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Summary
Vision-based inertial-aided navigation is gaining ground due to its many potential

applications. In previous decades, the integration of vision and inertial sensors was
monopolised by the defence industry due to its complexity and unrealistic economic burden.
After the technology advancement, high-quality hardware and computing power became

reachable for the investigation and realisation of various applications.

In this thesis, a mapping system by vision-aided inertial navigation was developed for areas
where GNSS signals are unreachable, for example, indoors, tunnels, city canyons, forests,
etc. In this framework, a methodology on the integration of vision and inertial sensors was
presented, analysed and tested when the only available information at the beginning is a
number of features with known location/coordinates (with no GNSS signals accessibility),
thus employing the method of “SLAM: Simultaneous Localisation And Mapping”. SLAM is a
term used in the robotics community to describe the problem of mapping the environment
and at the same time using this map to determine (or to help in determining) the location of

the mapping device.

In addition to this, a link between the robotics and geomatics community was established
where briefly the similarities and differences were outlined in terms of handling the navigation
and mapping problem. Albeit many differences, the goal is common: developing a
“navigation and mapping system” that is not bounded to the limits imposed by the used

Sensors.

Classically, terrestrial robotics SLAM is approached using LASER scanners to locate the
robot relative to a structured environment and to map this environment at the same time.
However, outdoors robotics SLAM is not feasible with LASER scanners alone due to the
environment’s roughness and absence of simple geometric features. Recently in the robotics
community, the use of visual methods, integrated with inertial sensors, has gained an
interest. These visual methods rely on one or more cameras (or video) and make use of a
single Kalman Filter with a state vector containing the map and the robot coordinates. This
concept introduces high non-linearity and complications to the filter, which then needs to run

at high rates (more than 20 Hz) with simplified navigation and mapping models.

In this study, SLAM is developed using the Geomatics Engineering approach. Two filters are
used in parallel: the Least-Squares Adjustment (LSA) for feature coordinates determination
and the Kalman Filter (KF) for navigation correction. For this, a mobile mapping system
(independent of GPS) is introduced by employing two CCD cameras (one metre apart) and
one IMU. Conceptually, the outputs of the LSA photogrammetric resection (position and

orientation) are used as the external measurements for the inertial KF. The filtered position



and orientation are subsequently employed in the Photogrammetric intersection to map the
surrounding features that are used as control points for the resection in the next epoch. In
this manner, the KF takes the form of a navigation only filter, with a state vector containing
the corrections to the navigation parameters. This way, the mapping and localisation can be

updated at low rates (1 to 2 Hz) and use more complete modelling.

Results show that this method is feasible with limitation induced from the quality of the
images and the number of used features. Although simulation showed that (depending on
the image geometry) determining the features’ coordinates with an accuracy of 5-10 cm for
objects at distances of up to 10 metres is possible, in practice this is not achieved with the

employed hardware and pixel measurement techniques.

Navigational accuracies depend as well on the quality of the images and the number and
accuracy of the points used in the resection. While more than 25 points are needed to
achieve centimetre accuracy from resection, they have to be within a distance of 10 metres
from the cameras; otherwise, the resulting resection output will be of insufficient accuracy
and further integration quality deteriorates. The initial conditions highly affect SLAM
performance; these are the method of IMU initialisation and the a-priori assumptions on error
distribution. The geometry of the system will furthermore have a consequence on possible

applications.

To conclude, the development consisted in establishing a mathematical framework, as well
as implementing methods and algorithms for a novel integration methodology between vision
and inertial sensors. The implementation and validation of the software have presented the
main challenges, and it can be considered the first of a kind where all components were
developed from scratch, with no pre-existing modules. Finally, simulations and practical tests
were carried out, from which initial conclusions and recommendations were drawn to build

upon.

It is the author’s hope that this work will stimulate others to investigate further this interesting

problem taking into account the conclusions and recommendations sketched herein.



Résumeé
La navigation inertielle assistée par limagerie progresse grace a ses nombreuses

applications potentielles. Au cours des derniéres décennies, I'intégration de capteurs inertiels
et vidéo fut le monopole de lindustrie militaire, en raison de sa complexité et de son
colt élevé. Avec les avancées technologiques, davantage de moyens devinrent accessibles

pour la recherche et pour la réalisation d’applications variées.

Dans cette thése, un systéme de cartographie par navigation inertielle assistée par imagerie
fut développé pour des zones ou les signaux satellitaires sont hors de portée, par exemple :
a l'intérieur de batiments, dans des tunnels, des canyons urbains, des foréts, etc... Dans ce
cadre, une méthodologie sur lintégration de capteurs inertiels et vidéo fut présentée,
analysée et testée lorsque la seule information disponible au départ est un ensemble de
points connus en coordonnées (sans disponibilité de signaux satellitaires), en utilisant la
méthode de la localisation et de la cartographie simultanées (SLAM). Cet acronyme est
utilisé dans le domaine de la robotique pour décrire la problématique de la cartographie de
I'environnement en utilisant cette carte pour déterminer (ou tout au moins aider a déterminer)

la position de la plateforme cartographique.

En outre, un lien entre les communautés de la géomatique et de la robotique fut établi tout
en soulignant les similarités et les différences avec lesquelles les dites communautés traitent
le probléme de la cartographie et de la navigation. En dépit de nombreuses divergences, leur
but est unique : le développement d'un systéme de navigation et de cartographie qui n'est
pas limité par des contraintes imposées par les capteurs utilisés. Traditionnellement,
I'implémentation du SLAM en robotique terrestre implique l'utilisation de scanners laser pour
localiser un robot dans un environnement construit, et pour cartographier cet environnement
en méme temps. Cependant, le SLAM de la robotique n'est pas réalisable en extérieur avec
les seuls scanners laser, en raison de la complexité de cet environnement et de I'absence
d'éléments géométriques simples. Dans la communauté de la robotique, l'utilisation de
I'imagerie, intégrée avec des capteurs inertiels, a récemment connu un regain d'intérét. Ces
méthodes visuelles reposent sur (au moins un) appareil photo numérique ou une caméra
vidéo, et utilisent un seul filtre de Kalman dont le vecteur d'état contient les coordonnées de
la carte et du robot. Ce concept introduit une forte non-linéarité et complique le filtre, qui doit
étre exécuté a une fréquence élevée (plus de 20 Hz) avec des modéles de navigation et de

carte simplifiés.

Dans cette étude, le SLAM est implémenté selon la stratégie de l'ingénierie géomatique.
Deux filtres sont déployés en parallele : ['ajustement par moindres carrés pour la

détermination des coordonnées des éléments d'intérét, et le filtre de Kalman pour la



navigation. Pour ce faire, on introduit un systéme de cartographie mobile (indépendant de
GPS) qui emploie deux caméras CCD (distantes de 1 m) et une plateforme inertielle. Du
point de vue conceptuel, les résultats d'un relévement photogrammétrique a l'issue d'un
ajustement par moindres carrés (position et orientation) sont utilisés comme mesures
externes du filtre de Kalman. Les position et orientation filtrées sont ensuite utilisées dans
une intersection stéréoscopique compensée pour cartographier les éléments environnants
qui sont utilisés comme points de contréle pour le relevement a la prochaine époque. De
cette maniére, le filtre de Kalman est uniquement dédié a la navigation, avec un vecteur
d'état contenant les corrections des paramétres de navigation. Ainsi, la localisation et la
cartographie peuvent étre mises a jour a des fréquences moindres (1 a 2 Hz) et reposer sur

une modélisation plus aboutie.

Les résultats obtenus démontrent que cette méthode est exploitable sans subir les limitations
liées a la qualité des images et au nombre d’éléments utilisés. Bien que la simulation montre
la possibilité de déterminer (en fonction de la géométrie de I'image) les coordonnées
d’éléments d’intérét avec une précision de 5 a8 10 cm pour des objets distants d’au plus 10
m, en pratique, cela n'est pas réalisé avec le matériel et la technique de mesure pixellaire
employés. La précision de la navigation dépend aussi bien de la qualité des images que du
nombre et de la précision des points utilisés dans le relevement. Plus de 25 points sont
nécessaires pour atteindre une précision centimétrique par relévement, et ils doivent étre
choisis dans une zone de 10 m autour des caméras ; sinon, les résultats du relévement
auront une précision insuffisante et l'intégration ultérieure se détériorera rapidement. Les
conditions initiales surtout affectent significativement les performances du SLAM ; ces sont
les méthodes d'initialisation de la plateforme inertielle et les hypothéses sur la distribution
des erreurs. La géométrie du systeme aura en outre une conséquence sur les applications

possibles.

Pour conclure, le développement a consisté en la définition d’'un cadre mathématique, de
méthodes d’implémentation et d’algorithmes concernant une technologie d’intégration
novatrice entre des capteurs inertiels et vidéo. Les principaux défis résidérent dans
'implémentation et la validation du logiciel développé. Ce dernier peut étre considéré comme
le précurseur d’'une nouvelle catégorie : il fut écrit a I'aide d’'un code totalement original, sans
recours a des modules préexistants. Finalement, la réalisation de simulations et de tests

pratiques a conduit a 'émission de conclusions liminaires et de recommandations.

L’auteur souhaite vraiment que ce travail stimule une recherche approfondie dans cette
problématique intéressante, tenant compte des conclusions et des recommandations

ébauchées ici.
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Uncertainty of the state vector resulting from the white noise input in

the KF

Spectral density matrix in the KF

Variances of the accelerometers and gyroscopes if the i-axis
Kalman gain matrix

Covariance matrix of the measurement noise vector v,

Innovation sequence in the KF
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1 - INTRODUCTION
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This thesis aims at two different communities: Geomatics and Robotics. Despite the apparent
differences between these two disciplines, they have nevertheless many aspects in common
when mobile robots are involved. Mobile robots are machines that — autonomously — move to
complete a task. In a typical challenging situation, when a robot works in an unknown
environment, it ought to know its own location (to navigate), and the locations of the
surroundings (to map). While Robotics is about designing smart machines, Geomatics
Engineering is, among other things, the science of map-making, which includes positioning
and navigation. The complementarities and common aspects between the two disciplines are
the motivation for this thesis. It is hard to please two distinct communities, and it is even
harder if these communities are scientific. Therefore, some parts of this thesis may look
familiar to one community but novel to the other. Yet, the author hopes that this is essential
to set collaboration between two important disciplines (that have so much in common) for an

advance in both.

1.1 - Problem statement

The aim of this work is to develop a localisation methodology for mobile mapping systems

based on the fusion of inertial and image data.

To perform this task, a terminology from the robotics community is borrowed: SLAM —
Simultaneous Localisation And Mapping. SLAM is a task for a mobile robot that draws a
map and simultaneously uses the map to locate itself. However, to draw a map, the position
of the robot has to be known and (usually) for the robot to know its position it has to have a
map. Thus, positioning is solved by sequential localisation and mapping that take place

simultaneously.

The concept of SLAM is shown in Figure (1-1) for the case of a pair of cameras. At epoch k,
the vehicle localises itself by knowing the relative displacement with respect to the “crossed”

targets; consequently, when this is done, the vehicle can determine the position of the
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assigned “circular” targets. At epoch k+1, the vehicle moves to another position and it uses
the already determined targets at epoch k to locate itself and then in turn to determine the

positions of the “circular” targets. This procedure continues with epoch k+2 and so on.

SLAM (or CML: Concurrent Mapping and Localisation) was first introduced by Smith, Self,
and Cheeseman (Smith and Cheeseman, 1985; Smith et al., 1990 ) through seminal papers
that presented a statistical framework for simultaneously solving the mapping problem and

the induced problem of localising the robot relative to its growing map (Thrun, 2002).

PY [ ]

[ J
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° o °
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° Epoch k+1

Epoch k+2

Figure 1-1: SLAM concept

Theoretically, this task can be solved by passive vision as conceptually depicted. However,
this is often practically difficult to achieve, and therefore additional sensors need to be

employed. An Inertial Measurement Unit will accompany the vision sensors in this work.
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In this research, the localisation aspect of SLAM is studied and solved using Geomatics
Engineering modus operandi. To understand the methodology followed in this work, it will be
helpful to comprehend the differences in methods and technologies used in these two distinct

(albeit complementary) scientific fields: Geomatics and Robotics.

1.2 - Geomatics and Robotics — The First Link

Geomatics Engineering is an interdisciplinary field with many branches ranging from Earth
sciences on a global scale to the determination of boundaries on a local scale, passing
through other engineering disciplines like electronics, mechanics, communication, and

information technology.

The most important product of Geomatics Engineering is a map. There are different
approaches to map-making and among the many, the one that makes use of accurate

navigation and positioning is the focus of this research.

In such map-making, the knowledge of the mathematical and physical characteristics of the
planet Earth is vital, such as its shape, size, weight, rotation rate as well as gravitational and
magnetic fields. These factors directly affect accurate navigation and positioning, and

therefore their accurate knowledge is essential.

In navigation and positioning, electronic and optical-mechanical instruments are used. These
could be any, or a combination of: artificial satellites, cameras, laser scanners, gyroscopes

and accelerometers, odometer, total-station, compass, mobile-phone networks, etc.

Navigation is the science of planning and management of moving subjects and objects that

answers the following subsections: Where? When? How?

The answer to the first question lies in localisation, i.e., in 3-D coordinates and orientation.
The answer to the second is found in timing. The 3-D coordinates, the orientation, the time
and a map are the answer to the third question, because these variables can draw the path
of the movement. Therefore, the core elements of localisation are: three coordinates in a 3-D
reference frame (X, Y, Z or ¢, A, h), three angular rotations (roll, pitch and yaw) and the time

(t). Moreover, the core of navigation is the interaction between the localisation and the map.

Navigation (and positioning) has been of interest to mankind since it had first set to move. In
the course of history, navigation passed through an ample of forms and methods: from
navigating oneself and locating other subjects and objects, to training a machine to localise
itself and to navigate in known and/or unknown environments via an artificially intelligent

design.



Chapter 1: Introduction 4

First navigators used landmarks as topological means to navigate. Celestial methods
followed. The combination of celestial methods and the magnetic compass ruled the
navigation arena for several centuries until time was incorporated with the marine
chronometer developed by John Harrison (Sobel, 1996) in the sixteenth century. In the
twentieth century, ground-based radio navigation was developed along with deduced
reckoning and inertial methods. Currently, space-based radio navigation achieves a
monopoly over ground-based radio navigation in many situations, although aviation still relies
also on ground-based radio navigation. Nevertheless, due to the limits in the space-based
radio navigation, its integration with deduced reckoning and inertial methods is inevitable in

some applications.

Maps, on the other hand, are graphical/digital representations of the features of the
environment in some datum and projection. Depending on the type and size of the
environment and on the required map, a mapping method is chosen. In this study, terrestrial

close range photogrammetry is the mapping method used.

Mapping System is the term used to describe a set of tools and methods that perform
mapping. Mobile Mapping Systems are those systems that equip navigation systems that

allow mapping while moving.

Navigation and mapping systems are of a great importance for mobile robots, without which
an autonomous exploring robot cannot do its job. The applications of a mobile robot are
abundant, but one of the most important is: going to and exploring places where no man is
safe to do. These robots do not reach the perfection by only having a good navigation and
mapping system. The navigation and mapping system is only a part of an integrated system
that combines control, artificial intelligence, dynamics, sensing, vision, learning, estimation
methods, etc. It is even hard to tell which of these is more important since they all work as a
team, benefiting from each other’s contribution. Yet, it can be said that a navigation and
mapping system is a core element to these robots. The extraterrestrial missions to Mars and
the placement of rovers on its surface are good examples of the use of these robots. A map
of the surrounding environment of the robot is essential for the robot to perform manoeuvres

and in turn to complete its scientific mission

1.3 - Navigation and Mapping System in Geomatics

Navigation involves the above-mentioned processes in real time, but in this work, it will refer
to trajectory determination in an off-line mode. In the geomatics literature, this is called

“Kinematic Geodesy”.
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The navigation systems usually consist in a Global Positioning System (GPS) receiver — and
antenna — integrated with an Inertial Measurement Unit (IMU) to determine the position and
attitude of the mapping system. The research conducted in Geomatics Engineering in
GPS/IMU navigation is enormous, where it started in the late seventies when GPS was first
realised (for example see, Cox, 1980). Publications in this field are vast and they cover every
aspect of this integration; to name a very few: Grewal and Weill, 2002; Schwarz, 1986;
Skaloud, 1999; Shin, 2005. The GPS/IMU is not only used for navigation, but also for the
determination of the Earth’s gravity field (Knickmeyer, 1990, Schwarz, 2000; Bruton, 2001;
Bayoud, 2002).

The GPS/IMU integration provides the position and attitude of the moving vehicle. The IMU
consists of a ftriad of accelerometers and gyroscopes that measure the vehicle’s
accelerations and rotation rates, respectively. The accelerations are integrated twice and the
rotation rates are integrated once to provide the displacement of the vehicle. The rotation
rates are also used to determine the attitude of the vehicle with respect to a reference
system. Since these systems suffer from biases and drifts in their accelerations and rotation
rates, their solution degrades fast with time. To control this degradation, GPS is integrated
with an IMU in a Kalman Filter to determine an optimal position and attitude and to provide a

better knowledge on the biases and drifts of the IMU.

The accuracy achieved from this integration depends on the quality of the IMU used. IMUs
are classified into Navigation, strategic, tactical, and automotive grade. Currently, the
tactical-grade IMUs are widely used in navigation and mapping (Skaloud and Vallet, 2005;
Vallet and Skaloud, 2004; Tomé, 2002; Petovello, 2002; to name a few), where it guarantees
an accuracy of few centimetres in position and half an arc-minute to an arc-minute in attitude.
In case of GPS signal loss, the tactical-grade IMU can run for a couple of minutes without
degrading the navigation solution to an unacceptable level. Automotive grade IMU are also
used in a few mapping systems; the disadvantage of these systems is that their solution
degrades very fast when GPS is not available, and their error can reach several tens of

metres within a couple of minutes (Shin, 2001).

Mapping can be done by photogrammetry, where images taken from at least one camera are
geometrically analysed. (LASER scanners are also used, but are still in the testing stage.)
When the scene is pictured by a stereo-pair of photographs, the mapping process involves

three phases:

— Localisation and Orientation by Resection: the position and attitude (exterior

orientation parameters, EOP) of an image are determined by having at least three
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points with known coordinates (Ground Control Points, GCP) in the object frame as

well as in the image frame;

— Transfer of homologous points by intersection: two images with known exterior
orientations parameters are used to determine the coordinates in the object frame of

points found on both images simultaneously, employing the principle of stereovision.

— Restitution: where the actual mapping takes place by drawing the features, contour

line, borders, surfaces, etc.

Thus, resection is used for localisation and orientation, and intersection is used for
determining features’ coordinates; by combining these two problems aero-triangulation (AT)
is accomplished. Before the realisation of the GPS/IMU integration for the direct
georeferencing (Skaloud 1999, Colomina, 1999), the mapping industry relied mainly on the
AT and Bundle Adjustment (Triggs et al., 2000) by making use of GCPs.

Mapping systems are employed in aircrafts as well as in land vehicles. Airborne systems
usually employ a high quality camera and/or a LASER scanner for mapping, and IMU/GPS
integration for the determination of the location and orientation (georeferencing) of the
images. An example of the airborne systems is an innovative hand-held system that was
developed at the Swiss Federal Institute of Technology in Lausanne that utilises a tactical-

grade IMU, a GPS, a high-definition camera, and a laser scanner (Skaloud et al., 2005).

Terrestrial systems are similar to their airborne counterparts with a difference that more than
one camera might be used (EI-Sheimy, 1996); these systems are the standard ones used

now in the mapping industry.

The sensors used for the location and orientation can be a combination of IMU/GPS,
odometers, compasses, etc. Another example of terrestrial mapping systems is a hand-held
system consisting of a GPS, compass, and a camera was developed in 2001, with which

small and quick surveys are accomplished (Ellum, 2001).

The estimation methods in Geomatics are mainly the Kalman Filter (Kalman, 1960) and the
Least Squares Adjustment (Bjerhammar, 1973; Mikhail, 1976). Kalman Filter has been the
focus of research in Geomatics Engineering in the 1980’s and 1990’s, where centralised,
decentralised, federated, adaptive filters were analysed and compared (Wei and Schwarz,
1990; Gao et al., 1993).

LSA has been the monopolistic estimation method for Geomatics Engineers for more than
200 years. LSA usage ranged from adjusting simple geodetic networks to computing the

orbits of satellites (e.g., see Moritz, 1980).
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In mobile mapping system, the two filters go along each other. The navigation parameters
are determined by Kalman and LSA and are then used for feature coordinates determination
by LSA.

Newly, other estimation and filtering methods have been surfacing, for example, neural
networks (Chiang, 2005) and wavelets (Nassar, 2003). These investigations are still in their

infancy and their effectiveness is still under scrutiny.

As in the case of this work, positioning/localisation can be done by vision employing the
method of resection. Chaplin and Chapman (1998) and Chaplin (1999) studied the possibility
of using the position of known features to estimate the position of the camera. Their attempt
stopped at that stage without going further to exploit any integration with other sensors.
Recently, other studies start to surface using images to position the mapping vehicles. Two
of these studies were presented in the latest conference on Optical 3-D Measurement
Techniques held in Vienna. The first (Forlani et al., 2005) uses a sequence of images to
georeference the mapping van for 15 s (300m) trajectory, where they concentrated on
feature automated extraction and robust removal of mismatches; however, they have not
used the information from the IMU. The intersection-resection problem is solved by taking the
relative orientation between the two cameras into account. Although this aids in the
automation of finding the targets, it will render the system useless when one of the cameras

malfunctions.

The second study (Horemuz and Gajdamowicz, 2005) is similar to what this thesis is about,
yet they are using a single camera and the system seems to be handheld. Nevertheless,
from the paper and later discussion with one of the authors no clear picture could be
extracted on their methodology of integration in Kalman Filter. In this paper also, feature

extraction was done in an automated procedure.

Other studies used photogrammetric localisation in industry, but this was limited in using one
stationary camera to localise moving objects (El-Hakim et. al, 1997; Blais et al., 2001; B6hm
et al., 2001). Hofmann-Wellenhof et al. (2002) describes briefly the use of photogrammetry

as a navigation method, but no further discussion was made.

1.4 - Navigation and Mapping Systems in Robotics

There is a plethora of navigation and mapping systems in the robotics community. The

reader can consult Thrun (2002) for a general survey on robotic mapping.

Classically, terrestrial robotics SLAM is approached using LASER scanners to locate the

robot relative to a structured environment and to map this environment at the same time.
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LASER scanners have shown to be very good tools where the accuracy of localisation is
within the centimetre level. However, outdoors robotics SLAM is not feasible with LASER
scanners alone due to the environment’s roughness and absence of simple geometric

features. Recently, the use of cameras (and videos) has gained an interest.

Inertial systems, IMU, GPS, compasses and odometers are widely used in the robotics

community as navigation sensors; however, mostly localisation is solved in 2-D space.

A survey of recent publications shows an augmented interest in the use of cameras and
inertial sensors; this is due to the advancement in the hardware and software. It is hard to
choose a list of publications due to the huge amount of production; for this, reference will be
made on journal papers and theses. Concerning proceeding papers, one can consult the

IROS conferences and the IEEE publications.
A quick look can classify these systems into two categories:

— Indoors: the indoor robots are supported by laser scanners, odometers, MEMS, and

recently cameras.

— OQutdoors: the outdoors robots can be classified as terrestrial, airborne, and

underwater. Mainly, these robots are supported by cameras, IMU and GPS.

In the robotics community, lots of effort is directed towards full automation; and thus one can
see many publications on the possibility of automated pixel tracking on images and real time
navigation and mapping (Jung, 2004). As for the estimation methods, Kalman Filter is widely

used and it will be discussed in the next Section.

The interested reader can go through the following list of publications: Masson et. al (2003);
Nebot and Durrant-Whyte (1999); Sukkarieh (2000); Huster (2003); Davison (1998); Wheeler
(1996); Ronnback (2000); Guivant (2002); Knight (2002); Bosse (1997); Csorba (1997);
Newman (1999); Machler (1998); Majumder (2001); Williams (2001); Jung (2004); Bailey
(2002); Tomatis (2001); Lemon (2005); Groves et al. (2004); Martinelli (2002). The reader
can also look at the two special issues of the Journal of Robotic Systems (Volume 21, issues

1 and 2, 2004) that is devoted to the topic of “Integration of Visual and Inertial Sensors”.

The differences with the Geomatics methodology of mapping and navigation will be pointed

out in the next Sections.

1.5 - Geomatics and Robotics — The Second Link

The difference between Robotics versus Geomatics Engineering arise from the global

understanding of Geomatics Engineers about localisation and mapping, where the
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applications are not limited to indoors and/or to small areas, but rather the whole planet is
concerned. For Geomatics Engineers, coordinates are meaningless if they are not linked to a
global reference frame and maps are useless if they only represent an area without the
possibility of linking it to other areas. Three-dimensional perception is very essential for the
Geomatics community, where the vertical component is as important as the other two

horizontal components (not to mention the fourth dimension of Geomatics, time).

Mapping in the Geomatics community has to give a clear image of the surrounding. It is
important to know if the object is a tree, a power column or a traffic post, or whether the other

object is a fence or a house wall, or if this structure is a house, a building, or a factory, etc.

For Geomatics Engineers, a geographically referenced object does not mean much if it is not
associated with information about its nature. Therefore, Geomatics Engineers do not only
navigate and map to accomplish a certain task, but also acquire information about the

mapped objects to determine spatially referenced databases for many needs.

From what is revealed from the publications done by the robotics community, the solution is
usually simplified by forcing some postulations that apply to small scale SLAM, e.g., 2-D
localisation, ignoring offsets and angle transformations and not contributing for different
reference systems. It is clear that these simplifications do not affect the 2-D SLAM; however,
this is not the case when working on 3-D SLAM. If one takes for example the study done by
Kim and Sukkarieh (2003) — which is very close to this work — it can be argued that the
navigation modelling is not complete for large scale 3-D SLAM; moreover, the mapping

modelling is correct for LASER scanning and not for frame images.

In addition to this, SLAM solutions compute the features coordinates using Kalman Filter
(Thrun, 2002). Conceptually this is an interesting problem, but practically it is problematic
due to the simplification forced on the models; in addition, if estimation methods other than
the Kalman Filter are used, the correlations between the location of the vehicle and the map
cannot be taken into account. Moreover, as more features are mapped, the state vectors
becomes bigger and bigger thus increasing the possibility of the filter divergence. Despite the
fact that this concept contributes for the important correlations between the features’
coordinates and the mapping device coordinates, these contributions do not affect the overall

results as was shown in Martenilli and Siegwart (2005).

The methodology proposed here to solve the SLAM is by using the Photogrammetric
resection outputs — computed by LSA — as the INS Kalman Filter external measurements to
compute a filtered position that is used in the photogrammetric intersection to determine the

feature coordinates by LSA.
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The Kalman Filter (KF) used here is similar to that of navigation applications where
traditionally the IMU provides data for the prediction and the GPS (and other positioning and
orientation sensors) are used for the update. Nevertheless, instead of using the GPS, the
outputs from photogrammetric resection (EOP) will be used as updates. In this way —

contrary to the robotics SLAM KF — the SLAM navigation KF proposed here:
— Operates at the frequency of the update (e.g., 1 or 2 Hz), and

— Its state vector size is kept constant and small (e.g., 15 states) with homogeneous

states that guarantee rapid convergence.

In addition, by separating the two filters a rigorous integration is achieved between the vision

and inertial sensors using complete modelling.

1.6 - Behaviours, Sensors and Application Themes

Figures (1-2) to (1-4) show the pipelines that define Application Themes of the system, used

Sensors and system’s Behaviours.

The system is for localisation/navigation using an unknown metric map that can be run on-
line and off-line. The system is as well a mapping system that uses the photogrammetry

either with one or two cameras employing the property of stereovision (Fig. 1-2).

Behaviours - Localisation ~|: Map-based 11 Unknown On-line
Path Map-less || Pre- L Off-line
planning determined
Obstacle — Topological
avoidance
. — Metric
L Mappin I
LASER
scanning Monocular
Photogrammetry
Binocular

Figure 1-2: Behaviours of the system
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In the navigation and mapping systems, there is a plethora of choices of sensors; but mainly

they are classified according to Figure (1-3). Of these, the system in this work uses vision

and inertial.
Sensors |
Range GNSS Vision Inertial
LASER,
Sonar, Infra-
red

Figure 1-3: Used sensors

As for the applications envisaged for this system, they are mainly concerned with Mobile
Mapping Systems (MMS) and robotics. Figure (1-4) shows explicitly the different

applications’ branches.

Robots
Indoors MMS
Wheelchairs
Applications ___|
Airborne
MMS
Outdoors Terrestrial
Robotics
Underwater

Figure 1-4: Applications of the system
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Figure 1-5: Navigation methods

Figure (1-5) shows the disadvantages of each of the navigation methods that could be used
and the advantages of integrating them. (In Figure (1-5), ranging sensors are considered as
vision sensors.) This figure is self-explanatory, where it is obvious that integrating two or

three of these navigation methods will provide with the best-case scenario.

Automated feature extraction and object recognition are two essential parts of any MMS,
which are so far considered to be the main obstacles in mobile mapping. Yet, these issues
are not discussed in this work due to the complexity and huge effort that they require, where

they merit an independent study.

1.7 - Photogrammetry Alone Solving SLAM

By looking at the phases of map-making, one can observe that photogrammetry by itself is a

SLAM solution. An obvious question is: why an IMU is needed?
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Figure 1-6: A possible environment where an IMU is needed

Consider Figure (1-6). This is a typical environment, where the robot manoeuvres between
rooms A, B, C and D. As long as the robot takes the positions depicted in the solid symbol,
an IMU might be considered as superfluous. However, when the vehicle is located in

situations similar to those depicted in the dashed symbol:
— The field of vision of the cameras is too narrow, or

— The number of known points is insufficient.

If the cameras were to take images with a high frequency, e.g., greater than 20 Hz, the two
points above might be obsolete; however, would the solution be reliable considering the
narrow field of vision that would be created? In addition, depending on the geometry of the
system, images at 20 Hz will not guarantee a problem-free solution, especially when objects

are far away from the cameras.

Nevertheless, Chapter 2 will contain a derived solution of SLAM by photogrammetry, where

this procedure requires certain points to consider:

— Recursive LSA: the LSA solution of the epoch k-7 is used as observations for epoch
k,

— Correlations between measurements and unknowns are carried from one epoch to

the other.
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In addition to this, the IMU-derived position is likely to facilitate the connection between the
photographs so that the search region in the different images for feature pixel tracking is

minimised. This is important when the same feature needs to be tracked on different images.

1.8 - Thesis Contribution

In this thesis, a vision-based inertial navigation system was developed for a mobile mapping
system. Although such systems already exist in the robotics community, the contribution of
this thesis lies in proposing and testing a novel methodology for a rigorous integration

between vision and inertial sensors by using complete modelling.

Image-based bridging techniques were proposed in geomatics engineering at the end of the
last decade; however, these techniques did not go as far as the integration with IMU in a

Kalman Filter.

In addition to the novel concept of this integration, a detailed derivation of recursive LSA
through interchanging resection and intersection was presented to solve SLAM by
photogrammetry alone. To the knowledge of the author, this derivation is introduced for the

first time.

Extensive and from-scratch programming was necessary for this work. Although SLAM
codes are abundant in the robotics community, they were inadequate for this work. To test
the methodology, a SLAM program was written (in MATLAB®) using the following modules,
in addition to the main program: INS mechanisation equations, LSA resection, LSA
intersection, Kalman Filter and Boresight and leverarm computation. Planning, writing and
testing the main program and its accompanying modules took a large portion of the time
dedicated for this thesis because no modules pre-existed beforehand and thus everything
had to start from the scratch. (The image acquisition and synchronisation codes were

appreciatively written by Dr. Jan Skaloud.)

1.9 - Thesis Outline

The thesis is organised as follows.

The Second Chapter covers Photogrammetry and its positioning solution for SLAM. The
mathematical models and the least-squares adjustment of resection and intersection are

shown along with their error analyses.
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The Third Chapter discusses the instrumentation used for photogrammetry. The design of
the system by analysing the choice of the focal length and stereo-base is examined. The last

Section of this chapter studies the camera calibration.

The Fourth Chapter analyses the Inertial Navigation Systems (INS). The mechanisation
equations are presented and the INS system errors are analysed, which is later used in the
Kalman Filter. The last Section treats the quality if the IMU used in this work and the

possibility of auto-initialisation (gyro-compassing).

In the Fifth Chapter, the positioning methodology via integrating vision and inertial sensors is
presented. In this Chapter, the different reference systems transformations and system

calibration are introduced and the appropriate equations are derived.
In Chapter 6, the methodology is tested and results are discussed.
Chapter 7 draws conclusions and suggests recommendation for future work.

Finally, Appendix A shows the full solution of the two photogrammetric problems in terms of
quaternions, Appendix B has the calibration solution of the two CCDs, Appendix C shows the

photos that are used in the test and Appendix D has detailed tables determined in Chapter 6.
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2 - CLOSE-RANGE
PHOTOGRAMMETRY SOLVING SLAM

... being a Photogrammetrist, I am trained to
have a 3-D wvision and to map new
opportunities ...

2.1 - Introduction

The link between photogrammetry and SLAM is established in this chapter. This relation has
not gained much attention until lately due to the fact that SLAM, among other things, requires
automation, which is far from reality in photogrammetry. Many attempts are directed towards
the full automation of photogrammetry, but still falling short due to the need of a high level of

artificial intelligence.

Having in mind that it is only a matter of time to reach full automation, an investigation on

SLAM from the Geomatics point of view is essential.

This chapter covers the functional mathematical model and formulation of photogrammetry,
by which the two main problems of photogrammetry — namely Resection and Intersection —
are solved in a Least-Square Adjustment frame. The last Section concentrates on the

recursive mode for solving SLAM trajectory using resection and intersection.

2.2 - Definition of Photogrammetry

According to the International Society of Photogrammetry and Remote Sensing (ISPRS):
“Photogrammetry and Remote Sensing is the art, science, and technology of obtaining
reliable information about physical objects and the environment through the processes of
recording, measuring, and interpreting imagery and digital representations thereof derived

from non-contact sensor systems.”

The two terms, Photogrammetry and Remote Sensing, passed through many stages of
controversial definitions and connotation until the ISPRS in 1992 gave the definition stated

above.
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Reliable information here is defined by its geographical location, so that it can be correctly
represented on a geographic information medium, i.e., a map. For the Geomatics
community, photogrammetry is a mapping technique, by which images of the real world are
analysed mathematically — after being recorded, processed, and interpreted — and
coordinates of physical objects and of the environment, found on the images, are determined

in a reference frame.

There is a broad range of categories in photogrammetry: airborne, terrestrial and close-range
with vertical, nearly vertical, oblige and horizontal exposures. Close-range terrestrial
photogrammetry and horizontal exposures are dealt with in this work. The mathematical
principles of photogrammetry are known and in general, they apply to all previously

mentioned categories.

2.3 - Mathematical Model in Photogrammetry

The relation between the image and the objects are derived from the physical assumption
that the perspective centre, the object and its image are collinear (Figure 2-1). This relation

gives the following functional model per point (ASPRS, 2004):

F(x)s—x+x0—cR”(X_X0)+R12(Y_Y°)+R13(Z_ZO)=—x+x0—c—=0
R31(X—=Xg)+R32(Y = Yo )+R33(2-Z0) 2.1)
Ro1(X=Xg )+ Ry (Y =Yy)+Rys(Z2-20) '

Fly)=-y+yy, —c=2 0/ 22 =—y+y,-Cc—=0

v) ° Ra1(X=Xo)+Raz(Y = Yo )+Ra3(Z-Zo) °

where

X,y are the photo-coordinates in the image frame
X,Y,Z are the coordinates in the object frame

c is the focal length of the camera

X,,Y,,Z, are the coordinates of the perspective centre in the object frame

Xo ,Yo are the photo-coordinates of the principal point that is the projection of the

perspective centre to the image plane. Theoretically, it has to coincide with the

centre of the image frame, but in reality it does not

Rj’s are the elements of the rotation matrix between the image and object frames,

based on Euler angles: roll w, azimuth a, and pitch «
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y
=\
P /)
Image space Xo p
Yy

O: Perspective centre

p: Principle Point

X, Y, Z: object space coordinates system

x and y: image coordinate system

Xo and yo: coordinates of the projection point
of the Perspective centre to the image plane
A: an object

e a:A’simage

Object space

Figure 2-1: General Image Geometry

The rotation matrix Ry, links the image coordinate system to the mapping reference system,

which is chosen to be an East-North-Up (ENU) system, as follows (A being the scale):

X —Xq X=Xy
y=Yo |=2"RR Y=Y
-C Z-7Z,

To go from ENU to the image coordinate system (Figure 2-2), a sequence of rotations is

carried out as follows (Dermanis, 1990; P. 233):
— A rotation of 90° around the X-axis: R1(90°)
— Arotation of — o around the Y-axis: R, (- a)
— A rotation of » around the X-axis: R4(w)
— Arrotation of k around the Z-axis: R;(k)

Thus, the overall rotation is:

R =R3 ()R (w)R (- G)R1(90°)
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COSKCOS O + sinksinwsina COSKSiNa — SinKsinwcosa  SinKcosw
Rp, =| —Sinkcosa + cosksinwsina - sinKsina — cosksiNwCcosa  COSKCoS W
coswsina —coswcosa —sinw

Of course there are other rotation sequences that can be followed, and there is really no

central reason why to choose one among the other as long as no singularity is produced.

90°

Figure 2-2: Transformation sequence between ENU and image systems

To avoid singularities in computing the rotation angles from Rp,, a quaternion solution can
be suggested. Appendix A shows the development of this chapter in terms of quaternions.
In photogrammetry, two terms are distinguished: interior and exterior orientation. The first

term embraces the focal length and the coordinates of the projection of the perspective

centre to the image plane: c,x,,y,. The Exterior Orientation Parameters (EOP), on the other

hand, is the set of the coordinates of the perspective centre in the object frame and the three

rotation angles: X,,Y,,Z,, o0, .

In this chapter, all the vectors and matrices (Bold) headed by a prime (e.g., X") refer to the

resection and all those headed by two primes (e.g., X") refer to the intersection.
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2.4 - Resection

Equation (2.1) is the fundamental mathematical model of photogrammetry describing the
relationship between the image and the object coordinate systems. With this model, one can
solve the basic problems of photogrammetric mapping, namely: the resection and the

intersection, which when merged together form the photogrammetric triangulation.

Image space

_____ > (Xi-Xo, Yi=Yo, -¢) OR (x;, ¥, €)

Objects space

Perspective centre
(O’ 0’ 0)

/ . Z
. Do) X5, Y1, Z)

(X(lv Y09 Z09 o, o, K)

Figure 2-3: Resection Problem

With the problem of resection (Figure 2-3), the EOP of an image are determined by having at
least a set of three points whose coordinates are known in the object frame as well as in the
image frame; these points are called Ground Control Points (GCP). Therefore, in the problem

of resection the known, unknowns and measurements are:

Measurements: X, Y;,Z;, x;,y; i=1---n; Unknowns: X,,Y,,Z,, o0,k

In the resection, there are six unknowns; for the system of equation to be solved, at least six
equations are needed. A minimum set of six equations is used through measuring the photo-

coordinates, (x;,y;), of three GCPs. When over determined, which is the case all the time,

the resection is handled in the frame of LSA.

2.4.1 - Resection by Least-Squares Adjustment

To solve the resection, we consider the following vectors. The vector of the unknowns:

X=X, Yy Z, w a k]
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is computed by:
(o]
x' =X+ 8x’ (2.2)

o
where x' is the vector of the approximate values of x’ (computed with a minimum of 3
GCPs):

0 [o) o) o o o o T
x'={Xo Yo Zo w a Ki|
and &x’ is the computed vector of corrections by LSA:
5x'=[6X, 8Y, dZ, dw da k[
The vector of observables is:
y=Dovi Xo Y Zy oox v X Y, ZT
Having the above vectors, 8x’ is computed through solving the following linear equation:
Adx'+B'V'+w' =0 (2.3)
V' is the vector of errors. The misclosure vector w' = F(;()’, y’j . The LSA solution of Equation
(2.3)is:
dx' =NV, (2.4)
with N =ATMA’, U=A"M"w, M =BC,B"

C, is the variance-covariance matrix of the observables that takes the following form:
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o, 0 0 0 0 0
c 0 0 0 0 0
y1
2 ~ ~
GXx, OXqY; OXxqz v U Oxx, OXiY, OXx4z,
2
Oy, Sv,z, 0 0 OSviXxp OVYqY, ©Ovyz,
2
6z, 0 0 Sz,X, ©Yz4v, ©Y2z4z,
o, 0 0
SYM. ;0
2
O X, XnYn XnZn
2
SYn  OYqz,
2
Gzn

45nx5n

Matrix A’ is the first design matrix (Jacobi matrix) and it contains the derivatives of the

measurement model (Eq. 2.1) with respect to the Unknowns. Matrix B’ is the second design

matrix and it contains the derivatives of the measurement model with respect to the

observables.
I 6F(x)1 6F(x)1 6F(x)1 8F(x)1 aF(X)1 6F(x)1 |
0X, oY, 0Z, ow oa oK
oF(y), oF(y), oF(y), oF(y), oF(y), oF(y)
00X, oY, oz, ow oa OK
A' = . . . : : .
E)F(x)n aF(X)n 5F(X)n 5F(X)n é)F(x)n E)F(x)n
0X, Y, oz, ow oa oK
oF(y), oF(y), oF(y), oF(y), oF(y), oF(y),
| 0%, Y, oz, ow oa OK Jonss
_aF(X)1 6F(X)1 a':()()1 aF(X)1 aF(X)1 0 0 0 0 0 ]
OX4 oY, oX, aY, 0Z,
0X4 oy, oX, oY, 0Z,
B = : : : : : ; : ; : :
M O M O s O )
oX,, oY, oX oY, oz,
o o o o o oFly), oFly), oFly), oF(y) oF(y),
| OX, oY, oX, oY, oz, |
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o R K R o o 0 o
X, oY, oz
o _q Fh Flk Flyh 5 4 o . .
X, oY, oz
0 0 o0 0 0 1 0 OF(x)y OF(x)y  OF(x),
ax3 a\(3 az3
0 O 0 0 0 - 0 -1 OF(y)y oF(y) oF(y)
- O%n OYn 0z, 12nx5n

The approximate values of the parameters are used to compute the matrices A’ and B'.

The precision estimation of the parameters, residuals and observables are computed,

respectively, as:

C; =N" (2.6)
r ’ !T !*1 Y add ! VT !*1 U !*1 VT /*1 1Y add

Cc,=C,B'M'B'C, -C\B'M AN 'ATM'B'C, (2.7)

C;=C,-C, (2.8)

The a-posteriori variance factor is:

. 2 v'Pv
2n-6

where 2n is the number of observables, 6 is the number of the unknowns.

2.4.2 - Resection Accuracy
The accuracy of the resection increases as the number of measured points increases. In

order to determine the accuracy of the resection, the design matrices A’ and B’ have to be

determined by substituting the approximate values (shown below) of the unknowns, from
which the normal matrix N’ is computed by N'=A"M''A’. The accuracy estimates of
resection outputs are calculated by C; = N'~'. For this task, a simulation was performed. To

begin with, consider that the approximate values of the EOP to be as follows:

o (o] (o]
Xo=Yo=2Zp=0 , w=a=k=0
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This means that a reference system is considered with its axes approximately parallel to their
corresponding image axes, and that the principal point approximately coincides with the
origin of the reference system. In addition to this, a grid of GCPs (with known error

information) of size qx q with each node located at a different distance "h" from the camera,

(Figure 2-4) was designed. In this way, one would be able to compute the elements of the

design matrices. Four simulations were conducted:

— Four points were used with gx q =6 x 6 metres,
— Nine points were used with qxq=3x3 metres,
— Twenty five points were used with gxgq=1.5x1.5 metres, and

— Hundred points were used with qx q~ 0.7 x 0.7 metres.

Figure 2-4

The coordinates of the GCPs in the object frame can be easily simulated because they
belong to a grid with different depths. The error estimates of the GCPs were chosen to be 2.5
cm and that of the photo-coordinates to be 5um. The focal length was taken to be 6 mm and
considered fixed in the LSA. The results of the simulations are shown in Table (2-1). As
expected, the more the GCPs, the more accurate is the determination of the EOP. In real
applications, a homogenous distribution of the GCPs all over the image is very important to
attain good geometry to determine accurate EOP. Twenty-five points homogenously

distributed on the image allow locating the camera within a few centimetres.

Table 2-1: Estimated accuracies of Resection (Simulated)

ox, (M) | oy (M) | oz (M) w(arcmin) | a (arcmin) | K (arcmin)
1% test (4 pts.) 0.239 0.224 0.148 38.45 27.42 41.311
2" test (9 pts.) 0.145 0.132 0.097 6.51 8.38 9.24
3" test (25 pts.) 0.062 0.059 0.061 4.34 4.05 4.22
4™ test (100 pts.) | 0.016 0.016 0.030 2.96 2.37 2.94
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2.5 - Intersection

With the problem of intersection (Figure 2-5), two images, whose EOP are known, are used
to determine the coordinates in the object frame of features found on both of them,
employing the principle of stereovision. The known, unknowns and measurements (R and L

designate the Right and Left camera/image) of this problem are:

Image space (R)

(Xir-X0Rs YiR-Y0R> ~CR)

1>
OR (X, Yir» €r)
A \
7Z=U Perspective centre
0,0, 0)
N OR
> (Xor» Yor, -CR)
YR OR
XR (X0R9 Y0Ra ZOR,
® R, LR, KR)

c Zr
Image space (L) /
— (XiL-XoL> YiL-Yor» ~C1L) /
T OR (XiL, YiL, €L) /b
Y
XL

/
/
/
el
/
1
' Perspective centre ;; S space
/ (0,0, 0)
Y=N OR

(XoL, Yor, €L)
OR

(XoL> Yor, Zor, ® L, 0L, KL)

X Yi, Z3)

V=

Figure 2-5: Intersection Problem

Measurements: X, r, Your Zour Wor Our KR Xi »Yis Unknowns: X;,Y;,Z,

i=1.n, j=RL

Intersection is always handled in the frame of LSA because there are always more

measurements (4n) than unknowns (3n).
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2.5.1 - Intersection by Least-Squares Adjustment
To solve the intersection, we consider the following vectors. The vector of the unknowns:

X”=[X1 Y1 Z1 Xn Yn Zn]T
is computed by:

x" =x"+ dx" (2.9)

o
where x” is the vector of the approximate values of the unknowns:

and &x” is the computed vector of corrections by LSA:
5x" =[6X, dY, 8z, - OX, dY, dZ,[
The vector of observables is:

"
y :[XL1 Yo o Xt Yin X Yo 4o W op K

Xr1 YR1 * Xmn Yrn Xro Yro Zro Wr OR KR]T
Having the above vectors, 8x” is computed through solving the following equation:
A'd3x"+B"'v'+w"=0 (2.10)
v" is the vector of errors. The misclosure vector w"=F()(()”,y”j. The LSA solution of
Equation (2.10) is, (similarly to (2.4)):
5x" =N"""u" (2.11)
where N"=A"TM"A", U=A"M"w", M =BC;B"

The error information of the measurements C’{, is included in the variance-covariance matrix

(R and L refer to the Right and Left camera/image):
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14 n
o | iy Clry
y — C"T Cn
LRy RY J(an+14)«(4n+14)

o, 0 0 0 0 0 0 0 0 0 0
oy, 0 0 0 0 0 0 0 0
0 0 o0 0 0 0 0 0
2010 0 0 0 0 O
62i0 0 0 0 0 0
'C}’y - ioijo Txiovio Ixozio  Oxjom; Ixjoo; Ixjoxg
LR i 031-0 Tvizio  Iviw;  O¥ioq;  Oviex,
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E 92 Zjowj T Zjogy T Zjok;
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E Oij oK
l g2
L 5
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Matrix A" is the first design matrix (Jacobi matrix) and it contains the derivatives of the

measurement model (Eq. 2.1) with respect to the unknowns.

A
A”:{

With,

Aj =
ji=LR)

1
& 4nx3n
I aF(X)n aF(X)n aF(X)n
oX oY. oZ
aF(YSﬂ aF(y i 8F(y i
X, oY, oz,
OF(x), oF(x), oF(x),
X, oY. oz
aF()’)jn aF(ijn aF(y1)jn
X oY, oz,
[oF(x)y oF(x)y oF(x);
oX oY. oZ
aF(VSﬂ 6F(y i 5F(Y5j1
X, oY, oz
0 0 0
0 0 0

aF(X)n aF(X)n aF(X)n
oX aY, oZ
5F(yr5j1 6F(y i aF(yn)n
X, oY, oz,
OF(x), oF(x), oF(x),
X, oY, oz,
aF(y)jn aF(y)jn aF(Y)j
X, oY,  az,
0 0 0
0 0 0
OF(x), oF(x), oF(x),
X, oY,  az,
aF(y)jn aF(y)jn aF(y)jn
oX, oY,  az,

12nx3n

2nx3n

Matrix B” is the second design matrix and it contains the derivatives of the measurement

model (Eq. 2.1) with respect to the vector of measurements. It has the following form:

LR R

»_|BL Bir
B = "T 14

}4nx4n+14

B[R =0

and,
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_c’ﬂF(x)J-1 c’ﬂF(x)J-1 aF(x)J-1 aF(x)J-1
ﬁxn ﬁyn ﬁxjn ayjn
6F(y)|_1 6F(y)|_1 5F(V)L1 aF(y)ﬂ
TR TR 7
j - . . . .
i=(LR) aF(x)jn aF(x)jn 5F(X)jn 5F(X)J~n
OXj1 Wit Xin 0¥
aF(Y)n 6F(y)j1 OF(y ), aF(y)jn
ST i1 Xin Win
oF(x), oF(x)y oF(x)y oF(x), oF(x)y oF(x)y |
aF(y)j1 6F(y)l1 aF(y)n aF(y§j1 aF(y)j1 6F(y)j1
Ko N 02 Owp day 0K
OF(x), oF(X), oF(x), oF(x), oF(x), oF(x),
Xo Oy  Zy  ow;  oq; oK
Fl)y FO) Fl) Fly) iy, oy,
-1 0 0 O
-1 0 O
0O O -1 0
(0 0 0 -1
8F(x)j1 aF(x)j1 8F(x)j1 aF(x)j1 8F(x)j1 6F(x)j1
5F(Y)j1 aF(Y)n aF(Y)n 8F(y3j1 aF(Y)n 6F(Y)n
6XJ0 8YJO 6ZJ0 8001 8(]] 8KJ
OF(x), OF(x), oF(x), oF(x), oF(x), oF(x),
aF(Y)jn aF(Y)jn aF(Y)jn aF(yjjn aF(ijn aF(Y)jn

The approximate values are used to compute the matrices A” and B". In the LSA
adjustment of intersection, each point is solved independently using a stereo-model. The

equation of combined case LSA takes the form:
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where the subscript /i denotes feature i, and j indicates Left or Right images (camera). The

solution of dx] is:

8] = (N; + Ngi ) ' (U]; + Ug;) (2.13)
: " " " " " -1 " " " " " " -1 "
with Li ZALiT( Li LyBLiT) Li NRri = ARi (BRi RyBRU Agi
1 1
Ui, = ALl Brici, BT ) W, Uxi = AR (BRCR,BR | Wiy

The precision estimation of the parameters, residuals and measurements are:

o (2.14)
C;’, — CnanTmnf']Bﬂc; _ C;BNTM”71ANN"71ANTMﬂf']Bncg (215)
c,=cC,-C, (2.16)

2.5.2 - Intersection Accuracy
To analyse the accuracy of the intersection problem, a simplified relation between the

images and object frames can be used. The following conditions for Equations (2.1) are

considered:

X0R= OR:YOL:ZOR:ZOL:O
XOL=—b
U.)RZ(.ULZGRZGLZKRZKL =0

Xor = XoL = Yor = YoL =0

b refers to the distance between the two cameras. These conditions mean that the origin of
the right camera coincides with the origin of the reference system, the pitch and tilt of the two
cameras are zero and their azimuth is also zero. This means that the origin of the left camera

is located at an abscissa of —b (Fig. 2-6).
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Y=N

o
]
t

Left camera b Right camera

Figure 2-6: The simplified assumptions illustrated in a figure

Substituting these conditions into Equations (2.1), the following is obtained:

Right image (R):
x=vyXr | z-yIR (2.17)
Left image (L):

X=-b+YZ z-yIL (2.18)
C C

From equations (2.17) and (2.18) the following equalities are obtained:

X-yX  z_yYR_yW  y___ G _ ¢ _cb (2.19)
C

c c Xp=XL XL =XR Py

P, is the parallax along the x-axis of the images. After applying the theory of error

propagation, the error estimate equations are:

(2.20)

2 2

o= (o) (Y] 221
2 2

o (2o (Yo 222)
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The photo-coordinates of point P are x and y, and Y is the distance from the image to the

object. ox,0y,0, are the accuracy of the feature’s X, Y, Z coordinates obtained from the

restriction of the base b, focal length c, observation accuracy of the measured x and vy
(o4 0,) on the images, and the accuracy of the parallax measurement, Op, = \/Ecx. As can

be seen in the above equations, the stereo-base b, and the focal length ¢, put constraints
on the possible accuracy achieved from intersection. The choice of b and c is discussed in
Chapter 3.

Figure (2-7) shows the accuracy plot of the Y-axis computed from Equation (2.20). A base of
1 metre can guarantee a Y measuring accuracy of less than 15 cm for an object 10 metres
away from the cameras. Pixel size is 7.4 ym and pixel measurement accuracy is 5 uym; focal

length is 6 mm.

Figure (2-8) shows the accuracy plot of X and Z-axes computed from equations (2.21) and
(2.22), respectively, which demonstrate that it is possible to use points all over the image,
and still achieve measuring accuracy, due to the geometry constrained by a base of 1 metre,
of less than 15 cm for object 20 metres away. Pixel size, pixel measurement accuracy, and

focal length are the same as above.

centimeter

meter

Figure 2-7: Simulated accuracy in Y-axis usingb =1 m, c =6 mm
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15
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25

Position on image (mm)

Figure 2-8: Simulated accuracy in X and Z-axis usingb =1 m, ¢ =6 mm

Thus, the geometry of the images constrains the accuracy to about 15 cm for objects 10
metres away for the Y value but a much better accuracy for the X and Z coordinates. This
accuracy size is standard for many application requirements. However, this is a simulation

and simulations do not usually reflect the reality, but rather an approximation.

The X and Y accuracies change according to the initial conditions; if the azimuth was

changed from 0 to 90, the accuracy information between X and Y will swap based on the

following equations (Y, =-b):

Right image (R):

y-_xXr | z=--xIR (2.23)
Left image (L):

Y=-b- x’% , Z= —xy?L (2.24)

From Equations (2.23) and (2.24), the following equalities are obtained:
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Y= xXR, z=-x¥R - _xI x-_ _¢°b
c c c X, —Xg Py

(2.25)

Comparing Equations (2.25) with those of (2.19), it can be clearly seen that X and Y are

swapped.

From this simple simulation, it is expected that the weakest components will be X and Y
depending on the orientation of the system and in all cases the Z-component will always be

the strongest.

In real applications, this accuracy is somewhat optimistic because conceptually the EOP of
the two images are not perfectly known and the measurements accuracies of the photo-

coordinates depend on the quality of the images and might be lower than 5um.

2.6 - Solving SLAM Trajectory by Photogrammetry

Figure (2-9) explains the procedure of SLAM by photogrammetry without image scene
restitution; it is similar to Figure (1-1). The previously described resection and intersection
are combined in a common process that evolves in time. Considering the initial position as
known, intersection is used to map a number of features that will be considered as GCPs —
or alternatively Controlled Homologous Points, CHOP — (i.e., of known position) when the

vehicle moves and captures new images. This procedure goes on through the whole survey.
This procedure requires considering certain points:

— Recursive LSA: the LSA solution of the epoch k —17 is used as observations for epoch
k,

— Correlations are carried from one epoch to the other.

Furthermore, the procedure requires homologous point determination on the image stereo-
pair and between epochs. This problem is a part of an automated SLAM and is not

considered in this thesis.

This Section illustrates the operation of SLAM with resection and intersection in a recursive
approach, with the embedding of the time index k. To start with, the initialisation has to be
performed by determining the initial EOP of the two cameras. The initialisation can be done

in three ways:

— Initialisation with GPS/INS, which demands good GPS signal reception,
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4 GCP Resection

® Targetobject Intersection

° Epoch k+1

e Epoch k+2

Figure 2-9: SLAM by photogrammetry
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— Initialisation with resection, which demands the existence of sufficient GCPs at the

beginning of the survey, or

— Initialisation by standing on known position and performing initial alignment by gyro

compassing; depending on the IMU quality, this can be an approximate solution.

In the first case, GPS signal reception is vital. The GPS/INS gives us the position and
attitude of the IMU (or GPS, or the vehicle, etc.), which after applying the leverarm and
boresight correction yield the EOP of the two cameras (Chapter 6). Thus, initialisation is

achieved.

As for the second case, at least three GCPs are required for the determination of the position
and attitude of each camera by resection. However, it is always preferable to use as many

GCPs as possible.

The third initialisation requires the existence of a benchmark for the localisation and
depending on the used IMU, enough time to perform static alignment by gyro-compassing.
Another alignment procedure can be performed approximately by using a compass to

determine the initial orientation, and an inclinometer to determine the initial roll and pitch.

After the initialisation, intersection starts to determine feature coordinates. The vehicle moves
and captures two images; moves again, capture images, etc. The flowchart of this procedure

is laid out in Figure (2-10).

The algorithm will be discussed now considering that the initialisation is properly done, i.e.,

the initial EOP and their covariances of the two cameras are supplied.

To simplify the notation, at each given epoch k, n features are mapped. In this way, the

dimensions of the different matrices are:

Ox(Lr) : 6x1 5x" : 3nx1

Yir) @ Snx1 Yy (4n+12)x1
ALr) @ 2nx6 A" : 4nx3n

BiLr) : 2nx5n B” : 4nx(4n+12)

NiLr) @ 6x6 N” : 3nx3n
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U'(L,R) 6 x 1 U” . 3n x 1
CiLry @ 5nx5n Cy, : (4n+12)x(4n+12)
CLrx '@ 6x6 Cy : 3nx3n
[P -
Known initial
position
Initialisation
Capture photos

Measure features’ photo-
coordinates (x, y) and compute
their X, Y, Z by intersection

Move “s” seconds
and capture photos

Measure features’ photo-coordinates (X, y)
of known X, Y, Z. Compute position and
attitude of the two images by resection

Perform intersection to
map more features

Yes
More mapping?

Figure 2-10: Flowchart of Photogrammetric SLAM

(It should be noted that in practice the number of features n changes from one epoch to the

other, but it is assumed constant here to facilitate the derivations.)

Intersection at epoch k:

n I/—1 n
6Xk = Nk Uk s

—1
n _ arT(presr nT "
k — Ak (Bk y/kBk ) )

—1
n _ AT (Qresr nT "
Ui = Ag (Bk vikBk ) Wy
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where

ox) =[5X, &Y, &z, - ®X, dY, dZ,[

o
and the solution of intersection at epoch k is: xg = X"k+ dx .

The elements of x; are used as GCPs (CHOP) at epoch k + 7 when resection is solved:

! !_1 !
Ox 1 = N iU 14

LR)’

with

1
’ /T ’ ’ IT !
, Ugir = Ak+1(Bk+1cy/k+1Bk+1T Wi 41
(LR) (L.R)

—1
’ !T ! ’ /T ’
Nk+1 = Ak+1(Bk+1cy/k+1Bk+1) Ak+1

where

85X, =[6X, BY, d5Z, dw da 5K]T‘(LR)

o
and the final solution of resection of epoch k + 17 is: X} 4 = X'k+1+ 8X} 1

(LR)

The elements of x|’(+1|(|_ r) are used in a stereo-model at epoch k +171 to map n new features,

Xy.+1- These n new features at epoch k+17, xy.q, are used at epoch k+2 to compute

Xi.2- The procedure continues until the end of the survey.

It is important to note that not only x’ and x" are used from one epoch to the next, but also

the Covariances via the matrices C,, Cy, C,, and C{. The Cy,_, is given along with the

information about the initial camera’s position at epoch k=0. (It is used to find the object

coordinates of n new features by intersection in order to compute the EOP of the two

cameras at epoch k +7=1.) The Cy, 4 is computed as:

photo
21‘ 0 0 0
object obiject
0 34 0 Tz
c . k+1 . . k1
k+1 = : : . : :
’ 0 0 5 [P 0
. E,
obiect object
0 ZE T ... 0 :
L k+1 K+1
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photo
where Z, is a 2x2 Covariance matrix of the photo-coordinates, which is always given

b]ect

bject
and depends on image quality. Z; ::ec and ZZ’ , on the other hand, are 3x3
+

Covariance matrix of feature i -th and j-th object coordinates. These will be taken from the

output of the intersection of epoch k, specifically from matrix C}, that is equal to:

, [oblect sisr object
1
C / Nn 1 (A”TM” 1ANT _ k: . .
xk - . . ..
Ty object R object
k
2
o ) Ox, OxOy, 0x0z
. e ject " object 2
with X i CE | =|0y,0x oy, Oy.0z,
2
GZiOX GZiOYi O'zi
Ox.0Oy. Ox.0Ov. Ox.07.
, |object , ”object X7 X Xi Y] Xi7Z]
and ZZ ‘ —X'Z = GYiGXj GZisz GYiGZj

6z,0x; 9z0%y; 0z9z

As for Cy, .4 (measurements covariance used in the intersection), it is computed in a similar

way as follows:

photo photo
0 z 0

i
14
) CRy/k+1 =

Zﬂ ‘ 0 zﬂ
L_EOP| 4 R_EOP|,

i
n
Clyi =

" " . . .
ZL_EOPLM and ZR_EOP‘M are the measurement covariance matrices of the Left and Right

EOP that are needed to compute new n features at epoch k + 1. These are found from the

output of the resection epoch k + 1 as follows (j=L,R):

1

" ’ N L
zj EOP x/k+1 = Nk+1 _( k+1( +1C /k+1Bk+1T Ak+1)

k1
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05(,-0 OxioYo 9%0Zjp OXjow; OXja;  IXjok;
0'%1.0 OYJOZJO GonwJ OYJOGJ OYJOKJ
_ O%jo 9zjpw; 9Zpp0; IZp,
Oﬁ’j Ouwa;  Oug
SYM. oﬁj Oay,
2
L 95 e

Summarising, the procedure explained above can be put as in Table (2-2).

Table 2-2: SLAM Procedure for taking information from one epoch o the other

Epoch 0 1 2 K-1 K K+1
! ! ’ ’ ’ !
Yo Y1 Yo Yk-1 Yk Yk+1
. ! ’ ’ ’ ’ !
Intersection y/0 vy yI2 - Cln—1 yik Cli1
! ! ! ! ! !
(X, Y,Z) | Xo X4 X3 X1 Xy X 11
CV VA VA VA VA IA
x/0 x/1 x/2 x/k—1 x/k x/K+1
A A A A AL A
14 n n n 14 14
Yo NV I\yz N Vo N, Y% N, Yot N |
. 14 n 14 \ 14 & 14 & 14 &
Resection yl0 y/ yI2 ylk—1 yik ylk+1
14 " 14 n ” 14
(Xo,Yo,Zg, | X0 X1 X2 X1 Xk X 11
14 n 4 4 n 14
®,0,K) /0 %1 /12 k1 Ik Ik +1

Alternatively and to abridge more, the covariance transportability:

Cyi.1 = Given accuracies of the GCPs = Cg,

Ckik+1 = Computed accuracies of the EOP

Cyi.1 = Given accuracies of the EOP =C%, 4

C%.1 = Computed accuracies of the next epoch’s (k+2) GCPs

The above analysis can be put in a one-step approach called recursive “Bundle Adjustment”.
The one-step approach is followed when there is no other technique to determine the EOP,

which is not the case here. In addition to the two cameras, an IMU will also provide the EOP.
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After incorporating the IMU, the analysis above changes as follows. The output of the
resection at the epoch k will become external measurements for the INS Kalman Filter (KF).
After obtaining the navigation parameters corrections from the KF, intersection is carried out

at the same epoch k. As a consequence, instead of using the Cg, to build up Cy,, the

variance-covariance matrix output of KF is used (discussed in Chapter Five).
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3 - CHOICE OF MAPPING
INSTRUMENTATION

... being a Surveyor, I am trained to have the
precise orientation and locate strategic targets ...

This Chapter focuses on the selection of the photogrammetric instruments. The choice will

be guided by simulations and stochastic analysis as well as the practicality of the equipment.

Cameras are “acquisition instruments” in photogrammetry. Traditionally, metric cameras are
used for applications requiring high accuracy; but lately, the new advancement in optics and
the development of mature calibration models gave the non-metric cameras an advantage
over the metric ones in certain close-range photogrammetry applications due to their lower

cost.

First, the choice of the focal length and stereo-base is made in Section 3.1 and 3.2. In
Section 3.3, a brief description about the cameras used in this work is shown. To link the
camera to the computer for data acquisition, a frame grabber is needed, which is described
briefly in Section 3.4. Camera calibration and its general mathematical model with the LSA

solution are studied in Section 3.5.

3.1 - The Focal Length “c”

When building a photogrammetric system the size and resolution of the cameras and the

lens are two important issues.

To choose the focal length, one needs to study the size of the object’s image and Field-Of-
Vision (FOV) with relation to the image resolution and size. A feasibility study was made for
this task.

The capability of seeing an object, with a certain size, on the image depends on the focal
length of the lens and the pixel size. The pixel size of the used CCD cameras is 7.4 um (See

Section 3.3). The size of the object’s image d (possibility of seeing its image), consequently,
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depends on the focal length c, its actual size D, and its distance Z from the image through

the relation of Figure (3-1).

Figure 3-1: The relationship between focal length, object distance, and its size

Figure (3-2) shows the relation between different focal lengths and the image of an object of
size 5 cm located at different distances from the lens. If this object is 15 m away, a lens of 6
mm can present it with a size of around 0.022 mm; thus, with a pixel size of 0.0074 mm this

object’s image can be viewed.

0.25

0.2

o
-
(3.

Object's image's size (mm)
o

0.05
0.04
0.03
0.02
0.01

Object's distance (m)

Figure 3-2: Relation between object distance and its image size with different focal lengths
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Figure (3-3), on the other hand, shows the relation between objects with different sizes and
their respective sizes on the image for fixed focal length. For example, with focal length of 6
mm, an object size of 2 cm and 15 m away has an image size of around 0.010 mm; taking
into account that the pixel size is 0.0074 mm, it is difficult to see this object clearly and,

therefore to map it.

As for the FOV, the longer the focal length the smaller the FOV is. Having a focal length of 6
mm, guarantees a FOV of 40.8° x 31.2°. Considering Figure (3-1) and with the CCDs chip
size of around 4.9(H) x 3.7(V) mm, the FOV at a distance of 15 m is around 11.3(H) x 8.5(V)
m. As a compromise, a focal length of 6 mm was chosen for acceptable FOV and good

mapping resolution.
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Figure 3-3: Relation between object size, its distance and its image size (c= 6mm)

3.2 - The Stereo-Base “b”

In terrestrial applications more than one camera can be used, the knowledge of the distance
between the cameras is crucial; this distance is called the stereo-base. (In airborne

applications, the stereo-base is the distance between two exposures.)
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Usually, the ratio between the length of the stereo-base and the distance of the objects is
preferably (ASPRS, 2004):

1 b 1
15 Z 4

Depending on a particular application in close-range photogrammetry, this ratio may be
difficult to achieve. Here, we chose a base of one metre due to the restrictions in the size of
the vehicle. This short base will affect the intersection accuracy as was seen in Section 2.5.2.
Alternatively, this handicap could be mitigated by a lateral movement of the vehicle that acts

as a baseline extension.

The focal length and the stereo-base are both in the denominator of Equation (2.19). So,
they can be chosen in a way that keeps the accuracy of intersection within certain limits. (A
small focal length obliges the stereo-base to be larger to keep a defined accuracy.)

Therefore, a compromise between the two must be found.

100
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T oTOTUT
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|

l
80— — - o
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|

|

|

Accuracy (cm)

Distance from stereo-base (m)

Figure 3-4: Effect of the stereo-base length on mapping accuracy on the depth components

After choosing a focal length of 6 mm, the effect of different stereo-bases on the depth

accuracy is demonstrated in Figure (3-4), where it shows that long stereo-bases guarantee
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more accurate mapping. This is reflected also on the other two components as shown in
Figure (3-5) computed by Equations (2.21) and (2.22); to plot Figures (3-4) and (3-5), an

object at a distance of 15 m was chosen.
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Figure 3-5: Effect of the stereo-base length on mapping accuracy of the X- and Z-component for an
object at a distance of 15 m

3.3 - Charged Couple Device Camera

Charge Coupled Devices are classified under the Solid-State Cameras category, where the
film is replaced with a solid-state sensor. Figure (3-6) shows a cross-Section of such

cameras.
The following part is taken after (Atkinson, 2001), Section 3.2.5, page 57.

A Charge Coupled Device (CCD) is the most commonly used device for recording the
amount of light falling on to a surface for photogrammetric arrays. CCDs are arranged in
linear arrays or in two-dimensional arrays. Linear arrays are used to scan a scene and this
introduces time-dependent geometry. Two-dimensional arrays, as in a CCD camera, provide
a complete record of light falling onto a two-dimensional surface at a particular instant of

time.
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The CCD works by converting photons, which fall onto the sensor surface into electrons.
These are accumulated in capacitors and converted into digital form for output. The size of
the array and the pixel size are the most important characteristics of a camera for
photogrammetric use. Other important features are the dynamic range, the geometric
characteristics (particularly lens distortion), the transfer of data from sensor and the time

taken to record an image. Seitz et al. (1995) give a full description of these characteristics.

The size of the array is limited by technology. However, for aerial application, 2-dimensional
arrays of 7168x4096 12 um pixels are possible (DMC from Z/I).

For terrestrial applications, a low-cost (e.g., the CS 3910BH < 2K Euro) CCD with a
1392%x1040 array of 6.4 um pixel size is readily available. More expensive cameras (e.g., the
Hasselblad H2 > 25K Euro) are available with an array of 5448x4080 and a pixel size of 9

um.

Cover glass

—>
Camera Power and
electronics signals

D E—

Lens IR-filter  Diffuser Slid-state

sensor
substrate

Figure 3-6: Solid-State Camera (Courtesy Beyer, 1992)

The amount of data needed to store an image in digital form is obviously related to the array
size. A simple off-the-shelf camera with a 752x480 array will need 360 Kbytes and a

3000%x2000 array will need 6 Mbytes.

The CCD we chose to work with is a Sony XC-55 Figure (3-7). We employ two analogue
Sony CCDs (commonly used in the photogrammetry and robotics) that are linked via one
cable to a frame grabber. The image data are synchronised with the data of an Inertial
Measurement Unit (IMU). The interval between subsequent exposures is programmed to 0.5
or 1 s. As mentioned above, due to the limitations in the size of the vehicle, a base of one
metre is chosen to separate the two cameras. Table (1) shows some specifications of these
CCDs.
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Table 3-1: Specifications of the CCD cameras

Effective picture elements 659(H) x 494(V)
Cell size 7.4 um x 7.4 ym
Lens mount C mount
Focal length 6 mm
Filed of vision 40.8° x 31.2°

3.4 - Frame Grabber
Following Atkinson (2001), Section 5.5.2, page 143, a frame grabber is typically a printed

circuit board, which is designed to reside in a host computer. The purpose of a frame grabber
is to instantaneously sample the output from a solid-state sensor, which is transmitting
standard analogue video. The standard video signal is output continuously on the basis that
it will be broadcast, shown on a video monitor or perhaps recorded continuously. The sample
collected by the frame grabber is loaded into onboard solid-state memory, which can then be
accessed by a host computer. Stored as a contiguous array of intensity values, the fields or
frame are assembled into a digital image composed of pixels. Depending on the application,
the frame grabber may be required to intermittently sample and store individual frames,
collect short sequences of frames, or perhaps continuously read the video image and carry

out a real time processing task.

In this work, the frame grabber will be used to sample individual frames of two cameras

simultaneously and make them accessible by a host computer.

The Matrox Meteor-1lI/Multi-Channel frame grabber is used in this work. It is part of the
Matrox family of high performance frame grabbers for cost sensitive applications. The
grabber is hosted by a compact Matrox 4-Sight industrial PC with windows NT-Embedded
operating system. The acquisition and synchronisation program (written by J. Skaloud)
makes use of Matrox Image Library (MIL) that facilitates image acquisition and control of the
grabber. Designed to capture from standard or variable analogue monochrome or
component RGB frame scan sources, it specifically supports acquisition from interlaced or
progressive scan component RGB cameras and single or dual-channel progressive scan

monochrome cameras.

Figure (3-7) shows the two Sony XC-55 cameras connected via one cable to the Matrox

Meteor-Il PC hosting Multi-Channel frame grabber.
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Figure 3-7: The two CCD connected to the frame grabber inside the Matrox4-Sight PC

3.5 - Camera Calibration

Cameras need calibration in order to be adapted for photogrammetry due to imperfections,

especially in their lenses. Camera calibration involves (Ziemann and El-Hakim, 1982):
— Evaluation of the performance of a lens,
— Evaluation of the stability of a lens,
— Determination of the optical and geometric parameters of a lens,
— Determination of the optical and geometric parameters of a lens-camera systems,

— Determination of the optical and geometric parameters of a data acquisition system.

Only the geometric parameters of the lenses will be evaluated here. This means the interior
orientation parameters and the radial symmetric and decentring distortion caused by the
lens. The choice to perform this calibration only stems from the fact that other corrections will

not affect the accuracy of the system under development.

Thus, camera calibration here aims at determining the interior orientation (x,,y,,c) of the

camera and the radial symmetric and decentring distortion caused by the lens. Every camera
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requires an independent calibration process. The results of the calibration of the two CCDs

are shown in Appendix B.

Camera calibration is done in the context of LSA using the following mathematical model:

U
X=Xy —C—+AX
w (4.1)

V
=Yy —C—+A
Y=Yo W y

U and V are the numerators and W is the denominator of Equation (2.1). This model is based
on the co-linearity condition used in the intersection and resection with the addition of Ax

and Ay, which are the correction terms due to the distortions. There are many models to

determine these parameters; to name a few: El-Hakim and Faig, Ebner, Brown, Grun, etc.

As shown in Beyer (1992), radial symmetric lens distortion is the largest systematic error
source when using solid-state cameras with low cost lenses and short focal lengths (5 to 20

mm).

The determination of Ax and Ay is achieved via a bundle adjustment with self-calibration.

3.6 - Bundle Least-Squares Adjustment with Self-Calibration

Camera self-calibration is usually done within the bundle adjustment to circumvent the effect
of the change of the interior orientation during exposures. This process combines the
processes of resection, intersection, and calibration into a single adjustment. Photo-
coordinates of known and unknown (GCPs and homologous) points are measured and put
into the model of Equation (4.1), then a LSA is performed. To define the datum and avoid the
singularity in the matrix of normal equations, the corrections of some of the known points are
forced to zero and the rows and columns that represent these known points are excluded

from the normal matrix.
The mathematical model for the bundle adjustment with self-calibration is:

F(x)= —x+xg - ci + AX(85xg, Y 0,5C,a485,83, @y, )
v (4.5)

v
Fly) =~y +Yo —C + AY(60.8y0.5¢. 12525 +21)

where 0x,,0yy,0c are the correction to Xg,yg,¢ and a,a,,as,---a, are the polynomial

coefficients that contribute for the lens radial symmetric and decentring distortions.
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The linearised observation equation for each photograph is:
wji = A'jlﬁxi + A}i6x€' + Dj,5y + Vji (46)

Where

A' is the design matrix of resection, with dimensions 2nx7; j=L,R

A" is the design matrix of intersection, with dimensions 2nx3n, and

D is the design matrix, with dimensions 2nx(3+h), of the calibration

equations and d8y is the vector of the interior orientation correction and

polynomial parameters: 6y=[6x0 oy, Oc a; a, - ah]T.

The solution of this LSA problem is:

-1

FX}: Nyw Ny | [ Uy 4.7

Sy| [Ny Ny | |Uy

More explicitly, having n points, 2 images (L and R) and h+3 unknown calibration

parameters, the above matrix becomes:

a—1- _

[&x| | L 0 Eu o N i Ny L
OXR 0 Nr Ng¢ - NrniNyr| |Ug
5xj| Ny Ngy Ni 0 0 :Ny| |Uj @.5)
: ; 0 .0 : '
6 " T T ” : "
Xp| [Mn Nen 0 0 Np iN,| |Up
| By | _N§L Nyr Nyq - Ny, Nyy | Yy |
With
n T n T
NL =2 AL -Pi-AL Nk = 2 AR ‘Pri - Ag;
<7 i=1 <7 i=1
L L .
LZZALi'PLi'bLi RZZARi'PRi'bRi
7x1  i=1 7x1 i=1
N, =A{l P -A Nei = ARy -Pri - Ag;

7x3 7x3
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N = AL PLCAL - AR -Pr- Ay Uf = AL P by + AR -Pr b

The computation of the other matrices is:

yL n
7x(h+3) > A Py Dy
i=1
Nyr -
7hes) 2 AR -Pri Dy
i=
Noy =| Ny1 |= (4.9)
3x(h+3) A{} -PLy-Dyq + AR} -Pgy-Dgy
Nyn AT .P,, D, +AR -Pg,-D
_3x(h+3)_ L Ln ""Ln Ln Rn "' Rn Rn |
and
n T n T n T n T
Ny = 2.Dy; -Pi-Dyj + 2 Dg; - Pri - Dg; u, = 2.Dyi Py -by; + X DR - Pg; - bg;
(h+3)x(h+3) i=1 i=1 (h+3)x1  i=1 i=1

The explicit form of the Jacobi matrix D is not shown here because its size and shape are

dictated by the calibration model.

The calibration of the two cameras, that were used in this work, was done by the Software
BINGO-F®, whose model is not published; however, the theoretical development shown

above remains the same regardless of the model used.
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4 - STRAPDOWN INERTIAL SYSTEM
SUPPORTING SLAM

... being a Geodesist, I am trained to have a
global view and to aim at the stars ...

... being a Navigator, I am trained to have the
curiosity to explore and to go beyond the
horizon ...

4.1 - Introduction

With about 60 years-long history, Inertial Navigation Systems (INS) developed mainly as a
military technology. Nowadays, they are used not only in the navigation arena, but also in

other fields that require estimation of motion by autonomous measurements.
The Inertial Measurement Units (IMU) are usually classified into:
— Strategic-Grade IMU (Space shuttles, Submarines, ballistic missiles, etc.)
— Navigation-Grade IMU (air transport and military air and surface vehicles, etc.)
— Tactical-Grade IMU (missiles, mapping system, land navigation, etc.), and
— Automotive-Grade IMU (robots, machine control, etc.)

An informative discussion about class characteristics can be found in Greenspan (1995).

In general, the quality of a Strapdown INS (SINS) is correlated with its acquisition cost. All
IMUs are subject to systematic errors that translate to position time dependent error growth.
While the magnitude of the sensor errors changes with the “accuracy class”, the inherent
principles of transforming sensor measurements into change in position and attitude are

common to all SINS.

In what follows, a brief overview about the INS concept is presented and the mechanisation
equations of the SINS are shown. The common SINS error analysis for a tactical-grade IMU
and Kalman Filter presentation follow. In the last Section, the IMU used in this research is

introduced.
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4.2 - Inertial Navigation System Concept

Inertial Navigation Systems belong to the deduced-reckoning category, where a current

position of a vehicle is deduced from its previous position.

An INS utilises the inertial properties of sensors mounted aboard a vehicle to execute the
navigation function through appropriate processing of data obtained from specific force and

inertial angular velocity measurements.

All INSs must perform the following functions, (Schwarz, 1986):
— Instrument a reference frame
— Measure specific force and angular rates
— Have knowledge of the gravitational field

— Time-integrate the force and rate data to obtain change in position and attitude

information

An IMU consists of the following items:
— Three gyroscopes
— Three accelerometers with known orientation with respect to the gyroscopes
— A data processor

— An accurate time recorder.

The gyroscopes can be used to either measure or control orientation changes from the
initially defined reference. The measuring of the specific force is achieved by the
accelerometers. The processor (computer) and the time measurements accomplish the time
integration. The knowledge of the gravitational field is accomplished by the knowledge of the

position of the sensor with respect to an associated model.

4.3 - Mechanisation Equations for the Strapdown INS

To derive the mechanisation Equations of SINS, the modelling Equations have to be
formulated first. Following the derivation of Schwarz and Wei (2000), the first-order
differential equations for vehicle motion in the Earth-Centred-Earth-Fixed (ECEF) frame is

written as:
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where

e

v
=|REf® - 208 v +g° (4.1)

e

R; (Qgi + Q?b)

ré = (xe,ye,ze) are the three position components in the Earth frame e

ve = (vi,vi,vi) is the vector of the three velocity components in the Earth frame e
2 - (ff,f;’,ff) is the vector of the measured specific forces in body frame b

R} is the transformation matrix between the body frame b and Earth frame e

Q7 is the skew-symmetric matrix of the rotation vector of the Earth frame e and

relative to the inertial frame i in the e frame

Qb is the skew-symmetric matrix of the rotation vector of the inertial frame i and

relative to the Earth frame e in the body frame b

Q° is the skew-symmetric matrix of the rotation vector of the body frame b and
relative to the inertial frame i in the b frame sensed by the gyroscopes

g°® is the Earth’s gravity vector expressed in the Earth frame e and is computed by:

e _ e e /e ,.e

9" =9 ~ QD™ \here the first term is the gravitation and the second term

is the centripetal acceleration.

The dot (') represents derivation with respect to time.

In the above Equations, the gravity vector g° is computed as follows:

lgJcospcosA| | wix®

g° =| |gcos ¢sinA |+| wiy® (4.2)

lg[sin¢ 0

where ¢ is the latitude of the computation point (note the notation distinction between the

latitude ¢ and the pitch o), w, (= 7.292115x107° rad/sec) is the Earth rotation rate, A is

the longitude of the computation point, and |g| is the value of the gravitational acceleration
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usually approximated by the normal gravitational acceleration, y (with h being the geometric

height — in metres — above the reference ellipsoid):

y = y1(1 +Y,sin” ¢ +y,sin® ¢)+ (y4 + Y5 sin’ ¢)h + Yy h? (4.3)
v, = 97803267715 m/sec? : v, = 00052790414

Vs = 00000232718 : Vs = -0.000003087691089 1/sec?

Y5 = 0.000000004 397 731 1/3602 ; Y¢ = 0.000000000000721 1/m sec?

From these differential equations, one can derive the mechanisation equations. Following
Schwarz and Wei (2000), the detailed ECEF frame mechanisation equations, used to

compute the spatial translation, are shown below.

4.3.1 - Earth-Centred-Earth-Fixed Frame

The vehicle velocity increments are computed as:
Av® = Av{ —a®At + yeAt (4.4)

The process of solving the above Equations is recursive. Therefore, the parameters of epoch

k are derived from those of epoch k —1.

The first two terms on the right-hand side of the above equality are computed from the

measurements.

Av¢ is the velocity increments derived from: ¢ = RZf®, and at epoch k is equal to:
Av§ = Rg(tk_1)(| +%SbjAvb (4.5)

Where
Av® is the vector of measured velocity increments — accelerations,

I+ S® is the orthogonal transformation matrix between the body frame at time t,_,

and current time t,, and is equal to (I is a 3x3 identity matrix):

1 -0 6
I+8°=| 6 1 -¢@° (4.6)
-0 0> 1
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where the angles eib are the angular increments of the body rotation with respect to

the e-frame expressed in the b-frame and computed from 85, = A8 —d@?, as:
o2 02 o] =[a02 ae® ao:| —[det deb detf

Aei*;, is the vector of gyroscopes’ measurements w:‘,‘o expressed in the b-frame

multiplied by the time increment, At =t, —t,_,

dep, is the Earth rotation vector relative to the inertial frame expressed in the b-

frame and equal to w:‘;At, where

0
wil:e =R2we ZRZ 0 =[R31we RaWw, Rsswe]T 4.7)
w

e

R; is derived from the quaternions:

Rp| [(@-2-@+a?) 2@@-%a) 20 + )
Ry Ry Ry |=| 2000 +00,) (@B-@-B+) 20,0 - )
Ras 2(qya; - q2q4) 2(q2q3 +G40,) (qg —q7 —q; + qi)

The quaternion update Equation can be written in terms of the angular increments egb (see

Schwarz and Wei (2000), Chapter 5, for more details):

oF 94 ¢ s _395 s6% | [ o

2| |92 1|-s6) c s, SO?, az 48
% A e 18 @8)

q3 q3 S y Sex C Sez q3

4 K Q4 k-1 - Seg - Se?{ - Selz) C K Q4 K—1

In the equality above, the terms c and s are equal to:

c=2 0039—1 and S=Zsin9
2 06 2

with e:J(eg)z +(e§’)2 +(e§)2 :
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Going back to Equation (4.4), a® is the Coriolis correction and is calculated by:

a® =207 v° = [— 2WeVy 2wV, OP

(4.9)
After computing Av®, the velocity v® = (vi,v‘;,vi) at epoch k is computed as:
Vi = Vg +1(Ave+Ave ) (4.10)
k = Vi1 75 \BVk k-1 .
and the ECEF coordinates r°€ = (xe,ye,ze) are determined by:
At
re =rke_1+?(v§+v§_1). 4.11)
The flowchart of the mechanisation equations in the ECEF is shown in Figure (4-1).
Normal gravity [«
o fryt V° v re
Accelerometers > R —><>—> J' > J >
Y B XY, 2)
Gyroscopes or
(¢, 2, h)
200V° e v
Integrate Compute
R{ > . >
Rb
Attitude
Rle; — Dic
Initialisation

Figure 4-1: Mechanisation Equations in the Earth-fixed frame
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From the Earth-fixed Cartesian coordinates, r® = (xe,ye,ze), one can compute the geodetic

coordinates, (,2,h):

ye
A= arctan(—ej (4.12)
X
b=¥+D (4.13)
e e
h= V¥ tly N (4.14)
cos @
- e arcsin(k sinzm/\m —e? sinZWJ
where W = arcsin| — D= — B
r 1-2kcos2W¥W + 2k“ sin“ ¥

k=05e22 Pyl f 4y f o+ f

r

As for the attitude angles —roll ¢, pitch 3, and yaw gy — they are computed from the matrix:

R} =R. -R¢ (4.15)
where

[cospcosy —singsindsiny —cos9siny  sinecosy + cosesindsiny
RL =|cososiny +singpsindcosy cos3dcosy sinesiny —cosgesindcosy
—sinpcos Y sin9 COsSpCos 9

[—sinA —singcosA cospcosA
RF =| cosh —singsinA  cos¢dsinA

0 Ccos ¢ sing
Thus,
R (3,1
¢= arctan( RE((3,3))J (4.16)
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_ _Ry(12)
W= arctan( RL(ZZJ (4.17)
9 =arcsin[R} (3.2)) (4.18)

4.4 - Dynamic Modelling of System Errors

The coordinates provided by direct integration of the system output suffer from systematic
errors. The error sources can be grouped in two distinct categories. First, there are errors
induced by the erroneous initial conditions; these errors are called initial system errors.
Second, there are errors due to the imperfections in the gyros and accelerometers, and they

are called sensor errors.

Constant system errors can be accurately removed by regular calibrations. The systematic
errors that changes from mission to mission or vary throughout a mission are known as state
errors. These errors affect the sensors output and are usually modelled by a set of linear

differential equations that express the errors rate of change in time.

4.4.1 - State Space Formulation
A dynamic system can be described by ordinary differential Equations in which time is the

independent variable. Using matrix notation, an nth-order differential equation may be
expressed by n first-order differential equations, where n becomes the number of state
variables necessary to describe the dynamics of a system completely. Using state-space
formulation, the error behaviour of the system errors can be described by the following

system of differential Equations (Gelb, 1974):
x(t)=T(t)x(t)+ Gwl(t) (4.19)

x(t) is the state vector and F(t) is the dynamic matrix. The vector w(t) is a zero-mean white
noise process representing the random disturbances in the system and G is a shaping

matrix. The state vector x(t) can be partitioned into two vectors of lower dimensions:

K=l xa] (420
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Where the error state x4 describes the behaviour of the position, velocity and misalignment
errors of the inertial system, while x, is used to model time varying accelerometer and gyro

errors. Using matrix notation, Equation (4.19) takes the following form:

<o el
0 Iy |xs Gu,

The matrix Iy, describes the manner in which accelerometer and gyro errors affect the

position, velocity and misalignment errors.

4.4.2 - Error Equations in the Earth-Fixed Frame

Choosing a 15 elements error state vector for the ECEF frame mechanisation equations

gives the following form:

x® = [x1e xz]r = [Sre ov® € d b]r
=[6xe dy® ©8z° ovy Ovy dv; Oe, O dg, db, db, 6bZ]r
(4.22)

oe, 0gx &g

y y

Where
ox®, dy® and dz° are the error states in the position vector
dvy, 6vy and Bv; are the error states in the velocity vector
O¢e,, 0e, and Og, are the misalignments’ error states
09y, 0g, and dg, are the gyroscopes’ drift error states, and

ob,, &b, and &b, are the accelerometers’ drift error states

The state vector usually contains many other states than those shown above, such as scale
factors, non-orthogonalities, random effects, etc. Only the sensors drifts were used in this

work due to the minimal effect of the other types of errors when functioning in low dynamics.

Following the linearisation shown in Schwarz and Wei (2000), the differential Equations of

the error model of the dynamic system in the Earth-fixed frame takes the form:
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[are | [ 5ve |
5V | |-F°e® +=°5r° —2Q85v® +Reb
x¢(t)=| & |= _Qfe® +REd (4.23)
d —ad +wy
| b 1L —Bb + wy ]

where F°¢ is the skew-symmetric matrix of the measured specific force vector in the Earth-
fixed frame f°, a and B are the diagonal matrices containing reciprocals of the time

correlation parameters of the Gauss-Markov process used to form the stochastic model of

the gyroscopes’ drift residual d and the accelerometers’ bias residual b, and wy and w,

are vectors containing white noise. Other terms were already defined.

Equation (4.23) can be re-written in the form of Equation (4.19):

x®(t)=Te(t)x®(t)+ Gewi(t) (4.24)

with
"o o o0 100 O O O O O O 0 0 0]
o 0 o0 010 O O O O O O O0 0 o0
o 0 o0 o001 O O O O O O O0 o0 O
E11 212 213 0 0 0 0 ff -ff O O 0 RI11 R12 RI3
E21 222 23 0 0 0 -f° O f 0O 0O O R21 R22 R23
E31 232 233 0 0 0 ff -ff O 0 O 0 R31 R32 R33
0 0 O 00O O O O RMRI2ZRI3 0O 0 O

rt)= o 0 0 00O O O O R21R2R2 0 0 0
0 0O O 000 O O O R3MR32R3 0 0 O
0O 0 0O 000 O O O -« O O O 0 O
0O 0 0O 00O O O O O -« O O 0 O
o 0 O 00O O O O O O -« O 0 O
o 0 0O 00O O O O O O O -p 0 O
0O 0 0O 00O O O O O 0 © -B O
0 0 0 00O O O O 0 0 O 0 -B|

The elements R; are those of the rotation matrix Rg. In addition, the elements =’s are

computed as:
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1 3(xe)2 3x°y*® 3x°z°®
o r r? r2 o 0 0
e,,e 2 e_e e
5:*:_3'\" 3szy —1+3i’ 3yrzz 40 o2 0 (4.25)
0O 0 O
3x°z°® 3y°z* 1+ 3(z¢f
P r? ro|

where K is the gravitational constant and M is the Earth’s mass. The central term in the
“KM” is known with much higher accuracy than either ‘K’ or ‘M’. The refined value of the

WGS84 GM parameter, along with its 16 uncertainty is:
KM = 3986004 .418 x 10° +0.008 m3/sec2 . This value includes the mass of the atmosphere

and is based on several types of space measurements; for more details, see

http://www.wgs84.com .

4.5 - Kalman Filter as an Estimation Method

Estimation is the process of extracting information from data — data which can be used to
infer the desired information and may contain errors (Gelb, 1974). Since the INS can give us
real-time results, optimal real-time estimation methods techniques are required here. These
techniques are based on error modelling, which take the dynamics of the system errors into
account, as well as the statistics associated with those errors. Optimal estimation deals with
three distinct problems: prediction, filtering, and smoothing. The prediction and filtering
algorithms are combined to provide real-time estimates of the state vector of a linear system.
Kalman (1960) has developed one of the most common forms of optimal filtering. The
smoothing algorithm, on the other hand, calculates improved estimates of the state vector

backward in time.

The basic problem to be solved here is the optimal estimation of a time varying state vector
X from a set of observations linearly related to the state vector. The dynamics of the state
vector is described by the matrix I'. The control measurements are related to the state

vector by the following equation:

Zk = Hka + Vk (426)

where z, is the vector of observations and H, is the measurement design matrix defining
the relationship between the observations and the error state vector. v, is a white noise

sequence corrupting the observations.



Chapter 4: Strapdown Inertial System Supporting SLAM 66

Let us define a set of measurements of the form:

Z=1{zg... 2.2} (4.27)

where z, corresponds to the measurement vector sampled at time t,. The prediction
problem is to find an estimate of the state vector x at time t; based upon the set of

measurements z, where i > k. The predicted estimate is denoted by
xi« =E{x Z} i>k (4.28)

where E{A B} represents the expected value of the estimate A, given the set of data B.

The filtering problem occurs when the time at which the estimate is desired coincides with

the last variable set of measurements.
xi« =Efx Z} i=k (4.29)

The smoothing algorithm uses all measurements between t =t, and t=t, to estimate the

state of the system at certain time t, where t, <t, <t,.
xi« =Efx Z,} k<n (4.30)

The time t, corresponds to the last epoch of the measurement update. Smoothing uses the
set of measurements done after time f,, {zk+1,zk+2,...,zn}, which contains additional

information about the state vector. This implies that optimal smoothing is a post mission
procedure and can be done only after the complete set of measurements has been collected

over a defined time interval.

Kalman Filtering provides the optimal real-time estimate of the state vector x and, at the

same time, a continuous measure of the estimation accuracy of the state vector.

Denoting the covariance matrix of the state vector by P :

P(t)=E{x(t) x(t)' | (4.31)

the KF algorithm can be applied to a continuous process with measurements taken at
discrete points in time. Between observations, the prediction of x and P over the interval

[t., . t.]is obtained from:
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Xk (=)= O qyx 4(+) (4.32)
P (=)= Dy 1y -P1(+)- Of_qj + Q4 (4.33)

The matrix @, _,,, called the transition matrix, is the solution of the set of differential

equations (Section 4.4):
x =Ix (4.34)

And, x,_4 and X, represent the state vector at time ¢, ; and t, respectively. Provided At is

small enough, so that the matrix ' can be considered constant over this interval, ® can be

computed using:
n=w

o(At)=1+ 3 r(at) (4.35)
n=1

For practical real-time implementation, the integration interval can be chosen small enough
so that a truncated series of the previous equation can be used in the calculation of the

matrix @. In the absence of high dynamics, the following approximation is sufficient:
®(At) =1+ F(At) (4.36)

The matrix Q, in Equation (4.33) represents the uncertainty of the state vector resulting from
the white noise input acting over the interval [tk_1 , tk]. Provided the dynamics matrix I is

constant over the interval At, a numerical solution of matrix Q, can be computed using:

Q. =Q, +r-Q.r’ (4.37)

Where Q is the spectral density matrix; in the numerical applications of this work it was

chosen to take the following form:

o2 2 2 2 2 2
Q=dlag(csaX Oay Oaz Ogx Ogy ng)

With 2 and Géi being the variances of the accelerometers and gyroscopes of the i-axis.

When the measurements become available, the state vector x and the matrix P are

updated using the following set of equations:
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X (+) = X (<) + Ky - (2 —Hix () (4.38)
P (+)=(1-KcH, )P (-) (4.39)

The difference between the measurement z, and a prediction of the measurements based

on all past observations is denoted by:
rk = Zk - Hka(—) (440)

r, can be regarded as reflecting the new information provided by the measurement vector z,
to x, . For this reason, r, is called the innovation sequence. It can be shown that for an

adequate modelling of the system, the innovation sequence will tend to have the

characteristics of a white noise process, i.e.,

Eln =0 Efhcq T)=0 (4.41)
The covariance matrix of the vector r, is represented by the matrix D, , where:

Ef 17 |=Dy =H, -P()-Hl +R, (4.42)

The matrix K, is the Kalman gain matrix and is computed using:

Ky =PRI HPCOHT +R, ] (4.43)

The signs (—) and (+) define quantities before and after update respectively while R, is the

variance of the measurement noise vector v, .

While the dimensions of the matrices H, and P, do not change — because they depend on
the state vector — the dimension of R, depends on the external measurements. This matrix
can be either defined once for all at the beginning or changed at each update. In our case,

this matrix is constructed from the output Covariance matrix of the photogrammetric

resection, where its elements are the Covariances of the EOPs.

The statistical properties of the innovation sequence given in Equation (4.41) and (4.42)
provide information, which can be used effectively to edit the incoming measurements. This
suggests that poor measurements can be detected by testing the residual sequence against

its theoretical statistical properties. Based on the predicted covariance matrix D,, a
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confidence test can be defined so that a measurement will be rejected if it falls outside the
limits of the confidence interval. Table (4-1) summarises the process of KF in terms of

equations and Figure (4-2) shows the classical flowchart of the KF process.

Table 4-1: Kalman Filter equations

Prediction

Predicted state vector:
Xk(—) = ¢k-1,kxk_1(+)
Predicted covariance matrix:
Py (=) = ® 1Py ()01 +Qy
Update

Updated state estimate:

X (+) = %, (=) + Ky (2 —Hixio(-)
Updated covariance matrix:
P (+)= 1-KH )P ()
Kalman Gain:

Ky =P (-Hg [HkPk (-H{ +R, r

Py (_) =0, Py (+)(DI—1,k + Q4 i

___________________________________________________________________________

Figure 4-2: Kalman Filter process flowchart
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4.6 - The IMU in this work

For this research, a Tactical-Grade IMU from Northrop Grumman, namely the LN-200, is

used, which combines three Fibre Optic Gyroscopes (FOG) and three silicon accelerometers

(SiAc). The specifications of LN-200 are listed in Table (4-2).

Table 4-2: Specification of LN-200 (Courtesy Northrop Grumman web page)

Physical
Weight 700 grams
Size 8.9cm diameter by 8.5 cm high
Power 10 watts steady-state (nominal)

Activation Time

0.8 s (5 s to full accuracy)

Performance — Gyroscope

Bias Repeatability

1deg/hr to 10deg/hr 16

Random Walk

0.04 to 0.1deg/(hr)"? PSD level

Scale Factor Stability

100 ppm 1o

Bias Variation

0.35deg/hr 16 w/ 100-s correlation time

Non-orthogonality

20 arcs 1o

Bandwidth

> 500 Hz

Performance - Accelerometer

Bias Repeatability

200 pg to 1 milli-g, 1o

Scale Factor Stability

300 ppm 1o

Vibration Sensitivity

50 pg/g® 1o

Bias Variation

50 ug 16 w/ 60-s correlation time

Non-orthogonality 20 arcs 1o
White Noise 50 ug(Hz)"? PSD level
Bandwidth 100 Hz

4.6.1 - Performance of LN-200

The mapping industries prefer the tactical grade IMUs due to their reasonable price-to-quality

ratio. (Its price is around 15KEuro ~25k$). The acquisition toolbox used in this research was

developed at TOPO-EPFL.
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To study the quality of this IMU, three surveys in a running vehicle were carried out upon
which 12 GPS outages were forced. These simulated outages were done so that the first
outage lasted for 5 seconds, the second for 10 seconds, the third for 15 seconds, until the
twelfth outage that lasted for an entire minute. These tests are shown in Figures (4-3) to (4-
5).

Similar test can be made with stationary data, but the dynamic of motion gives a more

realistic image on system behaviour.

meters

Seconds

Figure 4-3: IMU positioning quality: first test

4.6.2 - Gyro-Compassing by LN200

When performing SLAM, in certain cases the INS needs to determine its initial orientation
without external information. Gyro-compassing is a technique used to determine the initial
orientation of an IMU. Any error committed in finding the correct orientation is generally
called misalignment. There are other techniques for finding the initial orientation and the
interested reader can refer to Britting (1971), Savage (1978), Liu (1992), Scherzinger (1996),
Titterton and Weston (1997).

Gyro-compassing is a technique applied when the IMU is stationary. The accuracy of this

process depends on the sensor quality and duration of the time record of data used.
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Seconds

Figure 4-4: IMU positioning quality: second test

60

55

15 20 25 30 35 40
Seconds

10

Figure 4-5: IMU positioning quality: third test
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In an error free environment supposing the body frame of an IMU gets perfectly aligned with
the local-level frame, i.e., the axes of the vertical sensors are perfectly aligned with the
Earth’s gravity and the y-axis is absolutely directed towards the geographic north (ENU

configuration), the six sensors would sense the following input:

Gyroscopes:

w, =0 W, =W, CoS o w, =W, sind (4.44)
Accelerometers:

a, =0 ay = 0 a,=-g (4.45)

(It will be sufficient to know the latitude to within a degree, i.e., about 100 km.)

The deviation of the sensors from these values may have two reasons: one is that the IMU
axes are not aligned as was described above, the second is that the sensor input is different

from its expected output, i.e., errors in the measurements.

Considering the first reason, any misalignment from the geographic north with an angle A

(Azimuth) is sensed by x and y gyroscopes and thus these sensors will measure:

W, =W, COSPCOSA ®, = 0, COSPSINA (4.46)

y

Thus, the azimuth is computed by dividing the above two terms:

w
Ao arctanZ(—yJ (4.47)
w

X

In addition to a misalignment from the geographic north, the IMU’s vertical axis may not be
perfectly aligned with the gravity vector and this causes the horizontal accelerometers to

output:

a, =gsin6, a, =gsin0, (4.48)

Due to this, the x and y gyroscopes will measure part of the vertical component, rendering
them imperfect in Azimuth determination; thus, a transformation from the body frame to a

levelled frame is needed.
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However, roll (6, ) and pitch (6,) can be estimated from this signal as angles between the

body and local-level frames,

. [a [ ay
0, = arcsm(gx) 0, = arcsm{gj (4.49)

To compute the azimuth from the outputs of the gyroscopes, one needs first to transform the
measurements from the body frame to the frame that has a misalignment from the local-level

frame with an angle equal to the Azimuth; the transformation is:

Wy Wy
w, | =R,(6,)-R,(0,)-| w, (4.50)
w; w,
From Equation (4.50), the azimuth is computed as:
w!
A = arctan 2(—?} (4.51)
wX

The errors due to sensors imperfection do not change this procedure, but it introduces
misalignments in the initial orientation. Finally, depending on the quality of the sensors, the
gyro-compassing can be inadequate if the size of the sensor systematic error is bigger than

the input (mainly that of the Earth rotation).

Whereas the LN-200 accelerometer errors can be considered stable during the period of
gyro-compassing, the gyroscopes time-dependent errors are the limiting factor of the

theoretically achievable accuracy.

The turn-on-turn-off bias of the LN200 accelerometer of 200 pg (=200 mgals = 0.002 m/s?)
will cause a roll/pitch error of 40 arcs. Thus, this will not affect the gyro-compassing

significantly.

The dominant factors that limit the determination of the Azimuth by gyro-compassing are x-
gyro drift, the latitude (i.e., amplitude of the Earth angular rate), gyro angular random walk,

and the alignment time.

The accuracy of the azimuth is affected by the x-gyro drift and the latitude as follows:

Ao S (4.52)
W, COS O
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Hence, a LN 200 with the gyro drift is in the range of 1 deg/hr can achieve an accuracy of

around 5 degrees at latitude of 45 degrees.

On the other hand, gyro angular random walk (GARW) and the alignment time t influence the

azimuth computation according to:

sa __GARW

= o 4.
W, COS ¢\/f (#.53)

The LN 200 has a GARW of around 0.0Sdeg/ﬂ, accordingly an alignment time of 25

minutes will guarantee an accuracy of 0.4 degrees.

In two separate tests, the gyro-compassing results were better than the theoretical claim. In
the first test, the azimuth determined after fine alignment (determined using professional
software — Applanix Posproc®) was compared with the gyro-compassed azimuth, where the
two values were within a few arcmin after a record of 25 minutes. During the second test
(with different dataset), the engine of the vehicle were on and after the same time record of
the first test the difference between the azimuths determined from gyro-compassing and fine

alignment was significantly higher, at few degrees level.
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5 - INTEGRATION METHODOLOGY
AND SYSTEM CALIBRATION

... being a Scientist, I am trained to the commitment
to solve challenging problems and to wuncover
innovative solutions ...

5.1 - Integration Methodology

Although SLAM can be solved by entirely photogrammetric means, practically this is difficult
to achieve. The homogeneity of the texture in the scene and insufficient stereoscopic cover
are just two examples that can break the principle of visual positioning. As it will be
demonstrated in this chapter, integrating an IMU into the concept adds to the system and

makes SLAM more achievable.

As described in Section 2.6, at the beginning, there is a need to initialise the system by
defining its position and orientation with respect to a mathematical reference frame that can
be linked with other systems because this is important when the SLAM is solved on a global

scale. The initialisation is similar to that described in Chapter 2.
The need for an initialisation is essential for two main reasons:

— For the INS to function properly it must be provided with an initialisation in a defined

reference system

— For the map to have a useful meaning, it must be able to be connected with other

maps and databases.

For the different scenarios of initialisation, refer to Section 2.6.

The integration will be carried out on the system level where the positioning and orientation
knowledge of one system will be passed on to the other and vice-versa. Figure (5-1) shows

the SLAM methodology when incorporating the IMU.
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Kalman Filtered EOP 4+ GCP Resection
® Targetobject - Intersection
[ J
[
[
[
(] o o
[ ]
(]
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[ ]
[ Epoch k
° o [ )
o o (S U
(]
° Epoch k+1

T - Epoch k+2

Figure 5-1: SLAM procedure integrating photogrammetry and INS
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The algorithm can be depicted as follows:
Initial map:
— Position and attitude of the two cameras considered as known (from the initialisation)

— Intersection is employed to determine objects coordinates (i.e., to map)

After mapping enough objects:
— Vehicle moves and new stereo-pair of images is taken

— On these images, resection computes the cameras’ EOP by LSA using the features
determined from the previous cameras’ location. (IMU predicted EOP could be used
for feature extraction or in extreme cases to bridge EOP if there is not sufficient

stereo-cover between successive images.)

— Leverarm and angles transformation (and boresight) are applied to the EOP to form

external observations for the IMU

— The Kalman Filter is updated by the transformed EOP to compute filtered position

and attitude of the current location

— Leverarm and attitude transformation (and boresight) are applied to the filtered

position and attitude to determine the filtered EOP of the cameras
— Intersection is used to map more objects by LSA from the current location

— Algorithm repeats

The above methodology is pursued in this work. It differs from that of the classical mobile
mapping systems in the fact that the map is used to determine the external measurements
for the INS Kalman Filter. In addition, it differs from the conventional robotics SLAM in the
new mapping method used and in the Kalman Filter utilised as well as in the rigorous

modelling and transformations from one system to the other.

The flowchart is depicted in Figure (5-2)
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Figure 5-2: Flowchart of the Photogrammetric and INS integration



Chapter 5: Integration Methodology and System Calibration 81

5.2 - Kalman Filter External Measurements

The external measurements for the Kalman Filter in navigation can be linked functionally with
either the IMU outputs (orientation rates and accelerations) or with the final product

(coordinates, velocity, orientation), or both.

In open spaces, GPS measurements play the role of external measurements (during the past
two decades). In areas with limited GPS signal, these are augmented with other sensors, like
odometer, compass, barometer, etc. (No discussion will be invested here on these

measurements; the navigation and Geomatics literatures are abundant on this topic.)

The external measurements in this work are the photogrammetric resection outputs; these
provide the Coordinates Update (CUPT) and Attitude Update (AUPT); in addition, Zero-

Velocity Updates (ZUPT) will be used as measurements when the system is stationary.

Since there are two cameras, two sets of external measurements are available; one is the
EOP of the left camera and the other is the EOP of the right camera. There are three

possibilities to use them after applying the leverarm and the boresight parameters.

The first possibility is to take the average of the two EOP sets and to update the IMU with
this result. The second is considering the two EOP sets as two independent non-correlated
updates. The third is considering the two EOP sets as two correlated updates (not studied in
this work). First, we will show the vectors and matrices used for the first possibility and then

those used for the second possibility.
All the measurements are contained in r, =z, —H,x,(-). Since the filter will be reset after

every update, x,(-) is forced to zero; in this way, r, =z, . The size and elements of r, can

be defined with the help of Section 4.4 and the following discussion.

5.2.1 - The Average of the Two EOP Sets

When the average of the two EOP is considered, z, is:

Z, = [>_<Ob -x* Yo -y

e _
X XiMu £V_EVIMU EZ_EZlMU]T

Zyw-2° 0 0 0 & —¢

(5.1)
where

_ Xowo, + Xorog < Yoo, + Yorog = Zon, + Zorog

= Z
0b 2 0b 2 0b 2

x|
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EXL + EXR _ EyL + EVR _ EZL + SZR

where

XoL/R b g YoL/R by g+ Z0L/R b,z TEPresent the coordinates of the left/right camera

including its leverarm with the IMU

L represent the attitude of the left/right camera including its boresight

angles with the IMU

(xe,ye,ze) are computed from mechanisation equations and (s g, &€ are

XIMU” TYIMU T AMU )

derived from the matrix Ry

The subscripts: b,z is the leverarm of camera L/R and the IMU, and o ;g is the

boresight between of camera L/R and the IMU (see Sections 5.5 and 5.6)

The zeros indicate that no velocity measurements were considered. Theoretically, the zeros
here designate that there exist perfect zero velocities, which is not true; however, they are
introduced to facilitate the formation of the matrices and their effect is cancelled by their

corresponding zero elements in matrix H, .

Considering only CUPTs and AUPTS, r, and H, take the forms:
h=[AX AY AZ 0 0 0 Ae, Ae, Ac,[ (5.2)

Ox
oy
0z
ov
ov
ov
o¢
o€ (5.3)
o€
og
og
g
ob
ob
ob
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X

y
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where
AX:XOb—Xe AYZVOb—ye AZ:ZOb—Ze

Ne, =€, —¢ Ne, =€, —¢ Ne =€, —¢

X X XiMU y y YiMU z z ZIMU

With CUPTs, AUPTs and ZUPTs, r, and H, take the forms:
n=[AX AY AZ AV, AV, AV, Ae, Ae, As,[ (5.4)
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oz
ov
ov
ov
0e
o€ (5.5)
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o9
ob
ob
ob
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z

z

with

where v°® = (ve Ve ve) are computed from Equation (4.10)

x» VysVz

The gain matrix K, here has the dimensions: 15x9.
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5.2.2 - The Two EOP Sets as Two Independent Updates

The correlation between the two EOP is reflected by non-zero terms outside the main
diagonal of the covariance matrices. When the two EOP are taken as two independent

updates, z, is:

_ _ e _ e _ e _ _ _
zk__thbL X Yd$L y ZOWL z 8XL EX|MU 8y|_ 8Y|MU EZL 8Z|Mu
e e e
XORbR -X YORbR -y ZORbR 2 &8 E&mu &y TEvmu Gz &z
0 0 of

(5.6)

The zeros indicate that no velocity measurements were considered, and their function here is

similar to one explained in the previous Section.

Considering only CUPTs and AUPTSs, r, and H, take the forms:

no=[AX AY, AZ| A, Ae,  Ac

yL L

00 of

Ag Ag Ag

XR YR ZrR

OX
Y
0z
ov,
ov
ov,
og,
o€
O¢,
09y
o9,
59,
ob,
ob
ob,

Hixy (<) = (5.8)
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O O O O O O O O O o oo o o o
O O O OO O O OO o oo o o o
O O O O O O O O O o o o o o o
O O O O O = O O O O O =~ O O O
O O O O = O O O O O = O O o o
O O O = O O O O O = O O O O O
O O O O O O O O O o oo o o o
O O O OO O O OO o oo o o o
O O O O O O O O O o o o o o o
O O O OO O O O O o oo o o o
O O O OO O O OO o oo o o o
O O O O O O O O O o o o o o o

where

AXL = XOLbL - Xe AYL = YOLbL - ye AZL = ZOLbL - Ze
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AYr = Yorog —Y°©

AXg = Xorpg —X°

ASYL =&y " Cymu

ASXl_ =& " E&mu

YiMu

SYR

YR

Ae

XR XiMu

XR

Ae

(5.9)
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The gain matrix K, here has the dimensions: 15x15.
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5.3 - System Calibration

So far, no details were given on the compatibility of the IMU and camera reference systems.
An IMU and thus the Kalman filter (in this work) functions in the Earth-Fixed reference
system and photogrammetry functions in an arbitrary mapping reference system; thus, a way
to link these two systems is needed for data fusion in the KF. For the simplicity, we will
further consider that the mapping system is some arbitrary Cartesian coordinate system

whose rotation and translation with respect to the Earth-Fixed reference system are known.

Although generally there is a difference in the definition between a reference system and a
reference frame, this distinction will not be imposed here. So, the term frame will be used
for both.

Among the inputs to Kalman Filter are the coordinates in the Earth-fixed frame and the
orientation angles between the body and Earth-fixed frames; these have to be provided by
the IMU and cameras’ outputs. Whereas the mechanisation equations provide this
information, the external measurements are in a different frame; the coordinates are in the

mapping frame and the orientation angles are between the mapping and the camera frames.

At the same time, the outputs of the KF are the coordinates in the Earth-fixed frame and the
orientation angles between the body and Earth-fixed frames. However, to perform the
intersection, we need the coordinates in the mapping frame and the orientation angles

between the mapping and the camera frames.

To transform coordinates and angles from the cameras to the IMU or vice-versa, the spatial

offset called leverarm and angular offset called Boresight need to be considered.

In what follows, the transformation processes between the different frames are discussed

first and then the calibration procedures to attain the leverarm and Boresight are shown.

5.4 - Angle Transformation
Resection provides attitude angles between the cameras and the mapping frame (Chapter

2). The rotation matrix will be denoted as: Ry, .

IMU mechanisation equation in the Earth-Fixed frame provides attitude angles between the

IMU body and the Earth-Fixed frames. The rotation matrix will be denoted as: R;.

The camera frame is depicted in Figure (5-3). The z.-axis passes through the optical axis.
The xc-axis is directed to the right-hand side. The y.-axis completes the right-handed
system. The Earth-Fixed frame is the conventional Earth-Centred-Earth-Fixed (ECEF) frame
(Figure 5-4).
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Figure 5-4: Earth-Centred-Earth-Fixed (ECEF) frame

In direct georeferencing, one goes from Ry to Ry,. This means that the Kalman filtered
outputs are transformed to R}, so intersection can be performed. Here we will need also the

inverse transformation from R}, to R} to use as external attitude measurements in the KF.

5.4.1 - From Resection to IMU
The transformation from R, and Rj is used to transform the orientation computed from

resection to an orientation compatible with the Earth-Fixed frame to use it in the KF as

external measurements:
(5.11)

R =R:, (RS ) -RE

where
is the transformation matrix between mapping and camera frames

Rm
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g is the orientation offset due to mounting, i.e., the transformation matrix between

IMU and camera frames (depends on the definition of the axes). Later this will be
decomposed into T;* and R'g , Where T;* is the mounting matrix and Rg is the

boresight.

R is the transformation matrix between IMU body and Earth-Fixed frames (KF output)

R¢, is the transformation matrix between Earth-Fixed and mapping frames.

5.4.2 - From IMU to Intersection
The transformation from R{ and R, is used to transform the output of the KF to the camera

reference frame to perform the mapping. This is well documented in the relevant literature
(Skaloud, 1999; Skaloud and Schaer, 2003). The transformation is:

RS =R:-Re) RS, (5.12)

m

5.4.3 - Rotation between the Mapping and Earth-Fixed Frames
The mapping frame used this work is the right-handed East, North and Up (ENU) tangential

plane (Figure 5-5). The transformation between the mapping and ECEF frame is computed

as:
—sinA,, —sing,,cosA, cos¢, CoSA,
R;, =| cosA, -—sing,,sinA,, coso,sSinA, (5.13)

0 CoS O, sing,,

(q)m,)\m) define the latitude and longitude of the origin of the mapping system.
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Mapping
Frame

X Earth Frame

Figure 5-5: Relationship between ECEF and Mapping frames

5.4.4 - Mounting Rotation

The mounting of the camera and IMU defines the matrix T:*. For example, in Figure (5-3)

the orientation of the camera frame is shown, and Figure (5-6) demonstrates the orientation

of the IMU body frame. The cameras and the IMU are mounted on the vehicle as shown in

Figure (5-7).

Figure 5-6: Body frame defined by the IMU

10
0 1 (5.14)
0 0
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ccb Z ccb

Zc [ Z;

/ MU Yy

Figure 5-7: Mounting of the cameras and IMU

Finally, Figure (5-8) summarises the relation between the different reference frames.

Z
Y

Body Frame
e X c
Rb Rb

Z
Y
Xc
Earth Frame Camera Frame
X Ze

c
Re Rm

N
Mapping Frame

RS, =RE Re) RS,
2 —Rrg, [Re) RS

Figure 5-8: The different frames
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5.5 - Boresight Estimation

The IMU and each camera have two offsets; one is a boresight, and the other is the

leverarm. This is illustrated in Figure (5-9).
The matrix Tb°* aligns the axes between the IMU body and the camera just approximately

(within few degrees). The additional rotation RE is called boresight and it corrects for the
mounting misalignment. Thus the T;* computed from Equation (5.14) does not contribute for

the misalignment; that is, it does not transform the body to the camera frame, but rather

transforms another body frame “b’” that differs from the true body frame “b” by a rotation

matrix RE :
U
]
e 1| IMUFrame
Leverarm.
4, 1=(l,.1,.1,)
j /./‘ E & Boresight
Camera /‘/' misalignment
./‘
7
K
v
Xc
Z;
Figure 5-9: Boresight and Leverarm
1 £, ¢
b
Rb = —82 1 8)( (65)
€ —-€ 1

where ¢; is the misalignment angel along the i—axis. Thus, the correct transformation

between the IMU body and camera frame is:
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E-TC RY (5.16)

While Tt‘:* is the matrix computed from Equation (5.14), matrix Rg* is to be determined.

Therefore, Equations (5.11) and (5.12), respectively, take the form:
. T
R;:T;-Rg-@g)-R; (5.17)

s -RS-R) TS R (5.18)

Matrix of Equation (5.15) can be considered constant throughout the survey and is computed

with Equation (5.18). The following paragraphs follow the discussion in Baumker et al.

(2001).

The determination of the misalignments can be performed with a specific on-the-job-

calibration procedure. In this procedure, the complete system with the camera(s) and INS is

put in a test flight over a test area with well-surveyed control points. Then, in a bundle

adjustment for each photo the angles phi, omega and kappa are determined. These angles

are used to estimate the misalignments. The estimation of the misalignments is performed in

an adjustment for which the following data of each image are used:

— Inertially derived angles: roll, pitch and yaw (Rg )
— Photogrammetric angles determined by resection: phi, omega and kappa (R¢,)
— Rotations between the mapping and ECEF frame (R§,)

- T;* is a known constant

To formulate the model for adjustment, Equation (5.18) needs to be modified as follows:
T .

Rng;-@;).ﬂg.Rg

B-DR- (5.19)

Equation (5.19) can be written as:
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by by, by diy dip dyg 1 € &
Dpr by Doy |=]dyy dy dyg g, 1T —g
by by  bsg dyy dyp dy| [—€, € 1

Thus, for each image, the following set of observation equations is solved:

byy =dyy +dip€, —di5€, by, = —dyq€, +dyp +dyae, byy =d€y —dipe, +dy3

baq = dyq +dp€, —dpse, Doy = —dye, +dyy + dpze, bos = daiey — dypey +dys

b3 = dgq + dgpe, — dssg, bj, = —d3€, +dgy + dj3€, D33 =dg€, —djp€, +dgs

o (o] (o]
Considering the approximate values of (sx, Ey ,Sz] to be zeros:

b5 el -3 <AJAi)}_1("(AJbi)]

1l
N

where n is the number of photographs used for the calibration, and

[ byq—dyq ] 0 -dy dy
b1z —dy2 dis 0 -dy
biz —dq3 —dy,  dyy 0
by1 —day 0  —dy dy
bj =|byy —dy A =| dy 0 —dy
bos —da3 dp dyy O
b3y —daq 0 —di dgp
b3y —d3p dy; 0 —dy
| b33 —da3 | |-dsz; dy O

This procedure is done for each camera separately.

5.6 - Leverarm Estimation

The leverarm, | = (l

boresight.

/

xilys IZ), is considered constant and computed once as in the case of the
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To determine this spatial offset, the coordinates of the IMU and cameras have to refer to
identical unchangeable frame. The camera frame is a fixed frame, where its axes are always

directed as explained in Section 5.4, no matter how the camera is oriented.

To compute the coordinates of the camera and IMU in the same frame, we follow a similar

approach as in the previous Section.

The camera coordinates are computed in the mapping frame by resection, along with the
orientation angles — EOP. These coordinates are transformed to the camera frame by Ry,

that is computed from the orientation angles. So,

°-R¢X_ " (5.20)

Xcam' are the coordinates of the camera in the camera frame

Xcamm are the coordinates of the camera in the mapping frame

Note that there are two cameras: a Left and Right. Their indices will be introduced later.

The IMU coordinates are computed in the Earth-Fixed frame by employing the

mechanisation equations (with the aid of the GPS in a KF).
leum = Rr: XIMUe (5.21)

where

Xmu™ are the coordinates of the IMU in the mapping frame

Xmu® are the coordinates of the IMU in the Earth-Fixed frame

To move from the mapping frame to the camera frame, we use again the R}, matrix; thus,

Ximo" =R5% Ximy" (5.22)

where

Xmu® are the coordinates of the IMU in the camera frame.
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Hence, the leverarm is computed by subtracting Equations (5.20) and (5.22):

I = ly =Xcamc —X|MUc (523)
IZ

After determining the leverarm for both cameras, L and R, they apply as follows.

5.6.1 - Leverarm application from Resection to IMU
Resection gives the coordinates of the cameras in the mapping frame. To these the leverarm

is added, after transforming it from the camera frame to the mapping frame, to determine the
coordinates of the IMU in the mapping frame. After computing the IMU position in the
mapping frame, the next step will be transforming it to the Earth-Fixed frame. Having the
coordinates of the IMU, computed from resection, in the Earth-Fixed frame, they are added

to KF to determine the filtered position of the IMU.

In terms of vectors and matrices, it is done as follows (j=L,R).

Step one:
m C
" =Rg; -1 (5.24)
where
ch is the leverarm in the camera frame,
Ijm is the leverarm in the mapping frame,
L"/j is the transformation matrix between the camera and mapping frame for
camera j.
Step two:
XIMUIjm = xcam/jm +17 (5.25)

Where
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m

Xcamj arej camera coordinates in the mapping frame (from resection),

X,MU,jm are IMU coordinates in the mapping frame.

Step three:

XIMUIje = R:1 XlMU/jm (5-26)

Where X,MU,je are the coordinates of the IMU in the ECEF frame computed from the j

camera.

Step four:
XIMUe =KF (Xe’XIMUILe!XIMUIRe) (5.27)

where
Xmu® are the Kalman filtered (KF-ed) coordinates of the IMU in the ECEF frame,

X¢ are the coordinates of the IMU in the ECEF frame computed from the
mechanisation equations,
KF (X®, Xiun®> Xmuir® ) is the Kalman filter with X as update, and Xy ® and

e
Ximur  as CUPTSs.

5.6.2 - Leverarm application from IMU to Intersection
The KF gives the filtered position of the IMU in the ECEF frame. To apply the intersection,

the position of the cameras has to be derived from this filtered position. Inversing the

procedure above, this process is done as follows.

Step one:

1P =RY-1° (5.28)
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Where Ijb is the leverarm in the body frame.

Step two:

¥ =Rg 17 (5.29)

Where Ije is the leverarm in the ECEF frame.

Step three:

XCAMIje = Xy~ + I (5.30)

Where

X' is the Kalman Filtered IMU position in the ECEF frame,

XCA,Wje is the j camera position in the ECEF frame.

Step four:
XCAMIjm :R? XCAMIje (5.31)

Where

XCA,\,,,J-m is the KF-ed position of the j camera in the mapping frame.

Xcam™ and Xcamr™ are used in intersection to map more features as shown in Chapter

2.

5.7 - Leverarm and Boresight Numerical Determination

In this work, an indirect procedure was followed to determine the two boresight matrices and
two leverarm vectors of the left (L) and right (R) cameras. In the frame work of the Geodetic

Engineering Laboratory, a mapping system with a high-definition digital camera (named as
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“H”) is well calibrated with respect to the IMU with known boresight and leverarm according
to the procedure described in Sections 5.5 and 5.6; to this system, the two CCDs were
added (Figures 5-10 and 5-11). The boresight and leverarm of the two CCDs were first
calibrated with respect to the high-definition digital camera by determining the EOP of the
three cameras in three different locations using more than 35 precise GCPs. Then, once the
average boresight and leverarm were computed, the link between the two CCDs and the IMU
were directly made through the already known boresight and leverarm between the H
camera and the IMU. The estimated accuracy of the EOP, boresight and leverarm between

three cameras are shown in Tables (5-1) and (5-2).

Figure 5-10: The system

Ye Ye

ccb CCD

X z
IMU
7

Figure 5-11: The mounting of the system (looking from the back of Figure 5-10)
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Table 5-1: Estimated boresight and its accuracy between the CCDs and H (L=Left CCD, R=Right
CCD, H=High Definition Camera) - arcmin

Pitch Azimuth Roll
Boresight LtoH 43.37 37.15 -67.73
RtoH 61.43 31.22 20.59

Boresight accuracy LtoH 3.50 6.26 2.84
RtoH 0.91 2.80 3.27

Table 5-2: Estimated leverarm and its accuracy between the CCD and H (cm)

X Y z
Leverarm LtoH 59.8 -10.0 -23.0
RtoH -41.5 -11.8 -21.8

Leverarm accuracy LtoH 1.0 1.6 1.0
RtoH 0.6 1.0 0.3

Tables (5-3) and (5-4) show the boresight and leverarm between the CCD and the IMU after
contributing for the boresight and leverarm of Tables (5-5) and (5-6) between H and IMU.

Table 5-3: Estimated boresight between the CCDs and IMU (arcmin)

Pitch Azimuth Roll
Boresight LtoH 90.9 35.8 61.6
RtoH 7.3 22.3 79.2

Table 5-4: Estimated leverarm and its accuracy between the CCD and IMU (cm)

X Y z
Leverarm LtoH 50.0 -17.8 -3.5
RtoH -51.3 -19.6 -2.3

Leverarm accuracy LtoH 1.0 1.0 0.5
RtoH 1.0 1.0 0.5
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Table 5-5: Estimated boresight and its accuracy between the IMU and the H camera (arcmin)

Pitch Azimuth Roll
Boresight -15 15.9 -18.84
Boresight accuracy 0.66 0.6 0.9

X Y Z
Leverarm 7.8 -9.5 9.8
Leverarm accuracy 0.5 0.5 0.5

Table 5-6: Estimated leverarm and its accuracy between the IMU and H camera (cm)

The mathematical formulas that allow determining the boresight between the CCDs and the
IMU via those between the CCD and H, and H and IMU are:

b
TS -Rp

Where

©—Rg =TS Rl -T% .RE™ -R§-R! (5.32)

R',;’*° is the sought boresight between the IMU and CCD (c being L or R), which is the

same as R',;’* of Equation (5.15) but with the addition of superscript “c” to
indicate that is between the CCD and the IMU (Table 5-3)

TI_T* is the rotation matrix between the H and CCD cameras, depending on the

mounting (Figure 5-9)
Rﬂ* is the boresight between H and CCD cameras (Table 5-1), computed as
mentioned above in this Section

T:* is the rotation matrix between H and IMU frames, depending on the mounting
(Figure 5-9)

Rg*H is the boresight between the H and IMU frames (Table 5-5), which is the same
as Rg* of Equation (5.15), but with the addition of superscript “H” to indicate
that is between H camera and the IMU, computed as mentioned in Section 5.5

Rﬁ is the rotation matrix between H and CCD taking into account the boresight and

the mounting
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R,';' is the rotation matrix between H and IMU taking into account the boresight and

the mounting.
The leverarm determination is more straightforward. The equation used is:
12 =R& 15 +1H (5.33)

Where |§’ is the leverarm between the CCD and the IMU in the c frame

I,k_)I is the leverarm between H and the IMU in the H frame computed as shown in
Section 5.6
I is the leverarm between H and CCD computed as mentioned above in this

Section.

Applying the error propagation to Equation (5.33), the covariance matrix of ch is:

z,=Ry I, RG+Z, (5.34)
H Cc

Ie

Where % ,, is the covariance matrix of the components of the leverarm 15
H

X, is the covariance matrix of the components of the leverarm | a
C

Because of the importance of the boresight (as will be seen in the next chapter), their
accurate determination is critical; as for the leverarm, less stringent requirements are
possible. Subsequently, the values listed in the tables above fall within the constraints of this

work.
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6 - NUMERICAL APPLICATION

... tests with patience are a way to perfection ...

Three tests were conducted to validate the methodology and the algorithms described in this

thesis:
1. AnIndoor test: control of concept
2. An outdoor test: control of resection and boresight
3. Anoutdoor test of SLAM

The set-up (Figure 7-1) consists of a pair of CCD cameras (progressive scan SONY XC-55,
6407480 square pixels of resolution 7.4 um, and with a 6 mm c-mount lens) fixed one metre
apart and an LN-200 IMU (1 deg/hr). Along, there are a synchronisation pulse, a Matrox
Meteor-1I/Multi-Channel frame grabber and a screen, IMU data acquisition box developed at
the EPFL-TOPO (Skaloud and Viret, 2004), a laptop, and the power supply. The image
grabbing was carried out at every second and was properly synchronised with the IMU via a
synchronisation pulse (image acquisition program was written by Dr. Jan Skaloud). After

several minutes of inertial initialisation, the vehicle moved and started taking images.

In all tests, as many features (homologous points) as possible were selected from the
images. ldeally, more than 25 features per stereo-pair have to be selected in order to
guarantee resection with sufficient accuracy, but this was not possible all the time. All photo-

coordinates were measured manually using professional photogrammetric software.

To provide a consistent geodetic solution, a local mapping reference system shall be

established as follows:

- Determine coordinates of two points with GPS (or use existing triangulation
points)
- Take one point as the origin of the local mapping system (ENU) and transform

the second point according to it

- By a total station determine the coordinates of the GCP and checkpoints in

this local mapping frame
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This provides a mapping frame that is linked with the other frames as described in Chapter 6.

IMU (not seen)

The two CCD’s

Screen

High-Definition
Camera (not
used)

2-D LASER
Scanner (not
used)

Portable PC

IMU Power
supply

Batteries <

Frame
Grabber with
aPC

GPS
antenna

IMU
power
supply

Figure 6-1: The System
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6.1 - Indoor Test — Control of Concept

Running the two indoor tests in a controlled environment in terms of special targets and close
to optimal lighting, the methodology was tested and the software’s were validated. Figures

(6-1) and (6-2) show image samples of the two sets.

The analysis and simulations done in previous chapters agree with the findings of this control
test. After the initialisation using around 20 GCP, homologous points were determined and
the survey continued for 13 seconds for the first test and 20 seconds for the second test

using six photos each.

At the end of each test, four checkpoints (CHP) were used to control the mapping accuracy,
through which the vehicle localisation accuracy was indirectly controlled. For a direct control
of system localisation, an outdoors test with GPS is needed. Tables (6-1) and (6-2) show the
differences in the CHP of the two tests, respectively, determined by a theodolite and their
SLAM estimated positions. It is obvious that the depth (the X & Y-components) is

geometrically weak because of the short stereo base (1m long).

In the first test, the vehicle’s azimuth was around the 180 degrees and this is reflected in the
poorer accuracy in the Y-axis relative to the X- axis. As for the second test, the azimuth was

around the 45 degrees causing the accuracy in the X and Y- axes to agree.

Table 6-1: Validation of the first test, error on control points after 20 seconds and 6 photos (cm)

GCP X Y Z
1 1.9 3.9 -0.5
2 6.7 11.9 0
3 6.2 10.1 -0.8
4 4.4 7.0 -0.4

Table 6-2: Validation of the first test, error on control points after 13 seconds and 6 photos (cm)

GCP X Y Z
1 -4.9 4.5 0.1
2 -1.41 1.1 -1.7
3 -1.8 0.5 -1.4
4 -5.5 7.5 1.3
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Figure 6-2: First data set Figure 6-3: Second data set

6.2 - Outdoor Test — Control of Resection and Boresight

It was difficult to find a testing place with open skies and at the same time suitable to perform
the photogrammetric processing. Hence, this outdoor test with GPS was used to compare
the EOP derived from photogrammetric resection with the GPS/INS position and attitude.
Intersection was not performed in this test because its performance was analysed in the

other tests. In addition, the boresight correction was re-checked and validated.

This process is similar to the OEEPE’s (Heipke et al., 2001) (http://www.oeepe.org/)

investigations on the accuracy of INS/GPS for direct georeferencing in airborne applications.
However, the analysis here differs in terms of the used cameras, sought accuracies and
change of resection accuracies due to the use of newly determined homologous points

whose accuracies changes in time.

After the initialisation by GPS/INS, photographs were taken repeatedly of a pre-surveyed

structure (Figure 6-4). In order to photograph the same structure and create dynamics in
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motion, the track followed an “8” shape as seen in Figure (6-5) and the images were used at
the loop cross-point. The targets coordinates were measured by a total station and
determined in a local reference frame with known transformation from the ECEF reference
frame used for IMU integration. Out of more than a hundred image pairs, twelve were used to
compare the EOP between resection and carrier phase differential INS/GPS; the test
duration was a minute and a half and the separation between stereo-pairs ranges from 2 to

17 seconds.

Figure 6-4: The structure. The depth range that give a stronger geometry for resection

%D

Track Structure

Figure 6-5: Images were taken whenever the cameras could see the structure
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The first test here will start by comparing GPS/INS with resection using the measured
accuracies of the GCP and then in the next test, noise will be added to the GCP coordinates
depending on their distance from the cameras (based on simulations of Chapters 2 and 3). In
this way, the intersection is simulated. It should be noted here as well that the accuracy of
the photo-coordinates is set to the size of the pixel (7.4 um) due the poor quality of the

cameras.

Table (6-3) lists the differences in position between GPS/INS and resection based on
measuring accuracy and simulated accumulated errors of 5, 10 and 15 centimetres. With
errors up to 10 centimetres, the differences are kept within the desired accuracies. It should
be noted here that the targets are up to 15 metres away from the cameras, and the results in
this table validate the simulation done in Chapters 2 and 3. Since the system was always
directed towards the east — Azimuth ~ +90° — when the images were taken, the quality of the

positions in the X-axis direction is the worse.

From the same tests, the attitude angles were also compared between GPS/INS and
resection. However, the boresight effect was also studied here where each simulation was
run twice, one with the boresight correction and the other without the contribution of the

boresight correction.

In classical georeferencing where the camera position is derived directly from the INS/GPS,
the boresight corrections are essential for the determination of the attitude of the camera and

their effect on the position is negligible due to their small size.

Table 6-3: Mean differences between EOP determined by resection and GPS/INS based on
accumulated error (m)

Accuracy X-axis Y-axis Z-axis
L R L R L R
Measured ~ 0.01 0.03 -0.02 0.04 0.01 0.01 -0.01
0.05 0.07 0.01 0.05 0.02 0.02 -0.01
0.10 0.19 0.06 0.05 0.02 -0.05 -0.02
0.15 0.24 0.22 -0.03 -0.03 -0.13 -0.12

Tables (D-1), (D-2), (D-3) and (D-4) (Appendix D) list the angles between the body and Earth
frame computed from the INS/GPS-derived R§ and resection-derived R§ matrix with and

without boresight corrections for twelve stereo-pairs and with different GCPs accuracies.
Table (6-4) on the other hand shows the RMS of the differences between these angles. It is

clear that boresight correction has the biggest effect in this analysis.
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Table 6-4: RMS of the differences of the R§ angles’ derived from INS/GPS and resection (angles
shown in Appendix D)

GCP Accuracy (m) Angles accuracy with boresight Angles accuracy without

correction (deg) boresight correction (deg)

E, E, E, E, E, E,
~0.01 1.5479 0.5383 1.1063
0.1455 0.4063 1.3718
0.05 1.7159 0.5400 1.2877
0.3279 0.3967 1.3942
0.10 1.8365 0.9435 0.9601
-0.9629 1.6175 1.4648
0.15 2.8134 -0.3860 -0.6966

1.2401 -0.6162 -0.2668

From Table (6-3) and (6-4), it is obvious that once the homologous points accuracies are
worse than 10 cm, the contribution of the KF attitude update becomes useless, whereas the

position update keeps steering the IMU as long as its accuracy is better than 15 cm.

In Figure (2-6), it was shown that to achieve an accuracy of 15 cm in intersection, objects

that are 11 metres away from the system should not be used.

6.3 - Outdoor Test of SLAM

In the third test, SLAM was performed. This test shows how critical the cameras’ set-up is to
the overall performance of the system. When working outdoors, the operator cannot control
the scene’s visibility quality and its features distance from the cameras. The images can be
seen in Appendix C; although they look sharp, once fine targets are sought, problems start to
appear. Looking for example at two zoomed out images of the set (Figure (6-6)), one can see
the difficulty in finding fine targets to use. This effectively reduces the quality of the whole
system. First, the initialisation becomes of poor accuracy and the subsequent positioning and
orientation determination by resection are not accurate enough to be considered as valuable

updates for the Kalman Filter.

It should be noted that by using linear primitives, i.e., lines, the pixel measurement problems
could be overcome and thus leading to better resection/intersection solutions. See, for
example, Habib et al., (2004) and Al-Ruzouq (2004).
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Targets

Figure 6-6: An example of the poor quality of the images once they are zoomed to find targets to map

In this test, the initialisation was done using around 30 GCPs on each image. A way to verify
the consistency of the LSA solution, one can use the misclosure vector between the
measured and the computed photo-coordinates from the resection after the conversion of the
LSA solution.

Figures (6-7) and (6-8) show the differences (misclosure) graphically in the GCPs photo-
coordinates after the convergence of the LSA of five iterations for the Left and Right images.
Although some points can be considered as outliers (see those in the dotted ellipses), they
are kept in the adjustment because they reflect the bad quality of the images rather than

being considered as outliers.
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Figure 6-7: Misclosure information in the resection LSA for a Left image (outliers are indicated in the

dotted ellipses)
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Figure 6-8: Misclosure information in the resection LSA for a Right image (outliers are indicated in the

dotted ellipses)
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6.3.1 - Initialisation and Navigation
The method of initialisation is important for practical reasons. Considering the small size of

the system and its potential uses, one might consider a rigorous solution in terms of
initialisation and reference systems consistency as an extra. Therefore, the initialisation

method will be an integrated part of the following investigations.
Three initialisation methods were tested:
- Initialisation by resection position and gyro compassing
- Initialisation by resection EOP without boresight corrections

- Initialisation by resection EOP with boresight corrections

Through these initialisation methods, ZUPTs were continuously updating the KF, which

drastically improved the initialisation quality.

Although practically gyro compassing can be used, long time is needed for accurate
initialisation. This is mainly true for the azimuth, where several minutes are needed to
determine an azimuth within few degrees accuracy by a LN-200. Here, the gyro compassing
was performed for few minutes, thus leading to insufficient initialisation accuracy as seen in
Figure (6-9).

The update at position 2 was made by GCPs as well due to the discontinuity in visibility
between images of set 1 and 2 (see Appendix C). After the third update, the Kalman Filter
succeeded to estimate the misalignments and position errors; once applied, the navigation

solution started to converge to the accuracy of the resection.

In case of initialisation by resection without boresight corrections, the inaccurate initialisation
will force the navigation solution to diverge rapidly if no updates are provided, which is clearly
seen in Figure (6-10) that shows the IMU navigation solution between the first and second
epochs. The alleged convergence of the navigation solution after the third epoch is due to
the fact the trajectory is straight and all differences in rotation angles are considered as
misalignments. Therefore, once a turn is made, it is expected that the boresight non-

contribution (correction) effect will clearly appear as a divergence in the navigation solution.
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X (m)

Figure 6-9: Vehicle planimetric trajectory showing the differences between the prediction and update

compassing (innovation)

(ground truth) when initialised with gyro

Figure 6-10: Vehicle planimetric trajectory showing the differences between the prediction and update

(ground truth) when initialised with photogrammetric resection without boresight corrections

(innovation)
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When the boresight corrections are considered, the navigation solution (Figure 6-11) is much
better at the beginning where the prediction and update are within few centimetres from each
other, but later, as can be expected, the two solutions are of a similar quality as in Figure (6-
10). However, if a turn was made, the navigation solution with the boresight contribution will

not diverge, as would that without the boresight contribution (correction).

The resection will affect the solution in a way that when the planimetric components are not
accurate, the Kalman filter will depend more on the IMU solution that if left for several

minutes without updates will cause the whole system’s quality to degrade in time.

The vertical component, as seen in Figure (6-12), is within the expected accuracy. It is
worthwhile to note the stability in the z-channel — with almost the same results regardless of
the initialisation method used, images are not shown because of their similarity — where after
the third epoch the innovation does not exceed few centimetres. It is a usual case that the
innovation of the Z-channel is better than that of the horizontal channels when low dynamics
are observed, as in our case. In the particular case herein, the initial misalignment would be
the dominant source of errors causing the X and Y components to drift; this analysis comes
from the deduction that the Z-component of the IMU (its weak component) is very consistent

with the Z-component of resection (the strong photo component).

Figure 6-11: Vehicle planimetric trajectory showing the differences between the prediction and update
(ground truth) when initialised with photogrammetric resection with boresight corrections (innovation)



Chapter 6: Numerical Application 115

451

4506 -~~~ == === b e
4505} - -~~~ ~~~
45049 - -
4503F - -

Prediction

Z(m)

® Update

4495 -~~~

4491 -~

448.5

|
¢
+
|
T
|
:
|
450F-------- Lo
|
|
|
|
|
l
L
|
|
|
|
|
|
:
L
|
|
|
|
|
|
|
|
2

Epoch

Figure 6-12: Vehicle vertical trajectory showing the differences (innovation) between the prediction
and update (ground truth)

The process does not finish by choosing the correct method of initialisation. Through
subsequent analysis, it was found that the measurement variance of the photo-coordinates
plays an important role in the process. For example, if this variance was chosen to be small
(STD ~ 2.5 um), the updates will be accompanied by small variances that will force the
Kalman Filter through the gain matrix to trust them more. Whereas when the photo-
coordinate variances are chosen to be more realistic according to the quality of the images
(STD ~ 7.5 um), the updates, whose values will not change much, will be accompanied with
larger variances that will relax the Kalman filter, thus leading to correct estimate and

improved navigation solution.

To demonstrate this finding, Figure (6-13) shows the planimetric solution when initialisation
was done by resection with boresight correction but with photo-coordinate accuracy of 2.5

pum.
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Y (m)

Figure 6-13: Vehicle planimetric trajectory when assigning a 2.5 um STD for the photo-coordinates

The same thing applies to the choice of the initial P, matrix of the Kalman Filter. This matrix
defines the initial uncertainties of the initial state vector elements. By altering the
uncertainties of the initial misalignment from 2 to 4 arcmin (see chapters 4), the solution

changes accordingly as shown in Figure (6-14).

A bank of Parallel Filters with different initialisation parameters can be suggested in order to
choose the optimal initial values through a calibration procedure. In this way, the first two
epochs of the SLAM need to be initiated by resection and this way the software chooses

which of the branches of the bank provides the values closest to the second epoch.
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Figure 6-14: Vehicle planimetric trajectory when assigning 4-arcmin attitude uncertainty in the Py
matrix instead of 2-arcmin

6.3.2 - Modification of the Kalman Filter

In Chapter 5, two scenarios were shown to combine the external measurement in KF; one by
using the average of the two cameras’ positions and the other by using these two positions
as independent uncorrelated measurements. This requires certain modification in the
software and its modules. After modifying the software accordingly, it was found that the
results from the second scenario were very similar to the first with statistically insignificant

differences.

The second scenario can be used when one of the two cameras is malfunctioning and thus
the processes shifts to accept measurements from one camera. In this sense, the
intersection relies on forming stereo-base between successive images from the camera that

would be still properly functioning.

6.3.3 - Mapping
According to the intersection theory and its previous simulations, determining the X and Y
components coordinates is geometrically weak. In addition, the accuracy of the image

coordinates is limited for relatively low resolution of 640*480 square pixels when
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accompanied by short focal length. During this SLAM test, 21 points were used as
checkpoints throughout the survey, whose validation and accuracies are shown in Figure (6-
15). The large errors belong to those points that are located more than 15 metres away from

the stereo-base. Besides, one can see the accurate mapping of the Z-component.

Validationa and Accuracies (cm)

| | |

| | |

L L L
"0 2 4 6 8 10 12 14 16 18 20
Checkpoint

Figure 6-15: Validation and accuracy of newly mapped features

For a best-case scenario, the system designer needs to take into account the different
factors that affect the accuracy of the mapping: focal length, CCD’s chip size, stereo-base
and object’s distance from the stereo-base. For example, to achieve an accuracy of less than
10 cm in X and Y with the current system installation (according to Equations (2.20) and
(2.22)), the features must not be further than 9 metres away from the cameras in the Y
direction when the system is engaged towards north-south and in the X direction when the

system is engaged towards east-west.

In different system installation, keeping the CCD’s quality but adapting a focal length of 25
mm and stereo-base of 2 m, the maximum distance to achieve 10 cm accuracy would go up
to 22 metres. Whereas by choosing a focal length of 12.5 mm and stereo-base of 1.5 m,
objects require not be further than 13 m away to achieve an accuracy of 10 cm, as depicted
in Figure (6-16).
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Figure 6-16: Depth accuracy depending on focal length and stereo-base
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7 - SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS

... it is the end, thus the start begins ...

7.1 - Summary

Vision-based inertial-aided navigation is gaining ground due to its many potential
applications. In previous decades, the integration of vision and inertial sensors was
monopolised by the defence industry due to its complexity and unrealistic economic burden.
After the technology advancement, high-quality hardware and computing power became

reachable for the investigation and realisation of various applications.

In the 1980’s, the robotics community started to localise robots and navigate them according
to relative maps made by lasers mounted on the robots; vision cues integrated with inertial
sensors gained ground in the late 1990’s and beginning of the new century. Simultaneous
Localisation And Mapping (SLAM) is a term (conceived in late 1980’s) used by the robotics
community to describe the problem of locating the robot relative to a map that is made by the
robots itself. For many, this was an egg-chicken problem because in order to draw a map the
location of the mapping device has to be known, and to know the location of the mapping
device a map is usually needed. The mathematical modelling of map-making and localisation
of the robot, used in the robotics community, are done in a single Kalman Filter that runs at
high frequencies that obliges many approximations to be made upon the models and thus

rendering the filter unstable.

In geomatics engineering, precise navigation is a necessity to carry out mapping. In this
thesis, mapping turned to be also a necessity to perform navigation, using the concept of

SLAM but solving it in a different approach than that of robotics.
The methodology to solve SLAM in this thesis is different from others because:

— Two filters are used: a least-square adjustment filter for map-making and a Kalman

Filter for navigation

— No approximations are made to the mapping and navigation models
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— The KF runs at low frequency 1/2 or 1/3 Hz, thus the filter stability is guaranteed
— Mapping mathematical model is photogrammetry
— Navigation mathematical model is aeronautical

— A global coordinate frame is used as reference, through which the created map can
be linked to other maps by geodetic transformations — such a frame will also allow the

INS to exploit the aeronautical navigation model

SLAM has proven to be an interesting yet challenging problem; a blind traverse that depends
on two deduced reckoning methods: recursive photogrammetry and inertial navigation. As is
the case in many systems, the quality of the sensors that build the system dictates the

overall performance of the system.

The system consisted of two CCD cameras (progressive scan SONY XC-55, 640*480 square
pixels of resolution 7.4 um, and with a 6 mm c-mount lens) fixed one metre apart and an LN-
200 IMU (1 deg/hr). Along, there are a synchronisation pulse, a Matrox Meteor-Il/Multi-
Channel frame grabber and a screen, IMU data acquisition box developed at the EPFL-

TOPO, a laptop, and the power supply.

7.2 - Conclusions

The major objective of this work was to develop, implement and test a robotic mobile

mapping system employing vision-aided inertial navigation. The chief contributions lie in:

— Developing a novel integration methodology between vision and inertial sensors

using complete modelling;
— Designing and implementing the SLAM software required to test the methodology;

— Setting a collaboration stage between Geomatics Engineering and Robotics.

To conclude, the quality of vision-based solution dictates the overall quality of the system.

The errors in the photogrammetric modelling are governed by:
— Cameras quality and resolution

— The compromise between the focal length, stereo-base and the required field of

vision that depend on the envisaged applications of the system

— The method used to measure the features’ photo-coordinates
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— The number, type, quality and location of used features

Due to the weak geometry and low cameras’ quality, it was expected that the map accuracy

and navigation quality from intersection and resection would not exceed 15 cm.

The accurate initialisation of the navigation and mapping systems is always important;
however, in classical systems it is achieved by GPS and high-dynamics manoeuvring. For
the current case, resection-derived EOP provide accurate initialisation, yet they have to be
accompanied by accurate boresight corrections. Depending on the quality of the used IMU,
gyro compassing can always be an option for attitude initialisation, though several minutes
are needed. Regardless of the initialisation method, it was obvious that the use of ZUPT

during the initialisation is highly favourable in order to accomplish accurate results.

Although computational consideration is always an issue in robotics SLAM, in this work it
was not a concern because the feature coordinates determination filter was completely
separated from the navigation filter. This way, in case of on-line performance, the system

concentrates on achieving the best possible point matching processing.

In this thesis, the main concern was the proof-of-concept. It was shown that the concept of
SLAM is naturally possible using this approach and that SLAM can be used in mapping
systems when GNSS signals are not available or even in cases where a fast initialisation of
the IMU is needed.

7.3 - Recommendations

From the findings in this thesis, the following recommendations can be drawn:

Better sensors’ quality is needed for an operational system: the system used in this
thesis was a prototype. Vibrations in the bar holding the cameras caused a couple of

degrees variation in the attitude when the vehicle was moving

On-line camera calibration is recommended. In low and medium quality cameras, the
lens and chip characteristics might change with time and temperature, so modelling

them on-line will improve the photogrammetric products (map and position)

When updates are made every one or two seconds, an automotive grade IMU could

be used; this lowers the cost of the system

Other sensors, although adding to the complexity of the system, can significantly
improve the navigation quality in time. Such sensors can be odometer, compass,

barometer, etc
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For a system oriented towards research, a laser scanner will be an asset for
mapping, localisation and scale determination to be used in the photogrammetric

problem

The maximum possible number of map features, the better the solution becomes.
This requires automated feature recognition algorithms that can match features, not
only on a stereo-pair but also on successive images. The predicted position from the

IMU will definitely help in narrowing the search area of same features

In this thesis, mapping was made using a stereo-pair of images taken at the same
time. It is recommended that more than one stereo-pair be used in order to have
more degrees of freedom in the intersection LSA, and thus leading to a higher

mapping quality

Features chosen for either resection or intersection must be of a distance that

guarantees an accurate solution

Since no absolute reference might be available, performing a ZUPT every couple of

minutes is highly recommended to improve the navigation quality of the system

... I am late, but do not leave without me ...
let us start together, I can catchup ...
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APPENDIX A: PHOTOGRAMMETRY SOLUTION WITH
QUATERNIONS

The same functional mathematical model as Equation (2.1) is used:

F(x)= —x+ xo —C 11(X—X0)+R12(Y—Yo)+R13(Z—Zo)=_X+X0_C£:0
R31(X = X0)+Rg2(Y = Y)+Rg3(Z - Zo) W
Rp1(X=Xg)+Roa(Y =Yg )+Ro3(Z-2Z,) %

Fly)=-y+yo—c=2 07" 22 0 =-y+yo-C—=0

v) ° R31(X = Xg)+Raz(Y = Yo)+Rg3(Z - Zo) °Tw

Due to the known problem of instability caused by using Euler angles, especially when one of
these angles takes a value of 90 or 270 degrees, and due to the foreseen integration with the

outputs of an IMU the quaternions, q =(qy,q,,93,94 ), are used in the rotation matrix.

Quaternions were introduced by Sir W. R. Hamilton (1805-1865) in the mid nineteenth
century and they remained a piece of theory without potential usage until the mid twentieth
century. Currently, quaternions are used in the areas of computer vision and graphics, virtual
reality, theory of relativity, navigation, aerospace, etc. Their main advantage is the

singularity-free rotation operations. An important feature of quaternions is that their norm has
to be equal to unity; this means: ||q||2 = g% +0,° +q3° +q,% =1; to achieve this relation,
normalisation is usually done. For interested readers, see Kuipers (1984).

The association between the attitude angles and the quaternions does not depend on the
parameterisation of rotation. This relation is based on a relationship between the elements of

the rotation matrix R and those of the quaternions matrix Q as follows:

Ry Ry Ry] [@-@-@+q) 2@ -a9a)  2(ads + )
Ry Ry Ry |=| 200 +00) (@--@+2) 2,9 -9a,)
Rsi Rz Ry 2(Q1Q3 - Q2Q4) 2(%% + Q1Q4) (qg —qf — a5 + qi)

Consequently, the co-linearity equations take the form:

F(x)s—x+x0 P Q11(X—Xo)+Q12(Y—Yo)+Q13(Z—Zo) = —X+Xg-C— =0
Q31(X—Xo)+Q32(Y—Yo)+Q33(Z—Zo) (A1)
Q21(X—Xo)+Q22(Y—Yo)+Q23(Z—Zo)

Fly)=-y+yp-c =-y+yo-c—=0

( ) ° Q31(X—x0)+Q32(Y—Y0)+Q33(Z—Zo) °
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Equations (2.1) describe the fundamental mathematical model for photogrammetric mapping,
where it reveals the relationship between the image and the object coordinate systems. With
this model, one can solve the basic problems of photogrammetric mapping, namely:
resection and intersection, which when merged together form the photogrammetric trian-

gulation also know as Bundle adjustment.

In photogrammetry, two terms are distinguished: interior and exterior orientation. The first
term embraces the focal length and the coordinates of the projection of the perspective
centre to the image plane: c,xg,y. The exterior orientation parameters (EOP), on the other
hand, is a set of the coordinates of the perspective centre in the object frame and the three
rotation angles: X,,Y,,Z,,w,o,K; but since the quaternions are used, the EOP is the set of the
coordinates of the perspective centre in the object frame and the four quaternions:

XosY0:Z4:G1:92,93,9 -

In this chapter, all the vectors and matrices (Bold) headed by a prime (e.g., X') refer to the

resection and all those headed by two primes (e.g., X") refer to the intersection.

Resection
With the problem of resection (Fig. 2-2), the position and attitude (EOP) of an image are

determined by having at least a set of four points whose coordinates are known in the object
frame as well as in the image frame; these points are called Ground Control Points (GCP).

Therefore, the known, unknowns and measurements are:

7Z=U Perspective centre
(0,0,0)

/ o |
(X0, Yo, ©) Y. 7
Y = N OR (Xl’ Yl’ Zl)

(Xo5 Yo, Zo, q15 q25 935 q4)

Figure A-7-1: Resection Problem
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Measurements: X;,Y;,Z;, x;,y;, i=1---n; Unknowns: X,,Y,,Z,,9,d5,93,04

In resection, there are seven unknowns; for the system of equation to be solved, seven
equations are needed. In most cases, resection is handled in the frame of LSA. A minimum

set of eight equations is used through measuring the photo-coordinates, (xi,yi), of four

GCPs. In addition to this, a constraint is forced here: g= q12 +q22 +q32 + q42 has to be equal

to one.

Resection Least-Squares Adjustment with Constraints
To solve resection, we consider the following vectors. The vector of the unknowns:

x’:[xo Yo Zy O 9y Qs Q4]T (A.2)
is computed by:
o
x' =x"+0x’ (A.3)
o
where X' is the vector of the approximate values of x':
0, o (o] (o] (o] o (o] [0} T
XZ{XO Yo Zo @ 9, Qs %} (A4)
and 8x’ is the computed vector of corrections:
5x' =[6X, 8Y, d8Z, 6q; 8q, dq; Bq,] (A.5)
The vector of measurements is:
y':[X1 Yo Xy Yo Zy o Xy Yn Xy Y, Zn]T (A.6)

Having the above vectors, &x’ is computed through solving the following equations:

Adx'+BvV +w' =0 and Hox' =z (A.7)
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"

o
v" is the vector of errors. The misclosure vector w'=F(x’,y’J. The LSA solution of

equations (A.8) is:

8x =N+ N-HT(HNHT | 'z HN—TU), (A.8)
with N =ATM A, U=A"M"w, M =BC,BT

The constraints are introduced through vector z and matrix H. Vector z is computed as:
i )

The stochastic model for the measurements is included in matrix C’y, the variance-

covariance matrix, and it takes the following form:

o3, 0 0 0 0o 0 0 0 0
oy,. O 0 0 0 0 0 0 0
2
Ox; OXqv;y OX4z4 0 0 OXiXn OXqY, OX4z,
2
Sy, Ovz4 0 0 OSYiXn Oviy,  Ovyz,
2
6z, 0 0 Sz:X, ©zyv, ©z4z,
Cy= b : : : : (A.10)
ox, O 0 0 0
SYM. o 0 0 0
OXn XnYn  OXnZy
2
GYn cYYI'IZH
2
()
L Zn 15nx5n

Matrix A’ is the first design matrix (Jacobi matrix) and it contains the derivatives of the

measurement model (Eqg. A.1) with respect to the Unknowns.
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[oF(x), oF(x), oF(x), oF(x), oF(x), oF(x), &F(x), |
0X, Yo 0Z, oq; 0q, 0q; 0q,
8F(Y)1 aF(Y)1 aF(Y)1 aF(Y)1 aF(Y)1 aF(Y)1 8F(y)1
0X, Yo 0z, oq; 3le P 0q, 0q,
A = : : : : : : : (A.11)

OF(x), OF(x), oF(x), oF(x), oF(x), oF(x), aF(x),
X, oYy 0Z, aq; a9, aq; aq,
oF(y), oF(y), oF(y), oF(y), oF(y), oF(y), oF(y),
L 9%, Yo oL, gleh od, 0, 0d,

J12nx7
with the following elements:

aF(x)
X

8F(x)
Yy

aF(x)
0Z,

c c c
:_W(QMU_Q“W) Z—W(Q32U—Q12W) Z—W(Q%U—QHW)

oF oF oF
(y) _ _#(QMV _ Q21W) (y) _ _#(Qszv _ Q22W) (y) _ _#(Q;;::,V - Q23W)

Xq Yo %0

ac;g:() - _2%[()(0 - X)W - Q3U)+ (Yo = Y)aaW —q,U)+(Z, - Z)(%W + q1U)]
agq(:) B _2#[()(0 = X)=a2W +a,U)+ (Yo = Y NayW - a3U)+(Zo - Z)asW +qpU))]
oF(x) c

. - _ZW [(Xo = XX=azW —qqU)+ (Yo = Y )= qqW —q,U)+(Zo — Z) W —q3U)]

oF
aq(X) B _2# (Xo = XNasW +q2U)+ (Yo = Y )= azW — qiU)+(Zo — Z)aW - q,U)]
4

oF
&gy) - —2#[(x0 ~ X)W = a5V)+ (Yo = Y)= W = qu V) + (Zg — Z)- qgW + a4 V)]
1
oF
aq(y) = —2#[0(0 - X)(q1W + q4V)+ (Yo - Y)(q2W - q3V)+ (Zo - Z)(QSW + qZV)]
2
oF(y)

a9 = —2#[0(0 - X)(Q4VV - Q1V)+ (Yo - YX— qzW - Q2V)+ (Zo - Z)(sz - Q3V)]
3
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oF
aq(y) = —2#[0(0 —XNasW +0V)+ (Yo = YNQaW — a4V )+ (Zg = Z)-qyW -4 V)]
4

Matrix B’ is the second design matrix and it contains the derivatives of the measurement

model (Equation A.1) with respect to the vector of measurements. It has the following form:

[oF(x), oF(x), oF(x), oF(x), @&F(x), 0 0 0 0 0
aX1 ay»] 6X1 8Y1 821
oF(yh oF(y)y oF(yh oF(y)y oF(yh 0 0 0 0 0

&, oy, X, oY, oz

B = : : : : : : : : :
0 0 0 0 0 OF(x), oF(), oF(x)y oF(x), oF(x),
oX oy oX oY, oL
o o o o o OFyh OFYh Fh o)k oF(Yn
L OXp, oYn Xy, oY, oL, |
10 OF(x); oF(x);  oF(x); 0o o0 0 o |
X4 Y, 0Z,
0 —1 6F(y)1 6F(y)1 6F(y)1 . 0 0 0 0 0
X4 aY; 0Z,
= : : : : : : (A.12)
0 O 0 0 0 ag)(:()n a';g()n a';;)()n
0 O 0 0 0 e 0 -1 6F(yr>n aF(yr>n aF(yan
L oX, oY, oz, Jonesn

The other elements of matrix B’ are:

oF(x)

oF(x) oF(x)
oz

oY

oF
ﬂ=#(QS1U—QﬂW)

c
X Zw(Q%U—QwW)

c
= W(Qszu -Qq,W)

oF oF oF
—63) = #(va ~QyW) | % = #(Qwv ~QgpW) | % = #(Q%V QW)

Matrix H is a Jacobi matrix  with elements: H, =0og/0x;,  where

g=1 —q12 —q22 —q32 —q42 =0; thus, it takes the following form:

[e] (o] (o] o
H:{o 0 0 -2q, -2q, -20s —2q4} (A.13)
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The approximate values are used to compute the matrices A', B’ and H.

The precision estimation of the parameters, residuals and measurements are computed,

respectively, as:

Cy = N"1[I ~HT[HNHT T1HN'—1} (A.14)

' - Gl - U el ' Tar-1a N1 =g T 1T |1 -1 ANY il -V el
c, -c,B™M'8'C, -C,B™M A(N ~NHT(HNHT ) HN )A M-'B'C, (A.15)

Cy=C,-C, (A.16)
The a-posteriori variance factor is:

) viPv

__VPv A17
%0 TN 741 (A17)

where 2n is the number of measurements, 7 is the number of the unknowns and 1 is the

number of constraints.

Intersection
By the problem of intersection (Figure A-2), two images, whose EOP are known, are used to

determine the coordinates in the object frame of features found on the two images
simultaneously, employing the principle of stereovision; so, known, unknowns and

measurements (R and L designate the Right and Left camera/image) are:

Measurements: Xo g, YoL/r:ZoL/r> %1 /r> 92 /R G /r T r > Xij»Yijs Unknowns: X, Y;, Z;

i=1.n, j=RL

Intersection is always handled in the frame of LSA because the measurements (4n) are

always more than the unknowns (3n).

Intersection Least-Squares Adjustment
To solve resection, we consider the following vectors. The vector of the unknowns:

X=X, Yy Zy o X, Y, Z,T (A.18)
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Image space (R)

..... >

Image space (L
gespace () > (XiL-XoL, YiL-YoL, -CL) /
OR (XiL, YiL, €L) /b

(Xir-XoR> YiR-YoR> ~CR)
OR (Xir; Yir, Cr)

Perspective centre
(0,0, 0)

OR

(X0R, YORs -CR)

OR

(XOR’ YOR’ ZOR’
qiRr; q2R; Q3Rs G4R)

l

' Perspective centre 7

0,0, 0)
y=N  OR
gﬁl.}/m» cL)
(Xows Yors Zovs qiLs Q215 q3L G41) X i Z0)
XEE
Figure A-7-2: Intersection Problem
is computed by:
o
x" =x"+6x" (A.19)
(o]
where x" is the vector of the approximate values of the unknowns:
T
o o (o] (o] (o] (o] (o]
x" = {X1 Y1 Z1 -+ Xn Yn Zn} (A.20)
and &x” is the computed vector of corrections:
5x" =[6X, dY, 8Z; - OX, dY, °Z,[ (A.21)
The vector of measurements is:
Y'=1Xu4 Yo 0 Xt Y X Yo Zio G 92 G5 Q@
[ L1 L1 L L LO LO LO L1 L2 L3 L4 (A22)

Xrt YR1 " Xrn Yrn Xro Yro Zro 9r1 9r2 Ors QR4]T
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Having the above vectors, 8x” is computed through solving the following equation:
A'dx"+B'V'+w"=0 (A.23)
V' is the vector of errors. The misclosure vector w” = F()?", y”j }

The LSA solution of Eq. (A.24) is:

5x" =N"-U” (A.24)
where N =AM A", U =A"TM""w", M’ =B'CyB""

The error information of the measurements C§, is included in the variance-covariance matrix:

LRy RY l(4n+14)x(4n+14)
ok, O 0 5
2 |
I
o2, 0 0
2 |
Gyjn : 0
I G 4 S I S .

OXo  %XjoYie XjZjp  OXjpai  OXjeap  OXpai  OXjoais

)

1

1
"

ij - E (5% Oy. 7 Oy Oy Oy Oy
j=LR) | jo i0Zjo 091 j0dj2 09j3 094
! 2
i 0Z OZpan ©Zpap ©Zpap  ©Zpau
2

1

SYM. ' qu'1 9j19j2 qu'1q13 Qj19j4
! 2
i qu'z 9j29j3 Qj29j4

2
1
' qus Qj39j4
! 2
qu4



Appendix A: Photogrammetry Solution with Quaternions 136
| -
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
: L : : : :
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
i -
Clry = EGXLOXRO OXloYRo ©OXloZro  OXlogr1 OXiok2  ©Xiodrs O XLo%R4
! OYioYro OYioZro OYiodwrt OYioorz OYiodrs  ©Yiodra
i OZ10Zro  OZioR1 ©Ziorz  ®Ziodrs  CZiodra
SYM. i Caars  Caarz Caars  Caiiara
E Oqaarz  Cdzrs  TaLotra
i Oasars  aL3ara
- i OqL40ra i
' (A.27)

Matrix A" is the first design matrix (Jacobi matrix) and it contains the derivatives of the

measurement model (Eq. A.1) with respect to the Unknowns.

AII

" __ L

A _|: ”
R J4nx3n

With,

Al =
i=LR)

[oF(x), oF(x), oF(x), oF(x), oF(x); oF(x), |

ox oY, oz ox oY, oz
aF(YBﬂ aF(Y)n aF(YBn 6F(y i aF(yrbn 8F(y i

X, oY, oz X, oY, oz,
oF(x), oF(x), oF(x), oF(x), oF(x), oF(x),

ox oY, oz X, oY, oz
() )y F)  Fh), R, oY),
X, oY, az, X, o, az, | .
—6’F(x)j1 8F(x)j1 6F(x)j1 0 0 0 ]

oX oY. oz

aF(YBn aF(y i aF(YBn 0 0 0

X, oY, oz,

0 0 0 aF(x)jn aF(x)jn aF(x)jn

X, oY, oz,

0 0 0 aF(y)jn 6F(y)j aF(y)jn

| oX, oY, 0Z, Jonxan

(A.28)

(A.29)
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with the following elements:

oF oF
ﬂZ#(Q32U—Q12W) ﬂ:%(Q33U_Q13W)

oY

F(x) ¢
X wr QU iz

oF oF oF
—a)((y) = #(QMV - Q21W)’ % = #(Qszv —szw)’ % = #(Q%V - Q23W)

Matrix B" is the second design matrix and it contains the derivatives of the measurement

model (Eq. 2.1) with respect to the vector of measurements. It has the following form:

B” B”
B"{ k- L,,R} Big =0 and,
B'-I'; Br 4nx4n+14
[oF(x), oF(x), B oF(x), aF(x),
Xy W Xjpy in
aF(Y)n aF(Y)n . aF(Y)n aF(y)j
N I TR T S
HUR) | OF(x),  oF(d), | oF(x),  oF(x),
OXjq Y 1 OX;p Yin
aF(Y)n aF(Y)n . aF(Y)jn aF(Y)j
L OXj4 oY 1 OX;p Yin

OF(x)y OF(x)y oF(x); oF(x), oF(x), aF(x), oF(x)y |
oXo Mo 0L, oqj o), 0qj3 0j4
aF(Y)ﬂ aF(y)n aF(Y)ﬂ aF(y)n aF(Y)ﬂ aF(y)j aF(Y)ﬂ
X o 0Ly aq;, aq;, aq;3 04
oF(x), oF(x), oF(x), oF(x), oF(x), oF(x), oF(x),
X o 0Zj aq;4 aq;, aq;3 09y
aF(y)j aF(Y)j aF(y)j aF(Y)j aF(y)j aF(Y)j aF(y)j
Xjo Mo 0Ly aq;, aq;, ;3 2 /7R R
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0 O 0o -1
oF(x); OF(x), oF(x), oF(x), oF(x), aF(x);, &F(x), ]
X Y 0L, oq;y aq;, 0d;3 0q;4 (A.30)

J12nx2n+7

The elements of the above two matrices, B] and Bg, are computed in the same way as

those of the first design matrix in resection A’, after taking into account the two images, Left

and Right. The approximate values are used to compute the matrices A" and B".

In the LSA adjustment of intersection, each point is solved independently using a stereo-
model. The equation of combined case LSA can take the form:
Ajidxi +Bjivii + wj =0 (A.31)

ji

where the subscript i denotes feature i, and j indicates Left or Right images (camera).

The solution of 8x; is:
8] = (N + Ny ) ' (Uf; + Ug;) (A.32)
with NG = ATBLCHBIT AL N = Al BaCryBa ' A

L= ATBLCLBIT ) Wl U = A (BRCRBH ) Wi

The precision estimations are computed as in Chapter 2.
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APPENDIX B: CAMERAS’ CALIBRATION

For each camera (Left and Right), an independent calibration process was carried out.
Photo-coordinates were measured in Socket-set® and then were input to BINGO-F® to

perform the calibration.

BINGO® provides the adjusted focal length and principle point photo-coordinates, in addition

to the calibration parameters.

The calibration field is located in the Geodetic Engineering Laboratory at the EPFL. A set of
15 GCPs, measured by a total-station, was used for the calibration task. In addition to the

GCP, photo-coordinates of 12 tie points were also used.

Nine images for each camera were taken in the following order:

9 16 |3
8 | 5| 2
714 1

Calibration of the Left Camera
Table (B-2) shows the images that were taken from the Left camera, where the targets are

clearly seen. (The different equipments are part of the Lab and have nothing to do with the

calibration.)
The focal length and principle point’s photo-coordinates of the Left camera are (mm):
Focal length: 6.07, std = 0.009

Principle point: (0.0447 , -0.0263), std(0.0065 , 0.0092)
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Table B-71: Images used for the calibration of the left camera

The plots of the Radial symmetric distortion:

dr Camera: L
T0.1020
— ——= —
| -0.10Z20
Radial symmetric distorticn
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Dist.<= 0.1020

Camera:

25

Parameters:
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Calibration of the Right Camera
Table (B-2) shows the images that were taken from the Right camera.

The focal length and principle point’s photo-coordinates of the Right camera are (mm):

Focal length: 6.07, std = 0.007

Principle point: (-0.0330, -0.0013), std(0.0055 , 0.0087)

Table B-2: Images used for the calibration of the right camera

>




143

Appendix B: Cameras’ Calibration

The plots of the Radial symmetric distortion:

R

Camera :

dr

0.0981
-0.0981

symmetric distorticon

Radial

Dist.<= 0.0981

Camera:

25

Parameters:
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APPENDIX C: OUTDOOR IMAGES
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APPENDIX D: DETAILED TABLES

Table D-1: Rg angles derived from INS/GPS and resection with measured GCP accuracy (degrees)

Accuracy ~ 0.01

With boresight correction

Without boresight correction

Epoch E, E, E, E, E, E,

1 IMU/GPS | -44.7549 1.3821 -81.1443 || -44.7549 1.3821 -81.1443
L -44.7998 1.3507 -81.2571 || -46.2640 0.6866 -82.5553

R -44.7647 1.2773 -81.2806 || -44.8828 0.8659 -82.6821

2 IMU/GPS | -44.5572 2.1910 -80.7181 || -44.5572 2.1910 -80.7181
L -44.6433 2.2675 -80.6392 | -46.1223 1.6331 -81.8993

R -44.5379 2.1676 -80.6837 | -44.6715 1.7656 -82.077
3 IMU/GPS | -44.4795 1.9735 -80.8135 || -44.4795 1.9735 -80.8135
L -44.5018 1.8827 -80.8411 || -45.9749 1.2423 -82.1125
R -44 4753 1.8677 -80.8811 || -44.6037 1.4673 -82.2738
4 IMU/GPS | -44.2799 5.7301 -75.3527 || -44.2799 5.7301 -75.3527
L -44.3557 5.5887 -75.1998 | -45.8844 5.0535 -76.3265
R -44.2344 5.5097 -75.3125 || -44.4259 5.1263 -76.6853
5 IMU/GPS | -44.8479 4.6945 -77.3974 || -44.8479 4.6945 -77.3974
L -44.9182 4.8029 -77.3213 || -46.4351 4.2296 -78.4903
R -44.8067 4.6935 -77.4247 | -44.9839 4.2884 -78.8147
6 IMU/GPS | -44.6931 2.9835 -79.0416 || -44.6931 2.9835 -79.0416
L -44.7241 3.0605 -79.0255 || -46.2152 2.445 -80.2574

R -44.7136 3.0127 -79.0506 | -44.8617 2.6066 -80.4451
7 IMU/GPS | -44.8705 4.7685 -77.2922 || -44.8705 4.7685 -77.2922
L -44.8944 4.8310 -77.268 | -46.4117 4.2593 -78.4354
R -44.846 4.7821 -77.3082 || -45.0246 4.3760 -78.6988
8 IMU/GPS | -44.3561 5.3890 -75.7558 | -44.3561 5.3890 -75.7558
L -44.4041 5.5023 -75.6565 | -45.9316 4.9634 -76.7875

R -44.3218 5.4424 -75.716 | -44.5121 5.0559 -77.0911
9 IMU/GPS | -44.3675 6.6324 -74.3969 || -44.3675 6.6324 -74.3969
L -44.3857 6.7008 -74.2828 || -45.9297 6.1957 -75.3667
R -44.3339 6.6721 -74.3404 || -44.5453 6.2891 -75.7098
10 IMU/GPS | -44.3405 6.5233 -74.453 | -44.3405 6.5233 -74.4530
L -44.3818 6.5932 -74.3197 || -45.9243 6.0852 -75.4077
R -44.3252 6.5956 -74.38 -44.5352 6.2127 -75.7495

11 IMU/GPS | -44.2897 5.3143 -75.1381 || -44.2897 5.3143 -75.1381
L -44.3200 5.4066 -75.0252 || -45.8462 4.8673 -76.1582
R -44 2272 5.3558 -75.1077 || -44.4161 49723 -76.4810
12 IMU/GPS | -44.3826 5.6591 -75.9474 || -44.3826 5.6591 -75.9474
L -44.3257 5.6529 -75.8071 || -45.8554 5.1203 -76.9307
R -44.3076 5.7242 -75.8321 || -44.5027 5.3391 -77.2055
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Table D-2:R§ angles derived from INS/GPS and resection with GCP accuracy of ~ 0.05 (degrees)

Accuracy ~ 0.05

With boresight correction

Without boresight correction

Epoch E, Ey E, Ex Ey E,

1 IMU/GPS | -44.7549 1.3821 -81.1443 | -44.7549 1.3821 -81.1443
L -44.8693 1.4260 | -81.1615 || -46.3969 | 0.6393 | -82.6298

R -44.8790 1.3718 | -81.1772 || -45.0713 | 0.8613 | -82.7137

2 IMU/GPS | -44.5572 | 2.1910 | -80.7181 || -44.5572 | 2.1910 | -80.7181
L -44.7164 | 2.3421 -80.5394 | -46.2620 1.5850 | -81.9671

R -44.6423 | 2.2216 | -80.6107 | -44.8831 1.8123 | -82.0545
3 IMU/GPS | -44.4795 1.9735 | -80.8135 || -44.4795 | 1.9735 | -80.8135
L -44 5615 1.9476 | -80.8127 || -46.1382 1.2327 | -82.4123

R -44.5783 1.9583 | -80.7755 || -44.7873 1.4548 | -82.2999

4 IMU/GPS | -44.2799 | 5.7301 -75.3527 || -44.2799 | 5.7301 -75.3527
L -44.4131 5.6549 | -75.1735 || -46.0597 | 5.0458 | -76.6302

R -44.3176 | 5.5950 | -75.2296 | -44.6018 | 5.1354 | -76.7094

5 IMU/GPS | -44.8479 | 4.6945 | -77.3974 || -44.8479 | 4.6945 | -77.3974
L -44.9805 | 4.8767 | -77.2330 | -46.5701 4.2045 | -78.5555

R -44.8982 | 4.7808 | -77.3386 | -45.1567 | 4.2942 | -78.8557

6 IMU/GPS | -44.6931 2.9835 | -79.0416 | -44.6931 2.9835 | -79.0416
L -44.7830 | 3.1257 | -78.9480 | -46.3436 | 2.4175 | -80.3344

R -44.8162 | 3.0988 | -78.9551 | -45.0378 | 2.6072 | -80.4908

7 IMU/GPS | -44.8705 | 4.7685 | -77.2922 | -44.8705 | 4.7685 | -77.2922
L -44.9537 | 4.8993 | -77.1863 | -46.5447 | 4.2310 | -78.5065

R -44.9372 | 4.8656 | -77.2201 || -45.2003 | 4.3783 | -78.7371

8 IMU/GPS | -44.3561 5.3890 | -75.7558 | -44.3561 5.3890 | -75.7558
L -44.5264 | 5.6528 | -75.5041 | -46.0626 | 4.9290 | -76.9246

R -44.4163 | 5.5351 -75.6254 | -44.6933 | 5.0703 | -77.1157

9 IMU/GPS | -44.3675 | 6.6324 | -74.3969 || -44.3675 | 6.6324 | -74.3969
L -44 4746 | 6.7959 | -74.2961 | -46.1750 | 6.2667 | -75.6274

R -44.4294 | 6.7683 | -74.2420 || -44.7331 6.3086 | -75.7164

10 IMU/GPS | -44.3405 | 6.5233 -74.453 | -44.3405 | 6.5233 -74.453
L -44.4599 | 6.6854 | -74.3332 | -46.1588 | 6.1522 | -75.6687

R -44.4146 | 6.6885 | -74.2874 | -44.7180 | 6.2304 | -75.7612

11 IMU/GPS | -44.2897 | 5.3143 | -75.1381 | -44.2897 | 5.3143 | -75.1381
L -44.3744 | 5.4689 | -75.0009 | -46.0196 | 4.8553 | -76.4602

R -44.3164 | 5.4542 | -75.0133 | -44.5975 | 4.9932 | -76.4915

12 IMU/GPS | -44.3826 | 5.6591 -75.9474 | -44.3826 | 5.6591 -75.9474
L -44.4037 | 5.7560 | -75.8124 || -46.0791 5.2020 | -77.1873

R -44.3929 | 5.8081 -75.7410 | -44.6746 | 5.3345 | -77.2356
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Table D-3:R§ angles derived from INS/GPS and resection with GCP accuracy of ~ 0.10 (degrees)

Accuracy ~ 0.10

With boresight correction

Without boresight correction

Epoch E, Ey E, Ex Ey E,

1 IMU/GPS | -44.7549 1.3821 -81.1443 | -44.7549 1.3821 -81.1443
L -43.7740 | -0.1495 | -82.7055 | -46.6927 | 0.3424 | -82.3826

R -43.7754 | -0.2017 | -82.6717 | -45.3102 | 0.6737 | -82.2632

2 IMU/GPS | -44.5572 | 2.1910 | -80.7181 || -44.5572 | 2.1910 | -80.7181
L -43.6296 | 0.7555 | -82.0917 || -46.5528 1.2919 | -81.7226

R -43.5502 | 0.4272 | -82.2546 | -44.8951 1.6454 | -81.7349
3 IMU/GPS | -44.4795 1.9735 | -80.8135 || -44.4795 | 1.9735 | -80.8135
L -43.3271 0.2544 | -82.2306 | -46.1187 | 0.7089 | -82.1604

R -43.4845 | 0.3811 -82.2837 | -45.0198 1.2327 | -81.9148

4 IMU/GPS | -44.2799 | 5.7301 -75.3527 || -44.2799 | 5.7301 -75.3527
L -43.3000 | 3.8224 | -76.6621 | -46.0541 4.5609 | -76.3190

R -43.3236 | 3.8784 | -76.8124 | -44.8214 | 4.9842 | -76.2231

5 IMU/GPS | -44.8479 | 4.6945 | -77.3974 || -44.8479 | 4.6945 | -77.3974
L -43.9590 | 3.1801 -78.8402 | -46.8843 | 3.9744 | -78.1979

R -43.8595 | 3.0948 | -78.8879 | -45.4160 | 4.1740 | -78.3105

6 IMU/GPS | -44.6931 2.9835 | -79.0416 | -44.6931 2.9835 | -79.0416
L -43.7253 1.4670 | -80.5113 || -46.6811 2.2015 | -79.9330

R -43.7456 1.4457 | -80.4632 || -45.3413 | 2.5070 | -79.9085

7 IMU/GPS | -44.8705 | 4.7685 | -77.2922 | -44.8705 | 4.7685 | -77.2922
L -43.9247 | 3.1967 | -78.7996 | -46.8736 | 4.0148 | -78.1299

R -43.9036 | 3.1744 | -78.7682 | -45.4637 | 4.2638 | -78.1837

8 IMU/GPS | -44.3561 5.3890 | -75.7558 | -44.3561 5.3890 | -75.7558
L -43.3800 | 3.7649 | -77.2275 | -46.4186 | 4.7571 -76.6688

R -43.4149 | 3.8271 -77.1964 | -44.9313 | 49376 | -76.6017

9 IMU/GPS | -44.3675 | 6.6324 | -74.3969 || -44.3675 | 6.6324 | -74.3969
L -43.4644 | 5.0330 | -75.6583 || -46.0281 5.6414 | -75.2162

R -43.4564 | 5.0258 | -75.8488 | -44.9479 | 6.1537 | -75.2390

10 IMU/GPS | -44.3405 | 6.5233 -74.453 | -44.3405 | 6.5233 -74.453
L -43.4459 | 49217 | -75.6933 | -46.0076 | 5.5248 | -75.2596

R -43.4382 | 4.9470 | -75.8976 | -44.9291 6.0737 | -75.2875

11 IMU/GPS | -44.2897 | 5.3143 | -75.1381 | -44.2897 | 5.3143 | -75.1381
L -43.2643 | 3.6345 | -76.4968 || -46.0121 4.3674 | -76.1603

R -43.3232 | 3.7348 | -76.6068 | -44.8084 | 4.8324 | -76.0224

12 IMU/GPS | -44.3826 | 5.6591 -75.9474 | -44.3826 | 5.6591 -75.9474
L -43.3500 | 4.0029 | -77.1789 | -45.9337 | 4.5332 | -76.8227

R -43.3885 | 4.0957 | -77.3379 | -44.9158 | 5.1499 | -76.8095
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Table D-4:R§ angles derived from INS/GPS and resection with GCP accuracy of ~ 0.15 (degrees)

Accuracy ~ 0.15

With boresight correction

Without boresight correction

Epoch E, Ey E, Ex Ey E,

1 IMU/GPS | -44.7549 1.3821 -81.1443 | -44.7549 1.3821 -81.1443
L -44.3292 | 0.8740 | -81.5450 | -47.5145 1.3139 | -81.2146

R -44.3230 | 0.8079 | -81.5897 | -46.0744 1.7730 | -81.1052

2 IMU/GPS | -44.5572 | 2.1910 | -80.7181 || -44.5572 | 2.1910 | -80.7181
L -44.1920 1.7984 | -80.9147 || -47.3776 | 2.3089 | -80.5171

R -44.0015 1.9140 | -80.9199 || -45.6674 | 2.6176 | -80.6520
3 IMU/GPS | -44.4795 1.9735 | -80.8135 || -44.4795 | 1.9735 | -80.8135
L -44.0987 1.4547 | -80.9015 || -47.3948 | 2.0456 | -80.2050

R -44.0346 1.4145 | -81.1732 || -45.8047 | 2.3745 | -80.7122

4 IMU/GPS | -44.2799 | 5.7301 -75.3527 || -44.2799 | 5.7301 -75.3527
L -43.9745 | 5.1246 | -75.3020 | -47.1795 | 6.2341 -74.1114

R -43.7819 | 4.9539 | -75.7118 | -45.4815 | 6.2442 | -74.9983

5 IMU/GPS | -44.8479 | 4.6945 | -77.3974 || -44.8479 | 4.6945 | -77.3974
L -44.4553 | 4.2331 -77.6831 | -47.5957 | 4.9711 -77.0400

R -44.3460 | 4.1265 | -77.8133 | -46.0818 | 5.2744 | -77.1636

6 IMU/GPS | -44.6931 2.9835 | -79.0416 | -44.6931 2.9835 | -79.0416
L -44.2428 | 2.4753 | -79.3936 | -47.3796 | 3.0638 | -78.8800

R -44.2588 | 2.4430 | -79.4086 | -45.9908 | 3.4786 | -78.8386

7 IMU/GPS | -44.8705 | 4.7685 | -77.2922 | -44.8705 | 4.7685 | -77.2922
L -44.4334 | 4.2543 | -77.6363 | -47.5748 | 4.9884 | -76.9912

R -44.3850 | 4.2039 | -77.6961 | -46.1109 | 5.3424 | -77.0514

8 IMU/GPS | -44.3561 5.3890 | -75.7558 | -44.3561 5.3890 | -75.7558
L -43.9495 | 4.9625 | -75.8214 | -47.1045 | 5.9282 | -74.8421

R -43.8866 | 4.8932 | -76.0996 | -45.5934 | 6.1482 | -75.4012

9 IMU/GPS | -44.3675 | 6.6324 | -74.3969 || -44.3675 | 6.6324 | -74.3969
L -44.2005 | 6.5064 | -74.0348 || -47.2567 | 7.4541 -73.1893

R -43.9124 | 6.1268 | -74.7242 | -45.6075 | 7.4700 | -73.9766

10 IMU/GPS | -44.3405 | 6.5233 -74.453 | -44.3405 | 6.5233 -74.453
L -44.1841 6.3958 | -74.0706 || -47.2334 | 7.3316 | -73.2414

R -43.8950 | 6.0484 | -74.7711 | -45.5908 | 7.3927 | -74.0238

11 IMU/GPS | -44.2897 | 5.3143 | -75.1381 | -44.2897 | 5.3143 | -75.1381
L -43.9367 | 4.9453 | -75.1223 || -47.1424 | 6.0641 -73.9317

R -43.7925 | 4.8268 | -75.4871 | -45.4879 | 6.1458 | -74.7620

12 IMU/GPS | -44.3826 | 5.6591 -75.9474 | -44.3826 | 5.6591 -75.9474
L -44 1271 5.4237 | -75.5894 | -47.2269 | 6.1698 | -74.9276

R -43.8604 | 5.1782 | -76.2053 || -45.6101 6.3745 | -75.5636
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