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Shift-Orthogonal Wavelet Bases
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Abstract—Shift-orthogonal wavelets are a new type of mul- TABLE |
tiresolution wavelet bases that are orthogonal with respect to CLASSIFICATION OF MULTIRESOLUTION WAVELET BASES
translation (or shifts) within one level but not with respect
to dilations across scales. In this paper, we characterize these
wavelets and investigate their main properties by considering
two general construction methods. In the first approach, we

intra-scale orthogonality

start by specifying the analysis and synthesis function spaces yes =

and obtain the corresponding shift-orthogonal basis functions inter-scale yes orthogonal semi-orthogonal
by suitable orthogonalization. In the second approach, we take

the complementary view and start from the digital filterbank. orthogonality no shift-orthogonal bi-orthogonal

We present several illustrative examples, including a hybrid
version of the Battle-Lemarié spline wavelets. We also pro-

vide filterbank formulas for thg fast wavelet algorithm. A shift- within the same level but not across scales. We started the
orthogonal wavelet transform is closely related to an orthogonal

transform that uses the same primary scaling function; both investigation of this class of transforms with the construction
transforms have essentially the same approximation properties. Of a specific example using splines; it was presented in a
One experimentally confirmed benefit of relaxing the interscale preliminary report [14].
orthogonality requirement is that we can design wavelets that  The purposes of this paper are to characterize these new
decay faster than their orthogonal counterpart. wavelet bases in a systematic manner and to study their prop-
erties. We will consider two alternative construction methods,
l. INTRODUCTION each interesting in its own right because of the particular

HE THEORY of the wavelet transform has resulted sisights that it provides. The first approach, which is developed
far in three primary types of multiresolution baseslof in Section Ill, starts from two multiresolution analyseslof
(the space of square integrable functions) [1]-[5]. The earliedtd constructs the shift-orthogonal basis functions by suitable
ones were the orthogonal wavelet bases (e.g., Daubechies @f@ogonalization. The corresponding filterbank algorithm is
Battle—Lemart” wavelets), which were fully characterized byresented in Section IV. The second construction method,
Mallat [1], [6]. The second closely related family are the semhich is developed in Section V, uses the reverse perspective
orthogonal wavelets, which span the same multiresoluti@fd starts with a specification of the filters for the reconstruc-
subspaces as before but are not necessarily orthogonal iR algorithm.
respect to shifts. The versatility of semi-orthogonal wavelet In many ways, the shift-orthogonal wavelet construction
bases allows the introduction of many interesting propertig¥ethods that we propose may be thought of as a hybridiza-
[7]-[9] and almost any desirable shape [10] while retainingon process between two orthogonal wavelet transforms. The
the orthogonality property across scales inherent to Mallafgsulting transform inherits most of the properties of the
construction. The third category is the biorthogonal waveletd{imary multiresolution on the synthesis side. In particular,
which are constructed using two multiresolution analyzdBe primary scaling function will control the rate of decay
of L, instead of one, as in the previous cases [11]-[13)f the approximation error as the function of scale (order of
Their advantage is that the wavelet filters can be shortéfe transform) as well as its asymptotic magnitude (i.e, the
in particular, they can be both FIR and linear phase, whi¢hagnitude of the error for functions that are slowly varying
typically is impossible otherwise. with respect to the grid size) [15], [16]. Since the influence of
One way to distinguish these various wavelet bases is tft¢ analysis space on global performance is marginal, we can
look at their orthogonality properties (Table 1). This classifiuse the freedom provided by the use of a second (analysis)
cation leads naturally to the identification of one more typ&ultiresolution to design wavelets with a faster decay than
which has been neglected so far. These are the so-csiltd  their primary orthogonal counterparts. In other words, we can

orthogonalwavelets, which are orthogonal to their translateg€duce the size of the wavelet synthesis filter while essentially
preserving orthogonality.
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TABLE I is a well-defined (closed) subspace bf. The constantsA
BAsIC DISCRETE SIGNAL PROCESSING OPERATORS and B are the Riesz bounds qf; in particular, the basis is
AND THEIR EFFECT IN THE FOURIER DOMAIN . .
orthonormal if and only ifA = B = 1.
Conditon ii) is the two-scale relation, which is the key to the

Operator Notation Fouricr transform - . . .

- multiresolution analysis. It allows us to define the coarse-to-

i =h)(k)= Dbk — W) - -
Convolution (32630 = 2 a®blk =D dw)-b(w) fine sequence of embedded subspaiBscC --- C Vi(¢) C
Time-shift alk—ky) = (3, *a)k) e i) - C Vi(p) C V0(<p) C Voi(¢) C --- C Ly such that
Time-reversal a"(k) = a(~k) () fz(x) EV%(‘P)<:> fi(22$) € VO(‘P)' .
Up-sampling (a0 s20) Condition iii) expresses a more technical order property,
- 2 T . . . .. .
o ] : ]2(“ . which is further discussed below. The minimum requirement
-84 a K ~ - . . . . .

sampng “ F(@@/2)+&(0/2+m) for all wavelet constructions i& = 1; this is also equivalent

Convolution inverse (@' 1/ ) to the partition of unity conditiord_, ., ¢(x — k) = 1 (the

Convolution square-root  (a)"? S connection is given by Poisson’s summation formula). Not
Modulation a0 = D alh) o+ only is this first-order property necessary for the convergence

of the iterated filterbank [2], but it also guarantees that we
can approximate any..-function as closely as we wish by
by a capital letterd(z) = 3", , a(k)z~*; the corresponding choosing a scale that is sufficiently small [16]. Hence, the
Fourier transform ig(w) := 3, ., a(k)e™** = A(e/*). We multiresolution decomposition is dense in and satisfies all
will consider a number of operators acting on discrete signaf§€ necessary requirements for the construction of wavelet
these are summarized in Table I. bases [6].

B. Order Properties

Condition iii) comes from approximation theory and pro-

We start with a brief review of fundamental notions in ides th | definiti ¢ dth-order f g 17
the theory of the wavelet transform and provide our ow?q es the most general definition o -order function [17],

perspective on some of the basic concepts 18]. However, most wavelet textbooks use a simpler factor-
' ization condition on the transfer function of the refinement

Il. PRELIMINARY NOTIONS

A. Scaling Functions and Multiresolution Analyses filter A ;
Often, a scaling function is defined indirectly through the H(z) = <1 + z) 02 )
specification of its refinement filtér. Then, we have to worry 2

about the delicate mathematical issues of the converge ere O(z) is the transfer function of a stable filter with
of the iterated filter bank and the denseness of the wave {1) — V2. In general, (5) is a stronger requirement than
representation irL- [2], [5]. Here, we prefer to start with a 3). Both conditions aré equivalent ¢ (or %) is compactly
more explicit definition that takes care of these problems %\5)

pported.
the outset. .
. : The order condit 3) and (5) are at the heart of elet
Definition 2.1: ¢(z) is an Lth-order scaling function iff it order conditions (3) and (5) are at the heart of wavele

e AN theory. They have some remarkable consequences such as
Sat'.Sf'eS three conditions: the vanishing moments of wavelets, the ability of the scaling
i) function to reproduce polynomials of degree= L — 1, and
N . . . 2 the special eigenstructure of the two-scale transition operator
0 <A< apw)= Z [Plw +2mE)" < B < 4o (1) (cf., [5, Ch. 7]). There are also lesser known approximation
ez theoretic consequences that are quite relevant to our purpose.
ii) For an L-th order decomposition, the Strang—Fix theory im-
plies that the approximation error at a given scale decays like
pla/2) = V2 Z h(k)e(x — k) (2)  the Lth power of that scale [17], [18]. In particular, when the
kez function f to approximate is sufficient smooth with respect
i) to the current scale = 2¢, we have the asymptotic relation
) 2k = 0 (cf., [16])
¢(0)=1 and ¢\ (27k) =
keZ k#0, m=0,....L-1 (3) If = fallz. = Cp - a® |l Pz, + O ) (6)

R . . R . where f, denotes the approximation gof at the scalea,
where 3(w) is the Fourier transform ap, and ("™ (2r k) is o ) O
the mth derivative of@(w) evaluated ark. IF**’l|z, is the L,-norm of the Lth derivative of f, and

Condition i) ensures that generates a Riesz basis and that”, is the easily computable. COnSta.m' The asymptotic limit
; . iS the same whether the projection is orthogonal or not, and
the basic function space

the magnitude ofC’, depends primarily on the smoothness
of the synthesisscaling functiony [16]. Interestingly, the
Vo(e) = {Z c(k)p(z — k), ce 12} (4) spline constants are the smallest among all known wavelets
k€Z of a given orderL, whereas the Daubechies constants are the
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worst. In fact, the differences in magnitude are such that theWe can now characterize the corresponding shift-orthogonal
performance of Daubechies’ wavelets is no better than thataling functions. The first step is to construct the synthesis
of splines at half the resolution [15], [16]. The downside odcaling functiong(z) € Vo(¢2), which is the orthogonalized
splines is that the orthogonal Battle—Lengarvavelets have version ofys. This is done as described in [9]

poor decay. This motivates us to investigate ways in which

; ; o . . ) - -1/2 _
we can improve their localization by being less stringent in $la) = Z(‘m) (k)2(z — k) (12)
enforcing orthogonality. kez
where (az;)~Y/2(k) "5 1/, /a2 (w) denotes the square-
I1l. FROM MULTIRESOLUTION ANALYSES TO WAVELETS root convolution inverse of the Symmetric Sequem@@(k)

In this section, we will start with two arbitrary multireso-(Table I1). Here, we will only consider the symmetrical square-
lution analysed., and show how to obtain the correspondingoot inverse. In principle, there are many other equivalent
shift-orthogonal wavelet transform. Our definition of sucBolutions, which differ only in terms of a phase factor.
transforms is that the scaling function and wavelet on theOnce ¢ has been specified, we can determine the corre-
synthesis side are orthogonal with respect to shifts withponding (unique) dual functiof(z) € Vo(p1), which must
a given scale. We will characterize the corresponding basitisfy the biorthogonality constraif(x), ¢(x — k)) = 6[],
functions and wavelets explicitly to establish the followingvhere §[k] is the discrete unit impulse. This leads to the

result in a constructive manner. following characterization:
Proposition 3.1: For any given two biorthogonal multires- ~ 1/2 71
olution analyses ofL», there always exists a corresponding (@) = Z(‘m) * (az) ~(Reu(z—k)  (13)

stable shift-orthogonal wavelet decomposition. ez

By stable decomposition, we mean that the shift-orthogonghere (a%,)~1(k) is the convolution inverse (cf., Table II) of
wavelets provide an unconditional (or Riesz) basi¢gfNote the cross-correlation sequeneg (k) = a5 (k) = (@a(z— k),
that the analysis and synthesis multiresolution spaces are spggz)). Note that all the required inverse filters in (12) and
ified independently of each other using two primary scalin@3) are well-defined because of the stability conditions (9)
functions¢; and ¢» that are not necessarily biorthogonal tand (11).
start with. Our only constraint for a consistent biorthogonal Unlike ¢, the dual functiong is not orthogonal to its

scheme is that the cosine of the angle between the bagign shifts. In fact, we can easily compute its sampled auto-
analysis and synthesis spaces [see (10) below] must be strigdyrelation sequence

positive. . .
ag(k) = (p(z — k), p(x))
A. Construction of Shift-Orthogonal Scaling Functions = (a2 * (a12 = alTQ)_l * ay1) (k). (14)

Let o1 andy, be any two admissible analysis and synthes;j
scaling functions, respectively. We also define the followin
correlation sequences:

[Pwe express this relation in the Fourier domain and use (10),
"Re obtain the Riesz bound [cf., (1)]

AoolW) - A11(W 1
k) = i~ ), (@) = (67 » )8 1saye) = (2L o a
(g =12). (7) which provides an interesting geometrical connection: We have
The Riesz basis condition i) implies that full orthogonality if and only ifcos 612 = 1 or, equivalently,
when¢; and ¢, generate the same space.
Ay < an(w) < By 8 Having defined these new basis functions, we can now
Ap < dga(w) < By (9) write the projectionP; of a function f € Ly into V;(¢2)

) ] perpendicular toV;(¢1) as
where the Riesz boundsi;, B1) and(A,, B,) are all strictly

positive and finite. The anglé,, between the analysis and Pif(z) =Y f din)bin (16)
synthesis spacek; (1) and V;(y2) is given by (cf., [19]) kez
|a12(w)] where we use the standard short-form notatigy, =

cos 1o = ess inf <1. 10 i/2 i
2 w€l0,) \/ar1(@) - za (@) (10) 2 ir2p (/2 — k).

Note that the (biorthogonal) projection int¢(¢) perpendic- B. Construction of Shift-Orthogonal Wavelets
ular to V;(¢1) is well defined if and only ifcos 12 > 0 [20]
(that is, if —w/2 < 612 < 7/2). Thus, our stability condition
for a consistent biorthogonal scheme is

In the sequel, we also use a short-form notation for the
synthesis and analysis spac&s:= V;(¢2) andV; = Vi(e1).
Let W; be the complementary (synthesis) wavelet space of
A < Jaa(w)| < Bia (11) Vi in Vi, perpendicular toVZ, e, Vioi = W, @ V;
with W; LV;. Likewise, let W, denote the complementary
where Aj; > /A1 Azcosfi; > 0, and By < /B1Bzcos  (analysis) wavelet space of in V,_, perpendicular toV;,
012 < +o0. i.e.,V,_1 =W, &V, with W, L V;. It can be shown (cf., [21,
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Th. 2.1]) that these wavelet spaces and their corresponding TABLE Il
oblique projection operators are well defined if and only if the ~ €0s612 BETWEEN THESPLINES SPACE Vi (¢"*) AND Vo("?)
stability conditions (8), (9), and (11) are satisfied. n| o 1 2 3 4 5 6 7

n

We now consider the construction of the corresponding

. . A 0 1 0 0.8729 0 0.8162 0 0.7837 0
shift-orthogonal wavelets at resolution levél = 1. The . ] o loor091 o lossal o |osios
synthesis wavelet)(x/2) € W; must satisfy the following 2 1 o looss7| o |osssa| o
conditions: 3 1 0 |o9o11]| o |o09751

) P(x/2) € Vo, ;‘ 1 (l) 0.9;)39 09(;55

ii) (z_/;(a:/2), ¢1(x/2— k)) = 0 because)(z/2) is perpen- . P —

dicular to Vi; 7 1

i) (27 24p(x/2), 27 Y 24p(x/2—k)) = §[k] because of the
intra-scale orthogonality requirement.

) . . . . we must compute the sampled autocorrelation sequence
It turns out that there is a function, which again is unique P P q

up to a phase factor, that verifies all those conditions; it is a;(k) = (2_1/21/3(37/2 _ k)’2—1/21/](x/2)>.
given by s
After a series of manipulations similar to the one given in the
P(x/2) =Y [plr2 * q(k)pa(z — k) (17) Appendix, we find that
kcZ
(] — Ty~
where the sequencesandp are defined as ap(k) = (a2 * (@12 x afp) ~ * an)(k).  (23)
. By going to the Fourier domain, we obtain
a(k+1) = (=) - (AT + arz) (k) (1g) Y 99
pk) =V2-([g = ¢" * axlp)"*(k).  (19) Ap=1<agw)
. . . . . &22((4)) . all(w)> 1

The corresponding signal processing operators are defined in =|——)<B; = —— 24

p g signal p g op < s ()2 7T Gcosba (24)

Table Il. Note that this wavelet is nothing more than the
orthogonalized version of the basic wavelet defined in [13}hich is the same as for the dual analysis function [cf., (15)].
which is given by (17) withp = identity. The Riesz bound This result also reflects the property that the angle between the
conditions on the basic wavelet imply that the operatis a wavelet space$V; and W; is the same as the angle between

well-defined convolution operator frofa into /. V; and V;.
The dual analysis wavelet(z/2) € W, must satisfy a
similar set of conditions: C. Example: Shift-Orthogonal Spline Wavelets
V) (z/2) € Vo; R As an illustrative example, we consider the caséz) =
V) (9(2/2), p2(x/2 - k)) = 0 because)(x/2) is perpen- ,ni(z) and p,(z) = ™2 (z), wheree™ is the noncentral (or
dicular to V1; causal) B-spline of degree Specifically,p™ is obtained from
Vi) (27Y29(x/2), 2742 p(x/2 — k)) = 6[k], which ex- the (n + 1)-fold convolution of the unit indicator function
presses the biorthogonality condition. xX[1,0) (or B-spline of degree 0). The spline spaces that are
After some algebraic manipulations, we obtain an expressiganerated in this way are essentially the same as those in
that is similar to (17)—(19) our first example withn; = 1 andn, odd [14]. A notable
B difference, however, is that the present basis functions are
P(x/2) = Z[ﬁh? * g(k)o1(x — k) (20) not centered about the origin. This modification is necessary
keZ if we want to include splines of even degree, which are not
where covered otherwise. The connection between both formulations
is provided by the relation
(k+1) = (=1 - (h * afy) (k) (21)
; r - ") =g (- 2E (25)
plk)=2- (P * [C/ * % alz]u) (k) (22) woAr) = x 2

with p andq defined in (19) and (18). Note that these equatiorwshere/gn(x) is the centered B-spline of degree
can be simplified further, as described in the Appendix [cf., The causal B-spline functions are all valid scaling functions
(A1), (A2)]. Here too, the fact that the angle between thig the sense of Definition 2.1. Assuming that the cosine of the
analysis and synthesis spacésand V; is less thanr/2 in  angle between the analysis and synthesis spaces is greater than
absolute value (stability condition) ensures that the convolgero, the shift-orthogonal basis functions and wavelets are then
tion and square-root inverses in (22) and (19) are well posddscribed explicitly by (12), (13), (17), and (20). What is still
and that the resulting digital filters and p are stable and required is the determination of the refinement filteysand
invertible. ho and the correlation sequences, as2, anda;s.

It is also of interest to determine the Riesz bounds for the Recalling that the refinement filter for a B-spline of degree
dual wavelet))(x), which is not orthogonal. For this purposep is H%(z) = (1 + z~!)/+/2 and that the B-splines are
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Fig. 1.

(© (d)

Dual sets of quadratic spline and piecewise constant wavelets and scaling functions at the first resolution level. (a) Shift-orthogoicasureedr

wavelet. (b) Dual piecewise constant wavelet. (c) Orthogonal quadratic spline Battle—eesvalifig function. (d) Dual piecewise constant analysis scaling
function. The basis functions in (a) and (b) [resp., (c) and (d)] are quadratic splines with knots at the integers (resp., at the even integers).

generated by repeated convolution, it is not difficult to shoRiesz bounds conditions (8) and (9) are satisfied for any degree

thath; = A" andh, = h™2, whereh™ is the binomial filter 7, the angle between the present spline spaces is lessrff2an
of ordern + 1 in absolute value (i.ecos 2 > 0) only when(n; — ny) is

even, that is, when the degrees and n, are both odd or
1420\ both even. Explicit values for all combinations of splines up
2 ) ’ (26) to degree 7 are given in Table IIl. The various shift-orthogonal
scaling functions and wavelets for the case= 0 andn, = 2

R(k) <= H™(z) = /2 - <

This equation also shows that the approximation order gfe shown in Fig. 1. We can observe that the basis functions
the corresponding wavelet transform Is = n» + 1 (cf., are piecewise constant on the analysis side and piecewise
Section 1I-B). Likewise, we can deduce that the corresponduadratic with a first order of continuity on the synthesis side.
ing shift-orthogonal spline wavelet(z) hasL; = n; + 1 Interestingly, the analysis functiohhas a very fast decay and
vanishing moments (cf., [2]). Next, we use the fact that tHé reasonably close to a B-spline of degree 0.

convolution between two B-splines of degree and degree
ny is a B-spline of degree; + ny + 1, and we obtain the

In addition, note that for the particular case = n., the
present construction yields the Battle—Leraapline wavelets,
which are completely orthogonal [22], [23].

explicit form of the correlation sequences

any (k) = @?mtt <k + 2”1[‘*‘ 2) =2tk (27) IV. SHIFT-ORTHOGONAL WAVELET
2 TRANSFORM AND FILTERBANK ALGORITHM

2ny + 2
canll) = 2 (1 2R ) — i (2p) |
2 A. Wavelet Expansions
aa(k) = (pn1+n2+1<k.+ Z”2+3> Because of our stability conditions, each wavelet space
2 W; is a well-defined subspace @f,, which admits{; . =
_ pgrtnati (g, (n2 —n1) (29) 27/ 2p(x/2-% — k)}recz as an orthonormal basis. Since by
2 definition U,z V; is dense inL,, it follows that the set

{%i,x}i mezz IS an unconditional basis df, and that every

which are all with finite impulse response (FIR). While théunction f € L, can be represented by its shift-orthogonal
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wavelet expansion involved derivation is the computation of a simplified form
. of the wavelet analysis filtef(k), which is given in the
f) = Z Z<f’ Vi ge )i ke (30) Appendix. We have chosen here to present frequency domain
iCZkecz formulas because these are the most useful in practice. Our

The special feature of this decomposition is that the bas®sults are summarized as
functions are orthogonal with respect to shifts (ind§xbut

not across scales or dilations (indéx H(e') = h(w) = ha(w) - ?22(”) (34)
If we now consider the partial wavelet expansion up to the a22(2w)
scale: — 1, we obtain the projection of into V; perpendicular . 5
oV H(e7) = hw) = (@) - Aalz(w) ) Cizz(2w) (35)
i1 a12(2w) CLQQ(w)
- , 1
Pif(z)= > D> A diuin Bl G = §(w) = —=e - hy(w + 1) - P(2w)
j=tookEZ V2

which can also be represented in terms of the scaling function Pan(w )y a”(f“) (36)
at resolutioni [cf., (16)]. Note that the approximation error at Gle?) = a(w) _ e V2 ha(w+ ) 1 (37)
scalei in the shift-orthogonal case will always be slightly =9 a12(2w) /a2 (w) H(2w)

above the error of the corresponding orthogonal transform N o X _
(least squares solution). Specifically, we have (cf., [19, Th. 3phere the auxiliary filtergi(2w) and g,(w) are defined as

Vfe Ly, |If—PHFI<IIf - Bf (20) = 2 38
L -prl @2 N CCRT -
cos 01 ' Go(w) = [ha(w+m)]? - Jarz(w + )7 - Gz2(w).  (39)

<

N o .
where ;- f denotes the orthogonal projection 6finto Vi.  Note that the equation fdi is the same as that given by Mallat
One should note, however, that the upper bound on the righf yhe orthogonal case simply because both transforms share

side of (32) corresponds to a worst-case scenario thatyis same (orthogonal) synthesis scaling functioThis filter
rarely encountered in practice. This can also be understoodiflitias the condition

geometric terms. Specifically, the true angle betwgenP;- f

and f — P; f will usually be much smaller tha#l>, which H(x)H(1/z)+ H(—2)H(-1/z) =2 (40)
represents the maximum angle between the subspgcasd
V;, both of infinite dimension. and is called a quadrature mirror filter (QMF). If the scaling

Because the worst-case angles between the various spfi#ctionsy; andy, are compactly supported (as in the spline
spaces are relatively small (Table 111), we can expect the shifi@se), it can be shown that all filters decay exponentially fast.
orthogonal spline wavelets to provide essentially the sarfit general, they will not be FIR.
type of energy Compaction as the Corresponding Orthogonaln order to Compute a truncated version of a filter’s impulse
Battle—Lemaré wavelet transforms. In other words, we will'€Sponse, the simplest approach is to evaluate its transfer func-
get essentially the samé, approximation error when we tion at the discrete frequencies = 2mi/N,i=0,...,N—1,
start discarding the smaller scale wavelet coefficients. It aldhere NV is chosen sufficiently large to avoid aliasing in the
appears that the hybrid cubic spline wavelet transfoum= 1 signal domain. The impulse response is then determined by us-

andn, = 3) first described in [14] is nearly orthogonal. ing anN-point inverse FFT. The first 15 filter coefficients for
the example in Fig. 1 (quadratic splines) are given in Table V.
B. Filterbank Algorithm The lowpass filtef. is the same as the corresponding quadratic

W imol h | ; 30 31) i Battle—Lemar filter. Interestingly, the wavelet synthesis filter
_ Vve can imp ement the wavelet transform (30) or (31) Itera'decays significantly faster and turns out to be similar to the
tively by using a standard tree-structured perfect reconstruction - fiter Gz) = (1— 2 1)/V2

filterbank [4]. The algorithm requires the specification of two
analysis filters and two synthesis filte(é,3) and (h,g),
respectively. These are defined as

A crucial practical issue is the decay of the various filters. A
dispersion index that can be computed easily is the standard
time-localization measure

h(k) = J5(¢(0/2), (x + k) o ek = )bkl "

306) = S50/, o + ) . S 1T )
— L5/, blw —

hik) = E<¢(L/2)’¢(L Ry where||k||;, denotes thés-norm of the filters, andx;, rep-

9(k) = Z5((@/2), p(z — k). resents the center of its impulse response. When the response
The easiest way to determine these filters is to perform tife@ two-sided exponential of the forfitk) = C-alt=Hol, we
appropriate change of coordinate system and to exgieg) ¢an derive the relation
andy(x/2) (resp.,¢(x/2) andy(x/2)) in terms of the integer \/A% +1—I12AZ
A

shifts of ¢ (resp.,¢). This provides an explicit characterization
of their impulse response in the signal domain. The most

(42)

|af =
h
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TABLE IV Proposition 4.1: For a shift-orthogonal wavelet transform
IIR FILTER COEFFICIENTS FOR THESHIFT-ORTHOGONAL QUADRATIC of L, the synthesis filteré (») and G(z) are both QMF [cf.,
SPLINE WAVELET TRANSFORM WITH 71 = 0 AND ng = 2 . . .
(40)], with the lowpass and highpass conditions
e b i i g H1)=V2& H(-1)=0 (43)
k< h(—k)=h(k-1) F=k)y=—-gk=1) h(-k)=hk+1) g(-k)=—glk+1)
G(1)=0® G(-1) = V2. 44
-1 0.729915 0.702088 0.137963 0.0130307 ( ) ( ) ( )
0 0.729915 -0.702088 0.68037 -0.706862 . H H H
1 000766485 0.138748 0.68037 0706862 Proof: The scaling functionp can be written as
2 -0.0195685 0.136703 0.137963 -0.0130307 12
3 -0.0112333 -(0.0322905 -(.124835 -0.0129547 — . — -
4 -0.00645937 -0.0368606 -0.0207472 0.0019878 2 Pp(x/2) = Z h(k)p(x — k) (45)
5 0.00460937 0.00809514 0.0419821 0.00223624 keZ
6 0.00537476 0.0100018 0.00423816 0.000308145
eIt Q00003008 DolsliEds 0003 and the lowpass synthesis filterautomatically has the right
9 0.000779012 0.000586975 0.00570553 0.0000488927 1 i i i
10 0000858193 ekl D00l seoareoe propert|es_becaus$ is an orthogonal scaling function (cf.,
11 -0.000289915 -0.000159667 -0.00221175 8.51609E-06
12 -0.000323867 -0.000190971 -0.000107847 1.47356E-06 [1]) LIkeWISe’ the Wavelet/} can be represented as
13 0.000102918 0.0000423399 0.000873158 1.57089E-06 2_1/2 9 L L (46)
14 0.00011698 0.0000513501 0.0000364102 2.52536E-07 P\ = xr —
15 -1.000349114 2.88225E-07 ”(/( / ) IZ;Q( )d)( )
16 S
whereg is the wavelet synthesis filter. The shift-orthogonality
TABLE V condition implies that
TIME LOCALIZATION OF THE FOUR FILTERS FOR —1/2 nes —1/2 /2 — —
VARIOUS SHIFT-ORTHOGONAL WAVELET TRANSFORMS <2 ¥ (”L/2)’ 2 ¥ (”L/2 k» 6[k]
Replacingy by its expression (46) and using the orthogonality
(n,n,) A, A, A, A, of ¢, we get
Design method T (hybrid splines) : [ T
g*g 112(k) = 6[k].
(0,0) 0.5 0.5 0.5 0.5 . . . L
The corresponding relation in thetransform domain is pre-
0,2) 0.513712 0.787392 0.787688 0.50299 Cisely the QMF Condition
©04) 0.546779 1.01545 1.01074 0.506707 1
a.n 0.646834  0.646834  0.646834  0.646834 5((;(2)(;(1/2) +G(—2)G(—1/z)) = 1.
(1,3) 0.656403 0.909417 0.906014 0.650565 .
1.5 0675763 1.11805 11058 0.652716 Becausep; (or ¢) satisfies the partition of unity condi-
Design method I1 : tion, v has at least one vanishing momefi)(x) dz = 0
02 0514936 078199 078768S 05 (i.e., ¥ is an admissible wavelet). Smce’é J z/)(a:) dr =
Yowez 9(k) [¢(x)dx and [¢(z)dz # 0, this implies that
Y okez 9(k) = G(1) = 0. O
which can be used to estimate the exponential decay parameter
« without performing any curve fitting. The correspond- V. FROM SYNTHESIS FILTERS TO WAVELETS
ing time constant is then given by, = —1/log|al. We e will now investigate the complementary approach and

considered all four filters and performed explicit numeric@lonstruct shift-orthogonal wavelet transforms by starting with
computations of,, for spline wavelet transforms up to degrégne filterbank. The method that is described next is based
5; the results are presented in Table V. Note that the thigh proposition 4.1. Its only potential problem is that not all
measurementA;,) also provides the dispersion index for thgerfect reconstruction filterbanks generate admissible scaling
corresponding Battle-Lemaritransform(n = n,), Whose g nctions and wavelets fak.. In particular, we need to make
filters are all derived from a single QMF template that ig, e a posteriorithat the underlying scaling functions, which

preciselyh (cf., subsection C below). While the localizations;,e now defined through an infinite recursion, converge to
of the filters & and g are comparable, it appears that oue||-defined limits in L. [5].

hybridization scheme has effectively reduced the decay of the propose the following design procedure: Select two
filters g and . The shortest filter is the wavelet synthesigadrature mirror filter template, (=) (indexa for analysis)
filter (g), which has approximately the same localization ag,q H,(z) (index s for synthesis) of ordet, and L,, re-

a Battle-Lemag filter of degreen = n,, and this almost ghactively, which are such that their dyadic spectral coherence
independently of.>. Thus, by varying the order of the analysisnctiont

and synthesis spaces, we can control the decay of the various 1
digital filters (which tend to be associated in pairs). Aos(z) = §(HS(Z)Ha(zfl) +H,(—2)Ho(—2 1)) (47)

is nonvanishing on the unit circle. Note tHat,,(c’*)| < 1 as
C. Filter Properties a result of the Schwarz inequality (cf., [24]). As we shall see,

We have already observed that the filkeis the same as in the parameterg, and L, control the order of the analysis and

the orthogonal case. Similarly, the shift-orthogonality propertys, (. ) is the=-transform offh? + h.] ;2 (k), which is the even index
imposes constraints on the wavelet synthesis fijter part of the cross-correlation betweén andh..
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Fig. 2. Dual sets of wavelets [(a) and (b)] and scaling functions [(c) and (d)] associated with the filterbank coefficients in Table VI at the sititim resolu
level. These graphs were generated using six scale iterations of the filterbank algorithm. The synthesis function (c) is the same as the quadratic spli

scaling functiong(z) in Fig. 1; the wavelet (a) is also a quadratic spline that is very similar (but not identical) to the fuddtionn Fig. 1. The analysis
functions in (b) and (d), on the other hand, are no longer piecewise constant.

synthesis spacel(¢) and Vy(¢), respectively. In particular, filters. The determinant of the system is

the lowpass conditiorH, (1) = Hy(1) = v2 (i.e., L, > 1 A(z) = H(2)G(=2) — H(—2)Q(z)

and L, > 1) is necessary for the convergence of the iterated (Hy(2)Ha(z Y) + Ho(—2)Ho (=2 1))
filterbank (cf., [2]). 2 Au(2)

N

These templates are then used to specify the lowpass and o 1)
highpass synthesis filters and the solution is Gl (1)
- 2G(—z H,(z~
Z) = ol H )] = = 2
H(’“) HS(’“) ) (48) (7) A(Z Aas(z) (5 )
G(Z) ==z Ha(—Z_ ) (49) é( ) - -2 (_Z) o 2L Hs(_z) (53)
where the latter is the time-reversed, shifted, and modulated TTTAGR) T Awlz)

version of the analysis templatd,(z). With this particular Since the determinant is nonvanishing, both analysis filters
setting, we are obviously satisfying the conditions in Propewe stable and well defined. For the same reason, the analysis
sition 4.1. In addition, note that (49) implies that the waveldtiter 2 will inherit the order properties of{,(z), and the

filter G(c7*) has a zero of multiplicityl., at the originw = 0. analysis spacd’,(¢) will have an order of approximation

This, in turn, implies that the shift-orthogonal waveletr) Lo Likewise, the wavelet filte(c’) will have an L,th-
has N, vanishing moments. order zero at the origin, which implies that the corresponding

. . dual analysis) hasL, vanishing moments. This again reflects
We can now write down the perfect reconstruction cond{he fact that the synthesis spatg(¢) has anL,th order of
tions for the filterbank algorithm (cf., [4]) >

N . approximation. The rational form of transfer functions in (52)
H(z)H(z) + G(2)G(z) = 2 and (53) also suggests that it is impossible to have FIR shift-
(50) o= e
H(2)H(—2)+ G(2)G(~2) =0 orthogonal analysis filters unlegs,.(z) = 1, in which case,
and solve these equations to determine the remaining analy8igz) = H,(z), and the transformation is orthogonal.
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TABLE VI
FiLTER COEFFICIENTS FOR THESHIFT-ORTHOGONAL HYBRID WAVELET
TRANSFORM (HAAR/BATTLE-LEMARIE QMF WITH 1y = 2)

k i

g

h g

1835

the construction of orthogonal wavelets by orthogonalization
of semiorthogonal basis functions such as splines. An example
that permits a very direct visualization of the two underlying
biorthogonal subspaces (piecewise constant functions ver-

<O WEB=hk-D R =—Rk=]) ACk) =hk+D sus quadratic splines) is provided in Fig. 1. Shift-orthogonal
-1 0.735505 0.707107 0.137963 i i

o 093208 07107 PR 0707107 wavelets can also be thought of as hybrids that are obtained by
1 -0.00710868 0.139234 0.68037 -0.707107 ni i

Y baes 0139534 o808 combining two orthogonal que!et tran;forms. The constraints
3 -0.0114306 -0.0352308 -0.124835 are such that both synthesis filters will be QMF; however,
4 -0.0114306 -(.0352308 -0.0207472 i

5 000611006 0.00875716 00419821 they can be selected independently of each other. We have
4 g J J .| - o] . 3 ¢ . . . .

7 000241844 000218750 D0Ls1129. shown that the lowpass filter determines the approximation
8§ -0.00241844 -(L00218759 -0. 345 . . .

9 0.00087672 0.000545397 0.00570553 order of the representation, whereas the highpass filter controls
10 0.00087672 0.000545397 0.000334821

11 -0.000307468 0000136101 -0.00221175 the decay of the wavelet.

13 oA P e In practice, it would make sense to use a higher order
1 0:000106857 i Sy representation on the synthesis side and a lower order on

-0.000349114
16

the analysis side. In this way, we can use the degrees of
freedom offered by the second (analysis) multiresolution to

The proposed construction method can be used d@tain faster decaying wavelets while essentially preserving
combine the filterbanks associated with different orthogongje approximation and orthogonality properties of the primary

wavelet transforms (e.g., Daubechies or splines). With tr}iﬁgher order transform (e.g., Battle—Lengagplines).
hybridization technique, the underlying approximation space

Vo(¢) is the same as the one used in the orthogonal case.
The analysis space, on the other hand, will differ because

of the determinant term in (52). As before, it is usually _. S .
o First, we will simplify the expression of the dual wavelet,
preferable to put a low order on the analysis side and a

higher order on the synthesis side. e.g., (20)—(22). For this purpose, we write the dual wavelet as

As a design example, we have considered mixing the spline z/}(a;/Q) = Z r(k)p1(x — k) (A1)
QMF's for ny = 0 andne = 2, which is very similar to kcz
the shift-orthogonal construction in Section 11I-C, except th%herer(k) = [flr2 * q(k), with 5 and ¢ given by (21) and

we are now starting from the filters. The motivation for usin ; X e .
. L . 2). Replacing these sequences by their explicit expressions,
H,(2) = (1 +27%)/4/2 is that it is the shortest admls,3|ble92 ) P g g y P P

QMF. The corresponding filter coefficients obtained by invergyae get
FFT are given in Table VI. Not too surprisingly, they are (k) =2-[pl;) = [hi = h3™ * a3; * ay; * an)
quite similar to those in Table IV. The filter localization 5 BTE ()

measures are also given at the bottom of Table IV and should * 8w g+ hy (k)
be compared with those of the first design method. Thsing the operator notations in Table Il. Since the sequence
corresponding scaling functions and wavelet graphs weig, o (k) is zero for all odd integers and is left unchanged
generated through an iterative filtering process and are shownthe operatof-] 212, we can factor it out, which yields

in Fig. 2. While the synthesis functions are very similar to . L e -l N B
those in Fig. 1 (quadratic splines), the functions on the analysisT(/f) =2 [p]rz * [hl by ™ a21] 122 ¥ (a3 * az1)
side are no longer piecewise constant. In fact, they have lost 81 % aky « hTE(k).

some regularity because of the presence of Ahg(z) term

in the denominator of (52), which causeéw) to decay at a
slower rate than /w. Based on our simulations, it appears that
$(w) still has sufficient decay fop(z) to be in Ly, but the
limit is discontinuous.

APPENDIX
DERIVATION OF THE WAVELET ANALYSIS FILTER

—1
1212

1

Next, we notice that
[hit * hgi ES a2i1]¢2 = [h,l * h; * CL21:| lQ(k) = agl(k‘)

where the right-hand side follows from the two-scale rela-
tion for ¢o1(z) = % x ¢1(x), which is easily derived by
V1. CONCLUSION convolution. Finally, putting things together, we end up with

In this paper, we have characterized the class of shift- "(k) =2- [plrs # lamly * (aa) ™ 5 6 hy (k). (A2)
orthogonal wavelet transforms and presented two genegghce the basic scaling function can also be represented by
construction methods. In contrast with previous semi- and .
biorthogonal constructions, we have only relaxed the orthog- pr(@) =Y _(az) ' an(k)dlz — k)
onality constraint in-between resolution levels. As a result, kez
the basis functions are still orthogonal within a given wavel@fe can also rewrite) as
channel (or scale). The first way to think of shift-orthogonal . .
wavelets is as a particularization of the general biorthogonal P(@/2) =V2>_ G (k) — k) (A3)
case, which uses two different multiresolution analyze&.of kez
In terms of constraints, the situation is very much analogouswdere the time-reversed version of the analysis filter is given
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The authors would like to thank Dr. M. Vrhel for helping

(l{}) = \/5 . [p]?zl * [agl];zl * 61 * hgi * (agg)_l(l{}). (A4)
This is precisely the inverse Fourier transform of (37).
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