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Abstract 
A novel equilibrium reaction modelling approach is proposed for the efficient design of 
biomass gasifiers. Fuels and chars are defined as pseudo species with properties derived 
from their ultimate analyses; tars as a subset of known molecular species and their 
distribution determined by equilibrium calculations. Non-equilibrium behaviour for gas, 
tar, and char formation is explained by reaction temperature differences for a complete 
set of stoichiometric equations. A nonlinear regression, with an artificial neural network 
(NN), relates changes in temperature differences to fuel composition and operational 
variables. This first principles approach, illustrated with fluidised bed reactor data, 
improves the accuracy of equilibrium calculations, and reduces the amount of required 
data by preventing the NN from learning atomic and heat balances. 
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1. Introduction  
Biomass gasification is of interest for combined heat and power production (CHP), be it 
for onsite conversion and cogeneration, or for the production of synthetic fuels such as 
methane (e.g. Duret et al, 2005). A major impediment to CHP remains equipment 
fouling problems related, namely, to the production of a wide array of condensable 
species commonly termed tar. In this respect, reaction modelling is a challenging task, 
because of the difficulty of identifying and quantifying heavier products, and the lack of 
thermophysical properties for a variety of feedstocks, chars, and tars. In addition, the 
quantity and the nature of tars vary according to several factors such as reactor 
temperature and pressure (Shafizadeh, 1982; Evans and Milne, 1987), the nature and 
ratio of oxidising gases (Kinoshita et al, 1994), the nature of biomass feedstocks 
(Fagbemi et al, 2001) especially the catalytic effect of their inorganic content 
(Shafizadeh, 1982), and even the types of gasifiers (Buekens and Schoeters; 1985). 
These issues have an impact on choices between design alternatives that affect the 
overall efficiency of process design. Indeed, it is important to reliably estimate tar 
distributions to determine product condensation points in order to design the appropriate 
contaminant removal configuration. To meet this end, we are developing a simple 
modelling approach that broadens the applicability of chemical equilibrium calculations. 
The approach relies on equilibrium reaction temperature difference parameters, derived 
from a database of standardised fuel analyses and quantified product compositions 
deduced from pilot gasifier measurements obtained under different operating conditions. 
These parameters serve as an estimator of kinetic, catalytic, and fluid dynamic effects 
that are not explained by equilibrium modelling.  
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2. Description and illustration of modelling approach 
The approach is illustrated with air gasification data from pilot circulating fluidised bed 
reactors of similar dimensions operated at atmospheric pressure (García-Ibañez et al., 
2004; van der Drift et al., 2001). The operational variables of the database are feedstock 
compositions, gasifying air equivalence ratios (ER), and reaction temperatures (T). 
Upon verifying mass balances, the data of van der Drift et al. (2001) (set B) was kept 
for modelling, and the data of García-Ibañez et al. (2004) (set A) for model validation. 
 
2.1. Generating additional  compositional data  from a non-stoichiometric model 
As it would be costly if not impossible to separately quantify each tar specie, in the first 
step of the approach, quantity and elemental composition measurements of the total tars 
produced, are used to calculate a distribution for a subset of unmeasured cyclic species 
that typically result from biomass gasification (Evans and Milne, 1987). This is done 
with a non-stoichiometric (NS) equilibrium model, i.e. under the constraint of the 
reaction mixture’s elemental composition (Smith and Missen, 1982). The assumption is 
that experimental measurements have precedence over chemical equilibrium. The Gibbs 
free energy of the system is minimised by SQP optimisation under individual 
measurement constraints for major species, and the total elemental stoichiometry of tar 
(and other lumped) species. Another assumption, to avoid convergence problems that 
arise when considering phase equilibrium, and that is acceptable at low and atmospheric 
pressures (Evans and Milne, 1987), is that the tar species form entirely in the gas phase. 
The molecular species are listed in Table 1. Species of sets A and B are on the first line, 
and species of which the formation was modelled on the following lines. There are two 
types of lumped species in set B: tars and remaining hydrocarbons (HC). The species in 
italics were finally withdrawn after preliminary NS calculations, because their 
formation is not thermodynamically favoured. The model enables estimating 
distributions of a considerably large subset of additional tar (24), and HC (10) species, 
that would otherwise not appear after equilibrium calculations. Feedstocks and chars are 
modelled as pseudo species with unit carbon formulas determined from their dry ash 
free ultimate analyses; standard enthalpies of formation by use of Thornton’s (1917) 
rule with the constant of Patel and Erickson (1981); standard entropies of formation 
from the correlation of Battley and Stone (2000); and solid specific heat capacities by 
adapting a modified partition function (Merrick, 1983) to a Kopp’s rule.  
 
  Table 1. Species quantified in references and species added for equilibrium calculations 

A & B N2 H2 H2O CO2 CO CH4 C2H4 C2H6 B C6H6 C7H8 C8H10
(4)* NH3 H2S HCl 

Added HCN COS SO2 Cl2  Remaining HCs: C2H2 C3H6
(2) C3H8 C4H8

(6) C4H10
(2)  

light 
gases 
& tars 

Tars: styrene, indene, ethyltoluene(3), methylnaphthalene(2), naphthalene, C12H10
(2)#, 

pyrene, fluoranthene, furfural, furfur alcohol, phenol, cresol(3), guaiacol, 
dimethylphenol(6), pyridine, picoline(3), quinoline(2), quinaldine 

Notes. (n)number of isomers specs *“xylene” in B, added ethylbenzene #biphenyl & acenaphthene 

2.2.  Formulation of a stoichiometric model for gasification 
Secondly, as in Duret et al. (2005), a stoichiometry is defined, and fitted to the product 
distribution by letting reaction equilibrium temperatures vary from the measured 
gasification temperature. A complete stoichiometry is generated by writing the molecule 
and element formula matrix in its reduced row echelon form (Smith and Missen, 1982),  

A=(IC  Z), from which N=(-Z  IF)T is deduced   (1) 
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Where C is usually the number of atomic elements, and F the number of independent 
stoichiometric equations (usually the difference between species and elements). The 
temperature differences are therefore deduced by considering that the compositions 
resulting from the NS model are constant and by solving the non linear problem, 
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Eq. (2) implies that each stoichiometric equation is generated with the same molecular 
specie for each element. In our example, there are 47 independent equations derived 
from the six constitutive species (i.e. C, H, O, N, S, Cl) of the system. We have 
considered using either one of the two following general equation formulations 
analogous to  H2O -Eq. (3)- or CO2 -Eq. (4)- gasification, 
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ΔTrj ranges and averages obtained with both stoichiometric formulations, for the twelve 
samples of set B (NH3 formation, the water gas shift and methane reforming reactions, 
naphthalene, anthracene and char formation) are indicated in Table 2. Duret et al. 
(2005) reported similar values for the average ΔTrj of the shift and methane reforming 
reactions (40 and -224 K respectively). However, results indicate that the spread of the 
shift reaction is high. Also, most ΔTrj spreads are larger for Eq. (3) than for Eq. (4). 
 
 Table 2. ΔTrj averages and ranges & linear correlation coefficient p-values for certain reactions  

React. mnΔT mxΔT avΔT H C N O S Cl FC V hm As T ER 
Eq. (3) stoichiometry

NH3 -657 -482 -565 1. 0. 16. 1. 51. 32. 66. 0. 50. 0. 21. 5. 
Shift -120  939  159 1. 1. 31. 3. 87. 40. 86. 1. 5. 1. 97. 0. 
Refo. -367 -230 -281 34. 39. 2. 55. 34. 5. 53. 39. 44. 32. 6. 3. 
Naph. -494 -383 -428 43. 48. 3. 61. 38. 3. 62. 46. 41. 39. 5. 4. 
Anth. -440 -299 -378 95. 79. 12. 74. 66. 40. 12. 91. 54. 90. 41. 48. 
Char -650 -568 -605 69. 79. 2. 84. 27. 1. 68. 70. 70. 65. 1. 13. 
Eq. (4) stoichiometry (same stoichiometry as above for NH3 and water gas shift reactions) 

Refo. -299 -213 -248 67. 74. 3. 88. 13. 6. 46. 74. 92. 65. 0. 19. 
Naph. -386 -331 -359 81. 77. 10. 74. 12. 4. 61. 81. 56. 87. 0. 61. 
Anth. -371 -249 -312 46. 64. 38. 31. 56. 70. 12. 36. 77. 49. 35. 64. 
Char -536 -480 -509 56. 49. 12. 56. 12. 3. 74. 58. 38. 61. 0. 92. 

Notes. mn: minimum; mx: maximum; av: average; FC: fixed carbon; VM: volatile matter; hm: 
humidity; ER: equivalence ratio. Units. Temperature differences [K], p-values [%] 

2.3. Nature of correlation between temperature differences and independent variables 
The ΔTrj are strongly dependent of fuel composition and operating condition variables. 
However, the validity of the temperature difference model relies on the assumption that 
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certain ∆Trj parameters are not affected by changes in processing conditions. Hence, 
sample correlation coefficients between each ΔTrj and input variables have been 
computed to determine whether any uncorrelated variables exist. Linear and nonlinear 
correlations (e.g. logarithms, exponentials, and inverses) of input variables have been 
tested. The p-values of the linear correlation coefficients are also in Table 2. This Fisher 
distribution variable is the probability of randomly obtaining a correlation as large as 
the one observed. T and ER (both independent of fuel properties) are of particular 
interest. At a 10% significance level (single digit percentages in bold), it appears that, 
• The ΔTrj are independent of T for the shift and ammonia (2NH3 ↔ 3H2 + N2) 

reactions, and of ER for most other equations of Eq. (4). (i.e. CO2) stoichiometry. 
• Fixed carbon is uncorrelated to all reactions; humidity, volatile matter and ash are 

correlated to the NH3 and shift reactions, as is the ash content to tar formation. 
• The ΔTrj are strongly correlated to major elements {C H O} for the NH3 and shift 

reactions, minor elements {N Cl} for most other reactions; and weakly to N for NH3 
formation, and {C H S} for HC, tars, and char reactions (exponential of inverse test).  

 
2.4. Modelling the temperature difference using artificial neural networks  
The ΔTrj represent a relationship between several operational variables, that was not 
physically modelled, but approximated instead by a nonlinear regression. Multilayer 
feed forward artificial neural network (NN) models have been used to represent the 
variation of  each ∆Trj  as a function of the operational variables. Having established 
that strongly correlated variables are not the same for each reaction, a fully connected 
two layer NN is defined for each reaction. Each NN has a number of hidden sigmoid 
nodes that vary in function of the number of inputs, and a single linear node as the 
output. As suggested by Sarle, (1994) direct input/output layer connections are added to 
account for the lower order effects noted in Table 2. The problem formulation is,  
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The problem is solved with standard backpropagation of errors to the hidden layer. 
Incomplete target vectors are assigned a null error for unmeasured target values.  
 
2.5. Network training and validation  
NNs can be estimators of arbitrary square-integrable functions (White, 1990), however 
their major drawback is the high dimensionality of their weight space, which implies the 
risk of obtaining poor interpolations between training points. Generally speaking, large 
data samples, i.e. a number a least superior to the number of weights and biases, are 
needed to obtain good interpolation properties (termed generalisation). With the twelve 
observations of set B, as indicted in Table 3. (in bold), there would be fewer parameters 
than observations only in single input networks, or with two variables and a single 
hidden node per variable. Obviously a larger data sample would be preferable, but it can 
be costly in practice to generate a sample of several hundred or thousands of entries.
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Figure 1. Impact of input vars. on shift reaction          Figure 2. Size of hidden layer (Anthracene) 

Preliminary validation tests and results from the literature allow reducing the number of 
input variables and of hidden nodes per input. Fixed carbon (FC) and volatile matter 
(VM) can be considered as dependent variables because the FC ratio is proportional to 
both the H/C and O/C ratios (van Krevelen, 1950; Jenkins et al, 1998). We used the 
preliminary correlation analysis (Table 2.) to further reduce the number of model 
parameters. For instance, Fig. 1. shows that, for the shift reaction, in concordance with 
p-value tests, error minimisation is more difficult with apparently uncorrelated inputs 
(but even more without ER). Fig. 2. indicates that to correlate the (Eq. (4)) set of ΔTrj of 
anthracene, there can be less than two hidden nodes per input, but that a single node is 
insufficient. The results obtained from the training set B have been assessed with 
another set of data (set A). The quality of generalisation for certain reactions is given in 
Table 4. as the relative error between modeled and calculated ΔTrj. Generalisation is 
particularly poor for the shift reaction while it is better for char and HC reactions.  
 
  Table 3. Number of parameters (w & b) per input variables and hidden nodes per input. 

h nodes/vars. 1 2 3 4 5 6 7 8 9 10 11 12
1 5 11 19 29 41 55 71 89 109 131 155 181 
2 8 19 34 53 76 103 134 169 208 251 298 349 
3 11 27 49 77 111 151 197 249 307 371 441 517 

 
 Table 4. Errors on calculated (Eq. (4) stoichiometry) and interpolated (100000 iterations) ΔTrj  

Reaction Input variables  h/vars. av. B A.1 A.2 A.3 A.4 
NH3 {C, H, O, hum, ash, ER} 3 0.000% -17% -17% -22% -19% 
Shift {C, H, O, hum, ash, ER} 3 0.77% -150% -79% -58% -50% 
Shift All 12 input variables  6 0.000% -71% -125% -131% -123% 
Reform. 10 vars. (all but FC&VM) 6 0.020% 29% 34% 15% 29% 
Char 10 vars. (all but FC&VM) 3 0.002% 14% 8.1% -0.1% 6.4% 

3. Conclusion and recommendations 
A reaction model has been developed for the rapid computation of product compositions 
of biomass gasification. An NS equilibrium model based on total tar measurements, is 
first applied to estimate the distribution of tar species. The product distribution is then 
formulated as a stoichiometric equilibrium model with reaction equilibrium temperature 
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differences. Although certain temperature differences appear to be uncorrelated to 
independent variables such as T and ER, other temperature differences are strongly 
correlated to these variables. Since there is no clear evidence of any single or 
characteristic relationship between operational variables and temperature differences, 
the use of an appropriately designed NN appears as a solution to parameterise the 
reaction temperature differences, even with a data sample of limited size. Future 
improvements to generalisation could include adding data samples and/or additional 
constraints to improve the smoothness of the NN regression, e.g. weight decay (Krogh 
and Hertz, 1991), and using prediction intervals (De Veaux et al, 1998).  

Nomenclature 
aik or A: number of atomic elements k in molecular specie i, and element molecule formula matrix 
b: network biases 
C: rank of formula matrix (usually C = M, the number of atomic elements) 
F: number of stoichiometric degrees of freedom (of linearly independent equations)  
G: Gibbs function [kJ/kmol];           I: identity matrix  
ni or n: quantity of molecular specie i (or of all species) at equilibrium [kmol] 
N: number of molecular species;     N: complete stoichiometric matrix    
m: number of terms in a sum;          M: number of elements 
P: reaction pressure [kPa];               R: gas constant [kJ/kmol-K];       T:  reaction temperature [K] 
ΔTrj: temperature difference between equilibrium and actual composition for reaction j [K] 
tar & tars: reconciled measurement of tar concentration and subset of tar species 
xf: input variable f to network;         w: network weight 
Z: matrix of dimension C x F when the only compositional constraint are element abundances 
Greek letters μ: chemical potential [kJ/kmol]; ν: stoichiometric coefficient; ξj: extent of reaction j  
Indexes                 f: input variables to network;    i: molecular species;              I: isomers  
h: hidden nodes;    j: chemical reactions;  k: atomic elements;                s: observations   
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