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Generalized Sampling: Stability
and Performance Analysis

Michael Unser,Senior Member, IEEEand Josiane Zerubidember, IEEE

Abstract—Generalized sampling provides a general mechanism H is the spacel, of finite energy signals, and’ () is
for recovering an unknown input function f(x) € M from the the subspace of bandlimited functions generated from the
samples of the responses ofn linear shift-invariant systems integer translates af(x) = sinc(z). We have shown that one
sampled at 1/mth the reconstruction rate. The system can be . - . ) . .
designed to perform a projection of f(«) onto the reconstruction COUId_ still Obt.a'n a_meamngful reconStrUCt.'on When t_he Input
subspaceV (¢) = span{y(z — k)}rez; for example, the family ~ function f(r) is arbitrary and not necessarily bandlimited; the
of bandlimited signals with ¢ () = sinc(x). This implies that the = reconstructionf(z) € V() is not exact but is a@onsistent
reconstruction will be perfect when the input signal is included approximation of the unknown input signal in the sense that it

in V(;2): the traditional framework of Papoulis® generalized 0y ,cas exactly the same measurements. In other words, the
sampling theory. Otherwise, one recovers a signal approximation

f(x) € V() that is consistent with f(x) in the sense that it SYStem is designed to perform a projection fréfento V().
produces the same measurements. To characterize the stability One of the primary implications is that the reconstruction is
of the algorithm, we prove that the dual synthesis functions exact whenf(z) € V (), which corresponds to the narrower

that appear in the generalized sampling reconstruction formula framework of traditional sampling theories (Shannon and

constitute a Riesz basis o’ (), and we use the corresponding ; ; ; ; :
Riesz bounds to define the condition number of the system. We Papoulis). The advantage of this recent shift of paradigm is

then use these results to analyze the stability of various instancesthat the theory becomes more realistic; there is no artificial
of interlaced and derivative sampling. Next, we consider the issue restriction on the class of input functions. Our generalization
of performance, which becomes pertinent once we have extendedalso allows for other nonbandlimited reconstruction models
the applicability of the method to arbitrary input functions, that  g,ch as splines and wavelets [2], [7], [16], [19]. Although this

is, when is considerably larger thanV (), and the reconstruc- . . . :
tion is no longer exact. By deriving general error bounds for theory requires a certain degree of abstraction for a rigorous

projectors, we are able to show that the generalized sampling SPecification of the various signal spaces, its end result is a
solution is essentially equivalent to the optimal minimum error  Simple reconstruction algorithm that takes the familiar form of
approximation (orthogonal projection), which is generally not the multivariate deconvolution filter (cf., [18, Section I1I-C]).
e ey Wb s o o % cose, " In principle, a corsistnt signl recovery is possibe fo
bound constants explicitly. Finally, we use an interlaced sampling glmos.t _‘T’my Set, ,Of analys's functions provided that some
example to illustrate these various calculations. invertibility condition is met (cf., Sect. II-C). Unfortunately,
the method will not always yield a reconstruction algorithm
that is stable numerically. This fact had already been pointed
out by Marks and Cheung, who identified special instances of
derivative sampling where the reconstruction is ill-posed [4],
. INTRODUCTION [9]. The first objective of this paper is to investigate this stabil-
HE GENERALIZED sampling problem is to reconstrucity issue within our more general framework and derive figures
an unknown continuously defined input functigt:) € of merit that characterize the overall behavior of the algorithm.
H from the samples of the responsesiofinear shift-invariant The second objective is to get a better handle on the issue
systems sampled at/mth the reconstruction rate. Papouli®f performance, which is a new problem raised by our less
provided an elegant solution for the particular case where tigstrictive formulation. Indeed, the essential difference with
Hilbert spacel is the class of bandlimited functions [10]. Athe conventional formulation is that the reconstruction is no
typical example (derivative sampling) is to sample both tHenger exact unless the input signal is already included within
signal and its derivative at half the Nyquist rate. Recently, vibe reconstruction space. Ideally, we would like to recover
have extended the scope of Papoulis’ theory by introduciiige minimum error approximation of(x) in V(y), which
a formal distinction between the input spaéé¢ and the corresponds to the orthogonal projection fdfr) onto V(¢).
reconstruction space, which we denotelbiy) [18]. The idea Unfortunately, this optimal solution is generally nonrealizable
is to allow H to be considerably larger thadn(y)—typically, unless we have additional information available. We will show,

_ _ _ _ however, that the present algorithm provides an estimate that
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problem is well-defined mathematically. In Section Ill, we analysis synthesis

prove that the dual reconstruction functions in Theorem 1 Samp"’;? (k)
1

constitute a Riesz basis df (p) (Theorem 2). This result —» 0,(—x) *(?_> 6,(x)
turns out to be very relevant to the stability issue because

the corresponding Riesz bounds provide us with the condition _
number of the algorithm. We then present specific exampled (x) 2., 80x —mk) f@)
of stability analyzes (interlaced and derivative sampling) to ~ | : :
illustrate this aspect of the theory. In Section IV, we turn to

the issue of performance. First, we investigate the problem g, (mk)
at an abstract level, deriving general error inequalities for — O (—x) —>(§)—>m b,.(x)
projection operators. Our key motivation is to relate the present

approximation errof| f — || to that of the least squares solution 5

(Theorem 3). We show that the degree of optimality of our 2 (x = mk)

algorithm depends on the norm of the underlying pI’OJectIQi‘ig 1. Generalized sampling: The problem is to recover an unknown
operatorP (Proposmon 1) which is a quant|ty that is itselffunction f(z) € H from its discrete measurements. These measurements

related to an abstract angle between two subspaces (The?ﬁerrpbtamed by sampling the output ofra channel analysis filterbank.

. . e reconstruction process involves the dual synthesis functigfs) in
4). In Section IV-C, we get back to our sampling problem a eorem 1; it yields a signal approximatigifz) € V(¢). In general, the

derive all relevant bound constants for the special case whes@nstruction is not perfect because the input spade much richer than
the analysis functions are ifi;. In particular, we obtain an the reconstruction subspad&(y).

explicit formula for the constart, that appears in Condition

(al’) (Proposition 2). Finally, in Section IV-D, we consider arA. Extended Class of Input Functions

example .Of interlaced_sampling with prefiltering t(.) iIIl_Jstrate In principle, our results are applicable for any input function
thgse various _calc;ulatlons'. We show that the prefiltering SZ%:), provided that its sequence of measurements is well
prior to sampling is beneficial for performance and can ev

te for the fact that th ling i i fined in the; sense. In the companion paper [18], we have
compensate for the act that the sampling IS nonuniform. - ,jgered the most general case where the class of admissible
input functions™ is such that
[I. GENERALIZED SAMPLING

Condition al
In this section, we briefly review the generalized sampling )

theory that was developed in [18]. The corresponding system is VfeEH, Z Z (f(@), ¢i(x —mk))|? < +oc.
schematically represented in Fig. 1. The continuous-time sig- il kez
nal f(x) is convolved with a bank of analysis filtetg(x) =

For some of our results here, we will need a stronger specifi-

¢i(-2), i =1, -, m, the responses of which are sampled%mon of the input space and require that there exists a finite
at 1/mth the reconstructlon rate to yield the measuremenl .~ “cich that

vectorgm(lc) [gl(mk)v gQ(mk)v : 7gm(mk)] Our main ¢

reason for introducing the time-reversed analysis functions Condition al):  VfeH, llignlli < Cs-|fllL.-

¢i(x) = hy(—zx) is that we can describe the measurement o )
process in terms of inner products Note that al) implies al), whereas the converse is not nec-

essarily true. However, in Section IV-C, we will show that
gi(mk) = (h; * f)(mk) if the ¢;’s are in Lo, then it is usually possible to consider
= (f(z), pi(x — mk)) (1) any possible finite energy input function (i.e{ = L)
and determine the constadf, explicitly. In other words,
which facilitates the mathematical analysis. These discrateere is virtually no constraint on the input of the system.
measurements are then combined to produce the continudess more idealized cases where the analysis functions are
time output f(z). The system is essentially the same as th#istributions, we need to be more restrictive and specify the
one considered by Papoulis, except that the oufpatV (¢) largest admissible input spadé on a case-by-case basis. A
is only an approximation of the inpyt € , where’? is a typical example is when theé,’s are Dirac-delta functions
class of functions that is considerably larger tHagy). (interlaced sampling). For this particular case, it can be shown
The reconstruction system works for almost any set @fat Condition al) is satisfied iH = W3}, where W3 is
analysis filters, provided that some invertibility conditiorSobolev space of order 1. Note that this is a very mild
[cf., a3) below] is met. Before restating our generalizedonstraint because we are only requiring that the input function
sampling theorem, we first review the underlying mathematicgland its derivativef(!) are both inL,. If we want Condition
assumptions that will play a crucial role in all subsequentl’) to be satisfied as well, we can consider the subclass
derivations. of functions whose generalized bandwidtla ||z, /|| fllz. IS
The mathematical notations are the same as those usetdanded. These functions are predominantly lowpass but not
[18]. In particular, we use a “hat” symbol to denote thgans- necessarily bandlimited. This is also equivalent to defining
form of a scalar or a matrix sequence, i€z) = >, a(k)z™"  H, = {f: |FfPle. < v |Iflle. < 400}, wherey is an
andA(z) = >, A(k)z7*. The Fourier transform is obtainedappropriate bandwidth parameter; this subspace is smaller than
by settingz = ¢/«. W3 but is still much larger than any reconstruction space that
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we may choose. At any rate, our main point is that we cdh Generalized Sampling Theorem

easily select an admissible input spd¢ehat is considerably  Theorem 1: Let f(z) € H be the unknown input function
larger than the family of bandlimited function considered ig, Fig. 1. Under Assumptions al)-a3), there is a unique signal
Shannon’s or Papoulis” sampling theories. approximationf(z) € V(y) that is consistentwith f(x) in

the sense that
B. Reconstruction Subspaces .

VfeH, (f(x), di(x —mk)) = (f(z), pi(x — mk)).
©)

The reconstructed signgl, on the other hand, belongs to
the much smaller reconstruction space
This approximation always exits and is given by

f(z) = Z Z gi(mk)g;(x — mk) = Pf(x) (6)

i=1 keZ

Vie) = {f(w) = clk)pla —k)|e(k) € lz} )

kcZz

where ¢(z) is a givengeneratingfunction. This covers the
bandlimited case witlp(z) = sinc(xz) but also other more re-
cent signal representation models such as splines and wav
[7], [19]. We require thatV(y) is a well-defined (closed) bi(x) = Z a(K)e(x — k), (t=1,---,m) (7)
subspace of... This is equivalent to the condition (cf., [2]) keZ

and the underlying opergttﬁ‘ is a projector fron¥{ into V().
eT&% synthesis functiong; are given by

where the sequenceg(k) are determined as

o [Q(z) - Gm]=[ o 2TH]QET) (8)
where the central inequality holds almost everywhere. The i A ) -
constantsd, and B, are the lower and upper Riesz boundgVhere the filter matrixQ(z) is specified by (3). .
respectively, whereas,,(¢7) is the Fourier transform of the The important point here is that we can produce a signal

autocorrelation sequeneg. (k), which is defined as. (k) := approximation that is consistent with the unknown input
(o(x — k), p(a)). f(z) in the sense that it would produce exactly the same

measurements if it was reinjected into the system. In this
sense,f(z) and f(z) are essentially equivalent because they
“look” the same for the end user who can only observe

Our solution involves a multivariate reconstruction fll@r f(.’L') indirecﬂy through its measurements. For the proof and
which is specified via a matrix inversion in thetransform 3 detailed interpretation of this result, see [18]. This earlier

Condition a2): 0 < A, < a,(e’“) < B, < +00  a.e.

C. Invertibility Condition

domain report also contains a number of illustrative examples, some
R _A-l 3 of which will be revisited in the next section. The above
Q(2) = Ay (2) () theorem is compatible with Papoulis’s generalized sampling

N _ . expansion in [10], which corresponds to the more restrictive
where A,.(z) is the z-transform of the input-output cross-c3ge7/ — V(sino).

correlation matrix sequenca,.(k) whose scalar entries are
given by lll. STABILITY ANALYSIS

[Ageli, j (k) = (hi x @) (mk — 5 +1). 4) To simplify the analysis, we will adopt a more compact vec-
tor notation. First, we introduce the-vector representation
Note thatA,.(z) = Apay(2) can also be interpreted as theof the generating functior

polyphase matrix of the auxiliary analysis filterbankk) = o(z)
(hi x @)(k),i =1, ---, m (cf, [18, Section V]). We require olz —1)
the filter @ and its inverse to be stable in the sense that there ()= . . 9
exist two constantsng and Mg such that :
o(z —m+1)
Condition a3): ) ) Combining this definition with (7) and (8), we obtain an-
mg = ess 2inf Amin [QT (e77%) - Q(e?*)] > 0 other equivalent expression for the dual synthesis functions
) w€l0,2m) ATy i A in Theorem 1
Mg = €SS SUP\ax [Q7 (e77) - Q(&') < 400 .
welo, 2) B(z) =Y QY (k)¥(z —mk) (10)

kez
where Apin [[] @and Anax [] denote the smallest and largest . . . . )
eigenvalue of the positive definite matrix argument, respeehere ®(z) = [$1(z), ---, ¢m(2)] is the corresponding
tively. Condition a3) makes use of thessential infimum synthesis vector. Having introduced this notation, we can
and essential supremuroperators, which yield bounds that'epresent the reconstructed signal in (6) in the more compact
are valid almost everywhereNote that we could also haveform
ex_p_ressed _these constaAn;s |rlji§rm§ of }Ee maximum and f(z) = Z gl (k)®(x — mk) (11)
minimum eigenvalues ofA; (e™7*) - Ay, (). ez
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whereg,,, (k) is the measurement vector collected in Fig. the m x m autocorrelation matrix sequence
Interestingly, the synthesis functiodsz) have the following

Theorem 2: The set{®(x — mk)}rcz constitutes a Riesz By construction, A., ~(k) has a special cyclic structure. Its
basis of V(). In other wordsY f(z) € V(y), there exists entries are given by
a sequenceg (k) € I3* and two strictly positive constantd

and B such that [Agli, j(k) =(p(x —i+1—mk), p(z —j+1))
=a., k 7 — 7). 20
Z g7 (k)®(x — mk) (12) ap(mk +i = j) (20)
kez wherea, (k) is the univariate autocorrelation sequence defined
() A-lgl} <If@)3, <B-lgl?- (13) in Section II-B. Using the standard rules of decimation, we

. obtain the corresponding matrix entries in the Fourier domain
Equation (12) expresses the fact that the functigpnspan 1
the spaceV (). Equation (13) is the standard defmmon[ i (&) = 1 Z P <w+2/€7T>6j[(w+2k7r)/m1(i—j)
of a Riesz basis. In particular, it ensures that thés are Alii v m '
linearly independent. Going back to the generalized samplin
expansion (6), this inequality also provides crucial mformano\qge can then apply the same technique as in [5, Section IlI-B]

about the stability of the algorithm. Specifically, if we conside® Show thatA.,(¢/*) is diagonalized by am: x m unitary
a perturbatiorAg on the input, by linearity, we have that Fourier transform matrix and that its eigenvalues are given by

F A e R 2k
Vi< Iafl /g ay A= (R ko e
v o

whereAf is the corresponding variation on the output. Com-
bining this relation with (13), we can also show that

k=0

which establishes the connection with the univariate spectral
characterization in Section II-B.

ﬂ <||Ag||zz> 187 @)z
B\ gl F (@)L, A. Proof of Theorem 2

B We start with the manipulation
VAN gl Z A b(x — ml — mk)
Based on this inequality, we define the condition number of ez v
the system given by the ratio = Z (AL, * QD)D) ¥(x — ml — mk)
ez
/B -
a; = A_qf > 1 (16) = ¥(x — mk) (22)
¢ where we have used (10) and the fact that the reconstruction

where A; and B, are tightest possible bound constants. Thi8ter Q(k) is the convolution inverse of the matrix sequence

quantity prowdes an estimate of the relative error propagatidvs, (k). Since (22) holds for any integet, we have ef-

in the system; it is a good indicator of the overall robustneégctively expressed the basis functions 6{y) in terms of

of the algorithm. The most favorable situation is obviousl{he ¢;'s, which proves that the representation is complete

ag = 1, in which case the dual basis is also orthogonal. [Condition i)]. We will now use Theorem 5 in conjunction with
Since V(¢) = spaf{®(z — mk)}rcz, We can use Al- (17) to prove that we also have a Riesz basis. The maximum

droubi’s Theorem (see Theorem 5 in Section IV-C) to obtaiigenvalue can be determined as

the relevant bound constants explicitly Ao [A¢(ef“)] — sup {uHQT(e Jw) (ejw)Q(ejw) 1.
A~ = es[(? |n§ Amin [A (elw)] luf]|=1
we ~ . ~
jo (17) Definingv = Q(e’)u, we note that||v]]? < Apax [QT
B; = ess Sup)\ma.x (ed* NN/ i ' > Amax
welo, 2m) A 3] (e™7“)Q(c?*)]. Thus
o A jw AT —ieNAV @
where them x m matrix A ;(z) is the z-transform of the auto- Amax [Ag(€")] € Amax [Q7 (77%) Q)]
correlation matrix sequencd ;(k) = (&(z — mk), % (x)). - sup (v A ()}
To determine these bounds numerically, we still need to Ivil=1 ) o
chargcterize the matriAq;(eW). Using (10), we derive the < Amax [QF (e779)Q(e7)]
relation * Amax [Ag(e?)].
A(2)=QF (=) Au(2) - Q) (18) This allows us to conclude that
which involves the transfer functio@(z) of the multivariate €SS SUP\yax [Aq;(ej“")] < Mé - B, < 400 (23)

deconvolution filterQ as well asA .(z), the z-transform of we[0, 27)
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where we use the fact that the constant3, = (26)are unitqry, it follows that the singular values(@(eﬂ'“)
€SS SUPc(g, 2x) Amax [Ap (/)] = €SS SUPc(g or) lp(e/*) andm™/2 - AL [/(“/™)] are identical. In particular, this
and M2 = €8S SUPg, 3y Amax [QT(e—j‘f)Q(eﬂ'“)] are both implies that
finite by assumption [cf., a2) and a3)]. Similarly, we show that ess inf A [AZ J(e77) Apod()] = ﬂQ (27)
R . w€[0, 27) ! mo me MQ
ess inf Apin [AZ ()] > m% - A, >0 24 . . . .
255 N Awin [Ag(e")] 2 ma - 4, (24) €55 SUP\max [AL 4 (€77%) + Apoa(e™)] = —-  (28)
w€[0, 27) mQ

where mg > 0 and A, > 0 are the corresponding lower

bound constants. Thus, we have established the existencd'Bich gives us an alternative way of computing the bound

the constantsi and B in Theorem 2. ] constants. Note that the argument also holds in the general
case wherex(x) is arbitrary. Thus, we have effectively shown

B. Condition Number in the Orthogonal and Bandlimited Casdiat the condition number of the system is the same as the
condition number of the modulation matri&,,,q (e’ )—or

If the _Rigsz bounds in a2) are SU(_:h tb@': B, = 1, t.hen the polyphase matrix&poly(ej“) _ Aw(ejw)_as long as
the basis is orthonormal [2]. In this particular situation, Wga pasis is orthogonal.

havea,(k) = 6(k) (the discrete unit impulse), which implies
that A(z) in (18) is them x m identity matrix. Thus, the

dual bounds constants in (17) are identical to those that app
in the stability condition a3). An implication is that (16) in the To illustrate this aspect of the theory, we will determine

garExamples

orthogonal case is given by these stability measures for various instances of interlaced and
M derivative sampling. We will consider two alternative methods
Qortho = =< (25) of reconstruction. The first uses the cubic spline model with
mQ o(z) = #3(x), where3? is the centered cubic B-spline (cf.,

where the constanf/y and mg are defined in a3). This [18]). The second uses the more standard bandlimited model
condition number can therefore be easily evaluated oneéh o(z) = sinc(x) (cf., [9], [10]).
we have determined the filter matriQ(z). Note that the 1) Interlaced Sampling:in this example withm = 2, we
invertibility requirement a3) ensures that the reconstructiéf€ sampling the signaf(z) at half the reconstruction rate
problem is well posed in the sense tha}.. is hecessarily collecting not one but two samples separated by a distance of
finite. At. The corresponding analysis functions a@gx) = 6(x)

One noteworthy example where the basis is orthogor@d ¢2(z) = 6(x — At).
is the bandlimited case witlp(z) = sinc(z). As we had ~ Once we have specified, we can determine the decon-
remarked in our earlier work, this case is best dealt with in th@lution filter Q(z) and then use (17) to compute the Riesz
Fourier domain using the so-called modulation representatié®unds {;, B;), which are the quantities of interest. For the
Specifically, wheng(z) = sinc(z), we had shown that the two cubic spline examples presented in [18, Fig. 4], we get

modulation matrix is given by (cf., [18, Section V-B]) the values (0.5773, 3.4132) faxt = 1/2 and (0.4857, 1) for
" . At = 1. This is a clear indication that the conditioning of the
Amod(?“) = ' system is better in the case of uniform samplingt (= 1).
ar(e?®) ag(edr/mly o gy (edlet(m=D2m/ml) To further investigate the overall stability of the algorithm,
: : : we computed the condition nhumber (16) as a function of the
&m('ejw) &m(ej[w'-l-%r/m}) &m(ej[w-l—(r.n—l)%r/m}) interlacing parametei¢t. The graph in Fig. 2(a) shows that

(25a) the algorithm has the most favorable behavior arotvid= 1
with a region of relative stability fo8.3 < At < 1.7. Beyond

with that point, the conditioning of the system deteriorates rapidly.
&i(ej(w+217r/m)) — Again, this is not surprising since the system is obviously
. ol ol underdetermined for the limiting casest = 0 or At = 2,
h; <w + —), —mTlw<< T — — where the same samples are collected twice. We also note
m m that the performance is symmetric with respect to the origin
h, <w + 2w _ 27r>7 o — 2w <w<nm and the pointAt = 1 I_:or comparison., we have inc!uded the
m m graph for the bandlimited reconstruction wifliz) = sinc(z)

where ﬁi(w) is the frequency response of theth analysis in Fig. 2(b); in thi_s case, the conditior! number was determined
filter. Using this modulation matrix, we can obtain anothdfom the modulation matrix, as described in Section 11I-B. We

expression for the transfer function of the reconstruction filt@bserve the same qualitative behavior, which is not overly
Q {cf., (40) in [18] surprising since it |s.W.eII knowrj that higher order spline

A0 ey o —1/2 i(w/m) A =1 [ ew/m) interpolants are very similar to t_h(_alrsmc counterparts [1]. Note

Q') =m -Dfe ) Gm - Alg(e ) (26) that the curve achieves the minimum possible valye= 1
whereD(e?“/™)) = diag (1, /@/™) ... eitm=hw/myand for A = 1 (uniform sampling), which is the operating point
where G,,, is the m x m unitary discrete Fourier matrix for Shannon’s sampling theory. This minimum value reflects
with entries [G,,]x,; = m~Y/2 . @7 /™) with k| = the fact that the conventional sinc synthesis functions are
0, .-, m — 1. Since the matrice®d(c’“/™)) and G,,, in orthogonal.
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Fig. 2. Condition numbes; as a function of the interlacing parametsr.  Fig. 3. Condition numbery; as a function of the interlacing parameter

(@) Interlaced sampling witkp(x) = 3% () (cubic spline reconstruction). (b) At. (a) First derivative sampling wittp(x) = 38%(«) (cubic spline recon-

Interlaced sampling witlp(x) = sinc(z) (bandlimited reconstruction). struction). (b) First derivative sampling with(z) = sinc(z) (bandlimited
reconstruction).

2) Derivative Sampling:In the next example, we take one _ _ o _ _
sample of the input signal and one sample ofttsderivative Fesentation subspace is not sufficiently rich. The best possible
with an offset0 < At < 2. The corresponding analysisOUtcome under those circumstances would be to reconstruct the
functions arep, (x) = 6(z) and ¢o(z) = 6@ (x — At), where fur!ct.ion inV{y) that'is the clqsest tg‘(a:) in the L, sense
§®)(z) denotes theth derivative of the Dirac-delta function. (Minimum error solution). In this section, we address the cru-
Fig. 3(a) shows the stability curve for the first derivativéial issue of how close our approximatigiis to this optimal
sampling using the cubic spline reconstruction. We obserg&timate, which is also the orthogonal projection fointo

one strong singularity in the center fart = 1 and two others V(). The question is of importance because the minimum
for At = 0, 2, which appear to be specific to splines. Th&/Tor solution is in general not accessible. However, we would

best results are obtained aroudd = 0.175, 1.825 with a like to have some guarantee that the approximation produced
region of relative stability forA¢ € [0.05, 0.7] U [1.3, 1.95]. by our system is reason_ably_clo;e to _the best possible estimate.
The corresponding graph for the bandlimited case is shownlt turns out that the situation is quite favorable because we
in Fig. 3(b). There is a clear improvement over splines in tH¥€ Qealing with a projection operator. For this reason, we will
boundary regions, but the curve exhibits a somewhat strondié¢t investigate the problem at a more abstract level and then
singularity in the center. This result is consistent with thearticularize the results for our specific application. We will
findings of Marks and Cheung, who had already shown tiR&Y Special attention to the case where s are in L, and
existence of such a point of instability [4], [9]. In general, th8erive all the relevant bound constants explicitly.

situation become less favorable as the order of the derivatiye . .

increases. In the case of the second derivative (data not shéwid rolection Operators: General Properties

here), a strong singularity occurs fext = 0, 2, which again ~ The main results in this subsection are valid for any abstract
is consistent with the report of Marks for the bandlimitedilbert spacef{. We start with a first inequality that we suspect
case. For cubic splines, the procedure also diverges\fer to be well known to mathematicians.

1/4, 3/4, which is somewhat unexpected. In any case, we doProposition 1: Let V' be a closed subspace of a Hilbert
not recommend pushing the derivative sampling procedurggace?. Then

too far because of their high sensitivity to noise [8]. . -
VIeH, If =PAI<If = PAI<S I+IPI-IIf = P
(29)

whereP is the orthogonal projector ¢f ontoV’, and whereP
In general, when the input signgi(x) is not in V(¢), is any projector ofH onto V; the constan{| || > 1 denotes
we cannot achieve a perfect reconstruction because our rée norm of the operatof.

IV. PERFORMANCE ANALYSIS
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Proof: The closeness assumption is required for the In Section IV-C, we will give an explicit formula for
projectors to be well defined. The left part of the inequality isos (61 ), which will make this error bound directly appli-
trivial because the orthogonal projectér provides the min- cable to the casé{ = L,. We now end this section by
imum error approximation. Introducing the identity operatogstablishing the connection between this inequality and the
I, we write first error bound in Proposition 1.

~ ~ ~ Theorem 4:Let U and V be two closed subspaces &f

IPf =P =P =PI <IIPI-If =PI B0)  gych that isPy | is well defined. Then

where we use the fact th@f)off)f = Pf (P and P are both Nl < 1
projectors ontd’). Since(Pf—Pf) € V and(f—Pf) e V1, vien, 1Py fll < C

. | cos(Ovy) | 1]
we can write the Pythagorean relation wherecos (6y 1) is obtained by interchanging andV in (38).

If - Pf||2 =||f - Pf|?+ ||ﬁ>f - Pf|?. (31) This last result gives the norm of t_he projection _operator
|1Pvivll = |IP]] = 1/cos(fvy), which can be directly
The result then follows by substitution of (30) into (31)L1  supstituted in the error bound in Proposition 1. In the present
This inequality is directly applicable to our particular situasjtyation, it turns out that the “angles” between the spaces
tion, provided that we estimate the norm of the operddn (7 and v are symmetrical, i.e.qos (f;y) = cos(8yy) (cf.,
Theorem 1. Specifically, we may use the upper bound  Theorem 6). It is thus clear that the inequality in Theorem
1Pl <C,- /B, (32) 3 is sharper than the one in Proposition 1, which may differ
= ¢ by as much as a factor af2. However, we should note the
“angles,” as they have been defined here, are in general not

which is obtained by combining §lwith the Riesz bound in ) )
symmetrical for arbitrary spacdg and V.

Theorem 2. This leads to the error estimate

If = PfI < /1+C2B;-|If - Pfll (33) B. Proof of Theorem 4

which shows that the approximation error has the same qualita—Our proof relies on the following identities.

tive behavior as in the orthogonal case. In particular, it implieﬁ Le.mma Lletty an_dV be two closed subspa_ces’}f_tf_such

that both projectors have the same typelof convergence that is Py | v well defined. Then, we have the identities

properties. The error bound (33) is not very sharp, but it is VfieH, (PrivoPy)f=Pvivf (39)

applicable under the most gengral (_:ircu'mstances [i.e., under VfeH, (PyoPyiu)f=Puf. (40)

hypotheses d}, a2), and a3)]. It is primarily useful when the ) o )

analysis functions are not ih,. This is true, in particular, for  Proof of Lemma 1:Using the projection theorem, we write

all the examples treated in Section IlI-C. f=h+/t wherefi=PyfeU,andfi- =(I-Py)f €
There are also many other situations of practical intere&f;~ Therefore

which lend themselves to a more precise performance ang!ys.is. Pyivf=Privfi+Privfi- = (Pyivo Pu)f.

To sharpen our error bound, we need to get more specific in ~——

characterizing the projector. For this purpose, we now consider

two subspace® andV of H and investigate the projector ofwherePy | i fi- vanishes because of (35). This proves the first

H ontoV perpendicular td/. This operator, which we denoteidentity. A direct consequence of this result is

=0

by Py v, is defined as VfeH, (PvoPyiv)f=@FvoPvivoly)f
Vievy, Privh =h (34) =(PyoPyiv)fi. (41)
VfeUs,  Pyiyfr=0 (35) Next, using the decompositiofy = f» + fs, where f, =
VfeH, (I - PVJ_U)f S Ut (36) Py fi € Vand fQJi = (I - PVJ_U)fl e Ut [cf., (36)], we

show thatPy i fi = fo = f1 — f5. This implies that
whereU+ is the perpendicular complement Gfwith respect virh =/ =5 f P

to . For this particular geometry, we have the following ¥ /1 € U, (PyoPyiv)fi=Pufi— Pofss = fi. (42)
improved bound, the proof of which can be found in [15]. =0

Theorem 3 [Unser—Aldroubi]:Let U and V' be two closed The identity (40) then follows from the combination of (41)
subspace of a Hilbert spa@é such thatP = Py, iy, whichis  and (42). O
the projector ofr onto V' perpendicular td/, is well defined.  proof of Theorem 4:Using identity (40) in Lemma 1 and
Then the fact that| Py|| = 1, we have

VieH, |If=PAI<IIf=PfIl < #Ilf—Pfll 37) VieH, |Pufll=IFofll < IS (43)

cos (Oyv)

. . here fo = Py yf. Using the definition ofcos (6v), we
where P = Py is the orthogonal projector ¢f onto V. The arite f2 vivf g i cos (Byv ), W
guantitycos f;y represents the cosine of the “angle” between

the subspace® and V defined by VeV, cos(Oyvu)-llfoll S|P fell. (44)

cos(Byy)= inf ||Pyul <1. (38) We get the desired result by combining both of these
wel, ||ull=1 inequalities. U




2948 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 12, DECEMBER 1997

C. Hilbert Space Analysis id, of the ¢;’s in U. These dualsc/))i € U, which are not to be

In the particular case where th&'s are in L,, we can confused with the functionéi € V in Theorem 1, are gener-
selectH = L, and construct the complgmentary subspaeged by the function-vecto% (z) = Ekez A;nv(/g)q)(a;_k),
U(¢) = span{®(x — mk)}rcz such thatP = Py 1y. The where A7(k) denotes the convolution inverse af, (k). It
reconstruction is performed in the subspdce= V(¢), as is not difficult to show that the dual Riesz bounds are the
specified in Section Il. This will allow us to determine theeciprocal of the usual ones. Thus, by applying the Riesz
quantitiesCy and cos (6yy) explicitly, as well as to make inequality, we get
use of the second improved error bound from the previous ) ) ) 1 )
section. This analysis relies heavily on the theoretical results of 1A = NP I = A; lisll, = B_¢ llellz, (47)
Aldroubi in [3], who considers projectors onto general atom'%hiCh yields the desired result. 0

_ k k
spaces of the fornt/(¢) = span{O”®(z)}rez, whereO Finally, we can use [3, Theorem 3.2] to compute the “angle”

denotes thekth power of a unitary operatad: Ly(R™) —  petween the two subspack¥¢) and V(y). In order to state
Ly(R™). Here, we will particularize some of his results fogy,;q result, we first define the Fourier matrix

the unitarym-shift operatorS,, ®(z) = ®(x — mk).
We start by giving the appropriate version of [3, Theorem R, (¢/«) = A;l/2(ejw) Ay (@) AZYE(I®). (48)
2.2], which gives the necessary and sufficient condition for v

U(¢) to be a closed subspace bb. Theorem 6 [Aldroubi]: If the subspacesU = V(&)
Theorem 5 [Aldroubi]: The subspact(¢) = span{®(z— and V = V(y) are such that Conditions a2) and
mk)}rez iS a closed subspace @b with {®(x — mk)}rez ad4) are satisfied, then iros(fyy) = cos(Byy) =
as |ts- Blesz basis if and only if \/ess inf.c (0, 20) Armin [figv(e_j‘“) ] fiuv(ej‘“)], and i)
Condition a4): X the oblique projectol® = Py ¢ is well-defined if and only
Ay = ess inf Ay [Ay(e?*)] >0 if cos(fyv) # 0.
welo, 27) o Note that we have made two minor corrections to the
By :fes[ﬁ ?:)p)‘max [Ag(e’™)] < oo result reported in [3]. The first is the square root on the

o _ right of equation i) and the second the definition of the
where them x m matrix A, (=) is the z-transform of the auto- ¢rgss-correlation matrixA s, (k) = (®(z — mk), ¥7(z)),
correlation matrix sequencA,(k) = (®(z — mk), *(x)). which is the time-reversed version of that given by Aldroubi.
The two constantsi;, and B,, are the corresponding lower|nterestingly, the matrixRy-(¢/*) is invariant to the choice

and upper Riesz bounds. of a particular basis fob7 or V. If, instead of they’s, we use a
Next, we show that this leads to a simple way of computingpresentation i in term of the dual functions in Theorem
the constaniC,, in al). 2, we get
Proposition 2: Under Assumption a4), there always exists
a constantC,, such that Ry () = A7 () 'Agm(ejw) (49)
VfE€ Lo, lgmlle. < Co - [I£]l- (45)

because the,’s and¢;’s are biorthogona]cf., [18, eq. (18)}.
By using the same technique as for the proof of Theorem 2,
we can estimateos (6yv) as

The smallest constant € = /B4 where By is the upper
Riesz bound for the basig®(x — mk)}rez.

In other words, our new Assumption a4) implies’)al
which in turn implies al). Note that condition a4) rules out o 1 b2

i ; _ i ; ic€SS INn = - = - < cos(fyv)” < 1.

the .exa.mples in Sgct-lon' llI-C, which used l?lrac a_naIySISwE[O,Qﬂ'))\maX[Aqb(C]w)]')\ma.X[AqE(ejw)] (Ouv)
distributions. This limitation can be dealt with easily by
add.ing some form of 'preﬁltering prior to.sampling. As Willpphis yields the series of upper bounds
be illustrated shortly in Section IV-D, this may even have

some advantages from the point of view of performance; it 1

o o : — < ./B;-By;<Cy- . ﬁ
also corresponds to a more realistic modelization of a physical cos (Byy) — By Bs < Cs-Ma-vB, (50)
system.

Proof of Proposition 2: Let P,y denote the orthogonal pro-Where the right-hand side follows from (23) in the proof of
jection of L, ontoU(¢). Py is a nonexpansive mapping in thelheorem 2. Inter_estlng_ly, we observe that the first inequality is
sensethat f € Ly, ||f|| > || P f||. The orthogonal projection Perfectly compatible with the upper bound faby 1 || = |||

of f onto U can be written as given by (32). Specifically, Theorem 4 relatess (6;,y/) =
m cos (fyy) to the norm of the operataPy |y = P, whereas
Pyf(z) = Z Z (f(x), iz — mk))ff))i(a: — mk) Proposition 2 provides the appropriate relation betwégn
=1 keZ and B,. The main virtue of the upper bound on the right is
m o to make the connection with our assumptions more explicit.
= Z Z gi(mk)p,(x — mk) (46) This relation clearly shows that a2)-a4) are sufficient for the
i=1 keZ projector P to be well defined (i.e., bounded) ib,. We have

which is the representation that uses the dual basis functi@ieady seen that a4) implies’alcf., Proposition 2).
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D. Example: Interlaced Sampling with Prefiltering 1

To illustrate these concepts, we consider a modification
of the interlaced sampling scheme in Section IlI-C, where
the signal is prefiltered prior to sampling. We will use one
of the simplest prefilter, namely, the box function or B-
spline of degree 0. This situation corresponds to the choice
d1(x) = B%x) and ¢a(x) = ¢1(x — At). As before, we
perform the reconstruction in the space of cubic splines with
¢(x) = B*(x). We can easily derive the corresponding cross-
correlation matrix by using the fact that; x ¢)(z) =
(p1 * ©)(x) = p*x), where 3* is the B-spline of degree
4. Specifically, forAt = 1/2, we find that @)

" 1 214230 7627l 476 20
Aoe(2) = 211176 1 162 1621 + 176 (51) 17.5

which yields the bound constantsg = 0.9945 and Mg = 13
9.6525. Similarly, using a4), a2), and (17), we compute the 12.5
corresponding Riesz constantd By) = (1/2,3/2), (4, 10
B,) = (0.05397,1), and (4;, B;) = (0.7228,6.1672). Next, -
we apply Theorem 6 to computeos (fyy) = 0.543544.
Finally, we can plug-in these numbers in inequality (50),
which vyields ||P|| = 1.83978 < 3.415 < 11.822. Based
on Theorem 3, we therefore conclude that the approximation 0 05 7 15 3
error is within a factor 1.84 of the minimum error solution ()

(orthogpnal projection). This turns out to be a quite favorabl‘-el'g. 4. Relative performance assessment of the interlaced cubic spline
result; in fact, much better than what we would expect frogkmpling with prefiltering. (ayos (6¢1) as a function ofAt. (b) ||P]| as a

a simple interpolation without prefiltering. For instance, thenction of At. The reference is the least squares solution which corresponds
asymptotic analysis in [17] shows that a uniform cubic splinf@ the values||Py|| = 1.

interpolation (the best case of interlaced sampling in Section

l1I-C) has a bias of 7.7 dB with respect to the least squaje— 3 s the degree of the spline, anigF "+ || denotes the
solution. Thus, with prefiltering we can do significantly betteform of the (n + 1)th derivative of f. In other words, the
even when the sampling is nonuniform. error exhibits arO(h"+1) decay that is characteristic of spline

We also investigated the performance of this system asa@proximations [17], irrespective of the value Af.
function the interlacing parametext. The results are shown

in Fig. 4, which provides the graphs ofs (6;v) and||P|| =
1/cos (6yyv) as a function ofAt. The second curve has a
characteristic U-shape, indicating that we get the best perfordn this paper, we investigated two important aspects of
mance (closest to the least squares solution) in the cengeheralized sampling. First, we looked at the stability of
region aroundAt = 1. This graph also suggests that théhe algorithm, which also determines the robustness of the
procedure is ill posed (e.g||P|| — +oc) for At = 0,2, system to noise. The underlying question is: How does a small
which is to be expected since the system is underdetermingtturbation of the input (measurements) affect the output of
(the same sample is collected twice). For the uniform samplitige system? Note that this problem is not entirely conventional
case At = 1, we havel/cos(fyyv) = 1.195, which is a because of the type of mismatch between the input of the
value that is in agreement with the results far = 1 in algorithm, which is discrete, and the system’s output, which
[15]. Surprisingly enough, this is not the most favorable casie.continuous. What we have proposed here is to characterize
A closer examination of our data reveals [cf., Fig. 4(a)] thdlbe stability behavior of the algorithm in terms of a condi-
the maximum value ofos (61-) occurs at a position that is tion number. Specifically, we have shown that this condition
somewhat shifted with respect to the center. number can be computed from the Riesz bounds of the dual
Since Theorem 3 is true irrespective of the sampling tep generating functions in Theorem 1. We have also derived exact
we can also easily adapt the Strang—Fix convergence restignulas for these quantities; this involves searching for the
for the least squares case [13] to the present situation, usingximum and minimum eigenvalues of some Fourier matrices
the same technique as for the proof of [14, Theorem 1]. THisat characterize the system. The condition number can be used

2.5

V. CONCLUSION

yields the general error bound for identifying parameter ranges over which the procedure is
N unstable (cf., the example of derivative sampling). It is also
Cn (n+1) (n+1) . e .
Ilf = full < cos Gov) “h ALY (52)  potentially useful for optimizing acquisition parameters.

5 Second, we investigated the issue of performance. This is
where f;, denotes the spline approximation ffat sampling a problem that arises when one attempts to reconstruct an
steph; C,, is a known constant that does not depend fon unknown input functionf(z) € H that is not included in the
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reconstruction subspadé&(y). Under those circumstances, thg18] M. Unser and J. Zerubia, “A generalized sampling theory without
reconstruction cannot be exact, and the best possible outcopy YLRLING Senetelia EEE s, Srmile Sistn b pibiered

is to recover the minimum error approximation ¢f Pf, wood Cliffs, NJ: Prentice-Hall, 1995.

where P denotes the orthogonal projection operator frém

onto V(). Although it is generally not possible to reconstruct

Pf exactly, we have derived two genera) error bounds

that indicate that our generalized sampling solutjos Pf is Michael Unser (M'89-SM'94) was born in Zug,

Switzerland, on April 9, 1958. He received the M.S.

essentially equivalent to the optimal least squares estime (summa cum laude) and Ph.D. degrees in electrical
Specifically, we have shown thatf ¢ H, ||f — Pf]] < engineering in 1981 and 1984, respectively, from the
Cy, - ||f — Pf|, whereCy,, > 1is a constant that we have % gmtszse:r:r?;ral Institute of Technology, Lausanne,
determined explicitly. F s I From 1985 to 1997, he was with the Biomedical
Engineering and Instrumentation Program, National

R Institutes of Health, Bethesda, MD, where he was
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