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Generalized Sampling: Stability
and Performance Analysis

Michael Unser,Senior Member, IEEE, and Josiane Zerubia,Member, IEEE

Abstract—Generalized sampling provides a general mechanism
for recovering an unknown input function f(x) 2 H from the
samples of the responses ofm linear shift-invariant systems
sampled at 1=mth the reconstruction rate. The system can be
designed to perform a projection off(x) onto the reconstruction
subspaceV (') = spanf'(x � k)gk2Z ; for example, the family
of bandlimited signals with '(x) = sinc(x). This implies that the
reconstruction will be perfect when the input signal is included
in V ('): the traditional framework of Papoulis’ generalized
sampling theory. Otherwise, one recovers a signal approximation
~f(x) 2 V (') that is consistent with f(x) in the sense that it
produces the same measurements. To characterize the stability
of the algorithm, we prove that the dual synthesis functions
that appear in the generalized sampling reconstruction formula
constitute a Riesz basis ofV ('), and we use the corresponding
Riesz bounds to define the condition number of the system. We
then use these results to analyze the stability of various instances
of interlaced and derivative sampling. Next, we consider the issue
of performance, which becomes pertinent once we have extended
the applicability of the method to arbitrary input functions, that
is, whenH is considerably larger thanV ('), and the reconstruc-
tion is no longer exact. By deriving general error bounds for
projectors, we are able to show that the generalized sampling
solution is essentially equivalent to the optimal minimum error
approximation (orthogonal projection), which is generally not
accessible. We then perform a detailed analysis for the case in
which the analysis filters are in L2 and determine all relevant
bound constants explicitly. Finally, we use an interlaced sampling
example to illustrate these various calculations.

Index Terms—Error analysis, projection operators, restoration,
sampling, splines, wavelets.

I. INTRODUCTION

T HE GENERALIZED sampling problem is to reconstruct
an unknown continuously defined input function

from the samples of the responses oflinear shift-invariant
systems sampled at th the reconstruction rate. Papoulis
provided an elegant solution for the particular case where the
Hilbert space is the class of bandlimited functions [10]. A
typical example (derivative sampling) is to sample both the
signal and its derivative at half the Nyquist rate. Recently, we
have extended the scope of Papoulis’ theory by introducing
a formal distinction between the input space and the
reconstruction space, which we denote by [18]. The idea
is to allow to be considerably larger than —typically,
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is the space of finite energy signals, and is
the subspace of bandlimited functions generated from the
integer translates of sinc . We have shown that one
could still obtain a meaningful reconstruction when the input
function is arbitrary and not necessarily bandlimited; the
reconstruction is not exact but is aconsistent
approximation of the unknown input signal in the sense that it
produces exactly the same measurements. In other words, the
system is designed to perform a projection fromonto .
One of the primary implications is that the reconstruction is
exact when , which corresponds to the narrower
framework of traditional sampling theories (Shannon and
Papoulis). The advantage of this recent shift of paradigm is
that the theory becomes more realistic; there is no artificial
restriction on the class of input functions. Our generalization
also allows for other nonbandlimited reconstruction models
such as splines and wavelets [2], [7], [16], [19]. Although this
theory requires a certain degree of abstraction for a rigorous
specification of the various signal spaces, its end result is a
simple reconstruction algorithm that takes the familiar form of
the multivariate deconvolution filter (cf., [18, Section III-C]).

In principle, a consistent signal recovery is possible for
almost any set of analysis functions provided that some
invertibility condition is met (cf., Sect. II-C). Unfortunately,
the method will not always yield a reconstruction algorithm
that is stable numerically. This fact had already been pointed
out by Marks and Cheung, who identified special instances of
derivative sampling where the reconstruction is ill-posed [4],
[9]. The first objective of this paper is to investigate this stabil-
ity issue within our more general framework and derive figures
of merit that characterize the overall behavior of the algorithm.
The second objective is to get a better handle on the issue
of performance, which is a new problem raised by our less
restrictive formulation. Indeed, the essential difference with
the conventional formulation is that the reconstruction is no
longer exact unless the input signal is already included within
the reconstruction space. Ideally, we would like to recover
the minimum error approximation of in , which
corresponds to the orthogonal projection of onto .
Unfortunately, this optimal solution is generally nonrealizable
unless we have additional information available. We will show,
however, that the present algorithm provides an estimate that
is essentially equivalent to the minimum error solution.

The paper is organized as follows. In Section II, we give
a brief axiomatic formulation of our generalized sampling
theorem (Theorem 1). In particular, we discuss our three
basic assumptions a1)–a3) that ensure that the reconstruction
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problem is well-defined mathematically. In Section III, we
prove that the dual reconstruction functions in Theorem 1
constitute a Riesz basis of (Theorem 2). This result
turns out to be very relevant to the stability issue because
the corresponding Riesz bounds provide us with the condition
number of the algorithm. We then present specific examples
of stability analyzes (interlaced and derivative sampling) to
illustrate this aspect of the theory. In Section IV, we turn to
the issue of performance. First, we investigate the problem
at an abstract level, deriving general error inequalities for
projection operators. Our key motivation is to relate the present
approximation error to that of the least squares solution
(Theorem 3). We show that the degree of optimality of our
algorithm depends on the norm of the underlying projection
operator (Proposition 1), which is a quantity that is itself
related to an abstract angle between two subspaces (Theorem
4). In Section IV-C, we get back to our sampling problem and
derive all relevant bound constants for the special case where
the analysis functions are in . In particular, we obtain an
explicit formula for the constant that appears in Condition
(a ) (Proposition 2). Finally, in Section IV-D, we consider an
example of interlaced sampling with prefiltering to illustrate
these various calculations. We show that the prefiltering step
prior to sampling is beneficial for performance and can even
compensate for the fact that the sampling is nonuniform.

II. GENERALIZED SAMPLING

In this section, we briefly review the generalized sampling
theory that was developed in [18]. The corresponding system is
schematically represented in Fig. 1. The continuous-time sig-
nal is convolved with a bank of analysis filters

, the responses of which are sampled
at th the reconstruction rate to yield the measurement
vector . Our main
reason for introducing the time-reversed analysis functions

is that we can describe the measurement
process in terms of inner products

(1)

which facilitates the mathematical analysis. These discrete
measurements are then combined to produce the continuous-
time output . The system is essentially the same as the
one considered by Papoulis, except that the output
is only an approximation of the input , where is a
class of functions that is considerably larger than .

The reconstruction system works for almost any set of
analysis filters, provided that some invertibility condition
[cf., a3) below] is met. Before restating our generalized
sampling theorem, we first review the underlying mathematical
assumptions that will play a crucial role in all subsequent
derivations.

The mathematical notations are the same as those used in
[18]. In particular, we use a “hat” symbol to denote thetrans-
form of a scalar or a matrix sequence, i.e.,
and . The Fourier transform is obtained
by setting .

Fig. 1. Generalized sampling: The problem is to recover an unknown
function f(x) 2 H from its discrete measurements. These measurements
are obtained by sampling the output of am channel analysis filterbank.
The reconstruction process involves the dual synthesis functions~�i(x) in
Theorem 1; it yields a signal approximation~f(x) 2 V ('). In general, the
reconstruction is not perfect because the input spaceH is much richer than
the reconstruction subspaceV (').

A. Extended Class of Input Functions

In principle, our results are applicable for any input function
, provided that its sequence of measurements is well

defined in the sense. In the companion paper [18], we have
considered the most general case where the class of admissible
input functions is such that

Condition a1):

For some of our results here, we will need a stronger specifi-
cation of the input space and require that there exists a finite
constant such that

Condition a1):

Note that a1) implies a1), whereas the converse is not nec-
essarily true. However, in Section IV-C, we will show that
if the ’s are in , then it is usually possible to consider
any possible finite energy input function (i.e., )
and determine the constant explicitly. In other words,
there is virtually no constraint on the input of the system.
For more idealized cases where the analysis functions are
distributions, we need to be more restrictive and specify the
largest admissible input space on a case-by-case basis. A
typical example is when the ’s are Dirac-delta functions
(interlaced sampling). For this particular case, it can be shown
that Condition a1) is satisfied if , where is
Sobolev space of order 1. Note that this is a very mild
constraint because we are only requiring that the input function

and its derivative are both in . If we want Condition
a1) to be satisfied as well, we can consider the subclass
of functions whose generalized bandwidth is
bounded. These functions are predominantly lowpass but not
necessarily bandlimited. This is also equivalent to defining

, where is an
appropriate bandwidth parameter; this subspace is smaller than

but is still much larger than any reconstruction space that
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we may choose. At any rate, our main point is that we can
easily select an admissible input spacethat is considerably
larger than the family of bandlimited function considered in
Shannon’s or Papoulis’ sampling theories.

B. Reconstruction Subspaces

The reconstructed signal, on the other hand, belongs to
the much smaller reconstruction space

(2)

where is a givengeneratingfunction. This covers the
bandlimited case with sinc but also other more re-
cent signal representation models such as splines and wavelets
[7], [19]. We require that is a well-defined (closed)
subspace of . This is equivalent to the condition (cf., [2])

Condition a2): a.e.

where the central inequality holds almost everywhere. The
constants and are the lower and upper Riesz bounds,
respectively, whereas is the Fourier transform of the
autocorrelation sequence , which is defined as

.

C. Invertibility Condition

Our solution involves a multivariate reconstruction filter,
which is specified via a matrix inversion in the-transform
domain

(3)

where is the -transform of the input–output cross-
correlation matrix sequence whose scalar entries are
given by

(4)

Note that can also be interpreted as the
polyphase matrix of the auxiliary analysis filterbank

(cf., [18, Section V]). We require
the filter and its inverse to be stable in the sense that there
exist two constants and such that

Condition a3):

ess inf

ess sup

where and denote the smallest and largest
eigenvalue of the positive definite matrix argument, respec-
tively. Condition a3) makes use of theessential infimum
and essential supremumoperators, which yield bounds that
are valid almost everywhere. Note that we could also have
expressed these constants in terms of the maximum and
minimum eigenvalues of .

D. Generalized Sampling Theorem

Theorem 1: Let be the unknown input function
in Fig. 1. Under Assumptions a1)–a3), there is a unique signal
approximation that is consistentwith in
the sense that

(5)

This approximation always exits and is given by

(6)

and the underlying operator is a projector from into .
The synthesis functions are given by

(7)

where the sequences are determined as

(8)

where the filter matrix is specified by (3).
The important point here is that we can produce a signal

approximation that is consistent with the unknown input
in the sense that it would produce exactly the same

measurements if it was reinjected into the system. In this
sense, and are essentially equivalent because they
“look” the same for the end user who can only observe

indirectly through its measurements. For the proof and
a detailed interpretation of this result, see [18]. This earlier
report also contains a number of illustrative examples, some
of which will be revisited in the next section. The above
theorem is compatible with Papoulis’s generalized sampling
expansion in [10], which corresponds to the more restrictive
case sinc .

III. STABILITY ANALYSIS

To simplify the analysis, we will adopt a more compact vec-
tor notation. First, we introduce the -vector representation
of the generating function

...
(9)

Combining this definition with (7) and (8), we obtain an-
other equivalent expression for the dual synthesis functions
in Theorem 1

(10)

where is the corresponding
synthesis vector. Having introduced this notation, we can
represent the reconstructed signal in (6) in the more compact
form

(11)
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where is the measurement vector collected in Fig. 1.
Interestingly, the synthesis functions have the following
property.

Theorem 2: The set constitutes a Riesz
basis of . In other words, , there exists
a sequence and two strictly positive constants
and such that

(i) (12)

(ii) (13)

Equation (12) expresses the fact that the functionsspan
the space . Equation (13) is the standard definition
of a Riesz basis. In particular, it ensures that the’s are
linearly independent. Going back to the generalized sampling
expansion (6), this inequality also provides crucial information
about the stability of the algorithm. Specifically, if we consider
a perturbation on the input, by linearity, we have that

(14)

where is the corresponding variation on the output. Com-
bining this relation with (13), we can also show that

(15)

Based on this inequality, we define the condition number of
the system given by the ratio

(16)

where and are tightest possible bound constants. This
quantity provides an estimate of the relative error propagation
in the system; it is a good indicator of the overall robustness
of the algorithm. The most favorable situation is obviously

, in which case the dual basis is also orthogonal.
Since span , we can use Al-

droubi’s Theorem (see Theorem 5 in Section IV-C) to obtain
the relevant bound constants explicitly

ess inf

ess sup
(17)

where the matrix is the -transform of the auto-

correlation matrix sequence .
To determine these bounds numerically, we still need to
characterize the matrix . Using (10), we derive the
relation

(18)

which involves the transfer function of the multivariate
deconvolution filter as well as , the -transform of

the autocorrelation matrix sequence

(19)

By construction, has a special cyclic structure. Its
entries are given by

(20)

where is the univariate autocorrelation sequence defined
in Section II-B. Using the standard rules of decimation, we
obtain the corresponding matrix entries in the Fourier domain

We can then apply the same technique as in [5, Section III-B]
to show that is diagonalized by an unitary
Fourier transform matrix and that its eigenvalues are given by

(21)

which establishes the connection with the univariate spectral
characterization in Section II-B.

A. Proof of Theorem 2

We start with the manipulation

(22)

where we have used (10) and the fact that the reconstruction
filter is the convolution inverse of the matrix sequence

. Since (22) holds for any integer, we have ef-
fectively expressed the basis functions of in terms of
the ’s, which proves that the representation is complete
[Condition i)]. We will now use Theorem 5 in conjunction with
(17) to prove that we also have a Riesz basis. The maximum
eigenvalue can be determined as

Defining , we note that
. Thus

This allows us to conclude that

ess sup (23)
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where we use the fact that the constants
ess sup ess sup

and ess sup are both
finite by assumption [cf., a2) and a3)]. Similarly, we show that

ess inf (24)

where and are the corresponding lower
bound constants. Thus, we have established the existence of
the constants and in Theorem 2.

B. Condition Number in the Orthogonal and Bandlimited Cases

If the Riesz bounds in a2) are such that , then
the basis is orthonormal [2]. In this particular situation, we
have (the discrete unit impulse), which implies
that in (18) is the identity matrix. Thus, the
dual bounds constants in (17) are identical to those that appear
in the stability condition a3). An implication is that (16) in the
orthogonal case is given by

(25)

where the constant and are defined in a3). This
condition number can therefore be easily evaluated once
we have determined the filter matrix . Note that the
invertibility requirement a3) ensures that the reconstruction
problem is well posed in the sense that is necessarily
finite.

One noteworthy example where the basis is orthogonal
is the bandlimited case with sinc . As we had
remarked in our earlier work, this case is best dealt with in the
Fourier domain using the so-called modulation representation.
Specifically, when sinc , we had shown that the
modulation matrix is given by (cf., [18, Section V-B])

...
...

...

(25a)

with

where is the frequency response of theth analysis
filter. Using this modulation matrix, we can obtain another
expression for the transfer function of the reconstruction filter

cf., (40) in [18]

(26)

where diag and
where is the unitary discrete Fourier matrix
with entries with

. Since the matrices and in

(26) are unitary, it follows that the singular values of
and are identical. In particular, this
implies that

ess inf (27)

ess sup (28)

which gives us an alternative way of computing the bound
constants. Note that the argument also holds in the general
case where is arbitrary. Thus, we have effectively shown
that the condition number of the system is the same as the
condition number of the modulation matrix —or
the polyphase matrix —as long as
the basis is orthogonal.

C. Examples

To illustrate this aspect of the theory, we will determine
these stability measures for various instances of interlaced and
derivative sampling. We will consider two alternative methods
of reconstruction. The first uses the cubic spline model with

, where is the centered cubic B-spline (cf.,
[18]). The second uses the more standard bandlimited model
with sinc (cf., [9], [10]).

1) Interlaced Sampling:In this example with , we
are sampling the signal at half the reconstruction rate
collecting not one but two samples separated by a distance of

. The corresponding analysis functions are
and .

Once we have specified, we can determine the decon-
volution filter and then use (17) to compute the Riesz
bounds ( , ), which are the quantities of interest. For the
two cubic spline examples presented in [18, Fig. 4], we get
the values (0.5773, 3.4132) for and (0.4857, 1) for

. This is a clear indication that the conditioning of the
system is better in the case of uniform sampling ( ).
To further investigate the overall stability of the algorithm,
we computed the condition number (16) as a function of the
interlacing parameter . The graph in Fig. 2(a) shows that
the algorithm has the most favorable behavior around
with a region of relative stability for . Beyond
that point, the conditioning of the system deteriorates rapidly.
Again, this is not surprising since the system is obviously
underdetermined for the limiting cases or ,
where the same samples are collected twice. We also note
that the performance is symmetric with respect to the origin
and the point . For comparison, we have included the
graph for the bandlimited reconstruction with sinc
in Fig. 2(b); in this case, the condition number was determined
from the modulation matrix, as described in Section III-B. We
observe the same qualitative behavior, which is not overly
surprising since it is well known that higher order spline
interpolants are very similar to their sinc counterparts [1]. Note
that the curve achieves the minimum possible value
for (uniform sampling), which is the operating point
for Shannon’s sampling theory. This minimum value reflects
the fact that the conventional sinc synthesis functions are
orthogonal.
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(a)

(b)

Fig. 2. Condition number�~�
as a function of the interlacing parameter�t.

(a) Interlaced sampling with'(x) = �3(x) (cubic spline reconstruction). (b)
Interlaced sampling with'(x) = sinc(x) (bandlimited reconstruction).

2) Derivative Sampling:In the next example, we take one
sample of the input signal and one sample of itsth derivative
with an offset . The corresponding analysis
functions are and , where

denotes the th derivative of the Dirac-delta function.
Fig. 3(a) shows the stability curve for the first derivative
sampling using the cubic spline reconstruction. We observe
one strong singularity in the center for and two others
for , which appear to be specific to splines. The
best results are obtained around with a
region of relative stability for .
The corresponding graph for the bandlimited case is shown
in Fig. 3(b). There is a clear improvement over splines in the
boundary regions, but the curve exhibits a somewhat stronger
singularity in the center. This result is consistent with the
findings of Marks and Cheung, who had already shown the
existence of such a point of instability [4], [9]. In general, the
situation become less favorable as the order of the derivative
increases. In the case of the second derivative (data not shown
here), a strong singularity occurs for , which again
is consistent with the report of Marks for the bandlimited
case. For cubic splines, the procedure also diverges for

, which is somewhat unexpected. In any case, we do
not recommend pushing the derivative sampling procedures
too far because of their high sensitivity to noise [8].

IV. PERFORMANCE ANALYSIS

In general, when the input signal is not in ,
we cannot achieve a perfect reconstruction because our rep-

(a)

(b)

Fig. 3. Condition number�~�
as a function of the interlacing parameter

�t. (a) First derivative sampling with'(x) = �3(x) (cubic spline recon-
struction). (b) First derivative sampling with'(x) = sinc(x) (bandlimited
reconstruction).

resentation subspace is not sufficiently rich. The best possible
outcome under those circumstances would be to reconstruct the
function in that is the closest to in the sense
(minimum error solution). In this section, we address the cru-
cial issue of how close our approximationis to this optimal
estimate, which is also the orthogonal projection ofinto

. The question is of importance because the minimum
error solution is in general not accessible. However, we would
like to have some guarantee that the approximation produced
by our system is reasonably close to the best possible estimate.

It turns out that the situation is quite favorable because we
are dealing with a projection operator. For this reason, we will
first investigate the problem at a more abstract level and then
particularize the results for our specific application. We will
pay special attention to the case where the’s are in and
derive all the relevant bound constants explicitly.

A. Projection Operators: General Properties

The main results in this subsection are valid for any abstract
Hilbert space . We start with a first inequality that we suspect
to be well known to mathematicians.

Proposition 1: Let be a closed subspace of a Hilbert
space . Then

(29)
where is the orthogonal projector of onto , and where
is any projector of onto ; the constant denotes
the norm of the operator .
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Proof: The closeness assumption is required for the
projectors to be well defined. The left part of the inequality is
trivial because the orthogonal projector provides the min-
imum error approximation. Introducing the identity operator
, we write

(30)

where we use the fact that ( and are both
projectors onto ). Since and ,
we can write the Pythagorean relation

(31)

The result then follows by substitution of (30) into (31).
This inequality is directly applicable to our particular situa-

tion, provided that we estimate the norm of the operatorin
Theorem 1. Specifically, we may use the upper bound

(32)

which is obtained by combining a1) with the Riesz bound in
Theorem 2. This leads to the error estimate

(33)

which shows that the approximation error has the same qualita-
tive behavior as in the orthogonal case. In particular, it implies
that both projectors have the same type of convergence
properties. The error bound (33) is not very sharp, but it is
applicable under the most general circumstances [i.e., under
hypotheses a1), a2), and a3)]. It is primarily useful when the
analysis functions are not in . This is true, in particular, for
all the examples treated in Section III-C.

There are also many other situations of practical interest,
which lend themselves to a more precise performance analysis.
To sharpen our error bound, we need to get more specific in
characterizing the projector. For this purpose, we now consider
two subspaces and of and investigate the projector of

onto perpendicular to . This operator, which we denote
by , is defined as

(34)

(35)

(36)

where is the perpendicular complement ofwith respect
to . For this particular geometry, we have the following
improved bound, the proof of which can be found in [15].

Theorem 3 [Unser–Aldroubi]:Let and be two closed
subspace of a Hilbert space such that , which is
the projector of onto perpendicular to , is well defined.
Then

(37)

where is the orthogonal projector of onto . The
quantity represents the cosine of the “angle” between
the subspaces and defined by

(38)

In Section IV-C, we will give an explicit formula for
, which will make this error bound directly appli-

cable to the case . We now end this section by
establishing the connection between this inequality and the
first error bound in Proposition 1.

Theorem 4: Let and be two closed subspaces of
such that is is well defined. Then

where is obtained by interchanging and in (38).
This last result gives the norm of the projection operator

, which can be directly
substituted in the error bound in Proposition 1. In the present
situation, it turns out that the “angles” between the spaces

and are symmetrical, i.e., (cf.,
Theorem 6). It is thus clear that the inequality in Theorem
3 is sharper than the one in Proposition 1, which may differ
by as much as a factor of . However, we should note the
“angles,” as they have been defined here, are in general not
symmetrical for arbitrary spaces and .

B. Proof of Theorem 4

Our proof relies on the following identities.
Lemma 1: Let and be two closed subspaces ofsuch

that is well defined. Then, we have the identities

(39)

(40)

Proof of Lemma 1:Using the projection theorem, we write
, where , and

. Therefore

where vanishes because of (35). This proves the first
identity. A direct consequence of this result is

(41)

Next, using the decomposition , where
and [cf., (36)], we

show that . This implies that

(42)

The identity (40) then follows from the combination of (41)
and (42).

Proof of Theorem 4:Using identity (40) in Lemma 1 and
the fact that , we have

(43)

where . Using the definition of , we
write

(44)

We get the desired result by combining both of these
inequalities.
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C. Hilbert Space Analysis in

In the particular case where the ’s are in , we can
select and construct the complementary subspace

span such that . The
reconstruction is performed in the subspace , as
specified in Section II. This will allow us to determine the
quantities and explicitly, as well as to make
use of the second improved error bound from the previous
section. This analysis relies heavily on the theoretical results of
Aldroubi in [3], who considers projectors onto general atomic
spaces of the form span , where
denotes the th power of a unitary operator

. Here, we will particularize some of his results for
the unitary -shift operator .

We start by giving the appropriate version of [3, Theorem
2.2], which gives the necessary and sufficient condition for

to be a closed subspace of .
Theorem 5 [Aldroubi]: The subspace span

is a closed subspace of with
as its Riesz basis if and only if

Condition a4):

ess inf

ess sup

where the matrix is the -transform of the auto-
correlation matrix sequence .
The two constants and are the corresponding lower
and upper Riesz bounds.

Next, we show that this leads to a simple way of computing
the constant in a1).

Proposition 2: Under Assumption a4), there always exists
a constant such that

(45)

The smallest constant is where is the upper
Riesz bound for the basis .

In other words, our new Assumption a4) implies a1),
which in turn implies a1). Note that condition a4) rules out
the examples in Section III-C, which used Dirac analysis
distributions. This limitation can be dealt with easily by
adding some form of prefiltering prior to sampling. As will
be illustrated shortly in Section IV-D, this may even have
some advantages from the point of view of performance; it
also corresponds to a more realistic modelization of a physical
system.

Proof of Proposition 2: Let denote the orthogonal pro-
jection of onto . is a nonexpansive mapping in the
sense that . The orthogonal projection
of onto can be written as

(46)

which is the representation that uses the dual basis functions

of the ’s in . These duals , which are not to be
confused with the functions in Theorem 1, are gener-

ated by the function-vector ,
where denotes the convolution inverse of . It
is not difficult to show that the dual Riesz bounds are the
reciprocal of the usual ones. Thus, by applying the Riesz
inequality, we get

(47)

which yields the desired result.
Finally, we can use [3, Theorem 3.2] to compute the “angle”

between the two subspaces and . In order to state
this result, we first define the Fourier matrix

(48)

Theorem 6 [Aldroubi]: If the subspaces
and are such that Conditions a2) and
a4) are satisfied, then i)

ess inf , and ii)

the oblique projector is well-defined if and only
if .

Note that we have made two minor corrections to the
result reported in [3]. The first is the square root on the
right of equation i) and the second the definition of the
cross-correlation matrix ,
which is the time-reversed version of that given by Aldroubi.
Interestingly, the matrix is invariant to the choice
of a particular basis for or . If, instead of the ’s, we use a
representation in in term of the dual functions in Theorem
2, we get

(49)

because the ’s and ’s are biorthogonalcf., [18, eq. (18)] .
By using the same technique as for the proof of Theorem 2,
we can estimate as

ess inf

This yields the series of upper bounds

(50)

where the right-hand side follows from (23) in the proof of
Theorem 2. Interestingly, we observe that the first inequality is
perfectly compatible with the upper bound for
given by (32). Specifically, Theorem 4 relates

to the norm of the operator , whereas
Proposition 2 provides the appropriate relation between
and . The main virtue of the upper bound on the right is
to make the connection with our assumptions more explicit.
This relation clearly shows that a2)–a4) are sufficient for the
projector to be well defined (i.e., bounded) in . We have
already seen that a4) implies a1) (cf., Proposition 2).
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D. Example: Interlaced Sampling with Prefiltering

To illustrate these concepts, we consider a modification
of the interlaced sampling scheme in Section III-C, where
the signal is prefiltered prior to sampling. We will use one
of the simplest prefilter, namely, the box function or B-
spline of degree 0. This situation corresponds to the choice

and . As before, we
perform the reconstruction in the space of cubic splines with

. We can easily derive the corresponding cross-
correlation matrix by using the fact that

, where is the B-spline of degree
4. Specifically, for , we find that

(51)

which yields the bound constants and
. Similarly, using a4), a2), and (17), we compute the

corresponding Riesz constants (, ) ( ,
) and ( , ) . Next,

we apply Theorem 6 to compute .
Finally, we can plug-in these numbers in inequality (50),
which yields Based
on Theorem 3, we therefore conclude that the approximation
error is within a factor 1.84 of the minimum error solution
(orthogonal projection). This turns out to be a quite favorable
result; in fact, much better than what we would expect from
a simple interpolation without prefiltering. For instance, the
asymptotic analysis in [17] shows that a uniform cubic spline
interpolation (the best case of interlaced sampling in Section
III-C) has a bias of 7.7 dB with respect to the least square
solution. Thus, with prefiltering we can do significantly better,
even when the sampling is nonuniform.

We also investigated the performance of this system as a
function the interlacing parameter . The results are shown
in Fig. 4, which provides the graphs of and

as a function of . The second curve has a
characteristic U-shape, indicating that we get the best perfor-
mance (closest to the least squares solution) in the central
region around . This graph also suggests that the
procedure is ill posed (e.g., ) for ,
which is to be expected since the system is underdetermined
(the same sample is collected twice). For the uniform sampling
case , we have , which is a
value that is in agreement with the results for in
[15]. Surprisingly enough, this is not the most favorable case.
A closer examination of our data reveals [cf., Fig. 4(a)] that
the maximum value of occurs at a position that is
somewhat shifted with respect to the center.

Since Theorem 3 is true irrespective of the sampling step,
we can also easily adapt the Strang–Fix convergence results
for the least squares case [13] to the present situation, using
the same technique as for the proof of [14, Theorem 1]. This
yields the general error bound

(52)

where denotes the spline approximation ofat sampling
step ; is a known constant that does not depend on,

(a)

(b)

Fig. 4. Relative performance assessment of the interlaced cubic spline
sampling with prefiltering. (a)cos (�UV ) as a function of�t. (b) k ~Pk as a
function of�t. The reference is the least squares solution which corresponds
to the valueskPV k = 1.

is the degree of the spline, and denotes the
norm of the th derivative of . In other words, the
error exhibits an decay that is characteristic of spline
approximations [17], irrespective of the value of .

V. CONCLUSION

In this paper, we investigated two important aspects of
generalized sampling. First, we looked at the stability of
the algorithm, which also determines the robustness of the
system to noise. The underlying question is: How does a small
perturbation of the input (measurements) affect the output of
the system? Note that this problem is not entirely conventional
because of the type of mismatch between the input of the
algorithm, which is discrete, and the system’s output, which
is continuous. What we have proposed here is to characterize
the stability behavior of the algorithm in terms of a condi-
tion number. Specifically, we have shown that this condition
number can be computed from the Riesz bounds of the dual
generating functions in Theorem 1. We have also derived exact
formulas for these quantities; this involves searching for the
maximum and minimum eigenvalues of some Fourier matrices
that characterize the system. The condition number can be used
for identifying parameter ranges over which the procedure is
unstable (cf., the example of derivative sampling). It is also
potentially useful for optimizing acquisition parameters.

Second, we investigated the issue of performance. This is
a problem that arises when one attempts to reconstruct an
unknown input function that is not included in the



2950 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 12, DECEMBER 1997

reconstruction subspace . Under those circumstances, the
reconstruction cannot be exact, and the best possible outcome
is to recover the minimum error approximation of, ,
where denotes the orthogonal projection operator from
onto . Although it is generally not possible to reconstruct

exactly, we have derived two general error bounds
that indicate that our generalized sampling solution is
essentially equivalent to the optimal least squares estimate.
Specifically, we have shown that

, where is a constant that we have
determined explicitly.
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