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B-Spline Snakes: A Flexible Tool for Parametric
Contour Detection

Patrick Brigger Associate Member, IEEHeff Hoeg, and Michael Unsérfellow, IEEE

Abstract—We present a novel formulation for B-spline snakes applications for medical analysis [17], [21], [26], [31], feature
that can be used as a tool for fast and intuitive contour outlining.  tracking in video sequences [19], three-dimensional (3-D) ob-
We start with a theoretical argument in favor of splines in the tra- ject recognition [47], and stereo matching [20], [27].

ditional formulation by showing that the optimal, curvature-con- 7 . .
strained snake is a cubic spline, irrespective of the form of the ex- The snake as originally introduced by Kassal. [20] is de-

ternal energy field. Unfortunately, such regularized snakes suffer _scribed as an energy minimizing sp_line_guided by external a_nd
from slow convergence speed because of a large number of controlinternal forces. The external force is given as a user-supplied

points, as well as from difficulties in determining the weight fac-  input function. The internal forces are determined solely by the
tors associated to the internal energies of the curve. We therefore shape of the curve and are usually defined in terms of first and

propose an alternative formulation in which the intrinsic scale of d order derivati Th ke ai | t method t
the spline model is adjusted a priori; this leads to a reduction of second order derivatives. 1he snake gives an elegant methoad to

the number of parameters to be optimized and eliminates the need Simulate an elastic material, which can dynamically conform to
for internal energies (i.e., the regularization term). In other words, local image features. This type of snake has two main features:

we are now controlling the elasticity of the spline implicitly and 1) a large number of control points that define the curve and 2)
rather intuitively by varying the spacing between the spline knots. 5, aypjicit formulation of the smoothness constraint. The fol-

The theory is embedded into a multiresolution formulation demon- lowi bl h b ized in the literature:
strating improved stability in noisy image environments. Valida- owing problems have been recognized in the literature.

tion results are presented, comparing the traditional snake using 1) slow convergence speed because of the large number of
internal energies and the proposed approach without internal ener- coefficients to optimize;

gies, showing the similar performance of the latter. Severalbiomed- 5y ifficulty in determining the weights associated with the

ical examples of applications are included to illustrate the versa- th traints:

tility of the method. Smoothness constraints, o _

3) description of the curve by a finite set of disconnected
points;

4) high-order derivatives on the discrete curve may not be

ANY applications require the extraction of salientimage accurate in noisy environments [48].

features such as edges, lines, subjective differences in

gray-level. In medical applications, physicians are highly inter- Based on the original philosophy, different solutions have
ested in computer assisted devices that help to detect and @iélen suggested to render the snake more stable and to yield
line specific organs or other medical features of interest. Thester convergence results [2], [22], [49], [50]. An alternative
computer should help but not replace the physician. Ideally, thgproach to snakes, which also circumvents some of the prob-
system performs an automatic analysis to eliminate human sygms, is to use a parametric B-spline representation of the curve,
jectivity and intra- and inter-human variability, while providingfirst introduced as B-snake [27], and improved in [18], [23],
physicians with the possibility of an intuitive and easy user-if48]. Such a formulation of an active contour allows local con-
teraction. In such a way, it is possible to incorporate knowled@®|, compact representation, and it is mainly characterized by
and experience. For curve fitting, for example, the contour getfre following points: 1) few parameters, and 2) smoothness im-
erated by the algorithm should be easily modifiable by the techticitly built into the model. In addition, the B-snake approach
nician. Similar constraints may be found in many other appliaturally permits the local control of the curve by controlling in-
cations as well. The snake as an energy minimizing “splingfividual control points. Another model that can handle multiple
has found wide acceptance and has proven extremely usefufiaikes, allows change of topology and is less sensitive to initial-
ization is based on the level set interpretation of the Euclidean
curve shortening equation [9], [25], [38]. Let us also mention
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Second, we choose to specify an initial B-spline snake confi§- Regularized Solution—Cubic Splines are Optimal
uration usingnode pointghat are situated exactly on the snake The basic problem is to approximaféz) by a snake curve

curve, rather t_han the trad|t|0n_al B-spligentrol points we. s(z) that is constrained to be smooth. For this purpose, we con-
believe that this approach provides a more practical, and iNH3er the following optimization problem

itive user-interaction. Third, we introduce a scale parameter for

the B-splines, which allows us to control the smoothness of the too s 5
snake implicitly (as opposed to explicitly, through a regularizas—*(x) — arg min Z Vik, s(k)) + A / <d 3(37)) da
tion term). The proposed formulation eliminates the need for * rew —oo dx?
curve-internal energies and also allows the easy introduction of @)
external hard-constraint points. Since increasing the scale of the

spline is related to reducing the number of node points, this kigghich constitutes a one-dimensional (1-D) cost function sim-
of approach tends to simplify the optimization process. Mor@ay to the one introduced by Kasg al. [20]. The criterion in
over, we find that the results of the method are similar to tho§g) involves two distinct terms. The first is the so-called data
obtained with conventional regularized snakes, which have CQBrm, which forces the solution to be close to the minimum of
siderably more parameters. Fourth, we improve the speed grd potential functioiV/(z, ). Note thatV(x, v) is evaluated
robustness of the optimization by making use of a multiresoly the discrete location = & andy = s(k) to accommodate for
tion technique (image pyramid). Finally, we propose to use dige discrete nature of the input data (external force). The second
ital filtering techniques to accelerate the process of curve regym expresses a smoothness constraint, which will tend to priv-
dering, which is by far the most costly part of the algorithm. jiege solutions that have a low average curvature. The amount
The paper is organized as follows. In Section Il, we start Wit smoothness of the solution is controlled by the regulariza-
a theoretical analysis that provides strong arguments in fay@yn factor \: it typically reflects oura priori knowledge. We
of the B-spline model. In Section Ill, we justify our simplifi- are assuming that the problem is well defined in the sense that a
cation of the conventional model; which is to impose smoothyp|ytion exists. Note that this solution is a snake functior)
ness constraints implicitly through the knot spacing of the spligga; is continuously defined ovek, even though our data are
rather than by regularization and provide the mathematical fQfiscrete.
mulas for the parametric B-spline snake. We also discuss somé, order to be able to find the solution, we now present our
of the implementation issues; in particular, the specification ng result, and show that the optimal snake is indeed a spline.

tion IV, we consider optimization strategies and describe oWpots at the integers.

multiresolution approach. In Section V, we test the performancenpte that the solution is not necessarily unique because we
of the proposed method. Finally, in Section VI, we present se\id not impose any particular constraint bigz, v) (e.g., con-
gral 'examples for semiautomatic contour detection in biome@exity)_ However, an optimal snake curve is uniquely defined by
ical image sequences. its values at the knot points (%), k € Z, or, equivalently, by
the sequence of its B- spline coefficients (cf. Section 11-B).
Proof of Theorem 1:For any given snake candidatér),
we define its cubic spline interpolast,; (), which is uniquely
The purpose of this section is to justify the use of splinedefined as in [34]. It is @?-curve that agrees with(x) at the
for solving snake problems. In order to develop a mathemattegers (i.e.sin (k) = s(k), V& € Z), and is a cubic polyno-
ical model, we will consider a simple configuration where thaial on each intervalk, & + 1), k € Z. We then rewrite the
contour to be detected can be represented by a single functiopst function as
Even though this corresponds to a somewhat restricted situation
(a general curve requires one function per coordinate dimen- oo f Ps(x)
sion), it will provide us with important mathematical insights $($) = > Vik sim(k) + )\/ < Ip2 ) dr (3)
that are directly transposable to the more general case, which kez o
will be tre_:ated m_Sectlon III._The present functlonal mo_del may. o re we have substituted) by sy (k) in the first part of the
offer an interesting alternative to dynamic programming tech-., ~ . ; .
niques, which are traditionally used in this context [4] criterion while leaving the value df (., -) unchanged. To ma-
o . . . nipulate the second term, we use the so-called firstintegral equa-
The basic problem is to detect a contour described by afuqlco-n [1], which states that for any functiortz) whose second
tion yo = f(x) in thez—y plane. Instead of an explicit defini- ! y

. . . e o derivative is square integrable [36, Lecture 6
tion, the unconstrained contour curyés specified in terms of q 9 [36, ]

the minimum of a potential function )
/+°° d?s(x) d
X
oo dx?

Vi(z, y) =gy — f(z); z) () /+oo <d251nt($)>2 N

= 2
with the condition that(z; ) > ¢(0; ), V 2. For notational —oo dx )
simplicity, we assume that(z) is defined over the entire real n /+°° <d25(x) 3 dQSint(x)> i @

Il. SNAKES REVISITED: A FUNCTIONAL FORMULATION

line. dx? dx?

— o0
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Hence, we obtain wherec(k) are the B-spline coefficients, and where the gener-
9 ating function is the cubic B-spline given by
Foo d%sine (1)
keZ o , 2/3 4+ |z?/2— 22, 0< |z] <1
+oo 2 2 ..
A Psto) _ Fsml@N" (5 B = { (2 [a])?/s, 1<lel<2 ()
oo dx? dz?

0, 2 < |x|.
By hypothesis, there exists a solutigii (not necessarily . ) )
unique) for which ¢(s*) is minimal. This solution has a Thanksto (6), we can now manipulate (2) to obtain a discrete

unique interpolatos?’.., which fixes the first and second termgform of the criterion in terms of the B-spline coefficients:).

nt?

in the above expression. Finallg(s*) can be minimal if Using the basic convolution and differentiation rules of splines
and only if the third term is minimal as well, that is, wher{Cf- [44]), we obtain the explicit formula
5@ — 5*®) — 0 almost everywherd.e., the set oft’s such
x(2) _ () i i
thz_ﬂs Sint 1& 0 |;s of measure zero. If we integrate £(s) = Z Vi(k, (3 5 c)(k))+
twice, we get that*™ — sf, = ax + b everywhergbecause

ez
a set of measure zero does not contribute to the integral). 3 (2 2)

Finally, because of the interpolation condition, we conclude A Z(l’l *d x ) (k)(d x e)(k) (8)

that s*(z) = s, (z) everywherelt follows that the optimal ez

snakes” () is a cubic spline. B wherex denotes the discrete convolution operator and where

The result of Theorem 1is closely related to the classical mige kernelsh? (discrete cubic B-spline) and® (second dif-

imum curvature property of spline interpolant [16], [51], WhiC'?erence) are defined by theirtransform as followsB3(z) =
corresponds to the special case— 0. Here, the main differ- (., 4 | #~1)/6 andD®(z) = z — 2+ 2L (cf. [43]). Note
ence with the standard results on the optimality of splines #§4t we have now replaced the integral in the second term by a
that we do not have an explicit solution available because of thgm \which is much more tractable computationally. The task is
generality of the co;t functlon_ (2). However, we are still ablgyen to minimize (8), which is typically achieved by differenti-
to show that the optimal solution among all poss@%func— ation with respect ta(k). In the case of a quadratic potential
tions belongs to the space of cubic splines which makes fig,ction, this leads to a linear system of equations that can be
problem tractable numerically. We can also relate our problegg|yed using any of the standard techniques [46]. For the more
to curve fitting by interpreting the functiog(-; z) in (1) as & general case whei(z, ) is not quadratic, the solution may
pseudo-metric iy, which is allowed to vary as we move alongsi|| he determined numerically, for example by using an itera-
x (pr incrementt). In particular, if we consider a quadratlc2 Cri-tve algorithm (steepest descent or conjugate gradient).

terion of the formg(s(k) — f(k); k) = w(k)[s(k) = f(K)]°, Note that the spline snake (6) has as many degrees of freedom
wherew(k) > 0is a sequence of weighting factors, then the opg_gpline coefficients) as there are discrete contour points, i.e.,
timization task is mathematically equivalent to the well-knowgne per integer grid point. I is sufficiently small, then the
s_moothing spline prob_lem in statistics [4§]. The goal there is E{bline (5) will interpolatef (k) exactly. Conversely, the use of
find a smooth (regularized) curwg) that is reasonably close |5rger values of will have the effect of stiffening the spline and
(inthe least squares sense) to a set of noisy data pfihsThe  gmqothing out the discontinuities of the unconstrained contour
fact that this leads to a spline solution is well known in this Consurve f(x). As we will see laterp can eventually be dropped by

text (quadratic cost function); it was established independent|ing 5 variable size knot spacing, which still assures smooth-
by Reinsh and Schoenberg [32], [35]. Theorem 1 extends this fRrgg

sult because we did not make any hypothesis on the form of the

potential function (or pseudo-metrig)s(k)— f(k); k). In other

words, we have shown that splines are optimal, irrespective of |ll. B-SPLINE SNAKES: PARAMETRIC FORMULATION
the metric used, which is a remarkable property. In principle,/'g
is possible to extend this kind of formulation using more general
differential operatord (for instance, a linear combination be- The previous section has provided the link between splines
tween first and second derivatives) which leads to the so-call@@d the traditional variational formulation of snakes. In this sec-
L-splines [37, Ch. 10]. However, we do not think that there is N, we propose to impose smoothness constraints in a simpler
great advantage in doing so since these representations are nii¢hmore economical fashion, and to give an intuitive B-spline
more cumbersome than the cubic B-splines. In addition, they 8dake formulation useful for images.

not necessar”y share their good approximation properties_ Theideaisto eliminate the second termin (8) andto introduce
a variable knot spacing between the knot points. An increased

B. Computational Solution knot spacing will essentially have the same smoothing effect

To solve the snake problem numerically, we express its culie the solution. Thus, we consider the simplified optimization
spline solution using the standard B-spline expansion problem

s*(z) = Z c(k)33(x — k) (6) s"(z) = arg min Z V(k, s1(k)) 9)
kCZ )

Parametric Solution
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which is now constrained indirectly in the sense thdt:) with  integer. This 2-D spline snake is characterized by its vector-se-

h > 1is a coarser spline with knot spacihg quence of B-spline coefficienigk) = (c.(k), cy(k)). Note
that there are onlWW = t,,,x/h primary coefficient vectors,
sp(e) = Z cn(kB)3 (x/h — k). (10) each corresponding to a spline knot on the curve; the other co-
kCZ efficient values are deduced using some prescribed boundary

) conditions (cf. Section IlI-E).
~ Hence, ournew smoothness parametérathertharh. Typ- cjearly, if we specifyV, the above automatically defines the
ically, we will take 2 to be an integern, which will reduce |, snacing; and therefore the smoothness constraint for the
the number of degrees of freedom (B-spline coefficients) in tré%rve_ Assuming a curve representationMy= #,,.,. discrete
same proportion. If we perform the same substitution as befob%ints, we obtairh = M/N. The freedom of the spline curve
we find that in the case of a quadratic potential function the Ng\4 < peen reduced by the same amount, resulting in a smoothing
solution corresponds to a weighted least square spline apprgxy stiffening of the curve. Increasing the numbémnf node

imation of the unconstrained curyx). In the general case ;v will reduce the knot spacing, and consequently it will

whereV (z, y) is not quadratic, we still have some form of MiNYeduce the smoothing effect on the curve.

imum error approximation, except that the “metric” is no longer

Euclidean. _ . . B. B-Spline Snake Formulation: Node Points versus Control
To differentiate this new solution from the previous one, Wegints

will call it a parametric spline. This terminology is justified by In the literat B-spli defined by thei ol
the fact that the smoothness constraint is entirely implicit and i?\t % 'V?/L"’i‘ Lr’]re’ rr_sp mnedstar?h %me”n y ?flir icrc:tn ricr)1
that the number of degrees of freedom is much less than Qints [3], ch correspo 0 he b-spliné coetlicients

number of contour points. The main advantages of this pa ? Previous B-spline snake formulations have used these

metric formulation are as follows. First, we have reduced t é)ntr_ol points for the def_inition of the curve [18], [27]’.[48]'
number of parameters, which simplifies the implementation b it tht'i pa;[k)]er,_ v¥e pr?_fer lns:ea}dtrt]o work W'th_lflr?de p(;)mts,.att
also accelerates computation. Second, it is relatively easy to Y otr ftehm erali: ve gar ot the grfcﬁfs'k f n?tf? p0|F S
an intuitive feeling for the smoothing effect of the paraméter ré part ot the snake and correspond to the knots of the spline

o : urve. By positioning them appropriately, we have a ver
Specifically, we have the following error bound [24], [40], [45]::jirect anél/ iﬁtuitive Wgy of contf(gling the >slhape of the curve)./

too 1/2 For B-splines of degree zero and one, the control points are
If = sillr. < C R </ W™ f (W) dw) (11) identical to the curve points at that location. For higher degree
- splines, however, the control points are significantly distinct

from the actual coordinates of the spline curve, especially for
large values of.. An illustration is given in Fig. 1 for a B-spline

curve and four node points using a B-spline of degree one and
a B-spline of degree three. In the latter case, the control points
do not belong to the curve and they are different from the node

Thus, the error can be made arbitrarily small provided that thQ!nts- Clearly, for higher degree spline, user-interactivity is

generalized bandwidth of the signal (which is measured by tHaster when th? node pomts can be mgnlpulated. .
right most term) is sufficiently small when compareditoAn- The node points are just another equivalent representation of

other way to understand the nature of this smoothing is to u@@ spline curve; they are directly related to the control points via

the close relation that exists between spline and bandlimited §yst:?m oftlmear eqtl)Jatlo?s 516]' Weﬁyv!ll btr||efly_shc:jvy .t;e:c;ylv
proximations [42]. With this interpretatios;, is more or less oW this system can be solved very efliciently using digitat i

) L . . tering techniques.
equivalent to the bandlimited version 6fz) with a cutoff fre- : . : _
quency ats, = 7 /. We impose a set ofV discrete node pointi(k) =

The argument is essentially the same for more general cur\§7eL§(k)’ ”t’y(/a)’ 0 < k < N that are required to be part of the
in the plane, which are described using two splines instead%frves"( )- Hence

Icz)r\l\tles.-Spemflcally, we represent a general B-spline snake as fo7ll-(k) — s (hk) = Z e(j)- b (k—3), 0<k<N (13)

oo

where
s} least squares spline approximation pfx) with
knot spacingi;
n =3 degree of the spline;
f(w)  Fourier transform off (z).

jez
s1(t) = (s2(t), sy(t)) whered” is the discrete B-spline kernel of degreeb™ (k) =
e B7(2)|.=r. From (12) one can then compute the B-spline coef-
- Z c(k) -8 o k ficientse(k) by inverse filtering
k=Z
0S8 % bona = ) W) ety =3 () ) k=), 0Sk<N (14
icz

wheres,(t) ands,(t) are thex andy spline components, re-

spectively; these are both parameterized by the curvilinear varikere(b™)~! denotes the sequence that is the convolution in-
ablet. The exact value of,,,., which marks the end of the verse ofs™. This is an IIR filter that can be efficiently imple-
curve, is dictated by the desired resolution of the final discreteented using recursive-filtering [44]. This step represents an
curve; by convention, we do only render the curve pointg forimportant difference to other B-snake propositions. It has to be
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node point & _— controlpoint  may typically be chosen larger). Therefore, the continuous vari-
control point . ‘ ablet is replaced by a discrete variable0 < ¢ < M. The
value of M/ and the numbeN of given node points directly de-
termines the knot spacing The discrete B-spline snake with
N node points and/ curve points is given as

node point

) e M
s(i)=>_ e(k)-p <E —k) . h= (17)
keZ
o Below, we present two different ways for fast curve rendering

by digital filtering.

Interpolation The most straightforward way is by interpo-
lation. The B-spline function is evaluated at every position
Fig. 1. lllustration of a B-spline snake curve, its node points (triangledf/ — &) multiplied by the corresponding B-spline coefficient
and its control points (squares). (&) B-spline of order zero (node points @ad summed. B-splines are of compact support, and therefore,

equivalent to control points). (b) B-spline of order three. Here, control arﬂile Summing needs onIy to be carried out over a subset of
node points differ significantly. User-interactivity is clearly improved if one

a) Spline order one b) Spline order three

uses node-points rather than control points. all coefficients. To interpolate the curve at a poinbnly the
coefficients

evaluated once at the beginning of the snake optimization pro- (k); t n+l <p< K n n+1

cedure and it provides the correct initialization for the B-spline A =7 = 1h 2

coefficients. A correct initialization is mandatory such that the ) . . .
node points coincide with the actual curve. need to be included in the surfi](denotes integer truncation).

Equation (14) provides us with distinct coefficients. For The main computational drawback of this proced_ure is that the
the evaluation of (12)—(14), the finite sequence needs to be 8)'330'['0'1 (7) needs to be evaluated for each term in the sum.

tended to infinite length. This is achieved through appropriate Pigital Filtering: The above described algorithm works for
definition of boundary conditions and will be discussed in Se@nY combination of values a¥/ and V. If we can imposel

tion III-E such that: is an integer value, a much more efficient algorithm
' can be described. In general, this requirement is easily met, since
C. Energy Formulation M is not critical and can be loosely chosen. The simplification

With the introducti f variable k , | is based on a convolution property for B-splines [43, Eq. (3.5)].
'.t t € introduction o variable nc_Jt spacing, we no longek iates that any spline of degre@nd knot spacing (integer)
require mte_rnal curve energies. Expenmental tests given |n_S G&h be represented as the convolution &f 1 moving average
tion \./'A.W'“ d.emons.trate this point. The extgrnal potentiak o s of size followed by a spline of knot spacing one. Hence,
function is typically given by a smoothed version of the Iqhe curve points can be obtained by three successive steps:
dient of the input data [8] . . -
1) upsampling of the B-spline coefficients;
P 2 P 2 2) averaging by(n + 1) moving average filters of sizk;
glz, y) = \/<% @ * f) + <8_ @ * f) (15) 3) filtering by a unit B-spline kernel of degree
Y This algorithm can be implemented with as few as two multi-

where f denotes the input image angdis a smoothing kernel; Plications and two additions per node point p{@s,) adds per
for example, a Gaussian. Our cost function is the summati6AMPuted contour coordinate. Generally, itis faster than method
of the gradient (external force) over the path of the curfee  ON€ and also at least a factor of two better than the Oslo knot in-

sampled af// consecutive points sertion algorithm commonly used in computer graphics [3].
M-1 E. Border Conditions
£(e(R) = Z —g(s(4))- (16) Appropriate boundary conditions are necessary for the com-
=0 putation of (12), (14), and (17) [6], [51]. In the following, we

For the cost function to be a good approximation of the curwlistinguish the cases of a closed snake and an open snake.
linear integral, we will typically selecd/ sufficiently large so ~ Closed Snake Curvéor a set of node pointa(k), k =
that the curve points are connected (i.e., within a distance of dhe - -, IV — 1, we require than(N) = n(0) andn(-1) =
pixel of each other). We note, however, that the exact value®fN — 1). The corresponding boundary conditions are periodic
M is not critical; a less dense sampling may be used to incredsi- 2(a)]. The extended signal (k) of infinite length can be
optimization speed. The negative sign in (16) is used beca@gscribed by
we employ a minimization technique for the optimization. ny(k) = n(k modN). (18)
D. Fast Curve Rendering Through Digital Filtering Open Snake Curv®ifferent choices can be implemented for

The problem consists in evaluating (12)\dtdiscrete points. the open snake, such as mirror or anti-mirror boundary condi-
Such an evaluation is necessary for the computation of the ¢ions [Fig. 2(b) and (c)]. In this application, the anti-mirror con-
ergy function (16) and for the display of the curve (whé#e ditions with a pivot at the boundary value are the most suitable
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a) periodic b) mirror ¢) anti-mirror with pivot point

Fig. 2. lllustration of boundary conditions.

choice because they allow us to lock the end points of the cureptimization procedure along the same direction many times,
These anti-mirror conditions are such that which is inefficient. The conjugate gradient algorithm performs
the optimization alondg\-orthogonaldirections. In the case of a
(n(ko + k) —n(ko)) = (n(ko) — (ko — k))  (22) quadratic potential, the procedure leads to a scheme where ex-
ctly one step is done in every search direction, which is much

whereko € {0, N — 1}. Since the extended signal has a Cent%mre efficient than the steepest descent approach. In our case,

of anti-symmetry at the boundary value, this value will be pre- X
) o . . we make use of an extensions of the method to other, non-
served exactly whenever the filter applied is symmetric, whic . . .
adratic potential functions [30].

turns out to be the case here. However, a new boundary value 243
not be defined as the lookup of an existing signal value, which

makes the implementation slightly more complicated. A. Multiresolution Procedure
Snakes may get trapped in local minima. Hence, a good ini-
IV. OPTIMIZATION STRATEGIES tialization close to the desired contour is necessary. Itis obtained

The literature is rich on minimization strategies, includin§@sed ora priori information or based on a manual placement.
methods such as golden section search, steepest des bis requirement can be loosened through the use of a multi-
methods and conjugate gradient methods, as well as heuri§@!€ representation. Multiscale processing is an old but pow-
techniques tailored to a particular problem. In multidimensiongIful idea[7], [33]. Itis usually applicable whenever one wishes
optimization problems, one may advantageously use the infé?-implement an image processing algorithm that is iterative in
mation of the gradient of the energy function if it is availablg}aturé and requires many successive updates. The basic prin-
The B-spline formulation allows an easy computation of trféiPl€ is to construct an image pyramid and to start applying the
gradient function of the energy term. The parameters subjeci@cedure at the coarsest level on a very small version of the
optimization are the B-spline coefficients (and hence indirectify@ge. Upon convergence, the solution is propagated to the next

the node-points), yielding finer level where it is used as starting condition. One then pro-
ceeds with this coarse-to-fine iteration strategy until one reaches
9¢(e(k)) M1 (g(s(i)) the finest level of the pyramid which corresponds to the image it-
T(k) - Z T(k) self. This type of multiresolution approach has two advantages:
i =0 first, on reduced versions of the image, a smaller number of
9g(s(1)) _ 9g(s(4)) . 98 curve points can be used thereby improving optimization speed.
de(k) 9s(1)  |yepiery 9c(k) Second, it usually also improves robustness; the pyramid has a
_ Ag(s(1)) g <i 3 k) (23) smoothing _effe_ct onthe crit(_erion tobe optimized Which often re-
ds(i) pa(e(h)) h ; duces the likelihood of getting trapped in local optima. To min-

imize the loss of information from one level to the next we used
The term(d(g(s(2))/0s(i))|s=s(e(x)) IS the derivative of the a centered least squares pyramid as described in [5].
force function in the spatial domain. It can be obtained by com- Hence, the original set of node pointék) is down projected
puting a direct B-spline transform followed by a spline interento a smaller version of the original image. The reduced image
polation from a derivative B-spline. The direct transform onlgontains fewer image details, and thus less noise. The snake is
has to be done once at the beginning of the optimization. Thetentially able to converge to the correct result from an initial
use of splines throughout the entire development allows usdontour farther away from the final contour. An example demon-
define a consistent B-spline snake framework. Equipped wistrating the increased robustness of the multiresolution approach
the gradient, we can proceed to find the minimum of the energg/given in Fig. 3. In Fig. 3(a), the initial starting contour is
function. shown, which was drawn manually. The result of the direct op-
We have tested both the steepest descent algorithm andttirézation is shown in Fig. 3(c). Then, a three-level pyramid
conjugate gradient algorithm. The former optimizes in the divas computed using cubic spline basis functions. The optimized
rection of the local downhill gradient, which may result in arontours for the different levels are shown in Fig. 3(b). Clearly,
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a) initial contour b) multi-resolution c) single-resolution

Fig. 3. Identical initial contour (a) for both (b) and (c), but only correct convergence with the multiresolution approach.

the multiresolution decomposition eliminates small (undesire
image details and the snake is able to converge to the true res

V. PERFORMANCEEVALUATION

A. Comparison: Variable Knot Spacing vs. Internal Energies

In this section, we shall demonstrate the effect of a variak
knot spacing on the stiffness of the curve, and its ability 1
conform to smooth image features. In particular, we will con
pare the proposed snake implementation to the traditional sni
model by Kass, and show that similar results can be obtain
without the use of internal energies.

The comparison is based on a binary test image consistinc
a vertical line, of which a small part has been displaced to t| !nitial contour
left (see Fig. 4, initial contour). In order to obtain a smooth forc
function, the binary image is smoothed by a 2-D Gaussian, wi a) b) ¢)

o = 5. Optimization is formulated as a minimization problem,

and hence the optimal snake position is on the line. Eleven node

points that have been set manua”y at unequa| Iength interv_'éEEs 4. Tradi_tional shake: initial contour and optimization with different
. .y . internal energies.

characterize the initial snake curve. Depending on the smooth:

ness requirements of the final curve, two different results can

be anticipated from the optimization. 1) The resulting curve is the number of interpolated points aid is the number of

vertically centered on the longer line, being unaffected by ti®de points, can be changed by either varyigor N. For

small displaced part. Such an outcome corresponds to an imgbis example, we have decided to employ the same number of

tant smoothing constraint. 2) The resulting curve has a “bumpbdde (control) points as for the traditional snake, and hérise

and is attracted toward the small displacement on the left. Tltisanged by changing the number of interpolated pairitsA

outcome reflects a less severe smoothness requirement.  knot spacing ofi = 1 signifies that no points are interpolated

First, the traditional snake is computed with various weight®etween node points. A B-spline of degree one corresponds
for the internal energies. Each discrete curve point is indepexactly to the above experiment with zero weights, and the
dently optimized and attracted to the closest minimum by settingsult is identical [Fig. 5(a)]. Using a B-spline of higher degree,
weights for the stretching and bending energy to zero [Fig. 4(ajlode points are no longer completely independent. For all re-
A weight of asreter,. = 0.1 and ageng = 0.1 tends to pull maining experiments, we have used a B-spline of degree three,
the “bump” toward the right [Fig. 4(b); however, this does ndbecause it leads to visually pleasant curve representations. The
produce a straight curve yet. A weight @f+..... = 0.2 and optimized result withh = 2 is shown in Fig. 5(b). Note that
apeng = 0.2 produces an almost flat curve [Fig. 4(c)]. This typehere is one interpolated point between two node points. The
of snake proves to be very flexible in that the user can chogseint helps attracting the curve toward the longer line. An
among a large number of smoothness requirements by adjusimgeased knot-spacing with= 3 uses two interpolated values
Qsereter, @Ndageng. The feature may also represent a drawbadietween two node points for computation of energy [Fig. 5(c)].
for certain applications, because of the associated difficultieslimthis configuration, these points manage to fully attract the
choosing the correct weighting factors, by either empirical @urve toward the longer line, and the “bump” disappears. The
automatic means. experiment demonstrates the similar effect of a variable knot

The B-spline snake incorporates smoothness through diffacing and of internal energies on the smoothness of the final
ferent knot spacings. The knot spacihg= M /N, whereM  snake curve.

Astretch =0.0 Astretch = 0.1 stretch =02
Apend =0.0 Xpend =0.1 Apend =02
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b) h=2

|
c) h=4

Fig. 5. B-spline snake: initial contour and optimization with different knot spacings.

B. Consistency Assessment T3~ Handmeasue
—o imi -spline k.

The smaller the variance of multiple measures of the same 2000 mre——
gquantity, the more consistent the analysis is. We propose to /
measure intra-observer consistency, as well as algorithm con- 2800 ,____«;><
sistency. o ¢—

Intra-observer consistency is assessed from five different g 0
manual measurements of the surface-area of the corpus o
callosum and the associated standard errors. The five measure-  §
ments were repeated using two different drawing tools; first g 2500
using the pencil tool of a public domain software (NIH Image, :‘% U
V. 161), and then using the B-spline interface. For the latter, 2400 —4
the user clicked and positioned node points along the contour,
which were linked by a cubic spline. The manual tracer was 2200

-
-

free in selecting the number of desired node points. In average, 2

20.2 node points were used & 5, number of node points for

each experiment: 17, 21, 23, 19, 21). Fig.6. Comparison of surface areas obtained by 1) manual tracing, 2) B-spline
Algorithm consistency was assessed by measuring s@tlining. and 3) B-spline snake with optimization

face-area and standard error of the mean of the results obtained

after optimization of the initial contours from the B-splineseems that the human tracer has a tendency to place contours

interface. Different number of node points were used for t}ﬁ@mewhat outside of the transition, so that these transitions

manual placement of the initial curve, and the results af@main visible. An experiment with a phantom object would be

also an indication of the sensitivity of the method to manuadequate here to determine which of the two contours is closer

placement of the curve, and to the number of node poirigsthe true contour. Note also that the subjective impression of

chosen. Results are presented in Fig. 6 and in Table |. We n#ite manual tracer was that the B-spline snake offered a more

that manual contour outlining using the pencil tool or usinggreeable way of contour outlining.

the B-spline snake essentially produces the same quantitative .

results. Uncertainty values in terms of standard error of tie Stability Assessment

mean are comparable for both approaches. Time requirement§he testimage consists of an arbitrary curve with a Gaussian

were similar, slightly favoring the B-spline approach. The latteshaped gray level profile. We illustrate the algorithm’s perfor-

however, provides a visually better looking and more appealingance in the presence of partially distorted contours. A gap of

contour (see Fig. 7). Surface-areas obtained after optimizationreasing dimension was inserted in the test image (Fig. 8) to

of the initial curve prove to be more reliable, expressed by tligustrate the algorithm’s interpolation efficacy.

lower value of standard error. The mean surface-area is smallefhe results of these tests are illustrated in Fig. 8. Fig. 8(a) dis-

than in the previous two cases. We therefore also note that giays the initial contour, and Fig. 8(b)—(e) show the optimization

locations of the initial curve as well as the number of nodesult when the contours are partially distorted. The B-spline

points are not critical for reproducible optimization results. knake tries to follow the contour piece that is being extracted. At

3
Trial
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TABLE |

SURFACE-AREA AND STANDARD ERRORSOBTAINED FOR REPETITIVE CONTOUR OUTLINING OF THE CORPUSCALLOSUM BY 1) MANUAL

TRACING, 2) B-SPLINE OUTLINING, AND 3) OPTIMIZED B-SPLINE SNAKE

Manual B-spline outlining Optimized B-spline snake

s=25,a=2784 s=20;a=2727 s=27,a=2395
s =23, a=2789 §s=20;,a=2732 s=24;a=2415
s=23;a=2744 s=21;a=2777 §=25;a=2461
s=22;,a=2877 s =20;a=2852 s=25 a=2462
s=22;,a=2710 s=23;a=2697 s=24; a=2445
s =23, a=2781 s=21; a=2757 s =25, a=2436
std err=280 std err=270 std err=13.2

a) Manual outlining with pencil tool b) B-spline outlining

¢) B-spline outlining with optimization

Fig. 7. Comparison of different contour outlining techniques.

a) b) ©) d) €)

Fig. 8. (a) Initial contour and (b)—(e) optimization with an emerging contour piece at increasing distances. The dots indicate the locatioreqidhesiod

a sufficient distance of the extracted contour piece to the origeen compared to those obtained by histological dissectioning.
inal contour position, the snake then snaps back to interpol@téotal of n = 189 sections from 20 different segments has been
the missing contour. compared, and those results are summarized in Fig. 9. There is
The proposed algorithm is also stable in noisy imaging eman excellent linear correlation between the two measures.

ronments. We have employed the method extensively on a quan-
tification problem for plaque characterization in coronary ul-
trasound images. To test the algorithm’s accuracy, coronary ar- . .
teries were imaged post-mortem. The same arteries underw@ntSegmentation of Corpus Callosum in an MRI Image
automatic analysis by our algorithm, as well as manual inspec-The corpus callosum is a relevant brain feature, and physi-
tion by dissectioning. The automatically obtained results hageans are often interested in its size. Images are typically as-

VI. Bl10-MEDICAL APPLICATIONS
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Total Vessel Surface Area [nm*2] separating gray and white matter, because the desired contour
40 is not smooth and would require the introduction of a large
a5 | ¥=0.9882x +0.4034 number of node points. However, on the PET scan, it may be
30 | ;;0;9:.95 an interesting tool for a gross separation of the brain from the
25 scull.

n= 1% Enhancement of the original image [Fig. 10(a)] by a contrast
operator highlighted contours of interest [Fig. 10(d)]. Manual
placement of the initial contour in the first frame of the se-
quence using four node points [Fig. 10(b)] was followed by
automatic knot insertion at a scaletwice as fine, yielding a
modified initial contour with eight equidistantly spaced node
points [Fig. 10(c)]. This contour was optimized using the con-
Fig. 9. Comparison of automatically obtained surface areas to those obtaihugate gradient algom_hm and a mUItlreS_OIUtlon dgcomposmgn
by dissectioning. The data is from ultrasound images of left coronary arterie@.? two levels. The optimized contour [Fig. 10(e)] is automati-
cally propagated to the next neighboring frame, where it served

. o .as new initial contour (i.e., no more user interaction necessary).
sessed by MRI. For this and other cases as well, it is roUtiRf 4 final result for frame 18 is shown in Fig. 10(f).

medical practice for a technician to outline the boundaries man-
ually. Often, the standard imaging tools consist of an interfaea
that allows manual border tracing using the computer mouse.
Technicians face several problems related to that task. First, thén this application, the B-spline snake is applied on coronary
hand drawn boundary is subject to small, uncontrollable ha#fery ultrasound images for the detection of the endothelial
movements that result in a noisy boundary. Second, the techi@ll. From the resulting curve, the treating physician is then ca-
cian often does not have the possibility to pause in the outlinifgible to compute surface-area of the coronary artery, which is
process. Also, a curve that is not considered satisfactory of@nimportant measure for the analysis of atherosclerosis.
has to be redrawn in its entirety. The segmentation has been obtained by manually positioning
We have asked an experienced technician to outline tie initial curve in the first frame of the sequence at the ap-
boundaries of the corpus callosum using the B-spline snak@ximate correct location using four node points and a cubic
concept. She found the tools appealing, and stressed the Brgpline snake. The curve was then automatically optimized to
that it is much easier and more accurate to click on a certa@fract it toward the endothelial wall using the conjugate gra-
number of points, instead of having to follow the desiredlient algorithm and a three-level pyramid. The final segmenta-
contour using a pencil drawing tool. We have presented this dign result has been shown in Fig. 4. The entire image sequence
ample in detail during the algorithm description (see Fig. 7). g segmented based on a single initial contour for the first frame,
this context, note also that elastic deformation transformatiowéh forward propagation of the initial solution to consecutive
have been studied as a quantitative description of the callo§ames.
shape with respect to the Talairach atlas [15]. We would alsoThe above experiments show the good performance of the
like to mention the work performed in [12], that uses B-splinBroposed method in various, different imaging environments.
for contour description in the context of an identification an&!so, they illustrate the robustness of the method with respect

Computer Algorithm
[
[=]

0 10 20 30 40
Histology

Segmentation of ultrasound images

registration procedure of neuroanatomical atlases. to different input noise levels and characteristics.
For this particular example, we also tried the standard
Kass-type regularized snake but had considerable difficulties to VII. DiscussIioN

find a set of the stiffness parameters that would make the Snak?mprovements of the traditional snake have made it a very

converge to an appropriate solution. The main difficulty therl? eful tool in many applications. Amiet al.[2] proposed a dy-
is that even if we assume that those parameters exist, it can Be yapp ' L= prop Y

quite time consuming to adjust them interactively by trial angar_nw programming strategy for the optimization, thus guaran-
: . 2 eing convergence, enabling the integration of hard constraints,
error. For the B-spline approach, the user interaction is muc% : - .
i : and bypassing local minima. Greedy algorithms and some de-
more natural; the snake can be constructed easily to conform . . L
. . - _rived versions [22], [49] have been described to provide im-
to less standard shapes by simply entering more nodes in areas e
) proved convergence speed. A way to overcome the difficulties
where the contour is not so smooth. ; ;
of the proper choosing of the weight parameters has been pro-
posed in [50]. Here, the internal forces are controlled by ap-
proximating the contour by curvature arcs that compensate for
The purpose of this application is to demonstrate the vabe normal forces. The B-spline snakes build on the initial con-
range of applicability of the B-spline snake. PET-scans acept, but rely on a somewhat modified underlying philosophy.
much noisier than MRI scans or CT scans, and of mudNhen first published by Menett al. [27], the authors empha-
different nature than ultrasound images (coronary artery). Aized the advantages of local control, compact representation,
example of one frame of an 18-frame sequence of the brairaisd the possibility to include corners. They also showed that
shown in Fig. 10(a). Here, researchers are interested in findiBespline snakes could offer improved convergence speed and

the boundaries of the brain. The B-spline snake is not suited &iability. While internal curve energies were still used in [27],

B. Segmentation of a PET Image Sequence
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a) Original brain PET b) Manual initialization ¢) Knot insertion and re-scaling

d) enhanced image ¢) detection of the brain (15t frame) f) detection of the brain (last frame)

Fig. 10. PET-scan of the brain.

Flickneret al.[18] recognized that the inherent smoothness builigorous justification for the B-spline discretization of the snake
into the spline model combined with a fewer number of contrgiroblem as initially proposed by Menet al. While this gives
points no longer requires the introduction of internal energies.strong argument in favor of B-spline snakes, the main idea
Hence, a fast spline rendering algorithm based on Bezier cuthat we have pushed here is the possibility of simplifying the
rendering makes an optimization process at interactive spegdslitional snake formulation by both reducing the number of
possible. The property of implicitly built-in smoothness intgparameters and dropping the regularization term (internal ener-
the B-spline has also been successfully exploited in [48], wigies). We have achieved this by introducing a global scaling pa-
proposed a multistage model for the optimization. One noticemmeterh, which controls the spacing between the spline nodes.
the link to another technigue for smooth boundary represen-The error formula (11) is a standard result in approximation
tation: boundary description by Fourier descriptors [28], [291heory (Strang—Fix conditions) that also applies to finite element
[39], [41]. Similarly, a reduced number of parameters combinedodels [40]. This formula is especially important in our context
with an implicit smooth data model provides a robust descripecause it provides a quantification of the implicit smoothing
tion of a contour. With such an approach, a small perturbatieffect that can be achieved through the adjustmernit-ethe
Ac is uniformly distributed over the entire curve. Thus, the apeea that we are promoting here. The problematic of the stan-
proach is more stable with respect to noisy objective functiordard snake formulation as well as Cohen and Cohen’s finite el-
Also, the B-spline snake formulation is related to the wavelet apment approach [13], [14] is quite different: one seeks a solu-
proach described by Chuang and Kuo [10]. This representatioon of a differential equation and one wishes to chose a dis-
leads to a multiscale curve description, and the authors demaoretization that is sufficiently fine so that the error between the
strate among others the nonshrinking property when only a feemputed and true solution is negligible. Here we don't want
wavelet coefficients are used, and the stability of the represea-track the maximum of our unregularized external forces ex-
tation. actly; rather, we want to filter it to ensure that the solution is suf-
In this work, we have provided some fundamental justificdiciently smooth. In other words, we need to work with a rather
tion for the use of B-splines for solving snakes problems. Wargeh, while the finite element method ideally calls for a small
started by proving that cubic splines are optimal for cost funé; the smoothing being controlled through the coefficients of
tions involving a smoothness constraint based on the secdhd differential equation. The advantages of such a parametric
derivative of the curve. Hence, by considering a simplified vefermulation are two-fold. First, it simplifies the model because
sion of the cost function introduced by Kaatsal. (which also of the reduction in the number of parameters (use of fewer, but
involves a first order derivative term), we were able to give laroader basis functions). Second, the use of a variable spacing
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provides a very natural and intuitive way to control the stifftained essentially by two means. First, we have considerably re-
ness of the curve. A larger spacing implies a smoother cungejced the number of free parameters of the snake curve. It not
hence the reasoning that internal energies become superfluamdy simplifies the problem, but also makes it possible to apply
We have tried to experimentally demonstrate the point by coseme of the more powerful optimization techniques (e.g., conju-
paring the traditional snake with internal energies to B-splirgate gradient as opposed to steepest descent). Second, we have
shakes without internal energies, showing that it essentially pintroduced fast digital filtering techniques for the rendering of
duces the same effect. the snake curve. Intuitive user-interaction is given by the fact
Choosing weights for internal energies may sometimésat the node points are situated exactly on the curve. We have
be quite an impossible undertaking. The proposed approadamonstrated that it is no longer necessary to include curve re-
however, has the great advantage of being user-friendlieted energy terms for the optimization of the snake, such as first
because only one parameter, the valueNgfhas to be de- and second order derivatives.
termined, which is most intuitive. The node placement is The method has been demonstrated on a variety of prob-
straightforward by simple point and click. In the case of alems, featuring different image modalities. The proposed algo-
automatic initialization, one has to determiaepriori how rithms can be applied on a vast range of images with varying
many node points are required for a sufficiently accurate cursignal-to-noise ratios and resolutions. We believe that the pro-
representation. Also, automatic optimization may move no@esed technique could be a valuable tool for the outlining of
points to high curvature features, thereby locally adapting tireage contours in bio-medical applications.
smoothness ability of the curve. An approximate estimate of aln all of the applications presented, the user had to specify
first contour can be easily resampled at a finer knot spakjngan initial contour. For a specific application, it may be advan-
which is then subject to optimization. The proposed approaché#geous to perform dedicated pre-processing so as to obtain an

based on optimization of a small number of node points andastomatic initialization.

therefore computationally efficient. Moreover, the convenient
form of a B-spline curve represents a coded version of the
detected contour without redundancy. Our method does no
rely on derivative operators of discrete variables, which mak
it robust with respect to noise. We have introduced the idea
a multiresolution approach in the snake optimization procejJ
which further enhances algorithm stability. Experiment
results have shown that a correct convergence is possible fr
initial contours, which otherwise lead to wrong optimization
results. Hence, accuracy and closeness of the initial contour to
the desired contour can be further relaxed. Finally, note that the1]
B-spline snake is a parametric curve. Tasks of computing sur-[z]
face-areas of a closed curve are thereby significantly simplified.
For instance, algorithms from computational geometry can be
applied that compute surface-area by subdividing the area intd®!
triangles, of which surface areas are summed. Accuracy can
be chosen as a convenient function of the scale parameter [4]
of the B-spline snake curve. In our work, we requive(i.e.,
the number of node points) to be given as input. Minimum
mean-square estimation techniques or other measure could L8l
introduced to automatically determine this number [11]. (6]
Finally, we have presented semiautomatic optimization
schemes for various biomedical applications. For image se-
quences, the user provides the initial contour for the first framel”]
only, and this information is then used for the segmentation of g
the entire image sequence by forward propagation. Note that
the proposed B-spline snake approach potentially offers the®]
possibility of a true 3-D analysis, by introducimgde frames, [10]
which are linked by cubic spline functions.

[11]
VIIl. CONCLUSIONS

In this paper, a B-spline snake formulation has been presentT]pz]
based on the use of node points, a variable knot spacing, and the
use of a multiresolution optimization strategy. The presente
algorithms are characterized by fast execution speeds and t
possibility for an intuitive user-interaction. Speed has been ob-
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