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Abstract
We present some issues that arise when a geometric transformation is performed on an image or a
volume. In particular, we illustrate the well-known problems of blocking, blurring, aliasing and
ringing. Although the solution to these problems is trivial in an analog (optical) image processing
system, their solution in a discrete (numeric) context is much more difficult. The modern trend of
biomedical image processing is to fight these artifacts by using more sophisticated models that
emphasize the quality of interpolation. For example, spline kernels offer excellent performances for a
low computational cost; in addition, this compromise can be tuned by controlling the degree of the
spline.
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Introduction
The quality of geometric operations on images or volumes is sometimes very relevant in the context of
biomedical data analysis. For example, the comparison of images taken with two different conditions
requires that the geometric operation that aligns one with the other be of high-quality in order to allow
a detailed analysis of their differences [1]. That is to say, it is not enough that the geometric alignment
be correctly specified; it is also crucial that it be correctly performed. Typical instances of that class of
problems involve functional Magnetic Resonance Imaging (fMRI), where the relative amplitude of the
difference between two conditions (e.g., active vs. inactive) is very small. Another example involves
the capability of follow-up studies to assess the success of a given therapy, where it is again necessary
not only to specify a geometric transformation with good accuracy, but also to perform it without
losing details or introducing artifacts. For calibration purposes, the alignment of acquired data with a
preprocessed atlas is another area where it is desired to control the amount of data degradation
introduced by performing a geometric transformation [2]. Finally, high-quality (fidelity to the original)
is also a desirable trait in common display operations such as the reslicing of anisotropic data or the
change of scale and orientation of many pictorial representations. Typically, a physician will request
that zooming (magnifying) a region of interest does introduce no spurious feature, while keeping all
the minute details he might be interested in.

Some specialized geometric transformations (e.g., affine [3], scaling [4]) lend themselves well to ad-
hoc solutions that are optimal in some sense. Here nevertheless, we restrict our analysis to the simpler
approach known as interpolation. Given a set of discrete data samples, the two hypothesis that are
fundamental to interpolation are as follows:

1) the underlying data is continuous;

2) given the data samples, it is possible to know exactly a data value of the underlying
continuous function at any abscissa.

Under these hypothesis, a geometric transformation performed through interpolation consists in
sampling data values of the underlying continuous function at the right set of abscissa. Additional
hypotheses have been proposed in the past; for example, a traditional approach is to restrict the
underlying continuous function to be bandlimited [5]. More recent approaches suggest that replacing
this latter hypothesis by an alternative one allows better computational efficiency, while keeping the
validity of the two fundamental hypothesis expressed above. More specifically, dealing with spline
functions offers an alternative to bandlimited ones.

This paper is organized as follows: In Section I, we introduce a generic data model and advocate the
use of a separable kernel. In Section II, we present the most typical artifacts encountered while
performing interpolation. In Section III, we introduce spline functions. In Section IV, we propose
some experimental evidence of the benefit of using them, before we conclude.
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I. Data Model
It is customary to represent the continuous function   ƒ(x) underlying the data samples   ƒ(k)  by

  
ƒ(x) = c(k)ϕ(x − k)

k∈ZZ
∑ , (1)

where   c(k) are discrete coefficients and where   ϕ(x)  is some continuous kernel. This arbitrary structure
is convenient because it is linear (it is a weighted sum of kernel functions), and because the analysis of
  ƒ(x) can be directly deduced from the analysis of the unique function   ϕ(x) , without resorting to the
data-dependent coefficients   c(k). As illustration, the gradient   ∂ƒ(x) ∂x  is nothing but a weighted sum
of the shifted kernel gradient   ∂ϕ(x − k) ∂x , with the weights being the same   c(k) as those used to
construct the function   ƒ(x) itself.

There are two easy ways to extend this representation to higher dimensions. One is to express   ƒ(x)  as
a weighted sum of a multidimensional kernel     ϕN (x)

    
ƒ(x) = c(k)ϕN (x −k)

k∈ZZN
∑ , (2)

where   N  is the number of dimensions considered. The other way is to replace the general
multidimensional kernel     ϕN (x)  by a less general kernel that we restrict to be separable

      
ƒ(x) = c(k) ϕ(xi − ki )

i=1

N

∏
k∈ZZN
∑ . (3)

The disadvantage of the last representation is that there is only one special kernelÑa GaussianÑthat
leads to a signal endowed with rotational symmetry. This is to be weighed against the very beneficial
practical consequence that the data can be processed in a separable fashion, line-by-line, column-by-
column, etc.

Expression (2) lets the cost associated with any processing grow exponentially with the number of
dimensions   N . For example, the equivalent of a 1D FIR 5-taps filter would require 125 taps in 3D
when Expression (2) is used, and only three 5 taps with Expression (3). These remarks lead us to
consider only separable kernels for the rest of this paper. An additional benefit is that we can restrict
our interpolation analysis to the 1D case.

II. Interpolation Artifacts
Resampling by interpolation is generally understood as the following procedure:
1) Take a set of discrete data   ƒ(k);
2) Build by interpolation a continuous function   ƒ(x) such that   ƒ(k) = ƒ(x) x=k ;
3) Perform a geometric transformation   T(x)  that yields   ƒT (x) = ƒ(T(x));
4) Summarize the continuous function   ƒT (x)  by a set of discrete data samples   s(k).
Very often, the geometric transformation   T(x)  results in a change of sampling rate. Irrespective of
whether it is global or only local, this produces a continuous function   ƒT (x)  that cannot be modeled
exactly by Expression (1), even though   ƒ(x) did. In general, given an arbitrary transformation   T(x) ,
there exists no   cT (k) such that

  
ƒT (x) = c(k)ϕ(T(x)− k)

k∈ZZ
∑ = cT (k)ϕ(x − k)

k∈ZZ
∑ . (4)

It follows that the resulting continuous function   s(x) that could be reconstructed from the samples   s(k)
is only an approximation of   ƒT (x) . Several ways can be designed to minimize this approximation error
(for example: least-squares error over a continuous range of abscissa   x ). The traditional interpolation
approach minimizes the error only at the integer samples by asking that

    
s(x) x=k = s(k) = ƒT (x) x=k

, k∈ZZ . (5)

Since   s(x) is only an approximation of   ƒT (x) , one should expect artifacts. Those have been classified
in three broad categories called blocking, aliasing, and blurring. A fourth type of effect, called ringing,
also sometimes appears when performing geometric operations on images.

¥ Blocking
The blocking artifact is mostly visible when performing signal magnification with a kernel   ϕ(x)
consisting of a single square pulseÑthis particular interpolation method is known as nearest-neighbor.
With this kernel, the blocking artifact is also apparent when attempting to shift a signal by a non-
integer amount. Essentially, blocking arises when the influence of the samples   ƒ(k)  is strictly local.
Figure 1 presents a typical case of blocking.
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Figure 1: Blocking. After magnification, the highlighted area appears pixellated.

Figure 2: Aliasing. At too coarse scale, the structural appearance of the bundles of cells is lost.

¥ Aliasing
Expression (1) can be read as a mixed convolution operation between a discrete signal   c(k) and a
continuous kernel   ϕ(x) . This interpretation hints at a filtering operation. Under signal reduction by
resampling, aliasing occurs when the filter is non-ideal, or has the wrong (too high) cut-off frequency.
Figure 2 illustrates aliasing.

¥ Blurring
The reasons for blurring is that the cut-off frequency associated with   ϕ(x)  is too low. When the filter is
non-ideal, aliasing and blurring can occur simultaneously (they usually do). To highlight blurring, it is
enough to iterate the same interpolation operation several times, thus effectively magnifying the effect.
Figure 3 has been obtained by the compound rotation of an image by 36 steps of 10¡ each, while
performing linear interpolation.

¥ Ringing
From the considerations on aliasing and blurring artifacts, it would seem that a kernel with a frequency
response approximating an ideal filter is a good candidate for an artifact-free image model. Kernels
with such properties tend to be functions that oscillate (e.g., sinc). Ringing can be highlighted by
translating by a non-integer amount a signal where there is a localized domain of constant samples
    ƒ(k) = ƒ0 ,     k∈ k1,  k2{ } , bordered by sharp edges. After interpolation, translation and resampling, the new
samples   s(k) do no more exhibit a constant value   ƒ0 over the translated domain     k− ∆ ∈ k1,  k2{ }, but they
tend to oscillate. This is no artifact; rather, it is a consequence of fitting a continuous model   ƒ(x) to the
discrete data   ƒ(k) . It is known as the Gibbs effect; its perceptual counterpart is the Mach bands
phenomena. Figure 4 shows an occurrence of ringing in the outlined area due to the horizontal
translation of a high-contrast image by half a pixel.

For a long time, sinc interpolationÑwhich corresponds to ideal filteringÑhas been the Graal of
geometric operations. Nowadays, researchers acknowledge that, while sinc interpolation can be
realized under special circumstances (e.g., translation of a periodic signal through discrete Fourier
transform operations), in general it can only be approximated, thus reintroducing a certain amount of
aliasing and blurring, depending on the quality of the approximation. Another drawback of the sinc
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Figure 3: Blurring. Iterated rotation loses many small-scale structure.
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Figure 4: Ringing. Oscillations appear after horizontal translation by a half pixel.

kernel is that it decays only slowly, which generates a lot of ringing, and incurs a high computational
cost. In addition, there is no way to tune the performance of the kernel to any specific application: it is
either a sinc (or approximation thereof), or it is something else.

For these reasons, we present below a family of kernels that are better suited to digital processing and
are based on splines. Their degree can be tuned. A low degree comes with a modest computational
cost; a higher degree requires more investment but reduces aliasing. Blocking is present only for the
smallest degrees (0 and 1) and disappears altogether for higher degrees. When the degree is infinite,
spline interpolation is indistinguishable from sinc interpolation [6]; already for small degrees (e.g.,
cubic), the approximation is remarkably good.

III. Spline functions
A spline function   ƒ

(n) (x)  of degree   n is a piece-wise polynomial function that is globally continuous in
all its derivatives, up to order     n− 1. For example, a spline of degree   0  can be globally discontinuous,
but each piece is continuous (is piece-wise constant). A spline of degree   1 is piece-wise linear with
connected pieces, thus continuous, but its first derivative is not necessarily continuous. In this paper,
we consider only those splines that have pieces of the same support or length (regular sampling);
without loss of generality, we consider this support to be unity. Under these conditions, it can be
shown that a spline can be represented through Expression (1) [7, 8]. For a given spline, there exists
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an infinity of kernels ϕ  that allow the representation (1); however, once ϕ  has been specified, only
one set of coefficients   c(k) produces the right function   ƒ(x) (unicity of representation).

We mention here two interesting kernels: the first is called the cardinal spline   η
(n) (x) of degree   n. It is

such that the coefficients   c(k) are given directly by the samples   ƒ(k) . Obviously, examination of
Expression (1) shows that it is necessary that   η

(n) (x) be an oscillating function with a zero-crossing at
every integer     η

(n) (k) = 0,   ∀k∈ZZ∗ . It turns out that this function, which is very similar to a sinc, has an
infinite support for     n > 1. Even if its decay is exponentialÑmuch faster than that of a sinc, which is in
    1 xÑfinite support functions are preferred because those can be implemented exactly. The second
interesting kernel that we discuss in this paper has this property; it is the basic spline, or B-spline
  β
(n) (x) . We insist that the following relation is exact:

  
ƒ(n) (x) = ƒ(k)η(n) (x − k)

k∈ZZ
∑ = c(k)β(n) (x − k)

k∈ZZ
∑ . (6)

The relevance of this equation is as follows: Suppose that the coefficients   c(k) are available. Then,
since   β

(n) (x)  is finite support, it is possible to compute (interpolate)   ƒ
(n) (x)  for any abscissa   x  with a

sum of a finite number of terms, without approximation. Fortunately, this good news does not come
alone:   β

(n) (x)  is the shortest function for given approximation properties, which results in the least
amount of computation for a given quality [9]; moreover, there exists a computationally efficient
algorithm for determining the coefficients   c(k) from the data samples   ƒ

(n) (k) .

IV. Performance
We propose now to experimentally compare several interpolation models.   β

(0)  is the nearest-neighbor
interpolation, which we refer to as a spline interpolation of degree     n = 0. This interpolation model is
popular, especially in low-cost computer graphics, because its processing requirements are extremely
frugal.   β

(1)  is the linear interpolation, sometimes called bilinear in 2D and trilinear in 3D (this is not to
be confused with the bilinear transformation); it corresponds to a spline of degree     n = 1 for which we
have the simple relation     c(k) = ƒ(1) (k) . This equality is also valid for the interpolation kernel proposed
by Keys [10]Ña piece-wise cubic polynomial, the computation of which requires the same number of
operations than a cubic spline   β

(3)  but offers less good approximation properties. The drawback of a
cubic spline kernel is that the relation     c(k) = ƒ(3) (k)  is no longer true; however, the determination of the
proper   c(k) can be efficiently performed with recursive filtering (essentially, 2 additions and 2
multiplications per sample). Finally, we also stage a spline of degree     n = 7 , which closely
approximates a sinc.

We compare these kernels on the basis of the same methodology that we used to produce Figure 3,
albeit with another source image. We synthesize the latter by constructing a 1D function made by a
frequency-varying sinusoid (a chirp) that we analytically rotate in the plane. The resulting source
image exhibits circular symmetry and contains a whole range of spatial frequencies. By processing
this image with interpolationÑsuch as arises when iteratively resampling its rotated versionÑwe
produce a visual display where it is easy to discern the effect of the artifacts mentioned in Section II.
Figure 5 shows the result of this experiment, where it is evident that interpolation artifacts are indeed
present, even though a circularly symmetric pattern should be left invariant by rotation.

After 36 rotations of 10¡ each, blocking artifacts inherent with the nearest-neighbor interpolation   β
(0)

scramble the data so much that the original pattern is essentially lost. Smoothing artifacts predominate
with the linear interpolation   β

(1) , which results in the loss of most details in the central part of the
image. Keys interpolation reduces smoothing, artifacts, but since the influence of a data sample is
strictly local, one should expect blocking. Those are less severe than with   β

(0) , but can be nevertheless
be observed as arms spiraling toward the center, particularly in the region where smoothing starts to
appear (transition region). Some ringing can be experienced by observing the transition region for the
cubic spline interpolation   β

(3) , where a motif reminiscent of a checkerboard is visible. Finally,   β
(7)

generates almost no artifacts. The moir� effect near the center is the same than that visible in the
original image and is due to the printing process.

Conclusions
We have presented interpolation in the context of biomedical imaging, and we have insisted upon the
need for a high-quality image model. We have proposed a model that is based on splines, which
allows its exact computation. We have discussed the influence of the spline degree on the interpolation
quality, and we have explained the origin of the common artifacts known as blocking, aliasing,
blurring and ringing.
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Figure 5: Choice of the kernel. Several artifacts result from the rotation/resampling of a circularly
symmetric pattern. High spline order minimizes the degradation.
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