de-
fined by (26). Because of the induction (15), we have

. This means
that . Due to the link

, we thus have

By induction on , and by using , we now easily get
[16].
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