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Multiresolution Approximation Using Shifted Splines

Frank Müller, Patrick Brigger, Klaus Illgner, and Michael Unser

Abstract—We consider the construction of least squares pyramids using
shifted polynomial spline basis functions. We derive the pre and postfilters
as a function of the degreen and the shift parameter �. We show that
the underlying projection operator is entirely specified by two transfer
functions acting on the even and odd signal samples, respectively. We
introduce a measure of shift invariance and show that the most favorable
configuration is obtained when the knots of the splines are centered with
respect to the grid points (i.e.,� = 1=2 when n is odd and� = 0 when
n is even). The worst case corresponds to the standard multiresolution
setting where the spline spaces are nested.

I. INTRODUCTION

Splines have many nice properties that have contributed to their
recent popularity for constructing wavelet bases and multiresolution
signal approximations. They have a simple analytical form (piecewise
polynomial) that facilitates their manipulation [1], [2]. They have
excellent approximation properties, mainly because the underlying
B-spline basis functions are very regular [3], [4]. Splines are also
optimal in the sense that they provide the signal interpolant with
the least oscillating energy [5]. Finally, the spline framework allows
for a progressive transition between the two most extreme signal
representations: the piecewise constant model (spline of degree zero),
which uses the most localized but least regular basis functions, and the
bandlimited model, which corresponds to a spline of infinite degree
[6].

Several constructions of spline pyramids have been proposed in
the literature. One approach, which falls into the multiresolution
framework of the wavelet transform, minimizes the continuousL2
norm [7], [8]. The continuous formulation imposes a nestedness
constraint that does not allow for the shifting of the splines spaces:
The knots (or spline discontinuities) need to be positioned on the
integers. There is also an alternative design that considers the
minimization of thel2 norm [9], [10]; in that case, the basis functions
are usually chosen to be symmetric with respect to the origin.

The purpose of this correspondence is to extend thel2 construction
of spline pyramids by considering spline models that may be shifted
with respect to the finer grid. In doing so, we lose the nestedness
property, which is not essential in the discrete formulation, but we
gain in flexibility. For instance, we can design centered pyramids with
a quadtree-like topology, i.e., where a coarse-level node is positioned
in the center of its finer level predecessors. The proposed scheme also
lends itself to the optimization of the shift parameter. Here, we will
pay special attention to the issue of shift-invariance and determine
the best� accordingly.
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II. DISCRETE SPLINE APPROXIMATION

We consider the construction of a dyadic spline pyramid in a purely
discrete framework. The basic operation, which is applied iteratively,
is the approximation from a fine spaceS1 onto a coarse spaceS2 at
twice the scale. For mathematical convenience, we setS1 = l2 (the
space of finite energy sequences) and consider the coarser subspace
S1 � l2 generated from the even integer translates of a generating
sequenceh(k)

S2 = ~s(k) =
l2Z

s2(l)h(k� 2l) j s2 2 l2 : (1)

We also require thatfh(k� 2l)gl2Z forms a Riesz basis ofS2 so
that every sequence~s(k) 2 S2 has a unique characterization in terms
of its pyramid coefficientss2(l). In most pyramid constructions, the
generating kernelh is symmetric, and the coarser level nodes (or
grid points) are positioned at the even integers. Here, we will shift
these nodes by� and selecth to be the impulse response of the
corresponding spline interpolator. In other words, we will synthesize
the signal~s(k) by fitting its coefficientss2(l) with a polynomial
spline of degreen and resampling at twice the rate with a shift�
(cf., Fig. 1). Using the spline signal processing formalism developed
in [2], it is not difficult to derive thez transform of the corresponding
cardinal spline interpolator (expansion factor of two and shift by�)

H(z) =
Bn
2;�(z)

Bn
1;0(z

2)
(2)

where the sampledB-spline FIR kernelsBn
m;�(z) are defined as

B
n
m;�(z) =

k2Z

�
n k ��

m
z
�k

: (3)

The function�n(x) is the centeredB-spline of degreen, which is
constructed from the(n+1)-fold convolution of a rectangular pulse;
an explicit formula is given by [2, Eq. (2.6)]. TheB splines are
made up of polynomial segments of degreen that are connected at
the knot points; forn odd, these knots are on the integers, whereas
for n even, they fall in between. The post filter (or synthesis filter)
(2) specifies the EXPAND pyramid operator in the block diagram
in Fig. 2(a). The coefficients of the least squares pyramid will be
constructed by filtering and downsampling by a factor of two, as
illustrated in Fig. 2(a) (REDUCE operation). The optimal analysis
prefilter for the minimum error approximation inS2 is

�

H(z) =
2H(z�1)

H(z)H(z�1)+H(�z)H(�z�1)
: (4)

Proof: The least squares approximation of the signals1(k) 2 l2
is achieved when the errors1(k)� ~s1(k) is perpendicular toS2 =
spanfh(k � 2l)gl2Z, or, equivalently, when

hh(k� 2l); s1(k)il

= h(k� 2l);
n2Z

s2(n)h(k� 2n)

l

; 8l 2 Z:

We rewrite this identity using convolution and downsampling oper-
ators

[hT � s1]#2(k) = (a � s2)(k)

wherehT (k) = h(�k), anda(k) = [hT �h]#2(k) is the autocorrela-
tion sequence. Finally, we apply the inverse filtering operator(a)�1,
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Fig. 1. Interpolation mechanism in the shifted spline pyramid. The lower
resolution signal~s 2 S2 is either represented by its coarse-grid sampless2(l)
(black dots) or its fine-grid samples~s(k) (white dots) obtained by resampling
the spline that interpolatess2(l). The underlyingB-spline basis functions
are centered on the coarse grid nodes. The mapping froms2(l) to ~s(k) is
implemented through the EXPAND function (upsampling+ postfiltering).

(a)

(b)

Fig. 2. Least squares pyramid. (a) Standard implementation of the REDUCE
and EXPAND pyramid operations. (b) Equivalent polyphase representation of
the approximation process.

(a) (b)

Fig. 3. Two primary examples of node configurations. (a) Symmetric pyra-
mid (� = 0). (b) Centered pyramid (� = 1=2)

which yields

s2(k) = (a)�1
� [hT � s1]#2(k) = [

�

h � s1]#2(k)

where
�

h(k) = [(a)�1]"2 � h
T (k) is the filter whosez-transform is

given by (4). The Riesz basis condition onh(k�2l) ensures that the
inverse filter(a)�1 is well defined.

There are two configurations of special interest (cf., Fig. 3): i)
� = 0, in which case, all filters are symmetric (standardl2 set-
up); and ii) � = 1=2, where the coarser level grid points are
positioned at mid distance between two finer level nodes (centered
pyramid). This latter quadtree-like topology may have advantages for
multiscale edge detection or image segmentation because it facilitates
the propagation of image labels from one level to the next. With our
present convention, there is an equivalence between grid points and
spline knots only when the degreen is odd.

III. PROJECTIONOPERATOR AND PYRAMID CHARACTERIZATION

By definition, the global system in Fig. 2(a) (concatenation of the
REDUCE and EXPAND operations) defines an orthogonal projector
from l2 into the sequence spaceS2, which has half as many degrees of
freedom. Since we are considering the two parametersn and�, this
raises the issue of how to optimize the approximation space for the
application at hand, for instance, image coding or multiscale signal
processing. Energy compaction is a standard criterion that tends to
suggest the use of higher order pyramids [11]. Here, we propose some
additional tools and criteria for analyzing and comparing the various
pyramids. These concepts are simple and universal and provide some
further insights into the approximation process.

A. Polyphase Analysis

Let s(k) and ~s(k) denote the input and output of our system.
Using the standard multirate signal processing identities, we write
the system’s equation in thez-transform domain

~S(z) =
1

2

�

H(z)S(z)+
�

H(�z)S(�z) H(z): (5)

Next, we replace the prefilter by its polyphase representation (cf. [12])

�

H(z) =
�

H0(z
2) + z

�

H1(z
2) (6)

and manipulate (5) as

~S(z) =
1

2

�

H0(z
2)S(z)+ z

�

H1(z
2)S(z)

+
�

H0(z
2)S(�z)� z

�

H1(z
2)S(�z) H(z)

=
1

2
[S(z) + S(�z)]Heven(z) +

z

2
[S(z)� S(�z)]Hodd(z)

(7)

where

Heven(z) =
�

H0(z
2)H(z) (8)

Hodd(z) =
�

H1(z
2)H(z): (9)

The block diagram interpretation of (7) is given in Fig. 2(b). The
term 1

2
[S(z) + S(�z)] (resp. 1

2
[S(z)� S(�z)]) represents the even

(resp. odd) part of the signal where all samples with odd (resp. even)
time indices have been set to zero. In this way, the system has been
characterized by two transfer functionsHeven(z) andHodd(z), which
act on the even and odd samples of the signal, respectively.

The even/odd transfer functions for the casesn = 3 and� = 0
(symmetric cubic splines) (cf. [9]) andn = 3 and � = 1=2
(centered cubic splines) are shown in Figs. 4(a) and (b), respectively.
Interestingly, the moduli of the even and odd responses are identical
for the centered case (n = 3 and� = 1=2), whereas they are not
otherwise. The explanation for this phenomenon lies in the special
symmetry of the underlying filters. Specifically, in the centered case
(� = 1=2), we have

�

h(�k) =
�

h(k� 1)$
�

H(z�1) = z�1
�

H(z)

which implies that the even and odd polyphase components are

reversed versions of each other, i.e.,
�

H0(z) =
�

H1(z
�1) (same

modulus of their Fourier transform).
We have also observed that as the order of the spline increases,

all filters converge to the ideal halfband filter with the appropriate
phase shift. This is consistent with the property that splines converge
to bandlimited functions as the degree goes to infinity [6], [13].
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(a) (b)

Fig. 4. Comparison of the even/odd frequency responses for the symmetric and centered cubic spline pyramids. (a) Even (solid) and odd (dashed) transfer
functions for n = 3 and � = 0. (b) Even and odd forn = 3 and � = 1=2.

Fig. 5. Shift-invariance index� as a function of the shift� for splines of
degreen = 1; 2; 3; 4; 5.

B. Shift Invariance

In order to assess the degree of shift-invariance of the system, it
is helpful to rewrite (5) as

~S(z) =
1

2

�

H(z)H(z) S(z) +
1

2

�

H(�z)H(z) S(�z): (10)

The second term in (10) corresponds to the aliased part of the
spectrum. Clearly, the system will be globally shift invariant if and
only if the output can be written as~S(z) = G(z)S(z), that is, when
the aliasing component is zero for any inputS(z). The degree of
shift invariance will therefore depend on the magnitude of product
1
2

�

H(�z)H(z), which should ideally be zero. Hence, we define the
shift-invariance (or aliasing) index

� =
1=2

0

j
�

H(ej2�(f+ ))H(ej2�f)j df: (11)

Note that this quantity is characterized in a way similar to the alias
term in two-channel perfect reconstruction filterbanks (QMF) [3],
[12]. In Fig. 5, we provide the graph of� as a function of� for
splines of degreen = 1; 2; 3; 4; 5. These plots were obtained by
integrating (11) numerically for different values of�. We observe
that in the case of odd splines, the minimal value occurs for the
shift � = 1=2 (centered pyramid), whereas in the case of even
splines, it is� = 0 (symmetric pyramid). For a givenn, the worst
performance is achieved when the knots are positioned on the integers
(� = 0 for n odd and� = 1=2 for n even), which corresponds to

the standard configuration where the spline spaces are nested. We
conjecture that the same phenomenon should hold for higher order
splines. Thus, it appears that the standard setup used in the context of
the wavelet transform (Battle–Lemari´e wavelets,L2-spline pyramid)
is suboptimal. From the graph, we also notice that the difference in
performances decreases as we employ higher order splines. Again,
this is not surprising since all splines representations asymptotically
tend to the bandlimited model that is shift-invariant(� = 0).

IV. CONCLUSION

We have introduced spline pyramids using shifted multiresolution
basis functions. The approximation is step-wise optimal in the least
squares sense (minimuml2-norm). Shifting one level of the pyramid
with respect to the other may have advantages. In particular, we have
shown that it can improve shift-invariance. We have also observed
experimentally that a lower shift-invariance index is usually also
associated with better energy compaction (the data is not shown here).

Interestingly, the standard spline configuration used in the context
of the wavelet transform where the knots are positioned on the inte-
gers is the least favorable from the point of view of our performance
criterion (shift-invariance). However, these differences vanish as the
degree of the spline increases. In the limit as the order goes to
infinity, the underlying projector is shift-invariant, irrespective of the
shift parameter� (� = 0); it corresponds to a bandlimited signal
approximation.
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The Discrete Multiple Wavelet
Transform and Thresholding Methods

T. R. Downie and B. W. Silverman

Abstract—We propose thresholding for multiwavelets considering the
coefficient vectors as a whole rather than thresholding individual el-
ements. A multivariate universal threshold is obtained using the���2

distribution. Simulations indicate that using the GHM multiwavelet with
appropriate preprocessing, our method outperforms univariate thresh-
olding of both GHM and Daubechies wavelet decompositions.

Index Terms—Multiwavlet, prefilter, smoothng methods, wavelet trans-
forms, white noise.

I. INTRODUCTION

Multiple wavelets [8] have recently been formulated, using trans-
lations and dilations ofL � 2 scaling functions�1; � � � ; �L and
L mother wavelet functions 1; � � � ;  L. It has been proposed that
multiwavelet bases should be better at wavelet applications than other
wavelet bases [11].

We can approximate a function using a linear combina-
tion of the wavelet functions withvector coefficients Cj; k =
(cj; k; 1; � � � ; cj; k; L)

> andDj; k = (dj; k; 1; � � � ; dj; k; L)
>. Given

the vectorstarting coefficientsC0; k, the wavelet coefficients can be
found using the discrete multiple wavelet transform (DMWT) [13].
To obtain these starting coefficients, a method of mapping a sequence
fk of univariate data to bivariate vectors has to be adopted.

A matrix prefilter does this by partitioning the data into a se-
quence ofL vectors and applying a filter defined by a sequence
of L � L matrices Qn. The starting coefficients areC0; k =

n
Qn(fL(n+k); � � � ; fL(n+k)+(L�1))

>: To recover the signal after
reconstruction, we apply apostfilter, which is the inverse of the given
prefilter. Therefore, if we apply a prefilter, DMWT, inverse DMWT,
and postfilter to any sequence, the output will be identical to the input.

Alternatively, a repeated signalprefilter convolves a sequence
of L vectorsn with the fk. This is equivalent to sampling each
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Fig. 1. Thresholding with the identity prefilter. (Top left) Piecewise constant
signal. (Top right) Resulting wavelet coefficients using identity prefilter.
(Bottom left) Reconstruction after thresholding these wavelet coefficients.
(Bottom right) Wavelet coefficients using interpolation prefilter.

observationL times using different weights. The starting coefficients
areC0; k =

n
fn+kn. WhenL = 2, a repeated signal filter gives

twice the number of coefficients as a matrix prefilter.
The identity prefilterassigns the data in blocks of lengthL to the

starting coefficients. Using a piecewise constant signal and the GHM
multiwavelet [8], all the coefficients in level 1 have nonzero elements.
Thresholding the small nonzero coefficients introduces a systematic
high-frequency component after reconstruction (Fig. 1). A suitable
prefilter overcomes this problem [7], [12], [13].

II. THRESHOLDING MULTIPLE WAVELETS

Wavelet thresholding techniques [1], [3]–[5], [10] reduce the noise
in an observed signal. Strelaet al. [12] have applied the single wavelet
(univariate) thresholding method [4] to a GHM multiwavelet decom-
position with encouraging results. Even better results can be obtained
by using a thresholding technique specifically for multiwavelets based
on the multivariate properties of the decomposition.

Assume that the datafi are observationsgi+�i for i = 0; � � � ; N�

1(N = 2JL), where gi is the signal observed at equally spaced
discrete time points, and�i are independentN(0; �2) noise. Al-
though the DMWT is an orthogonal transformation, any prefilter
except the identity prefilter will give correlated coefficients, and
in particular, the elements within each coefficient may be highly
correlated. As mentioned above, the identity prefilter gives poor
results when thresholding. In addition, if there is a signal component
present at a particular time–frequency location, then we would expect
other elements in that coefficient to contain some signal component.
Accordingly, the multivariate thresholding method accounts for the
noise and signal components within the whole vector.

Applying the DMWT with an appropriate prefilter, we getL-
vector coefficientsDj; k = D�

j; k + Ej; k, where D�

j; k are the
signal coefficients, andEj; k have multivariate normal distribution
NL(0; Vj). The covariance matrix of the error termVj depends on
the resolution levelj. In the absence of any signal component, the
quantity �2j; k = D>

j; kV
�1

j Dj; k will have a �2L distribution. Our
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