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B-Spline Snakes: A Flexible Tool for Parametric
Contour Detection

Patrick Brigger, Associate Member, IEEE, Jeff Hoeg, and Michael Unser, Fellow, IEEE

Abstract—We present a novel formulation for B-spline snakes
that can be used as a tool for fast and intuitive contour outlining.
We start with a theoretical argument in favor of splines in the tra-
ditional formulation by showing that the optimal, curvature-con-
strained snake is a cubic spline, irrespective of the form of the ex-
ternal energy field. Unfortunately, such regularized snakes suffer
from slow convergence speed because of a large number of control
points, as well as from difficulties in determining the weight fac-
tors associated to the internal energies of the curve. We therefore
propose an alternative formulation in which the intrinsic scale of
the spline model is adjusted a priori; this leads to a reduction of
the number of parameters to be optimized and eliminates the need
for internal energies (i.e., the regularization term). In other words,
we are now controlling the elasticity of the spline implicitly and
rather intuitively by varying the spacing between the spline knots.
The theory is embedded into a multiresolution formulation demon-
strating improved stability in noisy image environments. Valida-
tion results are presented, comparing the traditional snake using
internal energies and the proposed approach without internal ener-
gies, showing the similar performance of the latter. Several biomed-
ical examples of applications are included to illustrate the versa-
tility of the method.

I. INTRODUCTION

M ANY applications require the extraction of salient image
features such as edges, lines, subjective differences in

gray-level. In medical applications, physicians are highly inter-
ested in computer assisted devices that help to detect and out-
line specific organs or other medical features of interest. The
computer should help but not replace the physician. Ideally, the
system performs an automatic analysis to eliminate human sub-
jectivity and intra- and inter-human variability, while providing
physicians with the possibility of an intuitive and easy user-in-
teraction. In such a way, it is possible to incorporate knowledge
and experience. For curve fitting, for example, the contour gen-
erated by the algorithm should be easily modifiable by the tech-
nician. Similar constraints may be found in many other appli-
cations as well. The snake as an energy minimizing “spline”
has found wide acceptance and has proven extremely useful in
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applications for medical analysis [17], [21], [26], [31], feature
tracking in video sequences [19], three-dimensional (3-D) ob-
ject recognition [47], and stereo matching [20], [27].

The snake as originally introduced by Kasset al. [20] is de-
scribed as an energy minimizing spline guided by external and
internal forces. The external force is given as a user-supplied
input function. The internal forces are determined solely by the
shape of the curve and are usually defined in terms of first and
second order derivatives. The snake gives an elegant method to
simulate an elastic material, which can dynamically conform to
local image features. This type of snake has two main features:
1) a large number of control points that define the curve and 2)
an explicit formulation of the smoothness constraint. The fol-
lowing problems have been recognized in the literature:

1) slow convergence speed because of the large number of
coefficients to optimize;

2) difficulty in determining the weights associated with the
smoothness constraints;

3) description of the curve by a finite set of disconnected
points;

4) high-order derivatives on the discrete curve may not be
accurate in noisy environments [48].

Based on the original philosophy, different solutions have
been suggested to render the snake more stable and to yield
faster convergence results [2], [22], [49], [50]. An alternative
approach to snakes, which also circumvents some of the prob-
lems, is to use a parametric B-spline representation of the curve,
first introduced as B-snake [27], and improved in [18], [23],
[48]. Such a formulation of an active contour allows local con-
trol, compact representation, and it is mainly characterized by
the following points: 1) few parameters, and 2) smoothness im-
plicitly built into the model. In addition, the B-snake approach
naturally permits the local control of the curve by controlling in-
dividual control points. Another model that can handle multiple
snakes, allows change of topology and is less sensitive to initial-
ization is based on the level set interpretation of the Euclidean
curve shortening equation [9], [25], [38]. Let us also mention
the finite element approach [13], [14], where the solution of a
differential equation allows a discretization sufficiently fine to
ensure a negligible error between computed and true solution.

The motivation for our work is to extend the basic concept
of B-spline snakes in order to improve their efficiency, speed,
and applicability in an interactive environment. Our main con-
tributions are as follows. First, we present a new theorem that
states that the optimal solution for a conventional (curvature-
constrained) snake cost function is a cubic spline, a curve that is
most conveniently represented using B-spline basis functions.
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Second, we choose to specify an initial B-spline snake config-
uration usingnode pointsthat are situated exactly on the snake
curve, rather than the traditional B-splinecontrol points; we
believe that this approach provides a more practical, and intu-
itive user-interaction. Third, we introduce a scale parameter for
the B-splines, which allows us to control the smoothness of the
snake implicitly (as opposed to explicitly, through a regulariza-
tion term). The proposed formulation eliminates the need for
curve-internal energies and also allows the easy introduction of
external hard-constraint points. Since increasing the scale of the
spline is related to reducing the number of node points, this kind
of approach tends to simplify the optimization process. More-
over, we find that the results of the method are similar to those
obtained with conventional regularized snakes, which have con-
siderably more parameters. Fourth, we improve the speed and
robustness of the optimization by making use of a multiresolu-
tion technique (image pyramid). Finally, we propose to use dig-
ital filtering techniques to accelerate the process of curve ren-
dering, which is by far the most costly part of the algorithm.

The paper is organized as follows. In Section II, we start with
a theoretical analysis that provides strong arguments in favor
of the B-spline model. In Section III, we justify our simplifi-
cation of the conventional model; which is to impose smooth-
ness constraints implicitly through the knot spacing of the spline
rather than by regularization and provide the mathematical for-
mulas for the parametric B-spline snake. We also discuss some
of the implementation issues; in particular, the specification of
external forces, and how to accelerate curve rendering. In Sec-
tion IV, we consider optimization strategies and describe our
multiresolution approach. In Section V, we test the performance
of the proposed method. Finally, in Section VI, we present sev-
eral examples for semiautomatic contour detection in biomed-
ical image sequences.

II. SNAKES REVISITED: A FUNCTIONAL FORMULATION

The purpose of this section is to justify the use of splines
for solving snake problems. In order to develop a mathemat-
ical model, we will consider a simple configuration where the
contour to be detected can be represented by a single function.
Even though this corresponds to a somewhat restricted situation
(a general curve requires one function per coordinate dimen-
sion), it will provide us with important mathematical insights
that are directly transposable to the more general case, which
will be treated in Section III. The present functional model may
offer an interesting alternative to dynamic programming tech-
niques, which are traditionally used in this context [4].

The basic problem is to detect a contour described by a func-
tion in the – plane. Instead of an explicit defini-
tion, the unconstrained contour curveis specified in terms of
the minimum of a potential function

(1)

with the condition that . For notational
simplicity, we assume that is defined over the entire real
line.

A. Regularized Solution—Cubic Splines are Optimal

The basic problem is to approximate by a snake curve
that is constrained to be smooth. For this purpose, we con-

sider the following optimization problem

(2)

which constitutes a one-dimensional (1-D) cost function sim-
ilar to the one introduced by Kasset al. [20]. The criterion in
(2) involves two distinct terms. The first is the so-called data
term, which forces the solution to be close to the minimum of
the potential function . Note that is evaluated
at the discrete location and to accommodate for
the discrete nature of the input data (external force). The second
term expresses a smoothness constraint, which will tend to priv-
ilege solutions that have a low average curvature. The amount
of smoothness of the solution is controlled by the regulariza-
tion factor ; it typically reflects oura priori knowledge. We
are assuming that the problem is well defined in the sense that a
solution exists. Note that this solution is a snake function
that is continuously defined over, even though our data are
discrete.

In order to be able to find the solution, we now present our
key result, and show that the optimal snake is indeed a spline.

Theorem 1: The solution of problem (2) is a cubic spline with
knots at the integers.

Note that the solution is not necessarily unique because we
did not impose any particular constraint on (e.g., con-
vexity). However, an optimal snake curve is uniquely defined by
its values at the knot points , or, equivalently, by
the sequence of its B- spline coefficients (cf. Section II-B).

Proof of Theorem 1:For any given snake candidate ,
we define its cubic spline interpolant , which is uniquely
defined as in [34]. It is a -curve that agrees with at the
integers (i.e., ), and is a cubic polyno-
mial on each interval . We then rewrite the
cost function as

(3)

where we have substituted by in the first part of the
criterion while leaving the value of unchanged. To ma-
nipulate the second term, we use the so-called first integral equa-
tion [1], which states that for any function whose second
derivative is square integrable [36, Lecture 6]

(4)
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Hence, we obtain

(5)

By hypothesis, there exists a solution (not necessarily
unique) for which is minimal. This solution has a
unique interpolator , which fixes the first and second terms
in the above expression. Finally, can be minimal if
and only if the third term is minimal as well, that is, when

almost everywhere; i.e., the set of ’s such
that is of measure zero. If we integrate
twice, we get that everywhere(because
a set of measure zero does not contribute to the integral).
Finally, because of the interpolation condition, we conclude
that everywhere.It follows that the optimal
snake is a cubic spline.

The result of Theorem 1 is closely related to the classical min-
imum curvature property of spline interpolant [16], [51], which
corresponds to the special case . Here, the main differ-
ence with the standard results on the optimality of splines is
that we do not have an explicit solution available because of the
generality of the cost function (2). However, we are still able
to show that the optimal solution among all possible-func-
tions belongs to the space of cubic splines which makes the
problem tractable numerically. We can also relate our problem
to curve fitting by interpreting the function in (1) as a
pseudo-metric in , which is allowed to vary as we move along

(or increment ). In particular, if we consider a quadratic cri-
terion of the form ,
where is a sequence of weighting factors, then the op-
timization task is mathematically equivalent to the well-known
smoothing spline problem in statistics [46]. The goal there is to
find a smooth (regularized) curve that is reasonably close
(in the least squares sense) to a set of noisy data points. The
fact that this leads to a spline solution is well known in this con-
text (quadratic cost function); it was established independently
by Reinsh and Schoenberg [32], [35]. Theorem 1 extends this re-
sult because we did not make any hypothesis on the form of the
potential function (or pseudo-metric) . In other
words, we have shown that splines are optimal, irrespective of
the metric used, which is a remarkable property. In principle, it
is possible to extend this kind of formulation using more general
differential operators (for instance, a linear combination be-
tween first and second derivatives) which leads to the so-called
L-splines [37, Ch. 10]. However, we do not think that there is a
great advantage in doing so since these representations are much
more cumbersome than the cubic B-splines. In addition, they do
not necessarily share their good approximation properties.

B. Computational Solution

To solve the snake problem numerically, we express its cubic
spline solution using the standard B-spline expansion

(6)

where are the B-spline coefficients, and where the gener-
ating function is the cubic B-spline given by

(7)

Thanks to (6), we can now manipulate (2) to obtain a discrete
form of the criterion in terms of the B-spline coefficients .
Using the basic convolution and differentiation rules of splines
(cf. [44]), we obtain the explicit formula

(8)

where denotes the discrete convolution operator and where
the kernels (discrete cubic B-spline) and (second dif-
ference) are defined by their-transform as follows:

and (cf. [43]). Note
that we have now replaced the integral in the second term by a
sum, which is much more tractable computationally. The task is
then to minimize (8), which is typically achieved by differenti-
ation with respect to . In the case of a quadratic potential
function, this leads to a linear system of equations that can be
solved using any of the standard techniques [46]. For the more
general case when is not quadratic, the solution may
still be determined numerically, for example by using an itera-
tive algorithm (steepest descent or conjugate gradient).

Note that the spline snake (6) has as many degrees of freedom
(B-spline coefficients) as there are discrete contour points, i.e.,
one per integer grid point. If is sufficiently small, then the
spline (5) will interpolate exactly. Conversely, the use of
larger values of will have the effect of stiffening the spline and
smoothing out the discontinuities of the unconstrained contour
curve . As we will see later, can eventually be dropped by
using a variable size knot spacing, which still assures smooth-
ness.

III. B-SPLINE SNAKES: PARAMETRIC FORMULATION

A. Parametric Solution

The previous section has provided the link between splines
and the traditional variational formulation of snakes. In this sec-
tion, we propose to impose smoothness constraints in a simpler
and more economical fashion, and to give an intuitive B-spline
snake formulation useful for images.

The idea is to eliminate the second term in (8) and to introduce
a variable knot spacing between the knot points. An increased
knot spacing will essentially have the same smoothing effect
on the solution. Thus, we consider the simplified optimization
problem

(9)
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which is now constrained indirectly in the sense that with
is a coarser spline with knot spacing

(10)

Hence, our new smoothness parameter israther than . Typ-
ically, we will take to be an integer , which will reduce
the number of degrees of freedom (B-spline coefficients) in the
same proportion. If we perform the same substitution as before,
we find that in the case of a quadratic potential function the new
solution corresponds to a weighted least square spline approx-
imation of the unconstrained curve . In the general case
where is not quadratic, we still have some form of min-
imum error approximation, except that the “metric” is no longer
Euclidean.

To differentiate this new solution from the previous one, we
will call it a parametric spline. This terminology is justified by
the fact that the smoothness constraint is entirely implicit and
that the number of degrees of freedom is much less than the
number of contour points. The main advantages of this para-
metric formulation are as follows. First, we have reduced the
number of parameters, which simplifies the implementation but
also accelerates computation. Second, it is relatively easy to get
an intuitive feeling for the smoothing effect of the parameter.
Specifically, we have the following error bound [24], [40], [45]

(11)

where
least squares spline approximation of with
knot spacing ;
degree of the spline;
Fourier transform of .

Thus, the error can be made arbitrarily small provided that the
generalized bandwidth of the signal (which is measured by the
right most term) is sufficiently small when compared to. An-
other way to understand the nature of this smoothing is to use
the close relation that exists between spline and bandlimited ap-
proximations [42]. With this interpretation, is more or less
equivalent to the bandlimited version of with a cutoff fre-
quency at .

The argument is essentially the same for more general curves
in the plane, which are described using two splines instead of
one. Specifically, we represent a general B-spline snake as fol-
lows:

(12)

where and are the and spline components, re-
spectively; these are both parameterized by the curvilinear vari-
able . The exact value of , which marks the end of the
curve, is dictated by the desired resolution of the final discrete
curve; by convention, we do only render the curve points for

integer. This 2-D spline snake is characterized by its vector-se-
quence of B-spline coefficients . Note
that there are only primary coefficient vectors,
each corresponding to a spline knot on the curve; the other co-
efficient values are deduced using some prescribed boundary
conditions (cf. Section III-E).

Clearly, if we specify , the above automatically defines the
knot-spacing and therefore the smoothness constraint for the
curve. Assuming a curve representation by discrete
points, we obtain . The freedom of the spline curve
has been reduced by the same amount, resulting in a smoothing
and stiffening of the curve. Increasing the numberof node
points will reduce the knot spacing, and consequently it will
reduce the smoothing effect on the curve.

B. B-Spline Snake Formulation: Node Points versus Control
Points

In the literature, B-splines are defined by their control
points [3], which correspond to the B-spline coefficients in
(6). Previous B-spline snake formulations have used these
control points for the definition of the curve [18], [27], [48].
In this paper, we prefer instead to work with node points, at
least for the interactive part of the process. The node points
are part of the snake and correspond to the knots of the spline
curve. By positioning them appropriately, we have a very
direct and intuitive way of controlling the shape of the curve.
For B-splines of degree zero and one, the control points are
identical to the curve points at that location. For higher degree
splines, however, the control points are significantly distinct
from the actual coordinates of the spline curve, especially for
large values of . An illustration is given in Fig. 1 for a B-spline
curve and four node points using a B-spline of degree one and
a B-spline of degree three. In the latter case, the control points
do not belong to the curve and they are different from the node
points. Clearly, for higher degree spline, user-interactivity is
easier when the node points can be manipulated.

The node points are just another equivalent representation of
the spline curve; they are directly related to the control points via
a system of linear equations [16]. We will briefly show below
how this system can be solved very efficiently using digital fil-
tering techniques.

We impose a set of discrete node points
that are required to be part of the

curve . Hence

(13)

where is the discrete B-spline kernel of degree:
. From (12) one can then compute the B-spline coef-

ficients by inverse filtering

(14)

where denotes the sequence that is the convolution in-
verse of . This is an IIR filter that can be efficiently imple-
mented using recursive-filtering [44]. This step represents an
important difference to other B-snake propositions. It has to be
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Fig. 1. Illustration of a B-spline snake curve, its node points (triangles)
and its control points (squares). (a) B-spline of order zero (node points are
equivalent to control points). (b) B-spline of order three. Here, control and
node points differ significantly. User-interactivity is clearly improved if one
uses node-points rather than control points.

evaluated once at the beginning of the snake optimization pro-
cedure and it provides the correct initialization for the B-spline
coefficients. A correct initialization is mandatory such that the
node points coincide with the actual curve.

Equation (14) provides us with distinct coefficients. For
the evaluation of (12)–(14), the finite sequence needs to be ex-
tended to infinite length. This is achieved through appropriate
definition of boundary conditions and will be discussed in Sec-
tion III-E.

C. Energy Formulation

With the introduction of variable knot spacing, we no longer
require internal curve energies. Experimental tests given in Sec-
tion V-A will demonstrate this point. The external potential
function is typically given by a smoothed version of the gra-
dient of the input data [8]

(15)

where denotes the input image andis a smoothing kernel;
for example, a Gaussian. Our cost function is the summation
of the gradient (external force) over the path of the curve
sampled at consecutive points

(16)

For the cost function to be a good approximation of the curvi-
linear integral, we will typically select sufficiently large so
that the curve points are connected (i.e., within a distance of one
pixel of each other). We note, however, that the exact value of

is not critical; a less dense sampling may be used to increase
optimization speed. The negative sign in (16) is used because
we employ a minimization technique for the optimization.

D. Fast Curve Rendering Through Digital Filtering

The problem consists in evaluating (12) atdiscrete points.
Such an evaluation is necessary for the computation of the en-
ergy function (16) and for the display of the curve (where

may typically be chosen larger). Therefore, the continuous vari-
able is replaced by a discrete variable . The
value of and the number of given node points directly de-
termines the knot spacing. The discrete B-spline snake with

node points and curve points is given as

(17)

Below, we present two different ways for fast curve rendering
by digital filtering.

Interpolation: The most straightforward way is by interpo-
lation. The B-spline function is evaluated at every position

multiplied by the corresponding B-spline coefficient
and summed. B-splines are of compact support, and therefore,
the summing needs only to be carried out over a subset of
all coefficients. To interpolate the curve at a point, only the
coefficients

need to be included in the sum (denotes integer truncation).
The main computational drawback of this procedure is that the
function (7) needs to be evaluated for each term in the sum.

Digital Filtering: The above described algorithm works for
any combination of values of and . If we can impose
such that is an integer value, a much more efficient algorithm
can be described. In general, this requirement is easily met, since

is not critical and can be loosely chosen. The simplification
is based on a convolution property for B-splines [43, Eq. (3.5)].
It states that any spline of degreeand knot spacing (integer)
can be represented as the convolution of moving average
filters of size followed by a spline of knot spacing one. Hence,
the curve points can be obtained by three successive steps:

1) upsampling of the B-spline coefficients;
2) averaging by moving average filters of size;
3) filtering by a unit B-spline kernel of degree.

This algorithm can be implemented with as few as two multi-
plications and two additions per node point plus adds per
computed contour coordinate. Generally, it is faster than method
one and also at least a factor of two better than the Oslo knot in-
sertion algorithm commonly used in computer graphics [3].

E. Border Conditions

Appropriate boundary conditions are necessary for the com-
putation of (12), (14), and (17) [6], [51]. In the following, we
distinguish the cases of a closed snake and an open snake.

Closed Snake Curve: For a set of node points
, we require that and

. The corresponding boundary conditions are periodic
[Fig. 2(a)]. The extended signal of infinite length can be
described by

mod (18)

Open Snake Curve: Different choices can be implemented for
the open snake, such as mirror or anti-mirror boundary condi-
tions [Fig. 2(b) and (c)]. In this application, the anti-mirror con-
ditions with a pivot at the boundary value are the most suitable
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Fig. 2. Illustration of boundary conditions.

choice because they allow us to lock the end points of the curve.
These anti-mirror conditions are such that

(22)

where . Since the extended signal has a center
of anti-symmetry at the boundary value, this value will be pre-
served exactly whenever the filter applied is symmetric, which
turns out to be the case here. However, a new boundary value can
not be defined as the lookup of an existing signal value, which
makes the implementation slightly more complicated.

IV. OPTIMIZATION STRATEGIES

The literature is rich on minimization strategies, including
methods such as golden section search, steepest descent
methods and conjugate gradient methods, as well as heuristic
techniques tailored to a particular problem. In multidimensional
optimization problems, one may advantageously use the infor-
mation of the gradient of the energy function if it is available.
The B-spline formulation allows an easy computation of the
gradient function of the energy term. The parameters subject to
optimization are the B-spline coefficients (and hence indirectly
the node-points), yielding

(23)

The term is the derivative of the
force function in the spatial domain. It can be obtained by com-
puting a direct B-spline transform followed by a spline inter-
polation from a derivative B-spline. The direct transform only
has to be done once at the beginning of the optimization. The
use of splines throughout the entire development allows us to
define a consistent B-spline snake framework. Equipped with
the gradient, we can proceed to find the minimum of the energy
function.

We have tested both the steepest descent algorithm and the
conjugate gradient algorithm. The former optimizes in the di-
rection of the local downhill gradient, which may result in an

optimization procedure along the same direction many times,
which is inefficient. The conjugate gradient algorithm performs
the optimization alongA-orthogonaldirections. In the case of a
quadratic potential, the procedure leads to a scheme where ex-
actly one step is done in every search direction, which is much
more efficient than the steepest descent approach. In our case,
we make use of an extensions of the method to other, non-
quadratic potential functions [30].

A. Multiresolution Procedure

Snakes may get trapped in local minima. Hence, a good ini-
tialization close to the desired contour is necessary. It is obtained
based ona priori information or based on a manual placement.
This requirement can be loosened through the use of a multi-
scale representation. Multiscale processing is an old but pow-
erful idea [7], [33]. It is usually applicable whenever one wishes
to implement an image processing algorithm that is iterative in
nature and requires many successive updates. The basic prin-
ciple is to construct an image pyramid and to start applying the
procedure at the coarsest level on a very small version of the
image. Upon convergence, the solution is propagated to the next
finer level where it is used as starting condition. One then pro-
ceeds with this coarse-to-fine iteration strategy until one reaches
the finest level of the pyramid which corresponds to the image it-
self. This type of multiresolution approach has two advantages:
first, on reduced versions of the image, a smaller number of
curve points can be used thereby improving optimization speed.
Second, it usually also improves robustness; the pyramid has a
smoothing effect on the criterion to be optimized which often re-
duces the likelihood of getting trapped in local optima. To min-
imize the loss of information from one level to the next we used
a centered least squares pyramid as described in [5].

Hence, the original set of node points is down projected
onto a smaller version of the original image. The reduced image
contains fewer image details, and thus less noise. The snake is
potentially able to converge to the correct result from an initial
contour farther away from the final contour. An example demon-
strating the increased robustness of the multiresolution approach
is given in Fig. 3. In Fig. 3(a), the initial starting contour is
shown, which was drawn manually. The result of the direct op-
timization is shown in Fig. 3(c). Then, a three-level pyramid
was computed using cubic spline basis functions. The optimized
contours for the different levels are shown in Fig. 3(b). Clearly,
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Fig. 3. Identical initial contour (a) for both (b) and (c), but only correct convergence with the multiresolution approach.

the multiresolution decomposition eliminates small (undesired)
image details and the snake is able to converge to the true result.

V. PERFORMANCEEVALUATION

A. Comparison: Variable Knot Spacing vs. Internal Energies

In this section, we shall demonstrate the effect of a variable
knot spacing on the stiffness of the curve, and its ability to
conform to smooth image features. In particular, we will com-
pare the proposed snake implementation to the traditional snake
model by Kass, and show that similar results can be obtained
without the use of internal energies.

The comparison is based on a binary test image consisting of
a vertical line, of which a small part has been displaced to the
left (see Fig. 4, initial contour). In order to obtain a smooth force
function, the binary image is smoothed by a 2-D Gaussian, with

. Optimization is formulated as a minimization problem,
and hence the optimal snake position is on the line. Eleven node
points that have been set manually at unequal length intervals
characterize the initial snake curve. Depending on the smooth-
ness requirements of the final curve, two different results can
be anticipated from the optimization. 1) The resulting curve is
vertically centered on the longer line, being unaffected by the
small displaced part. Such an outcome corresponds to an impor-
tant smoothing constraint. 2) The resulting curve has a “bump”
and is attracted toward the small displacement on the left. This
outcome reflects a less severe smoothness requirement.

First, the traditional snake is computed with various weights
for the internal energies. Each discrete curve point is indepen-
dently optimized and attracted to the closest minimum by setting
weights for the stretching and bending energy to zero [Fig. 4(a)].
A weight of and tends to pull
the “bump” toward the right [Fig. 4(b); however, this does not
produce a straight curve yet. A weight of and

produces an almost flat curve [Fig. 4(c)]. This type
of snake proves to be very flexible in that the user can choose
among a large number of smoothness requirements by adjusting

and . The feature may also represent a drawback
for certain applications, because of the associated difficulties in
choosing the correct weighting factors, by either empirical of
automatic means.

The B-spline snake incorporates smoothness through dif-
ferent knot spacings. The knot spacing, , where

Fig. 4. Traditional snake: initial contour and optimization with different
internal energies.

is the number of interpolated points and is the number of
node points, can be changed by either varyingor . For
this example, we have decided to employ the same number of
node (control) points as for the traditional snake, and henceis
changed by changing the number of interpolated points. A
knot spacing of signifies that no points are interpolated
between node points. A B-spline of degree one corresponds
exactly to the above experiment with zero weights, and the
result is identical [Fig. 5(a)]. Using a B-spline of higher degree,
node points are no longer completely independent. For all re-
maining experiments, we have used a B-spline of degree three,
because it leads to visually pleasant curve representations. The
optimized result with is shown in Fig. 5(b). Note that
there is one interpolated point between two node points. The
point helps attracting the curve toward the longer line. An
increased knot-spacing with uses two interpolated values
between two node points for computation of energy [Fig. 5(c)].
In this configuration, these points manage to fully attract the
curve toward the longer line, and the “bump” disappears. The
experiment demonstrates the similar effect of a variable knot
spacing and of internal energies on the smoothness of the final
snake curve.
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Fig. 5. B-spline snake: initial contour and optimization with different knot spacings.

B. Consistency Assessment

The smaller the variance of multiple measures of the same
quantity, the more consistent the analysis is. We propose to
measure intra-observer consistency, as well as algorithm con-
sistency.

Intra-observer consistency is assessed from five different
manual measurements of the surface-area of the corpus
callosum and the associated standard errors. The five measure-
ments were repeated using two different drawing tools; first
using the pencil tool of a public domain software (NIH Image,
V. 161), and then using the B-spline interface. For the latter,
the user clicked and positioned node points along the contour,
which were linked by a cubic spline. The manual tracer was
free in selecting the number of desired node points. In average,
20.2 node points were used ( , number of node points for
each experiment: 17, 21, 23, 19, 21).

Algorithm consistency was assessed by measuring sur-
face-area and standard error of the mean of the results obtained
after optimization of the initial contours from the B-spline
interface. Different number of node points were used for the
manual placement of the initial curve, and the results are
also an indication of the sensitivity of the method to manual
placement of the curve, and to the number of node points
chosen. Results are presented in Fig. 6 and in Table I. We note
that manual contour outlining using the pencil tool or using
the B-spline snake essentially produces the same quantitative
results. Uncertainty values in terms of standard error of the
mean are comparable for both approaches. Time requirements
were similar, slightly favoring the B-spline approach. The latter,
however, provides a visually better looking and more appealing
contour (see Fig. 7). Surface-areas obtained after optimization
of the initial curve prove to be more reliable, expressed by the
lower value of standard error. The mean surface-area is smaller
than in the previous two cases. We therefore also note that the
locations of the initial curve as well as the number of node
points are not critical for reproducible optimization results. It

Fig. 6. Comparison of surface areas obtained by 1) manual tracing, 2) B-spline
outlining, and 3) B-spline snake with optimization

seems that the human tracer has a tendency to place contours
somewhat outside of the transition, so that these transitions
remain visible. An experiment with a phantom object would be
adequate here to determine which of the two contours is closer
to the true contour. Note also that the subjective impression of
the manual tracer was that the B-spline snake offered a more
agreeable way of contour outlining.

C. Stability Assessment

The test image consists of an arbitrary curve with a Gaussian
shaped gray level profile. We illustrate the algorithm’s perfor-
mance in the presence of partially distorted contours. A gap of
increasing dimension was inserted in the test image (Fig. 8) to
illustrate the algorithm’s interpolation efficacy.

The results of these tests are illustrated in Fig. 8. Fig. 8(a) dis-
plays the initial contour, and Fig. 8(b)–(e) show the optimization
result when the contours are partially distorted. The B-spline
snake tries to follow the contour piece that is being extracted. At
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TABLE I
SURFACE-AREA AND STANDARD ERRORSOBTAINED FOR REPETITIVE CONTOUR OUTLINING OF THE CORPUSCALLOSUM BY 1) MANUAL

TRACING, 2) B-SPLINE OUTLINING, AND 3) OPTIMIZED B-SPLINE SNAKE

Fig. 7. Comparison of different contour outlining techniques.

Fig. 8. (a) Initial contour and (b)–(e) optimization with an emerging contour piece at increasing distances. The dots indicate the location of the node points.

a sufficient distance of the extracted contour piece to the orig-
inal contour position, the snake then snaps back to interpolate
the missing contour.

The proposed algorithm is also stable in noisy imaging envi-
ronments. We have employed the method extensively on a quan-
tification problem for plaque characterization in coronary ul-
trasound images. To test the algorithm’s accuracy, coronary ar-
teries were imaged post-mortem. The same arteries underwent
automatic analysis by our algorithm, as well as manual inspec-
tion by dissectioning. The automatically obtained results have

been compared to those obtained by histological dissectioning.
A total of sections from 20 different segments has been
compared, and those results are summarized in Fig. 9. There is
an excellent linear correlation between the two measures.

VI. BIO-MEDICAL APPLICATIONS

A. Segmentation of Corpus Callosum in an MRI Image

The corpus callosum is a relevant brain feature, and physi-
cians are often interested in its size. Images are typically as-
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Fig. 9. Comparison of automatically obtained surface areas to those obtained
by dissectioning. The data is from ultrasound images of left coronary arteries.

sessed by MRI. For this and other cases as well, it is routine
medical practice for a technician to outline the boundaries man-
ually. Often, the standard imaging tools consist of an interface
that allows manual border tracing using the computer mouse.
Technicians face several problems related to that task. First, the
hand drawn boundary is subject to small, uncontrollable hand
movements that result in a noisy boundary. Second, the techni-
cian often does not have the possibility to pause in the outlining
process. Also, a curve that is not considered satisfactory often
has to be redrawn in its entirety.

We have asked an experienced technician to outline the
boundaries of the corpus callosum using the B-spline snake
concept. She found the tools appealing, and stressed the fact
that it is much easier and more accurate to click on a certain
number of points, instead of having to follow the desired
contour using a pencil drawing tool. We have presented this ex-
ample in detail during the algorithm description (see Fig. 7). In
this context, note also that elastic deformation transformations
have been studied as a quantitative description of the callosal
shape with respect to the Talairach atlas [15]. We would also
like to mention the work performed in [12], that uses B-spline
for contour description in the context of an identification and
registration procedure of neuroanatomical atlases.

For this particular example, we also tried the standard
Kass-type regularized snake but had considerable difficulties to
find a set of the stiffness parameters that would make the snake
converge to an appropriate solution. The main difficulty there
is that even if we assume that those parameters exist, it can be
quite time consuming to adjust them interactively by trial and
error. For the B-spline approach, the user interaction is much
more natural; the snake can be constructed easily to conform
to less standard shapes by simply entering more nodes in areas
where the contour is not so smooth.

B. Segmentation of a PET Image Sequence

The purpose of this application is to demonstrate the vast
range of applicability of the B-spline snake. PET-scans are
much noisier than MRI scans or CT scans, and of much
different nature than ultrasound images (coronary artery). An
example of one frame of an 18-frame sequence of the brain is
shown in Fig. 10(a). Here, researchers are interested in finding
the boundaries of the brain. The B-spline snake is not suited for

separating gray and white matter, because the desired contour
is not smooth and would require the introduction of a large
number of node points. However, on the PET scan, it may be
an interesting tool for a gross separation of the brain from the
scull.

Enhancement of the original image [Fig. 10(a)] by a contrast
operator highlighted contours of interest [Fig. 10(d)]. Manual
placement of the initial contour in the first frame of the se-
quence using four node points [Fig. 10(b)] was followed by
automatic knot insertion at a scaletwice as fine, yielding a
modified initial contour with eight equidistantly spaced node
points [Fig. 10(c)]. This contour was optimized using the con-
jugate gradient algorithm and a multiresolution decomposition
of two levels. The optimized contour [Fig. 10(e)] is automati-
cally propagated to the next neighboring frame, where it served
as new initial contour (i.e., no more user interaction necessary).
The final result for frame 18 is shown in Fig. 10(f).

C. Segmentation of ultrasound images

In this application, the B-spline snake is applied on coronary
artery ultrasound images for the detection of the endothelial
wall. From the resulting curve, the treating physician is then ca-
pable to compute surface-area of the coronary artery, which is
an important measure for the analysis of atherosclerosis.

The segmentation has been obtained by manually positioning
the initial curve in the first frame of the sequence at the ap-
proximate correct location using four node points and a cubic
B-spline snake. The curve was then automatically optimized to
attract it toward the endothelial wall using the conjugate gra-
dient algorithm and a three-level pyramid. The final segmenta-
tion result has been shown in Fig. 4. The entire image sequence
is segmented based on a single initial contour for the first frame,
with forward propagation of the initial solution to consecutive
frames.

The above experiments show the good performance of the
proposed method in various, different imaging environments.
Also, they illustrate the robustness of the method with respect
to different input noise levels and characteristics.

VII. D ISCUSSION

Improvements of the traditional snake have made it a very
useful tool in many applications. Aminiet al.[2] proposed a dy-
namic programming strategy for the optimization, thus guaran-
teeing convergence, enabling the integration of hard constraints,
and bypassing local minima. Greedy algorithms and some de-
rived versions [22], [49] have been described to provide im-
proved convergence speed. A way to overcome the difficulties
of the proper choosing of the weight parameters has been pro-
posed in [50]. Here, the internal forces are controlled by ap-
proximating the contour by curvature arcs that compensate for
the normal forces. The B-spline snakes build on the initial con-
cept, but rely on a somewhat modified underlying philosophy.
When first published by Menetet al. [27], the authors empha-
sized the advantages of local control, compact representation,
and the possibility to include corners. They also showed that
B-spline snakes could offer improved convergence speed and
stability. While internal curve energies were still used in [27],
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Fig. 10. PET-scan of the brain.

Flickneret al.[18] recognized that the inherent smoothness built
into the spline model combined with a fewer number of control
points no longer requires the introduction of internal energies.
Hence, a fast spline rendering algorithm based on Bezier curve
rendering makes an optimization process at interactive speeds
possible. The property of implicitly built-in smoothness into
the B-spline has also been successfully exploited in [48], who
proposed a multistage model for the optimization. One notices
the link to another technique for smooth boundary represen-
tation: boundary description by Fourier descriptors [28], [29],
[39], [41]. Similarly, a reduced number of parameters combined
with an implicit smooth data model provides a robust descrip-
tion of a contour. With such an approach, a small perturbation

is uniformly distributed over the entire curve. Thus, the ap-
proach is more stable with respect to noisy objective functions.
Also, the B-spline snake formulation is related to the wavelet ap-
proach described by Chuang and Kuo [10]. This representation
leads to a multiscale curve description, and the authors demon-
strate among others the nonshrinking property when only a few
wavelet coefficients are used, and the stability of the represen-
tation.

In this work, we have provided some fundamental justifica-
tion for the use of B-splines for solving snakes problems. We
started by proving that cubic splines are optimal for cost func-
tions involving a smoothness constraint based on the second
derivative of the curve. Hence, by considering a simplified ver-
sion of the cost function introduced by Kasset al. (which also
involves a first order derivative term), we were able to give a

rigorous justification for the B-spline discretization of the snake
problem as initially proposed by Menetet al. While this gives
a strong argument in favor of B-spline snakes, the main idea
that we have pushed here is the possibility of simplifying the
traditional snake formulation by both reducing the number of
parameters and dropping the regularization term (internal ener-
gies). We have achieved this by introducing a global scaling pa-
rameter , which controls the spacing between the spline nodes.

The error formula (11) is a standard result in approximation
theory (Strang–Fix conditions) that also applies to finite element
models [40]. This formula is especially important in our context
because it provides a quantification of the implicit smoothing
effect that can be achieved through the adjustment of—the
idea that we are promoting here. The problematic of the stan-
dard snake formulation as well as Cohen and Cohen’s finite el-
ement approach [13], [14] is quite different: one seeks a solu-
tion of a differential equation and one wishes to chose a dis-
cretization that is sufficiently fine so that the error between the
computed and true solution is negligible. Here we don’t want
to track the maximum of our unregularized external forces ex-
actly; rather, we want to filter it to ensure that the solution is suf-
ficiently smooth. In other words, we need to work with a rather
large , while the finite element method ideally calls for a small

, the smoothing being controlled through the coefficients of
the differential equation. The advantages of such a parametric
formulation are two-fold. First, it simplifies the model because
of the reduction in the number of parameters (use of fewer, but
broader basis functions). Second, the use of a variable spacing



BRIGGERet al.: B-SPLINE SNAKES: A FLEXIBLE TOOL FOR PARAMETRIC CONTOUR DETECTION 1495

provides a very natural and intuitive way to control the stiff-
ness of the curve. A larger spacing implies a smoother curve;
hence the reasoning that internal energies become superfluous.
We have tried to experimentally demonstrate the point by com-
paring the traditional snake with internal energies to B-spline
snakes without internal energies, showing that it essentially pro-
duces the same effect.

Choosing weights for internal energies may sometimes
be quite an impossible undertaking. The proposed approach,
however, has the great advantage of being user-friendlier,
because only one parameter, the value of, has to be de-
termined, which is most intuitive. The node placement is
straightforward by simple point and click. In the case of an
automatic initialization, one has to determinea priori how
many node points are required for a sufficiently accurate curve
representation. Also, automatic optimization may move node
points to high curvature features, thereby locally adapting the
smoothness ability of the curve. An approximate estimate of a
first contour can be easily resampled at a finer knot spacing,
which is then subject to optimization. The proposed approach is
based on optimization of a small number of node points and is
therefore computationally efficient. Moreover, the convenient
form of a B-spline curve represents a coded version of the
detected contour without redundancy. Our method does not
rely on derivative operators of discrete variables, which makes
it robust with respect to noise. We have introduced the idea of
a multiresolution approach in the snake optimization process,
which further enhances algorithm stability. Experimental
results have shown that a correct convergence is possible from
initial contours, which otherwise lead to wrong optimization
results. Hence, accuracy and closeness of the initial contour to
the desired contour can be further relaxed. Finally, note that the
B-spline snake is a parametric curve. Tasks of computing sur-
face-areas of a closed curve are thereby significantly simplified.
For instance, algorithms from computational geometry can be
applied that compute surface-area by subdividing the area into
triangles, of which surface areas are summed. Accuracy can
be chosen as a convenient function of the scale parameter
of the B-spline snake curve. In our work, we require(i.e.,
the number of node points) to be given as input. Minimum
mean-square estimation techniques or other measure could be
introduced to automatically determine this number [11].

Finally, we have presented semiautomatic optimization
schemes for various biomedical applications. For image se-
quences, the user provides the initial contour for the first frame
only, and this information is then used for the segmentation of
the entire image sequence by forward propagation. Note that
the proposed B-spline snake approach potentially offers the
possibility of a true 3-D analysis, by introducingnode frames,
which are linked by cubic spline functions.

VIII. C ONCLUSIONS

In this paper, a B-spline snake formulation has been presented
based on the use of node points, a variable knot spacing, and the
use of a multiresolution optimization strategy. The presented
algorithms are characterized by fast execution speeds and the
possibility for an intuitive user-interaction. Speed has been ob-

tained essentially by two means. First, we have considerably re-
duced the number of free parameters of the snake curve. It not
only simplifies the problem, but also makes it possible to apply
some of the more powerful optimization techniques (e.g., conju-
gate gradient as opposed to steepest descent). Second, we have
introduced fast digital filtering techniques for the rendering of
the snake curve. Intuitive user-interaction is given by the fact
that the node points are situated exactly on the curve. We have
demonstrated that it is no longer necessary to include curve re-
lated energy terms for the optimization of the snake, such as first
and second order derivatives.

The method has been demonstrated on a variety of prob-
lems, featuring different image modalities. The proposed algo-
rithms can be applied on a vast range of images with varying
signal-to-noise ratios and resolutions. We believe that the pro-
posed technique could be a valuable tool for the outlining of
image contours in bio-medical applications.

In all of the applications presented, the user had to specify
an initial contour. For a specific application, it may be advan-
tageous to perform dedicated pre-processing so as to obtain an
automatic initialization.
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