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Abstract—The standard interpolation approach to image re-
sizing is to fit the original picture with a continuous model
and resample the function at the desired rate. However, one
can obtain more accurate results if one applies a filter prior
to sampling, a fact well known from sampling theory. The
optimal solution corresponds to an orthogonal projection onto the
underlying continuous signal space. Unfortunately, the optimal
projection prefilter is difficult to implement when sinc or high
order spline functions are used. In this paper, we propose to
resize the image using an oblique rather than an orthogonal
projection operator in order to make use of faster, simpler, and
more general algorithms. We show that we can achieve almost the
same result as with the orthogonal projection provided that we
use the same approximation space. The main advantage is that it
becomes perfectly feasible to use higher order models (e.g, splines
of degreen � 3). We develop the theoretical background and
present a simple and practical implementation procedure using
B-splines. Our experiments show that the proposed algorithm
consistently outperforms the standard interpolation methods and
that it provides essentially the same performance as the optimal
procedure (least squares solution) with considerably fewer com-
putations. The method works for arbitrary scaling factors and is
applicable to both image enlargement and reduction.

Index Terms—B-spline models, image scaling (magnification
and reduction), oblique projection, orthogonal projection, resam-
pling.

I. INTRODUCTION

I MAGE scaling (magnification or reduction) is a basic
operation in digital image processing [1], [2]. It is required

on a routine basis for medical imaging, multimedia, and
digital photography. The standard interpolation procedure is
to fit the data with a continuous image model and then
resample this function on the grid appropriate to the scaling
desired. What differentiates among the available methods is the
interpolation model chosen [3]–[5]. In fact, it is well known
in approximation theory that the performance of an algorithm
depends primarily on the model’s ability to reproduce poly-
nomials up to a specified degree [6], [7]. Lower order
methods are simplest and most rapid to implement but they
produce artifacts. Nearest neighbor interpolation is
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extremely cheap computationally, but typically introduces very
noticeable blocklike artifacts. Bilinear interpolation ,
which calculates each new pixel value from its the four closest
neighbors, is somewhat better but tends to blur small image
details. Higher order interpolation methods—splines, in partic-
ular—produce much better outcomes but require much more
computation. In the extreme, one approaches the ideal sinc-
interpolator which can also be interpreted as a spline of infinite
degree [8]. This latter option is almost never
used in practice because of the very slow decay of

. It also gives rise to Gibbs oscillations. For the
special case in which the scaling factor is a power of two, the
resizing (decimation or interpolation) can be implemented by
digital filtering using the tools developed in the context of the
wavelet transform [9]–[11]. There have also been some recent
proposals of nonlinear extrapolation techniques but these are
typically restricted to image magnification by a factor of two
[12].

Even though higher order interpolation methods (typically
) work very well for image magnification and rotation,

their use is more questionable for image reduction because
of potential aliasing problems. To deal with those limitations,
Unser et al. recently proposed a resizing procedure that uses
the same type of spline signal representation as before, but
applies a continuous prefilter prior to sampling in order to
minimize artifacts [13]. This algorithm performs the orthogo-
nal projection of the scaled image onto the sampling space and
provides an approximation that is optimal in the least squares
sense. Note that the method is equally applicable for image
reduction or magnification by an arbitrary, not necessarily
integer scaling factor. The only practical limitation is that it is
difficult to perform an exact numerical implementation of the
optimal prefilter for higher order splines .

In this paper, we propose to extend this previous approach
by considering more general approximation schemes using
oblique rather than orthogonal projectors. Interestingly, these
projectors are of the same type as those encountered in
wavelet theory for the decomposition of functions in terms of
biorthogonal wavelet bases [14]–[16], except that we consider
arbitrary scaling factors instead of limiting the scaling to
powers of two. Our primary motivation here is to retain as
much freedom as possible in the design of the analog prefilter
that is to be applied to the rescaled signal. Computationally,
this prefiltering step is the most difficult part of the least
squares resizing algorithm. By choosing very simple filters
(for example, the box function), we can hope in this way to
obtain faster, simpler, and possibly more general algorithms.
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In addition, we have very strong theoretical reasons to expect
that this can be achieved with no sacrifice in quality, provided
that we use the same approximation space as before [17],
[18]. One goal of this paper will be to demonstrate that
this is indeed the case. Moreover, we will see how we can
use oblique projections to compute much higher order spline
approximations than is practicable in the orthogonal case.

In essence, the method that we propose is a resampling
approach rather than an interpolation in the conventional sense.
As such, it is suited primarily for image reduction, especially
for the case of noninteger factors that cannot be dealt with by
using conventional decimation techniques. Since the algorithm
is fast and works for arbitrary scaling factors, it is also
applicable to image enlargements; in fact, our new method
is equivalent to a spline interpolation when the magnification
factor is an integer, and leads to better performance otherwise.

The paper is organized as follows. First, we provide defini-
tions of some special notations and operators. In Section II, we
present the basic principle of the algorithm and introduce the
relevant signal subspaces . We then discuss and compare
the orthogonal (least squares) and oblique projection operators
used to approximate the rescaled signal in . In Section III,
we derive a polynomial spline version of the oblique projection
algorithm and propose a simple, practical implementation. In
Section IV, we describe some experiments and discuss the
results. In particular, we compare the proposed algorithm with
the conventional methods.

A. Notation and Operators

is the vector space of measurable, square-integrable
functions . is a Hilbert space whose metric

(the -norm) is derived from the inner product

(1)

represents the centered B-spline of degree, which is
obtained from the -fold convolution of a unit rectangular
pulse. An equivalent recursive definition is

(2)

where

otherwise.
(3)

The B-spline is a symmetrical compactly supported, piecewise
polynomial of degree . We use the corresponding roman sym-
bol to denote the discrete B-spline kernel, which is obtained
by sampling the B-spline at the integers:

(4)

The sequence represents the impulse response of
the corresponding inverse filter, which is stable for any. It
is the so-called direct B-spline filter of degree[19].

Fig. 1. Orthogonal projection. The signal is first convolved with the optimal
prefilter and sampled thereafter. The sampling is modeled by a multiplication
with a sequence of Dirac impulses. The synthesis filter corresponds to the
generating function'.

II. PROJECTION-BASED IMAGE RESIZING

A. Basic Principle of the Algorithm

As mentioned in the introduction, the standard approach to
image resizing uses interpolation. Since we consider scaling
only along the coordinate axes (without rotation), the pro-
cessing can be performed in a completely separable fashion
provided that we use tensor product basis functions. In fact,
the same is also true if we use more sophisticated projection
techniques; a justification can be found in [13]. In other words,
we can re-size an image (or volume) by successive one-
dimensional (1-D) processing along the several dimensions of
the data. Thus, the mathematical problem reduces to that of
resizing a 1-D signal . For our purposes,
it is advantageous to think of this process in terms of the
following paradigm.

1) The discrete 1-D data set is fitted with a contin-
uously defined function that provides an exact
interpolation of the data points; that is, such that

.
2) The scaling transformation, which is a mapping

from into itself, is applied to the function .
This yields the continuously-defined rescaled function

where is the scaling factor.
3) The function is resampled at the integers (stan-

dard approach), or alternatively, is represented by an
appropriate approximation in a given sampling space
(new approach).

We note that this particular interpretation is the reverse of
the classical one in which the interpolated function is kept
fixed and it is the sampling grid that is transformed accord-
ingly. In any case, this is just a matter of preference because
both formulations are mathematically equivalent. Here, we will
adopt this new paradigm because it lends itself to a more con-
cise mathematical treatment (compare it with the derivations
in [13] which were done using the traditional framework).
The present formulation also has certain advantages if one
wants to extend the approach for more general classes of
transformations.

In order to be applicable, we need make the above paradigm
more precise by specifying the interpolation model used. With-
out loss of generality, we can assume that the interpolation
function lies in a certain Hilbert space, , generated by
our interpolation function (a more precise definition will
be given in the next section). The important point is that
the chosen Hilbert space assures that any function
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Fig. 2. Oblique projection. The block diagram is similar to Fig. 1 except that it includes an additional digital correction filterq. The prefilter, on the
other hand, can be arbitrary.

is uniquely determined by its sample values
(its discrete representation). In other words, there is a unique
function that provides an exact interpolation of
the discrete input signal . The re-sizing method that we
propose here differs from the standard interpolation approach
only by the way in which we implement step 3. Instead of
a straightforward resampling, we will approximate by
its projection into the Hilbert space . The resized
digital signal will then correspond to the samples of ;
this projected function may be thought off as the “alias-free”
version of .

B. Continuous/Discrete Signal Representation

We choose to represent our signals in the space
which is defined as

(5)

where is the vector space of square-summable sequences.
The only restriction on the choice of thegeneratingfunction

is that the set is a Riesz basis of ;
this is equivalent to the condition

a.e. (6)

where is the Fourier transform of , and where the
constants and are the so-called frame (or Riesz) bounds
[20]. This constraint ensures that the integer shifts ofare
linearly independent and that each function in is
uniquely characterized by the sequence of its coefficients.
Note that in (6) is also the Fourier transform of the
autocorrelation sequence .

The class of function spaces that can be specified in this way
is quite general. It covers all interpolation models mentioned
in the introduction, as well as the various multiresolution
spaces associated with the wavelet transform. For the particular
choice, (B-spline of degree ), represents
the space of polynomial splines of degreewith equally
spaced knots at the integers (odd) or between the integers
for even [21], [22].

So far, we have imposed no constraint onother then
the stability condition (6). If we want the coefficients
in (5) to coincide with the samples of , it is necessary
that the generating function satisfy the additional interpolation
condition

Fig. 3. Original magnetic resonance image of brain.

TABLE I
ANGLE BETWEEN THE SPLINE SPACESV (�n) AND V (�0) FORn = 0; � � � ; 9

where denotes the discrete unit impulse at the origin. For
a given representation space , there is generally a unique
interpolation kernel , given by

where denotes the convolution inverse of the sequence
, the sampled version of the generating

function. For the particular case of polynomial splines,
is the so-called cardinal (or fundamental) spline which can be
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(a) (b)

Fig. 4. (a) Standard interpolation (B-spline of degree one), reduced by
p
2. (b) Oblique projection (B-spline of degree one), reduced by

p
2.

written as

(7)

where and are defined by (3) and (4), respectively;
the transfer functions of the spline filters for
to can be found in Table II. Although the cardinal spline
function has infinite support, it provides a very convenient
representation of a spline in terms of its samples at the integers.
If we compare the cardinal spline representation of signal

(spline interpolant) with its
equivalent B-spline expansion ,
we find that

(8)

This demonstrates that the conversion between these repre-
sentations can be done by digital filtering. This equation is
the basis for the fast spline interpolation algorithm described
in [19], which computes the B-spline coefficients recursively
using a cascade of causal and anti-causal exponential filters.

C. Least Square Approximation

Given an arbitrary function (in our case,
) where is a function that interpolates the input signal

and the desired scaling factor), the orthogonal projection of
onto is given by (cf. [20])

where is the dual of and is defined as

represents the convolution inverse of the autocorrela-
tion sequence . Note that provides
the minimum -error approximation of in (least
squares solution). This approximation process is illustrated in
Fig. 1.

When we combine this approximation process with steps 1
and 2 in our general paradigm, we end up with a generalized
version of the least squares resizing procedure described
in [13], which was derived in the more restricted spline
framework. In practice, this approach works extremely well
but is difficult to implement exactly for splines of degree
greater than one. The complication arises because the dual
analysis function (optimal prefilter) is determined uniquely
by the choice of the synthesis function. Therefore, depending
on the approximation space used, it may be extremely difficult
to perform the appropriate prefiltering which needs to be
applied in a continuous fashion. In order to gain in design
flexibility, we can consider the more general approximation
scheme described next.

D. Oblique Projection

Fig. 2 illustrates the generalized sampling procedure ini-
tially proposed in [23]. In this approach, there is no restriction
on the prefilter : it can be chosen independent of the generat-
ing function . To compensate for a possible mismatch,
the system includes a digital correction filter ensuring that the
input signal and its approximation are consistent in
the sense that they yield the same measurement:

Under these conditions, the approximation corresponds
to the projection of onto perpendicular to the
analysis space . It is given by

(9)

where is the convolution inverse of the cross-
correlation sequence . This
projector has the special property that the approximation error
is perpendicular to . Therefore, unless
(or equivalently ), the projection error is not
orthogonal to the approximation space ; hence the term
“oblique.”



LEE et al.: HIGH QUALITY IMAGE RESIZING 683

TABLE II
DIRECT B-SPLINE FILTERS FORn = 0 UP TO 11

When compared to the least squares solution from the
previous section with , the oblique projection will
in general not be optimal. However, we can expect its loss
of performance to be negligible under most circumstances. In
fact, there are two mathematical results that partially support
this prediction.

First, we have the following error bound (cf. [23], Theorem
3)

(10)

where is defined by (9) and denotes the orthog-
onal projection of onto is the (largest) angle
between the subspace and . In other words, the
approximation errors must follow each other rather closely
suggesting that both methods are nearly equivalent. Of special
interest for our purpose are the angles between the space of
piecewise constant splines and the splines of degree

. These quantities are given in Table I. The
first value corresponds to the worst case (maximum angle)
while the second is an average measure integrated over all
frequencies. The mathematical details of this analysis can be
found in [23] (Sections IV and V-D). In any case, we should
note that the upper bound in (10) corresponds to a worst case
scenario and that the agreement between the two errors is in
general much tighter than the factor .

Second, we have shown recently that both approximation
methods have the same asymptotic behavior as the sampling
step goes to zero (cf. [18], Theorem 4.1). The only requirement
for this asymptotic equivalence is that the analysis function
satisfies the following “partition of unity” condition

In practice, any approximation procedure will reach its asymp-
totic regime as soon as the function to be approximated
becomes sufficiently smooth with respect to the sampling grid.
In the present context, this means that the eventual difference
between oblique and orthogonal projection methods should
vanish as the scaling factor increases. More precisely, if we
define , we have that

and

(11)

with the same constant in each case. The integer
represents the order of the representation (i.e., the model has
the ability to reproduce polynomials of degree), and
is the norm of the -th derivative of . Polynomial
splines of degree have an order of approximation ;
the corresponding value of the constant has also been
determined explicitly [18].
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(a) (b)

Fig. 5. (a) Approximation error for Fig. 4(a),SNR = 33:65 dB. (b) Approximation error for Fig. 4(b),SNR = 39:02 dB.

The only potential problem with an oblique projection is that
it may increase noise. In our case, this effect will be minimal
because the norm of the projector will remain close to one.
In fact, there is a simple relation between the angle and the
norm of this projector: (cf. Theorem 4,
in [24]). Thus, the quantity also represents the worst
case amplification factor for the noise.

Thus, the idea that we will explore next is to modify the
resizing algorithm proposed in [13] by using such an oblique
projection to simplify the approximation procedure in step 3.

III. I MPLEMENTATION USING SPLINES

A. Derivation of the Algorithm

In our implementation, we select the synthesis function
to be the cardinal spline of any degree(cf. (7)).

As for the analysis function, we try to choose the simplest
with the narrowest support such that .
The first choice that comes to mind is the B-spline of degree
zero: . A clear advantage of using is that the
required inner products can be computed as simple integrals:

(12)

Now, if we assume that the signal interpolant obtained in
step 1 is in the spline space, i.e., ,

TABLE III
POLES OF THE DIGITAL FILTERS OF TABLE II

then the integral of can be expressed as

(13)

In order calculate this expression explicitly, we use the follow-
ing proposition, the proof of which is provided in Appendix.
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Fig. 6. Original Barbara image (512� 512).

Proposition 1: The integral of a B-spline of degree is
given by

(14)

By substituting (14) in (13) and using the unit step
for and otherwise, we obtain

(15)

In other words, the integral is a polynomial spline of degree
:

(16)

whose B-spline coefficients are given by

(17)

Equation (12) can therefore be calculated as

(18)

which is an expression that requires the evaluation of the
integral (16) at two particular points. Since we need to scan
through all the values of successively, we can take advantage
of previous calculations by rewriting the expression of the next
coefficient as follows:

(19)
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(a) (b)

(c) (d)

Fig. 7. Comparison of reduction procedures fora = 1=2. (a) Result of a simple decimation by a factor of two. (b) Least squares approximation withn = 1
(SNR = 24:71). (c) Oblique projection withn = 0 (SNR = 24:12). (d) Oblique projection withn = 1 (SNR = 24:75).

Since the second term of (19) is the same as the first term
of (18), we therefore only need to perform one calculation of

per coefficient except at . The evaluation of ,
which is equivalent to a spline interpolation of degree , is
clearly the most time consuming part of the whole procedure.
We have therefore effectively reduced the computing time by
half.

The last aspect that needs to be dealt with is the derivation of
the corresponding correction filter in Fig. 2. For our particular
choice of and , the cross-correlation function can be
written as

Using the symmetry and the convolution property of B-splines,
this simplifies to

Hence, the required digital correction filter is

(20)

B. Practical Implementation

Now we propose the following procedure for image scaling
using oblique projection.

Image Scaling Using Oblique Projection:

Step 1: Find the B-spline representation of the input signal
, i.e.

. This is done efficiently by digital filtering (cf.
(8)).
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Fig. 8. Murray image.

Step 2: Compute the B-spline coefficients of the integral of
in Step 1 (cf. (17)).

Step 3: Calculate the coefficients of the re-scaled function
(cf. (18)).

Step 4: Apply the appropriate postfilter to compute
[cf. (20) and (9)].

Steps 1, 2 and 4 are pure digital filtering operations. The filter
in Step 1 is the direct B-spline filter which has an
infinite impulse response (IIR). The filter in Step 2 is a simple
running sum updated recursively. Finally, the postfilter in Step
4 consists of an all pole component—the IIR filter ,
and a finite impulse response (FIR) kernel. In all cases,
we use standard mirror symmetric boundary conditions. The
two IIR filters in Steps 1 and 4 are implemented using the
recursive algorithm described in [19]. Computationally, the
most expensive part of the algorithm is Step 3. It is equivalent
to a spline interpolation of degree . This calculation
requires a routine1 that returns the values of at a
given point ; explicit B-spline formulas can be found in [25].
Note that the summation (16) only involves a small number
of terms (typically, ) because of the compact support of
the basis functions.

As already mentioned in the introduction, full image resizing
is obtained by applying the 1-D procedure to the rows and the
columns in succession (separable algorithm).

Note that the conventional interpolation approach can be
implemented by skipping Step 2 and 4 and replacing the
calculation in Step 3 by an interpolation that uses the basis
function instead of . Since the cost of digital
filtering is negligible compared to Step 3, the complexity of our

1We are ready to provide the corresponding C code on request for B-
splines of degree up to ten, as well as the short 1-D subroutine that performs
the recursive filtering.

new oblique projection algorithm is not significantly different
from that of a conventional interpolation with one more order
of approximation.

So far in the literature, spline functions of relatively low
orders have been used. Since the rescaling algorithm based
on the oblique projection is easily applicable to higher order
splines, we were motivated to calculate the relevant filter
formulas and parameters for splines up to degree 11. Table II
shows the transfer functions of the spline interpolation filters
(conversion from cardinal to B-spline representation). Table III
provides the causal poles of the transfer functions; these are the
only parameters required by the recursive filtering algorithm
[5], [19]. The additional FIR filter for Step 4 can be obtained
from the inverse of the transfer functions in Table II.

IV. RESULTS AND DISCUSSION

A. Experiments

In order to evaluate the proposed algorithm, we performed
a succession of complementary image reductions and magni-
fications, and vice versa. We tested two other algorithms for
comparison. The first one is the standard algorithm which fits
the image with a spline and then resamples this functions at
the specified rate. It is one of the most widely used algorithms,
at least for lower order splines. For , the approach is
equivalent to bilinear interpolation. The second is the optimal
method proposed in [13]. It applies the proper prefilter prior
to sampling and provides the minimum error approximation.
Note that these two methods also fit into the general theoretical
framework that is presented in Section II. Specifically, if

then we get the least squares solution (orthogonal
projection). Likewise, for (Dirac), we obtain the
standard interpolation procedure—with the important restric-
tion that the angle between the input and output spaces
is no longer defined (i.e., no upper error bound in (10)). The
global loss of information was measured by the relative mean
square difference between the approximation and the initial
digital image, expressed in decibels.

In a first series of experiments, we first reduced the linear
dimension of a brain magnetic resonance image (MRI) by
and then magnified it by . Table IV shows the signal-to-
noise ratio (SNR) as a function of the degree. As expected,
the proposed algorithm consistently performed better than
the standard interpolation method while requiring comparable
processing time. In some cases, the differences are quite
dramatic as illustrated in Figs. 3–5. Compared to the least
square method, the oblique projection performed comparably
with significant decrease in processing time. For the piecewise
constant case (splines of degree zero), both algorithms are
rigorously equivalent. Because an exact closed form formula
with the least squares algorithm is extremely difficult to obtain
for , the implemented version of the optimal algorithm
for is not numerically exact; it uses a Gaussian
approximation instead of a kernel that is in fact the convolution
of two B-splines of different size [13]. This lack of exactness
may explain why the SNR of the optimal algorithm is not as
good as the one of the oblique algorithm.
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(a) (b)

Fig. 9. Murray images after ten successive enlargements by
p
3 and reductions by1=

p
3. (a) Standard method (B-spline of degree one,SNR = 30:02

dB). (b) Oblique interpolation (B-spline of degree one,SNR = 55:49 dB).

TABLE IV
MAGNETIC RESONANCEIMAGE (FIRST REDUCED BY

p
2 AND MAGNIFIED BY

p
2)

Tables V and VI provide similar performance comparisons
for two other test images (Murray and mandrill images), which
are shown in Figs. 8 and 10. We have arbitrarily chosen a
set of irrational scaling factors. The images are first reduced
(enlarged) and then enlarged (reduced) back using the same
scaling factor . As can be seen from those results, the
performance of the oblique projection is essentially the same
as that of the optimal solution for , which confirms
our expectations. When the images are first reduced and then
enlarged [Tables V and VI(a)–(d)], the performance of the
oblique projection is better than that of the standard algorithm
by 1–2 dB. For larger reduction factors, this is true irrespective
of the degree . It appears that the primary reason for the lesser
performance of the standard interpolation methods is aliasing.
This effect is more prominent for larger reduction factors or
when the images contain many high-frequency details (e.g.,
the mandrill). In the case of image reduction using the oblique
projection operator, there is a tendency to saturation for ,
sometimes with a very slight loss of performance for .
In principle, higher order approximations should be better, at
least for the least squares case [26]. For , the benefit of
having a higher order of approximation appears to be offset by
the fact that the angle between the input and output spaces
increases with (cf. (10)). In this sense, the proposed cubic
spline algorithm appears to provide the best compromise for
image reduction.

To further highlight the differences between the algorithms,
we also performed some experiments with integer reduction

Fig. 10. Mandrill image.

factors. This is a somewhat special situation in which all in-
terpolation algorithms give the same results and are equivalent
to a simple decimation without prefiltering. Some comparative
examples of image reductions by a factor of two are shown in
Fig. 7. For the purpose of demonstration, we used the Barbara
image which has many structured high frequency patterns
(Fig. 6). The aliasing is quite visible in Fig. 7(a) (standard
interpolation); in this case, the SNR depends on the underlying
spline model: for
for , and for . The results
are obviously much more satisfactory if we use our oblique
projection algorithm, and there is not much difference with the
least squares solution displayed in Fig 7(b). The fact that there
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(a) (b)

Fig. 11. (a) Accumulated distortion after ten iterations of the standard interpolation algorithm (degree= 1; scale= 0:97). (b) Accumulated distortion
after ten iterations of the oblique projection algorithm (degree= 1; scale = 0:97).

is a better suppression of aliasing is also reflected by the higher
values of the SNR ( dB for ) computed
using the same methodology as before. Note that when the
reduction factor is an integer, there are also more standard
filtering/decimation techniques with the same kind of perfor-
mance as our new algorithm [19]. These methods tend to be
more efficient computationally but they require a prefilter that
needs to be designed specifically for each reduction factor.

Our resizing algorithm is obviously also applicable to image
magnification. If we do the same type of back and forth
experiment as before with an integer magnification, we find
that the error is zero, at least for the cases whereis odd
(for even, this is only true for odd magnification factors).
The reason for this special behavior is that the underlying
spline spaces are nested so that the projector can reproduce
the signal in without error. Another way to understand
this property is that a spline stretched by an integer factor

can still be viewed as a spline with finer knots at the
integers. Hence, for integer scaling factors, our method is
equivalent to a standard spline interpolation of degree, a fact
that we have verified experimentally. We do not present any
examples here because the performance of spline interpolators
in well documented in the literature [5]. However, as soon as
we attempt a nonintegral magnification [cf. Tables V and VI,
(e)–(g)], the oblique projection performs considerably better
than the corresponding interpolation. If high order splines

are used, the improvement in SNR’s is often more
than 10 dB. For linear splines, the improvement is as much
as 20 dB. This finding is in agreement with the fact that the
oblique projection is asymptotically optimal [cf. (11)], while
the standard interpolation is usually biased asymptotically [27].
For image enlargement in general, the oblique projection using
high-order splines outperforms all other methods. This finding
is also consistent with the theoretical results presented in
Section II-C. In particular, for a very large scaling factor

, the oblique projection produces no error. It

is noted that when an image is enlarged and reduced to the
original size using the standard interpolation of degree zero
(nearest neighbor interpolation), the error will be zero. The
SNR in this case is meaningless as the enlarged image appears
very blocky.

Fig. 9 displays the result of ten successive enlargement
by and reduction by using linear splines, for the
standard interpolation method and the oblique projection. The
SNR’s are 30.02 dB and 55.49 dB, respectively. The oblique
projection provides more faithful and sharper image. Fig. 11
displays the final results of ten cumulative image reductions
by a factor of 0.97 using a linear spline signal representation.
Again, the oblique projection provides a much higher quality
result with better preservation of small image details. Of
course, these are artificial experiments designed to accumulate
errors so that the differences are more striking visually.

V. CONCLUSION

We have introduced a new image scaling algorithm based
on an oblique projection. By using an oblique rather than
an orthogonal projection, we have obtained faster, simpler,
and more general algorithms. In particular, the new approach
allows great flexibility in the design of the prefilter. For a
simple and easy implementation, we have proposed using the
B-spline of degree zero as prefilter so that the required inner
products can be computed by straightforward integration of
the input signal. We have derived the formulas required and
have discussed some techniques for fast implementation. In
all our test experiments, the proposed algorithm outperformed
the standard interpolation method and showed comparable
performance to the optimum algorithm while reducing com-
puting time substantially with respect to the latter. The oblique
projection that we have proposed using splines of degreehad
approximately the same computational complexity as a spline
interpolation of degree ; but its performance was usually
better.
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TABLE V
MURRAY. (a) a = 1=

p
26 � 0:196. (b) a = 1=

p
8 � 0:354: (c)

a = 0:5: (d) a = 1=
p
3 � 0:577. (e) a = 1=

p
3 � 1:732.

(f) a = 1=
p
5 � 2:236. (g) a = 1=

p
26 � 5:10

(a)

(b)

(c)

(d)

(e)

(f)

(g)

As far as the new algorithm is concerned, the best results for
image reduction were obtained for (cubic spline model).
For image enlargement, the performance of the algorithm
could be improved almost arbitrarily by using higher order
splines. Considering that the optimal least squares solution is

TABLE VI
MANDRILL . (a) a = 1=

p
26 � 0:196. (b) a = 1=

p
8 � 0:354:

(c) a = 0:5: (d) a = 1=
p
3 � 0:577. (e) a = 1=

p
3 � 1:732.

(f) a = 1=
p
5 � 2:236. (g) a = 1=

p
26 � 5:10

(a)

(b)

(c)

(d)

(e)

(f)

(g)

very difficult to implement for , the oblique projection
can provide a very attractive solution whenever high-quality
results are required.

Our method can deal with arbitrary scaling factors; it
shows its full strength when noninteger factors are desired.
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It is particularly well suited for image reduction because
of its built-in antialiasing mechanism. It can also handle
image magnification and is most indicated for nonintegral
magnification factors because of its improved performance.
When the magnification factor is an integer, it provides the
same results as a spline interpolation of degree.

APPENDIX

Proof of Proposition 1: A form equivalent to the definition
of B-spline in (2) is

(A1)

By substituting by in (A1), we find that

(A2)

Now we sum (A2) over (from 0 to infinite) and obtain

Therefore, we have shown that the integral of the B-spline of
degree is given by
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