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Abstract

To describe complex fenestration systems such as novel solar blinds, new glazing or

coating materials, daylight and sunlight-redirecting devices, a detailed description

of their optical properties is needed, given by their Bidirectional Transmission (or

Reflection) Distribution Functions (commonly named BTDFs and BRDFs). These

functions are angle-dependent at both the incidence and the emission levels, and are

defined as the ratio of the luminance of a surface element in a given direction (after

diffuse transmission or reflection) to the illuminance on the sample. However, these

functions are capable of describing the specular as well as the diffuse components of

emerging light, and their mutual knowledge is necessary to properly assess a glazing

or shading system’s daylighting performances and benefit from their potential as

energy-efficient and users’ comfort strategies. Although the analytical expression of

a BT(R)DF differs whether it is related to specular or diffuse light, a simultaneous

assessment of the two components can be achieved under certain conditions. These

conditions are analyzed for the particular data acquisition procedure developed for

a novel type of bidirectional goniophotometer, based on digital imaging.
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1 Introduction

The concept of bidirectional distribution function was first introduced in

Nicodemus (1970) and Nicodemus et al. (1977) for directional reflectance

in radiometric units, where it was defined as the scattered surface radiance

(W·m-2·sr-1) divided by the incident surface irradiance (W·m-2).

As a photometric quantity (Commission Internationale de l’Eclairage, 1983;

Association Française de l’Eclairage, 1991; Schweizerische Lichttechnische Gesellschaft,

1992; Illuminating Engineering Society of North America, 1993), where it is

applicable to the detailed characterization of complex fenestration systems,

the Bidirectional Transmission (or Reflection) Distribution Function (BTDF

or BRDF) and sometimes also named luminance coefficient, q, is defined in

Commission Internationale de l’Eclairage (1977) as the “quotient of the lumi-

nance of the medium by the illuminance on the medium”. It is illustrated in

Figure 1 and expressed by Equation (1) in Cd·m-2·lux-1 or sr-1:

BT (R)DF (θ1, φ1, θ2, φ2) =
L2(θ1, φ1, θ2, φ2)

L1(θ1, φ1) · cos θ1 · dω1

=
L2(θ1, φ1, θ2, φ2)

E1(θ1)
(1)

where the corresponding symbols are defined as follows:
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• (θ1, φ1) and (θ2, φ2) are the polar co-ordinates of the incoming and emerging

(either transmitted or reflected) light flux, expressed in (◦) for convenience 1 ;

• L1(θ1, φ1) and L2(θ1, φ1, θ2, φ2) are the luminances of an element of incoming

and emerging light flux (Cd·m-2);

• dω1 is the solid angle subtended by the incoming light flux (sr);

• E1(θ1) is the illuminance on the sample plane due to the incident light flux

(lux).

Fig. 1. Photometric and geometric quantities used to define the Bidirectional Re-

flection (a) and Transmission (b) Distribution Functions of a fenestration material.

As literally expressed by the term “directional”, BT(R)DFs are formally de-

fined for differential quantities, i.e. over infinitesimal elements of sample area

dA and solid angles dω1 and dω2. Hence, specular transmittance or reflectance

leads to a Dirac function (δ-function) in the direct transmitting (reflecting)

direction (θ2, φ2) = (θ1, φ1 + 180◦).

However, as physical measurements are always made over finite intervals and

as the incident beam is never perfectly collimated (for the sun, rays present a

0.25◦ spread), any measurement becomes an average value over these intervals

(Nicodemus et al., 1977; Apian-Bennewitz and von der Hardt, 1998). This also

applies to BT(R)DF measurements: the strict directional formalism becomes

irrelevant and has to be considered in a broader sense.

As pointed out by Nicodemus et al. (1977), when emerging light distributions

vary rapidly, which is typically the case around specular or quasi-specular

“peaks”, goniophotometric measurement data are very sensitive to the angular-

1 In this paper, wherever required, angles are explicitly specified in radians.
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resolution of the instrument, which makes the figures averaged over the resolu-

tion interval of little significance. Integrated or average values for BT(R)DFs

over a certain detection area, of appropriate size and configuration, then be-

come more useful than the concept of BT(R)DFs approximating δ-functions.

The bi-conical formalism answers these constraints by resorting to bi-conical

distribution functions instead of BT(R)DFs, integrating the latter over the

involved incoming and outgoing solid angles ω1 and ω2 (Nicodemus et al.,

1977; McCluney, 1994). However, this more general formalism is more com-

plex and therefore impractical to handle for daylighting applications. On the

other hand, using different formalisms whether the emerging light distribu-

tion is diffuse or presents high luminance gradients should be avoided as well.

Consequently, a study of the most appropriate detection areas is a resourceful

approach in the assessment of bidirectional distribution functions of glazing

or shading systems.

This study, outlined in the appendix of Andersen et al. (2003), is presented

in this paper, followed by an investigation of how this influences the assessed

BT(R)DF data for an innovative bidirectional video-goniophotometer (Ander-

sen, 2004) in the case of complex glazing with strongly specular transmission

features such as prismatic panels.

2 BT(R)DF assessment method

The functioning principle of the bidirectional goniophotometer considered in

this paper, is extensively described in Andersen (2004) and illustrated by Fig-
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ure 2(a). It works in the following manner: light emerging from the sample

is reflected by a diffusing triangular panel towards a Charge-Coupled Device

(CCD) camera, used as a multiple points luminance-meter and calibrated ac-

cordingly (Andersen et al., 2001). The diffusing coating of the screen is nec-

essary both because the camera must be able to capture light reflected by

any area of the screen independently of the location of this area and to avoid

any correlation between the camera’s position and the measurements. The re-

flection properties of the screen were verified against the lambertian model,

and shown to fit the latter closely (discrepancies of only 2.6%, as detailed in

Andersen et al. (2001); Andersen (2004)).

After six 60◦ rotations of the screen-camera system, the emerging light distri-

bution is fully determined in a very short time (a few minutes). For reflection

measurements (Figure 2(b)), some additional constraints appear due to the

conflict of incident and emerging light flux. The incoming beam needs to pen-

etrate the measurement space and reach exactly the sample surface, therefore

requiring a special opening through the measurement space envelope and the

removal of screen covers when the latter is obstructive.

Apart from being extremely time-efficient (about three hundred times faster),

this assessment method differs from conventional point-per-point investiga-

tions of the emerging space with a moving sensor in the way that it splits

the emerging hemisphere into a regular grid of averaging zones of freely cho-

sen angular dimensions (∆θ2, ∆φ2), which is a way to prevent the user from

missing discontinuities in the emerging luminance figure.

Fig. 2. Functioning principle of bidirectional goniophotometer based on digital imag-

ing techniques.
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A luminance mapping of the projection screen is carried out by capturing

images of it at different integration intervals, thus avoiding over and under-

exposure effects, and appropriately combining the latter to extract BT(R)DF

data at a pixel level resolution.

At each screen position, a set of images is captured by the CCD camera at all

integration times necessary to cover the current luminance dynamic; greyscale

levels are then transformed into corresponding luminances and the images

appropriately superposed to improve the accuracy of luminance measurements

(32 bits values) and avoid over-exposure (saturation) and/or under-exposure in

presence of high luminance dynamics. Each pixel’s associated screen luminance

Lscreen is then divided by the simultaneously measured illuminance E1(θ1) to

achieve a complete Lscreen

E1(θ1)
mapping of the projection screen.

To obtain a BT(R)DF map, screen reflection, distance and light tilting effects

must be compensated, which leads to Equation (2) for the Lscreen

E1(θ1)
to BT (R)DF

conversion (Andersen et al., 2001):

BT (R)DF (θ1, φ1, θ2, φ2) =
π

ρscreen

· d2(θ2, φ2)

A · cos α · cos θ2

· Lscreen(θ1, φ1, θ2, φ2)

E1(θ1)
(2)

where:

• ρscreen is the reflection coefficient of the diffusing screen;

• d is the distance from the sample center to a particular point on the screen

along direction (θ2, φ2);

• A is the sample area (of diameter D);

• α is the angle at which the emerging light reaches the screen.
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3 Specular and diffuse components of emerging light flux

From the produced screen luminance maps Lscreen(θ1, φ1, θ2, φ2), two different

types of information can be extracted:

• In the case of scattered light, the Lscreendiff
values allow to determine the

luminance distribution L2(θ1, φ1, θ2, φ2) emitted by the sample.

• In the case of direct transmittance (resp. reflectance), i.e. specular light

flux, Lscreenspec values allow the deduction of the direct transmission (resp.

reflection) factor τdir(θ1, φ1) (resp. ρdir(θ1, φ1)), accounting for the source

intensity (provided by the simultaneously measured illuminance E1(θ1)).

To keep a single conversion for both types of luminances, and assess them us-

ing the same method, equivalent expressions must be verified. This will define

conditions to be fulfilled when analyzing Lscreen maps.

Figure 3(a) illustrates the separation of emerging light into diffuse and specular

components.

The only distance to be considered in the first case is d, the distance between

the detector surface and the sample, as the sample truly becomes a secondary

light source; in the second, it is distance h+d from the source to the detection

surface that drives the screen illuminance Escreen (and thus Lscreen).

Fig. 3. Specular and diffuse components in the goniophotometric assessment of

emerging light.
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As a matter of fact, the value to consider for h is not the physical distance from

the sample to the source lens or bulb (here equal to 10.3 m). Instead, its virtual

distance to an equivalent point source should be considered, as the emitted

light beam presents characteristics of a point source emission: the illuminance

measured in a plane normal to the incident beam follows Bouguer’s law with

a correlation of 99%. Therefore, the beam can reasonably be considered as

issuing from a point source situated at a distance determined by the rays’

spread angle η.

In Andersen (2004), the angular spread, η, of the incident rays reaching the

sample area πD2

4
was determined experimentally for different sample diame-

ters D by comparing the measured (real source) and theoretically expected

(perfectly parallel beam) diameters of illuminated areas on the projection

screen in the absence of any sample. η was found to vary between 0.1◦ and

0.3◦ with the current light source, and between 0.4◦ and 1.1◦ for a previous

source, used during an important phase of development of the device and for

a substantial set of BTDF measurements (Andersen et al., 2000, 2001) thus

also considered in this study, but replaced later by a more powerful and more

collimated projector. An average value for the distance h between the virtual

point source and the sample, given by h = D
2 tan η

, was thus calculated; it is

equal to 25.9 ± 0.3 m for the current light source and to 7.6 ± 0.2 m for the

previous one.

The detection principle specific to the present goniophotometer is illustrated

in Figure 3(b) for transmission measurements (also valid in reflection mode

with the light source on the other side of the sample); S stands for an arbitrary

detection area on the projection screen.
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To express the screen luminance Lscreendiff
due to diffuse emerging light, we

can modify Equation (2) into:

Lscreendiff
=

ρscreen

π
· L2 · A · cos θ2 · cos α

d2
(3)

On the other hand, in order to express Lscreenspec due to specularly transmitted

or reflected light, we can write Escreenspec (the illuminance received on the

projection screen) in terms of the light source intensity I1 by Equation (4):

Escreenspec = τdir|ρdir · I1 · cos α

(h + d)2
(4)

where the combined symbol τdir | ρdir is used instead of either τdir or ρdir for

simplification.

The screen’s surface being lambertian, the relation between Escreenspec and

Lscreenspec is given by Equation (5):

Lscreen = ρscreen
Escreen

π
(5)

As I1 can be expressed in terms of E1 using Bouguer’s law:

I1 = h2 · E1(θ1) (6)

one obtains Equation (7) for Lscreenspec :

Lscreenspec = τdir|ρdir · ρscreen

π
· h2 · cos α

(h + d)2
· E1 (7)
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4 Conditions for a simultaneous assessment of specular and diffuse

light components

Considering Equations (3) and (7) to be equivalent asks relation (8) to be

verified:

L2 ≈ τdir|ρdir · d2 · h2

(h + d)2

1

A · cos θ2

· E1 (8)

E1 is defined as the ratio between the incident light flux Φ1 and the apparent

receiving surface A cos θ1. As far as L2 and τdir |ρdir are concerned, they can

be expressed in average quantities by Equations (9), where Φ2 is the emerging

light flux and Ω2 the solid angle around direction (θ2, φ2):

L2 =
Φ2

A · cos θ2 · Ω2

τdir|ρdir =
Φ2

Φ1

(9)

We can thus rewrite Equation (8) into (10):

1

Ω2

≈ d2 · h2

(h + d)2
· 1

A · cos θ1

(10)

According to the solid angle definition for Ω2 given by Equation (11):

Ω2 =
S · cos α

d2
(11)

the conditions that have to be fulfilled by the digital imaging-based gonio-

photometer for assessing both specular and diffuse light components can be

expressed by Equation (12):

h2

(h + d)2
≈ A · cos θ1

S · cos α
(12)
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This conclusion fits very well with intuition: to compensate the fact that the

sample is not a point, the detection of the emerging light distribution should

be made according to patches that consider luminance peaks as whole entities.

Murray-Coleman and Smith (1990) actually made a statement in very good

agreement with the above development, by asserting that “when the sample

size exactly matches the image of the source in a perfectly specular sample,

the correct peak B[T]RDF is measured and spatial resolution is maximized”; it

can be noted that this statement assumes the specular component of emerging

light flux to be included in a BT(R)DF assessment.

5 Impact on BT(R)DF assessment accuracy

To evaluate how strongly the fulfillment of Equation (12) influences the BT(R)DF

data measured with the goniophotometer, a simulation model of the latter

was constructed with the commercial ray-tracing software TracePror 2 . Mea-

sured BTDFs for prismatic glazing were compared first to simulated values

obtained with a faithful copy of the experimental device, then to simulation

results achieved with an ideal set-up model, consisting of optimal components

and geometry for a perfect fulfillment of Equation (12) (both simulation mod-

els are explained in more detail in Andersen et al. (2003)). This ideal set-up

model includes:

• A virtual sun is chosen as the light source, presenting a beam spectrum as

close as possible to the real sun and showing perfectly parallel rays.

• The detection surface is hemispherical and perfectly absorbing to avoid

inter-reflections; in addition to this, an optimized diameter is determined

2 TracePror Expert - 2.3 & 2.4.0 releases, Lambda Research Corp.
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for the detector to satisfy Equation (12): as the light source is considered

infinitely far away, the ratio h2

(h+d)2
tends towards 1, and therefore, the ratio

A·cos θ1

S·cos α
(with cos α = 1 as the averaging areas S are normal to the rays for

a hemispherical detector) has to come as close to 1 as possible.

The experimental conditions impose given values on both the sample area

A and the averaging grid resolution (∆θ2, ∆φ2); hence, the values of S over

the hemisphere will be determined only by the virtual detector’s radius. The

latter is therefore calculated in order that the average value of the right-

hand part of Equation (12) equals 1 over the default set of 145 incident

directions (θ1, φ1).

By observing the discrepancies between BTDF data obtained for optimal con-

ditions (ideal model) and measurements or simulated values for a model faith-

ful to the experimental conditions, one can find out how the fulfillment of

Equation (12) influences the accuracy of the results, and to what extent an

approximation is acceptable. Figure 4 provides the comparative results ob-

tained for different incident directions and prism gratings geometries.

Fig. 4. Relative difference between experimental conditions (measurements or simu-

lations) and ideal set-up model due to the approximate fulfillment of Equation (12).

The relative discrepancies are defined for various incident directions and emerging

angles (θ2, φ2).

As h is equal to 25.9 m (resp. 7.6 m with the previous source) and as the

average distance d from the sample to the diffusing screen is 0.905 m, the

mean distance ratio is equal to 0.93 (resp. 0.80), whereas the average value of

the area ratio is 1.01 for the default diameter D = 10 cm and averaging grid

intervals (∆θ2, ∆φ2) = (5◦, 5◦). Besides, as the screen is a flat surface, d is
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a function of θ2 and φ2, inducing that the fulfillment of Equation (12) will,

at best, only be possible on an average and not for all individual directions

(θ2, φ2).

Fortunately, the experimental conditions, that only verify Equation (12) within

a 10% margin (resp. 22% for the previous source), induce lower relative impact

on achieved BTDF values: amongst the discrepancies observed on Figure 4 for

the two sources, more than 9 out of 10 are inferior to 7% (to 10% for the

previous source).

This shows that although Equation (12) is only approximately fulfilled for the

present goniophotometer set-up, BTDF results (and likewise BRDFs) remain

coherent and reliable even for the specular light distributions of prismatic

panels. On one hand, this statement supports the assumptions made for the

building up of the device; on the other hand, it makes the simultaneous mea-

surement of diffuse and specular components of light acceptable and suggests

to revisit in the future the formal CIE definition for BT(R)DFs (Commission

Internationale de l’Eclairage, 1977).

Of course, this assessment method leads to BT(R)DF average values not only

related to the emerging rays direction, but also to the angular areas where

these rays are detected. This has however no significant effect on the monitored

data as long as the sample to detector distance is large compared to the sample

size, a factor of 10 being accepted as reasonable. This restriction is verified

satisfactorily for the most usual sample diameters (D ≤ 15 cm); as larger D

values are chosen only with coarse averaging grid intervals, it becomes less

critical to avoid a small correlation with the distance parameter.
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6 Conclusion

Bidirectional distribution functions are formally only applicable in reference

to scattered radiation and would in consequence have to be assessed sepa-

rately from the possible specular component of transmitted (reflected) light

flux (Commission Internationale de l’Eclairage, 1977). This restriction makes

it quite laborious to characterize a system properly, as two full investigations

are hence required; furthermore, the distinction between highly directional

scattering and true specular peaks becomes difficult to establish when deal-

ing with real - thus imperfect - experimental conditions: the incident beam is

not perfectly collimated, which induces that even specular transmittance or

reflectance will have a non-zero spread.

However, when the BT(R)DF assessment method relies on the splitting of

the emerging hemisphere into a grid of adjacent angular zones inside which

BT(R)DF values are averaged, the simultaneous assessment of both compo-

nents can be accepted under specific geometric conditions, that are presented

in this paper. They determine a compromise to find between the distances

from the sample to the source or the detector, and the apparent areas of the

sample and the averaging zones.

In order to estimate how strongly these geometric conditions influence the

accuracy of BT(R)DF results achieved with a digital imaging-based photogo-

niometer, two ray-tracing simulation models of the latter were constructed:

one as faithful as possible and the other based on optimal components and

geometry that fulfilled the conditions perfectly. The comparison of BT(R)DF

results showed that the assumptions made in the design of the instrument
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were reasonable, the assessment method allowing as a consequence to mea-

sure diffuse and specular components together, which suggests to revisit in

the future the formal CIE definition of the corresponding photometric figure.

Acknowledgements

Marilyne Andersen was supported by the Swiss National Science Foundation,

fellowship 81EL-66225, during her stay at the Lawrence Berkeley National

Laboratory. The authors wish to thank Dr. Michael Rubin and Dr. Joseph

Klems at LBNL, as well as Dr. Ross McCluney at the Florida Solar Energy

Center for their kind help and advice in BT(R)DF formulation. They would

also like to acknowledge Lambda Research Corporation for having provided

them with a license of TracePror to perform simulation model comparisons.

References

Andersen, M., 2004. Innovative bidirectional video-goniophotometer for ad-

vanced fenestration systems. Ph.D. thesis, EPFL, Lausanne.

Andersen, M., Michel, L., Roecker, C., Scartezzini, J.-L., May 2001. Experi-

mental assessment of bi-directional transmission distribution functions using

digital imaging techniques. Energy and Buildings 33 (5), 417–431.

Andersen, M., Rubin, M., Scartezzini, J.-L., February 2003. Comparison be-

tween ray-tracing simulations and bi-directional transmission measurements

on prismatic glazing. Solar Energy 74 (2), 157–173.

Andersen, M., Scartezzini, J.-L., Roecker, C., Michel, L., May 2000. Bi-

15



directional Photogoniometer for the Assessment of the Luminous Properties

of Fenestration Systems. CTI Project 3661.2, LESO-PB/EPFL, Lausanne.

Apian-Bennewitz, P., von der Hardt, J., August 1998. Enhancing and cali-

brating a goniophotometer. Solar Energy Materials and Solar Cells 54 (1-4),

309–322.

Association Française de l’Eclairage, 1991. La photométrie en éclairage.
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(a) BRDF

(b) BTDF

Fig. 1. Photometric and geometric quantities used to define the Bidirectional Re-
flection (a) and Transmission (b) Distribution Functions of a fenestration material.
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(a) Detection of transmitted or reflected light flux
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(b) Additional constraints for reflection measurements

Fig. 2. Functioning principle of the bidirectional goniophotometer using a CCD
camera pointed towards a flat and diffusing projection screen.
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(a) Emerging light and detection distance

(b) Projection screen and CCD camera for light detection

Fig. 3. Specular and diffuse components in the goniophotometric assessment of
emerging light.
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Fig. 4. Relative difference between experimental conditions (measurements or simu-
lations) and ideal set-up model due to the approximate fulfillment of Equation (12).
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