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Shift-Orthogonal Wavelet Bases
Michael Unser,Senior Member, IEEE,Philippe Th́evenaz, and Akram Aldroubi,Member, IEEE

Abstract—Shift-orthogonal wavelets are a new type of mul-
tiresolution wavelet bases that are orthogonal with respect to
translation (or shifts) within one level but not with respect
to dilations across scales. In this paper, we characterize these
wavelets and investigate their main properties by considering
two general construction methods. In the first approach, we
start by specifying the analysis and synthesis function spaces
and obtain the corresponding shift-orthogonal basis functions
by suitable orthogonalization. In the second approach, we take
the complementary view and start from the digital filterbank.
We present several illustrative examples, including a hybrid
version of the Battle–Lemarié spline wavelets. We also pro-
vide filterbank formulas for the fast wavelet algorithm. A shift-
orthogonal wavelet transform is closely related to an orthogonal
transform that uses the same primary scaling function; both
transforms have essentially the same approximation properties.
One experimentally confirmed benefit of relaxing the interscale
orthogonality requirement is that we can design wavelets that
decay faster than their orthogonal counterpart.

I. INTRODUCTION

T HE THEORY of the wavelet transform has resulted so
far in three primary types of multiresolution bases of

(the space of square integrable functions) [1]–[5]. The earliest
ones were the orthogonal wavelet bases (e.g., Daubechies and
Battle–Lemarié wavelets), which were fully characterized by
Mallat [1], [6]. The second closely related family are the semi-
orthogonal wavelets, which span the same multiresolution
subspaces as before but are not necessarily orthogonal with
respect to shifts. The versatility of semi-orthogonal wavelet
bases allows the introduction of many interesting properties
[7]–[9] and almost any desirable shape [10] while retaining
the orthogonality property across scales inherent to Mallat’s
construction. The third category is the biorthogonal wavelets,
which are constructed using two multiresolution analyzes
of instead of one, as in the previous cases [11]–[13].
Their advantage is that the wavelet filters can be shorter;
in particular, they can be both FIR and linear phase, which
typically is impossible otherwise.

One way to distinguish these various wavelet bases is to
look at their orthogonality properties (Table I). This classifi-
cation leads naturally to the identification of one more type,
which has been neglected so far. These are the so-calledshift-
orthogonalwavelets, which are orthogonal to their translates
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TABLE I
CLASSIFICATION OF MULTIRESOLUTION WAVELET BASES

within the same level but not across scales. We started the
investigation of this class of transforms with the construction
of a specific example using splines; it was presented in a
preliminary report [14].

The purposes of this paper are to characterize these new
wavelet bases in a systematic manner and to study their prop-
erties. We will consider two alternative construction methods,
each interesting in its own right because of the particular
insights that it provides. The first approach, which is developed
in Section III, starts from two multiresolution analyses of
and constructs the shift-orthogonal basis functions by suitable
orthogonalization. The corresponding filterbank algorithm is
presented in Section IV. The second construction method,
which is developed in Section V, uses the reverse perspective
and starts with a specification of the filters for the reconstruc-
tion algorithm.

In many ways, the shift-orthogonal wavelet construction
methods that we propose may be thought of as a hybridiza-
tion process between two orthogonal wavelet transforms. The
resulting transform inherits most of the properties of the
primary multiresolution on the synthesis side. In particular,
the primary scaling function will control the rate of decay
of the approximation error as the function of scale (order of
the transform) as well as its asymptotic magnitude (i.e, the
magnitude of the error for functions that are slowly varying
with respect to the grid size) [15], [16]. Since the influence of
the analysis space on global performance is marginal, we can
use the freedom provided by the use of a second (analysis)
multiresolution to design wavelets with a faster decay than
their primary orthogonal counterparts. In other words, we can
reduce the size of the wavelet synthesis filter while essentially
preserving orthogonality.

Notation and Operators: is the vector space of real
measurable, square-integrable functions . The
corresponding -inner product is ;

the Fourier transform of is denoted by
.

is the space of square summable real-valued sequences (or
discrete signals) . The -transform of is denoted
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TABLE II
BASIC DISCRETESIGNAL PROCESSINGOPERATORS

AND THEIR EFFECT IN THE FOURIER DOMAIN

by a capital letter ; the corresponding
Fourier transform is . We
will consider a number of operators acting on discrete signals;
these are summarized in Table II.

II. PRELIMINARY NOTIONS

We start with a brief review of fundamental notions in
the theory of the wavelet transform and provide our own
perspective on some of the basic concepts.

A. Scaling Functions and Multiresolution Analyses

Often, a scaling function is defined indirectly through the
specification of its refinement filter. Then, we have to worry
about the delicate mathematical issues of the convergence
of the iterated filter bank and the denseness of the wavelet
representation in [2], [5]. Here, we prefer to start with a
more explicit definition that takes care of these problems at
the outset.

Definition 2.1: is an th-order scaling function iff it
satisfies three conditions:

i)

(1)

ii)

(2)

iii)

and

(3)

where is the Fourier transform of , and is
the th derivative of evaluated at .

Condition i) ensures that generates a Riesz basis and that
the basic function space

(4)

is a well-defined (closed) subspace of. The constants
and are the Riesz bounds of; in particular, the basis is
orthonormal if and only if .

Conditon ii) is the two-scale relation, which is the key to the
multiresolution analysis. It allows us to define the coarse-to-
fine sequence of embedded subspaces

such that
.

Condition iii) expresses a more technical order property,
which is further discussed below. The minimum requirement
for all wavelet constructions is ; this is also equivalent
to the partition of unity condition (the
connection is given by Poisson’s summation formula). Not
only is this first-order property necessary for the convergence
of the iterated filterbank [2], but it also guarantees that we
can approximate any -function as closely as we wish by
choosing a scale that is sufficiently small [16]. Hence, the
multiresolution decomposition is dense in and satisfies all
the necessary requirements for the construction of wavelet
bases [6].

B. Order Properties

Condition iii) comes from approximation theory and pro-
vides the most general definition of anth-order function [17],
[18]. However, most wavelet textbooks use a simpler factor-
ization condition on the transfer function of the refinement
filter

(5)

where is the transfer function of a stable filter with
. In general, (5) is a stronger requirement than

(3). Both conditions are equivalent if (or ) is compactly
supported.

The order conditions (3) and (5) are at the heart of wavelet
theory. They have some remarkable consequences such as
the vanishing moments of wavelets, the ability of the scaling
function to reproduce polynomials of degree , and
the special eigenstructure of the two-scale transition operator
(cf., [5, Ch. 7]). There are also lesser known approximation
theoretic consequences that are quite relevant to our purpose.
For an -th order decomposition, the Strang–Fix theory im-
plies that the approximation error at a given scale decays like
the th power of that scale [17], [18]. In particular, when the
function to approximate is sufficient smooth with respect
to the current scale , we have the asymptotic relation
(cf., [16])

(6)

where denotes the approximation of at the scale ,
is the -norm of the th derivative of , and

is the easily computable constant. The asymptotic limit
is the same whether the projection is orthogonal or not, and
the magnitude of depends primarily on the smoothness
of the synthesisscaling function [16]. Interestingly, the
spline constants are the smallest among all known wavelets
of a given order , whereas the Daubechies constants are the
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worst. In fact, the differences in magnitude are such that the
performance of Daubechies’ wavelets is no better than that
of splines at half the resolution [15], [16]. The downside of
splines is that the orthogonal Battle–Lemarié wavelets have
poor decay. This motivates us to investigate ways in which
we can improve their localization by being less stringent in
enforcing orthogonality.

III. FROM MULTIRESOLUTION ANALYSES TO WAVELETS

In this section, we will start with two arbitrary multireso-
lution analyses and show how to obtain the corresponding
shift-orthogonal wavelet transform. Our definition of such
transforms is that the scaling function and wavelet on the
synthesis side are orthogonal with respect to shifts within
a given scale. We will characterize the corresponding basis
functions and wavelets explicitly to establish the following
result in a constructive manner.

Proposition 3.1: For any given two biorthogonal multires-
olution analyses of , there always exists a corresponding
stable shift-orthogonal wavelet decomposition.

By stable decomposition, we mean that the shift-orthogonal
wavelets provide an unconditional (or Riesz) basis of. Note
that the analysis and synthesis multiresolution spaces are spec-
ified independently of each other using two primary scaling
functions and that are not necessarily biorthogonal to
start with. Our only constraint for a consistent biorthogonal
scheme is that the cosine of the angle between the basic
analysis and synthesis spaces [see (10) below] must be strictly
positive.

A. Construction of Shift-Orthogonal Scaling Functions

Let and be any two admissible analysis and synthesis
scaling functions, respectively. We also define the following
correlation sequences:

(7)

The Riesz basis condition i) implies that

(8)

(9)

where the Riesz bounds and are all strictly
positive and finite. The angle between the analysis and
synthesis spaces and is given by (cf., [19])

(10)

Note that the (biorthogonal) projection into perpendic-
ular to is well defined if and only if [20]
(that is, if . Thus, our stability condition
for a consistent biorthogonal scheme is

(11)

where , and
.

We can now characterize the corresponding shift-orthogonal
scaling functions. The first step is to construct the synthesis
scaling function , which is the orthogonalized
version of . This is done as described in [9]

(12)

where denotes the square-
root convolution inverse of the symmetric sequence
(Table II). Here, we will only consider the symmetrical square-
root inverse. In principle, there are many other equivalent
solutions, which differ only in terms of a phase factor.

Once has been specified, we can determine the corre-
sponding (unique) dual function , which must
satisfy the biorthogonality constraint ,
where is the discrete unit impulse. This leads to the
following characterization:

(13)

where is the convolution inverse (cf., Table II) of
the cross-correlation sequence

. Note that all the required inverse filters in (12) and
(13) are well-defined because of the stability conditions (9)
and (11).

Unlike , the dual function is not orthogonal to its
own shifts. In fact, we can easily compute its sampled auto-
correlation sequence

(14)

If we express this relation in the Fourier domain and use (10),
we obtain the Riesz bound [cf., (1)]

(15)

which provides an interesting geometrical connection: We have
full orthogonality if and only if or, equivalently,
when and generate the same space.

Having defined these new basis functions, we can now
write the projection of a function into
perpendicular to as

(16)

where we use the standard short-form notation
.

B. Construction of Shift-Orthogonal Wavelets

In the sequel, we also use a short-form notation for the
synthesis and analysis spaces: and .
Let be the complementary (synthesis) wavelet space of

in perpendicular to , i.e.,
with . Likewise, let denote the complementary
(analysis) wavelet space of in perpendicular to ,
i.e., with . It can be shown (cf., [21,
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Th. 2.1]) that these wavelet spaces and their corresponding
oblique projection operators are well defined if and only if the
stability conditions (8), (9), and (11) are satisfied.

We now consider the construction of the corresponding
shift-orthogonal wavelets at resolution level . The
synthesis wavelet must satisfy the following
conditions:

i) ;
ii) because is perpen-

dicular to ;
iii) because of the

intra-scale orthogonality requirement.

It turns out that there is a function, which again is unique
up to a phase factor, that verifies all those conditions; it is
given by

(17)

where the sequencesand are defined as

(18)

(19)

The corresponding signal processing operators are defined in
Table II. Note that this wavelet is nothing more than the
orthogonalized version of the basic wavelet defined in [13],
which is given by (17) with identity. The Riesz bound
conditions on the basic wavelet imply that the operatoris a
well-defined convolution operator from into .

The dual analysis wavelet must satisfy a
similar set of conditions:

iv) ;
v) because is perpen-

dicular to ;
vi) , which ex-

presses the biorthogonality condition.

After some algebraic manipulations, we obtain an expression
that is similar to (17)–(19)

(20)

where

(21)

(22)

with and defined in (19) and (18). Note that these equations
can be simplified further, as described in the Appendix [cf.,
(A1), (A2)]. Here too, the fact that the angle between the
analysis and synthesis spaces and is less than in
absolute value (stability condition) ensures that the convolu-
tion and square-root inverses in (22) and (19) are well posed
and that the resulting digital filters and are stable and
invertible.

It is also of interest to determine the Riesz bounds for the
dual wavelet , which is not orthogonal. For this purpose,

TABLE III
cos �12 BETWEEN THESPLINES SPACE V0('

n ) AND V0('
n )

we must compute the sampled autocorrelation sequence

After a series of manipulations similar to the one given in the
Appendix, we find that

(23)

By going to the Fourier domain, we obtain

(24)

which is the same as for the dual analysis function [cf., (15)].
This result also reflects the property that the angle between the
wavelet spaces and is the same as the angle between

and .

C. Example: Shift-Orthogonal Spline Wavelets

As an illustrative example, we consider the case
and , where is the noncentral (or

causal) B-spline of degree. Specifically, is obtained from
the -fold convolution of the unit indicator function

(or B-spline of degree 0). The spline spaces that are
generated in this way are essentially the same as those in
our first example with and odd [14]. A notable
difference, however, is that the present basis functions are
not centered about the origin. This modification is necessary
if we want to include splines of even degree, which are not
covered otherwise. The connection between both formulations
is provided by the relation

(25)

where is the centered B-spline of degree.
The causal B-spline functions are all valid scaling functions

in the sense of Definition 2.1. Assuming that the cosine of the
angle between the analysis and synthesis spaces is greater than
zero, the shift-orthogonal basis functions and wavelets are then
described explicitly by (12), (13), (17), and (20). What is still
required is the determination of the refinement filtersand

and the correlation sequences , , and .
Recalling that the refinement filter for a B-spline of degree

0 is and that the B-splines are
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(a) (b)

(c) (d)

Fig. 1. Dual sets of quadratic spline and piecewise constant wavelets and scaling functions at the first resolution level. (a) Shift-orthogonal quadratic spline
wavelet. (b) Dual piecewise constant wavelet. (c) Orthogonal quadratic spline Battle–Lemari´e scaling function. (d) Dual piecewise constant analysis scaling
function. The basis functions in (a) and (b) [resp., (c) and (d)] are quadratic splines with knots at the integers (resp., at the even integers).

generated by repeated convolution, it is not difficult to show
that and , where is the binomial filter
of order

(26)

This equation also shows that the approximation order of
the corresponding wavelet transform is (cf.,
Section II-B). Likewise, we can deduce that the correspond-
ing shift-orthogonal spline wavelet has
vanishing moments (cf., [2]). Next, we use the fact that the
convolution between two B-splines of degree and degree

is a B-spline of degree , and we obtain the
explicit form of the correlation sequences

(27)

(28)

(29)

which are all with finite impulse response (FIR). While the

Riesz bounds conditions (8) and (9) are satisfied for any degree
, the angle between the present spline spaces is less than

in absolute value (i.e., ) only when is
even, that is, when the degrees and are both odd or
both even. Explicit values for all combinations of splines up
to degree 7 are given in Table III. The various shift-orthogonal
scaling functions and wavelets for the case and
are shown in Fig. 1. We can observe that the basis functions
are piecewise constant on the analysis side and piecewise
quadratic with a first order of continuity on the synthesis side.
Interestingly, the analysis functionhas a very fast decay and
is reasonably close to a B-spline of degree 0.

In addition, note that for the particular case , the
present construction yields the Battle–Lemarié spline wavelets,
which are completely orthogonal [22], [23].

IV. SHIFT-ORTHOGONAL WAVELET

TRANSFORM AND FILTERBANK ALGORITHM

A. Wavelet Expansions

Because of our stability conditions, each wavelet space
is a well-defined subspace of , which admits

as an orthonormal basis. Since by
definition is dense in , it follows that the set

is an unconditional basis of and that every
function can be represented by its shift-orthogonal
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wavelet expansion

(30)

The special feature of this decomposition is that the basis
functions are orthogonal with respect to shifts (index) but
not across scales or dilations (index).

If we now consider the partial wavelet expansion up to the
scale , we obtain the projection of into perpendicular
to

(31)

which can also be represented in terms of the scaling function
at resolution [cf., (16)]. Note that the approximation error at
scale in the shift-orthogonal case will always be slightly
above the error of the corresponding orthogonal transform
(least squares solution). Specifically, we have (cf., [19, Th. 3])

(32)

where denotes the orthogonal projection of into .
One should note, however, that the upper bound on the right
side of (32) corresponds to a worst-case scenario that is
rarely encountered in practice. This can also be understood in
geometric terms. Specifically, the true angle between
and will usually be much smaller than , which
represents the maximum angle between the subspacesand

, both of infinite dimension.
Because the worst-case angles between the various spline

spaces are relatively small (Table III), we can expect the shift-
orthogonal spline wavelets to provide essentially the same
type of energy compaction as the corresponding orthogonal
Battle–Lemaríe wavelet transforms. In other words, we will
get essentially the same approximation error when we
start discarding the smaller scale wavelet coefficients. It also
appears that the hybrid cubic spline wavelet transform
and first described in [14] is nearly orthogonal.

B. Filterbank Algorithm

We can implement the wavelet transform (30) or (31) itera-
tively by using a standard tree-structured perfect reconstruction
filterbank [4]. The algorithm requires the specification of two
analysis filters and two synthesis filters and ,
respectively. These are defined as

(33)

The easiest way to determine these filters is to perform the
appropriate change of coordinate system and to express
and (resp., and ) in terms of the integer
shifts of (resp., ). This provides an explicit characterization
of their impulse response in the signal domain. The most

involved derivation is the computation of a simplified form
of the wavelet analysis filter , which is given in the
Appendix. We have chosen here to present frequency domain
formulas because these are the most useful in practice. Our
results are summarized as

(34)

(35)

(36)

(37)

where the auxiliary filters and are defined as

(38)

(39)

Note that the equation for is the same as that given by Mallat
for the orthogonal case simply because both transforms share
the same (orthogonal) synthesis scaling function. This filter
satifies the condition

(40)

and is called a quadrature mirror filter (QMF). If the scaling
functions and are compactly supported (as in the spline
case), it can be shown that all filters decay exponentially fast.
In general, they will not be FIR.

In order to compute a truncated version of a filter’s impulse
response, the simplest approach is to evaluate its transfer func-
tion at the discrete frequencies ,
where is chosen sufficiently large to avoid aliasing in the
signal domain. The impulse response is then determined by us-
ing an -point inverse FFT. The first 15 filter coefficients for
the example in Fig. 1 (quadratic splines) are given in Table IV.
The lowpass filter is the same as the corresponding quadratic
Battle–Lemaríe filter. Interestingly, the wavelet synthesis filter

decays significantly faster and turns out to be similar to the
Haar filter .

A crucial practical issue is the decay of the various filters. A
dispersion index that can be computed easily is the standard
time-localization measure

(41)

where denotes the -norm of the filter , and rep-
resents the center of its impulse response. When the response
is a two-sided exponential of the form , we
can derive the relation

(42)
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TABLE IV
IIR FILTER COEFFICIENTS FOR THESHIFT-ORTHOGONAL QUADRATIC

SPLINE WAVELET TRANSFORM WITH n1 = 0 AND n2 = 2

TABLE V
TIME LOCALIZATION OF THE FOUR FILTERS FOR

VARIOUS SHIFT-ORTHOGONAL WAVELET TRANSFORMS

which can be used to estimate the exponential decay parameter
without performing any curve fitting. The correspond-

ing time constant is then given by . We
considered all four filters and performed explicit numerical
computations of for spline wavelet transforms up to degree
5; the results are presented in Table V. Note that the third
measurement also provides the dispersion index for the
corresponding Battle–Lemarié transform , whose
filters are all derived from a single QMF template that is
precisely (cf., subsection C below). While the localizations
of the filters and are comparable, it appears that our
hybridization scheme has effectively reduced the decay of the
filters and . The shortest filter is the wavelet synthesis
filter , which has approximately the same localization as
a Battle–Lemaríe filter of degree , and this almost
independently of . Thus, by varying the order of the analysis
and synthesis spaces, we can control the decay of the various
digital filters (which tend to be associated in pairs).

C. Filter Properties

We have already observed that the filteris the same as in
the orthogonal case. Similarly, the shift-orthogonality property
imposes constraints on the wavelet synthesis filter.

Proposition 4.1: For a shift-orthogonal wavelet transform
of , the synthesis filters and are both QMF [cf.,
(40)], with the lowpass and highpass conditions

(43)

(44)

Proof: The scaling function can be written as

(45)

and the lowpass synthesis filterautomatically has the right
properties because is an orthogonal scaling function (cf.,
[1]). Likewise, the wavelet can be represented as

(46)

where is the wavelet synthesis filter. The shift-orthogonality
condition implies that

Replacing by its expression (46) and using the orthogonality
of , we get

The corresponding relation in the-transform domain is pre-
cisely the QMF condition

Because (or ) satisfies the partition of unity condi-
tion, has at least one vanishing moment
(i.e., is an admissible wavelet). Since

and , this implies that
.

V. FROM SYNTHESIS FILTERS TO WAVELETS

We will now investigate the complementary approach and
construct shift-orthogonal wavelet transforms by starting with
the filterbank. The method that is described next is based
on Proposition 4.1. Its only potential problem is that not all
perfect reconstruction filterbanks generate admissible scaling
functions and wavelets for . In particular, we need to make
surea posteriori that the underlying scaling functions, which
are now defined through an infinite recursion, converge to
well-defined limits in [5].

We propose the following design procedure: Select two
quadrature mirror filter templates (index for analysis)
and (index for synthesis) of order and , re-
spectively, which are such that their dyadic spectral coherence
function1

(47)

is nonvanishing on the unit circle. Note that as
a result of the Schwarz inequality (cf., [24]). As we shall see,
the parameters and control the order of the analysis and

1�as(z) is thez-transform of[hTa � hs]#2"2(k), which is the even index
part of the cross-correlation betweenha andhs.
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(a) (b)

(c) (d)

Fig. 2. Dual sets of wavelets [(a) and (b)] and scaling functions [(c) and (d)] associated with the filterbank coefficients in Table VI at the sixth resolution
level. These graphs were generated using six scale iterations of the filterbank algorithm. The synthesis function (c) is the same as the quadratic spline
scaling function�(x) in Fig. 1; the wavelet (a) is also a quadratic spline that is very similar (but not identical) to the function (x) in Fig. 1. The analysis
functions in (b) and (d), on the other hand, are no longer piecewise constant.

synthesis spaces and , respectively. In particular,
the lowpass condition (i.e.,
and ) is necessary for the convergence of the iterated
filterbank (cf., [2]).

These templates are then used to specify the lowpass and
highpass synthesis filters

(48)

(49)

where the latter is the time-reversed, shifted, and modulated
version of the analysis template . With this particular
setting, we are obviously satisfying the conditions in Propo-
sition 4.1. In addition, note that (49) implies that the wavelet
filter has a zero of multiplicity at the origin .
This, in turn, implies that the shift-orthogonal wavelet
has vanishing moments.

We can now write down the perfect reconstruction condi-
tions for the filterbank algorithm (cf., [4])

(50)

and solve these equations to determine the remaining analysis

filters. The determinant of the system is

(51)

and the solution is

(52)

(53)

Since the determinant is nonvanishing, both analysis filters
are stable and well defined. For the same reason, the analysis
filter will inherit the order properties of , and the
analysis space will have an order of approximation

. Likewise, the wavelet filter will have an th-
order zero at the origin, which implies that the corresponding
dual analysis has vanishing moments. This again reflects
the fact that the synthesis space has an th order of
approximation. The rational form of transfer functions in (52)
and (53) also suggests that it is impossible to have FIR shift-
orthogonal analysis filters unless , in which case,

, and the transformation is orthogonal.
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TABLE VI
FILTER COEFFICIENTS FOR THESHIFT-ORTHOGONAL HYBRID WAVELET

TRANSFORM (HAAR/BATTLE-LEMARIÉ QMF WITH n2 = 2)

The proposed construction method can be used to
combine the filterbanks associated with different orthogonal
wavelet transforms (e.g., Daubechies or splines). With this
hybridization technique, the underlying approximation space

is the same as the one used in the orthogonal case.
The analysis space, on the other hand, will differ because
of the determinant term in (52). As before, it is usually
preferable to put a low order on the analysis side and a
higher order on the synthesis side.

As a design example, we have considered mixing the spline
QMF’s for and , which is very similar to
the shift-orthogonal construction in Section III-C, except that
we are now starting from the filters. The motivation for using

is that it is the shortest admissible
QMF. The corresponding filter coefficients obtained by inverse
FFT are given in Table VI. Not too surprisingly, they are
quite similar to those in Table IV. The filter localization
measures are also given at the bottom of Table IV and should
be compared with those of the first design method. The
corresponding scaling functions and wavelet graphs were
generated through an iterative filtering process and are shown
in Fig. 2. While the synthesis functions are very similar to
those in Fig. 1 (quadratic splines), the functions on the analysis
side are no longer piecewise constant. In fact, they have lost
some regularity because of the presence of the term

in the denominator of (52), which causes to decay at a
slower rate than . Based on our simulations, it appears that

still has sufficient decay for to be in , but the
limit is discontinuous.

VI. CONCLUSION

In this paper, we have characterized the class of shift-
orthogonal wavelet transforms and presented two general
construction methods. In contrast with previous semi- and
biorthogonal constructions, we have only relaxed the orthog-
onality constraint in-between resolution levels. As a result,
the basis functions are still orthogonal within a given wavelet
channel (or scale). The first way to think of shift-orthogonal
wavelets is as a particularization of the general biorthogonal
case, which uses two different multiresolution analyzes of.
In terms of constraints, the situation is very much analogous to

the construction of orthogonal wavelets by orthogonalization
of semiorthogonal basis functions such as splines. An example
that permits a very direct visualization of the two underlying
biorthogonal subspaces (piecewise constant functions ver-
sus quadratic splines) is provided in Fig. 1. Shift-orthogonal
wavelets can also be thought of as hybrids that are obtained by
combining two orthogonal wavelet transforms. The constraints
are such that both synthesis filters will be QMF; however,
they can be selected independently of each other. We have
shown that the lowpass filter determines the approximation
order of the representation, whereas the highpass filter controls
the decay of the wavelet.

In practice, it would make sense to use a higher order
representation on the synthesis side and a lower order on
the analysis side. In this way, we can use the degrees of
freedom offered by the second (analysis) multiresolution to
obtain faster decaying wavelets while essentially preserving
the approximation and orthogonality properties of the primary
higher order transform (e.g., Battle–Lemarié splines).

APPENDIX

DERIVATION OF THE WAVELET ANALYSIS FILTER

First, we will simplify the expression of the dual wavelet,
e.g., (20)–(22). For this purpose, we write the dual wavelet as

(A1)

where , with and given by (21) and
(22). Replacing these sequences by their explicit expressions,
we get

using the operator notations in Table II. Since the sequence
is zero for all odd integers and is left unchanged

by the operator , we can factor it out, which yields

Next, we notice that

where the right-hand side follows from the two-scale rela-
tion for , which is easily derived by
convolution. Finally, putting things together, we end up with

(A2)

Since the basic scaling function can also be represented by

we can also rewrite as

(A3)

where the time-reversed version of the analysis filter is given
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by

(A4)

This is precisely the inverse Fourier transform of (37).
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