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Abstract
Ever since the development of Computer Graphics in the industrial and academic worlds in the sev-
enties, public knowledge and expertise have grown in a tremendous way, notably because of the
increasing fascination for Computer Animation. This specific field of Computer Graphics gathers nu-
merous techniques, especially for the animation of characters or virtual humans in movies and video
games. To create such high-fidelity animations, a particular interest has been dedicated to motion
capture, a technology which allows to record the 3D movement of a live performer. The resulting re-
alism motion is convincing. However, this technique offers little control to animators, as the recorded
motion can only be played back. Recently, many advances based on motion capture have been pub-
lished, concerning slight but precise modifications of an original motion or the parameterization of
large motion databases. The challenge consists in combining motion realism with an intuitive on-line
motion control, while preserving real-time performances.

In the first part of this thesis, we would like to add a brick in the wall of motion parameterization
techniques based on motion capture, by introducing a generic motion modeling for locomotion and
jump activities. For this purpose, we simplify the motion representation using a statistical method
in order to facilitate the elaboration of an efficient parametric model. This model is structured in
hierarchical levels, allowing an intuitive motion synthesis with high-level parameters. In addition, we
present a space and time normalization process to adapt our model to characters of various sizes.

In the second part, we integrate this motion modeling in an animation engine, thus allowing
for the generation of a continuous stream of motion for virtual humans. We provide two additional
tools to improve the flexibility of our engine. Based on the concept of motion anticipation, we first
introduce an on-line method for detecting and enforcing foot-ground constraints. Hence, a straight
line walking motion can be smoothly modified to a curved one. Secondly, we propose an approach for
the automatic and coherent synthesis of transitions from locomotion to jump (and inversely) motions,
by taking into account their respective properties.

Finally, we consider the interaction of a virtual human with its environment. Given initial and final
conditions set on the locomotion speed and foot positions, we propose a method which computes the
corresponding trajectory. To illustrate this method, we propose a case study which mirrors as closely
as possible the behavior of a human confronted with an obstacle: at any time, obstacles may be
interactively created in front of a moving virtual human. Our method computes a trajectory allowing
the virtual human to precisely jump over the obstacle in an on-line manner.
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Résumé
Le développement de l’infographie dans les mondes industriel et académique a soutenu la croissance
des connaissances et de l’expertise publique, notamment en raison d’une fascination grandissante
pour l’animation par ordinateur. Ce domaine spécifique à l’infographie regroupe de nombreuses tech-
niques, surtout dédiées à l’animation de personnages ou d’humains virtuels pour la réalisation de
films de cinéma et de jeux vidéo. Pour la création d’animation de haute qualité, la capture de mouve-
ment, une technique permettant d’enregistrer en direct les mouvements 3D d’un acteur, s’est révélée
porteuse. Le mouvement ainsi reproduit bénéficie d’un réalisme convainquant. Cependant, peu de
contrôle est offert aux animateurs professionnels, le mouvement ne pouvant qu’être joué en boucle.
Récemment, de nombreuses solutions basées sur la capture du mouvement ont été publiées, que ce
soit pour apporter des modifications fines mais précises au mouvement capturé, ou pour paramétrer
une base de données d’enregistrements. La difficulté réside dans l’obtention d’un contrôle intuitif et
en temps réel des paramètres du mouvement, tout en préservant le réalisme original dans l’animation
produite.

Dans la première partie de cette thèse, nous tentons d’apporter une pierre à l’édifice des techniques
de paramétrisation d’animation basées sur la capture du mouvement en introduisant un modèle de
mouvement générique pour des activités de locomotion et de saut. Dans ce but, nous simplifions
la représentation du mouvement en utilisant une méthode statistique, facilitant l’élaboration d’un
modèle paramétrique efficace. Ce modèle, structuré en niveaux hiérarchiques, permet une synthèse
du mouvement de manière intuitive à l’aide de paramètres de haut-niveau. De plus, nous présentons
une normalisation en espace et en temps afin d’adapter notre modèle à des personnages de tailles
diverses.

Dans la deuxième partie, nous intégrons ce modèle de mouvement dans un moteur d’animation,
permettant ainsi la génération d’un flux continu de mouvements pour des humains virtuels. Nous pro-
posons deux outils pour améliorer la flexibilité de notre moteur, tout en conservant des performances
en temps réel. En utilisant le concept d’anticipation du mouvement, nous introduisons tout d’abord
une méthode de détection et d’application de contraintes entre pied et sol. Ainsi, un mouvement de
marche en ligne droite peut être modifié pour suivre une courbe, ceci sans discontinuité. Le deuxième
outil permet de synthétiser des transitions de manière automatique et cohérente entre des mouvements
de locomotion et de saut, en tenant compte de leurs propriétés respectives.

Finalement, nous considérons l’interaction d’un humain virtuel avec son environnement. En fonc-
tion de conditions initiales et finales imposées par la vitesse de locomotion et la position des pieds,
nous proposons une méthode qui calcule la trajectoire correspondante. Pour illustrer cette méthode,
nous étudions un cas reflétant au mieux le comportement d’un humain confronté à un obstacle : inter-
activement, à tout instant, des obstacles peuvent être créés face à un humain virtuel en déplacement.
Notre méthode calcule en temps réel une trajectoire permettant à l’humain virtuel un franchissement
précis de l’obstacle ainsi créé.
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Chapter 1
Introduction

Computer Graphics encompasses techniques for the modeling and rendering of 3D
scenes, as well as methods for the animation of these scenes. Computer Animation
is deeply involved in this concept of bringing objects to life, by changing their state

along time, and more specifically, it is engaged in making virtual humans move. This thesis
is dedicated to the synthesis of human movement and aims at controlling the animation of
virtual characters in their environment. The large motion diversity forces us to focus on two
elementary human activities: locomotion and jump.

1.1 Context

For centuries, the study of movements perceptible in nature has been an interesting and
captivating subject of research. From simple observations, such as a rolling stone, to more
sophisticated ones, such as the flow of the water or the dispersal of a gas, many types of
movements have been studied. One of the most fascinating movements concerns human
motion, whose measurement and analysis would provide with a wide palette of perspectives.

The technology evolution has been the catalyst for human motion studies. Thanks to
the invention of photography (discovered in 1839 by Daguerre), human activities can be
decomposed in time and space by superimposing photographs taken at a given rate. At that
time, the main interest was the understanding of the laws and models which are at the origin
of the human motion generation. In parallel, the cartoon technique took its first steps in the
animation of objects and characters by decomposing actions in successive painted images.
Later, the arrival of the first computers allowed for the calculation of motion laws and the
automation of animation processes.

At the very beginning of computer generated animations, it was however impossible
to obtain complex characters. They were represented merely by single points which were
moved in a 2D scene, like in the early arcade games. With the increase of computation
performance, research interest and commercial investment, new virtual human models ap-
peared. From simple 2D articulated systems, the characters became complex 3D structures.
Concurrently, a vast range of animation techniques emerged as well. One of the first, which
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Chapter 1. Introduction

is known as keyframing, reproduces the concept of cartoons by manually specifying a se-
quence of character poses. However, this consumes huge labor time and requires artistic
talent, which is prohibitive for most applications. Later, another issue was investigated.
It consists in developing physical models, based for example on motion observations, like
those provided by photography, or on motion simplifications. While this approach guaran-
tees that resulting motions are physically correct, motions that are physically plausible may
nonetheless appear unnatural, awkward or robotic.

In the middle of the eighties, a novel technique in the framework of human motion analy-
sis and synthesis is launched: motion capture. This technique allows to record the perfor-
mance of a human in 3D, and to reproduce it with high-fidelity onto a virtual character. The
main markets which benefit from motion capture are medicine for gait analysis and reha-
bilitation, prosthetic design, sport for a complete and accurate performance analysis, video
games (player first person, sport games), movies (digital crowds, stunts), television (TV
shows, advertising, music videos), Virtual Reality with immersion (treatment of social pho-
bia) and urban control (traffic simulation, crowd surveillance). Stimulated by those numerous
application fields, motion capture has rapidly evolved towards non-invasive equipments with
a large capture volume and real-time animation feedback onto a virtual character.

Unfortunately, motion capture is not the panacea and suffers from its lack of flexibility.
As this technique can only be used to reproduce a recorded motion onto a character matching
the performer’s proportions, it offers little control over character’s actions. Moreover, imag-
ine that you want to animate a character alternately walking and running with a varying speed
along a given path, and avoiding obstacles. It is clearly expensive to capture every desired
sequence. Similarly, it is tedious and difficult to directly edit an original motion which nearly
corresponds to your goal animation. Hence, the production of such animation sequences first
requires a manual selection of appropriate motion clips over a vast motion capture database.
It demands a relevant assembly of those clips and their parameterization. Existing methods
allow an automation or semi-automation of this process but lack in intuitive motion parame-
terization, flexibility for motion assembly, performance for on-line motion synthesis, and/or
reaction to dynamic environments. It is in this context that we propose this thesis.

1.2 Motivations and Objectives

Locomotion, such as walking or running, as well as jumping, are some of the most basic
forms of daily human motions. In video games or character animations, it is therefore nat-
ural to observe scenes with virtual humans in locomotion and jumping over obstacles. The
importance of locomotion is also revealed by commercial software packages, which include
character animation engines in various forms. However, the development of such engines is
still in progress on account of several constraints and difficulties.

The challenge consists in combining motion realism with a fine motion control while pre-
serving on-line performance, a very important aspect in video games for example. Realism
is quite difficult to obtain in human animation. On the one hand, the human body structure
is extremely complicated. On the other hand, people are natural experts in human motion;
inaccuracies in animated motion can readily be identified, even though they do not know
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exactly why. In addition, the character’s interaction with its environment is not to neglect.
Currently, the animation approaches which take into account the environment need to know
the complete scene and its obstacles in advance.

The combination of these requirements into a complete on-line animation system, cou-
pled with a coherent and reactive behavior of the animated character with respect to its a
priori unknown environment, would greatly increase the autonomy of virtual humans for
many application fields.

Motivated by such assertions, the aim of this thesis is to create an animation engine
allowing for the on-line locomotion generation of a character capable of jumping over obsta-
cles in a virtual environment. This engine must provide significant motion realism together
with a high-level intuitive control of the motion parameters (like linear or angular speed) to
simplify the animator’s work. In addition, we emphasize on the need for a generic engine
able to animate any character size. To test the on-line aptitude of our motion model, we also
aim at developing a reactive method to adapt the locomotion according to objects appearing
in the environment.

1.3 Approach

The ideal animation engine is the one that exactly matches the human motions, with its subtle
and unpredictable changes and variations. Moreover, this ideal model is driven by the ability
to perceive the environment, inducing motion adaptation.

Along the next chapters, we will see that the existing motion models in Computer Graph-
ics are far from being ideal. In fact, they are focused on a specific aspect of the animation
and neglect other requirements. For example, a method may produce excellent and accurate
animation results, but only for off-line use. Another technique may animate a character with
obstacle avoidance, however, without ensuring the continuity along the generated motion.

Our approach proposes the elaboration of a single system which encompasses real-time
animation generation and environmental interaction. The motion generation and interaction
models are carefully developed according to the main requirements for character animation:

• Based on a motion capture database, our model must produce high-fidelity results;

• The database dimension has to be reduced by applying a statistical algorithm to im-
prove the efficiency of our methods and facilitate an intuitive high-level motion para-
meterization;

• Our model must be generic, firstly, in order to be used for locomotion actions as well
as jumping, and secondly, in order to be applicable to any character size;

• Based on real observations, the locomotion and jumping actions must be automatically,
coherently and smoothly assembled;

• The final motion quality can be enhanced by enforcing constraints to preserve foot
interactions with the ground;
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• Our model must be able to react to obstacles by adjusting the motion parameters auto-
matically according to a priori unknown environmental configuration.

Such an approach must provide a real-time animation tool useful for the generation of
realistic virtual human motion, controlled in an on-line manner either directly by animators
or by a simulation process which distributes high-level tasks to characters. This animation
tool should also take the environmental constraints into account through automatic motion
modifications.

1.4 Organization of this Thesis

This thesis is structured into five parts composed of several chapters. The first part contains
two chapters: one is this present introduction and the other reviews essential techniques in
the form of a state of the art dedicated to Character Animation.

The second part introduces in its first chapter the fundamentals which are used for our
animation model, including the description of our motion database construction, as well as a
statistical method for data dimension reduction. The second chapter precisely describes our
motion modeling to parameterize basic structures of locomotion and jumps with high-level
intuitive parameters.

The third part focuses on real-time character animation and is divided into three chapters.
In the first one, we explain the generic motion synthesis, for locomotion on the one hand, and
for jumps on the other hand. The second chapter proposes a technique to detect and enforce
foot constraints. Finally, a method for smoothly and coherently assembling locomotion and
jumping activities is proposed in the last chapter.

Applications of our animation engine are discussed in the fourth part. Its first chapter
presents a method for handling obstacles in a dynamic environment. The second chapter
exposes software tools which have been implemented to ease the production of animations.

Finally, to conclude this thesis, the last part proposes a conclusion and a summary of
the contributions, as well as several appendices, notably a list of the symbols used in this
document.

12



Chapter 2
State of the Art in Character Animation

In this chapter, we present research related to the human motion synthesis. We first present
a general overview of common techniques, and then we focus on a detailed review of
previous work for each aspect covered in this thesis: parameterized motion, motion con-

straints, motion blending and motion planning (from Section 2.3 to 2.6).

2.1 Motion Synthesis

Existing motion synthesis techniques can be divided into three research directions: hand-
driven, model-driven and data-driven methods. In this section, we present and discuss previ-
ous work according to these categories.

2.1.1 Hand-driven Methods

The hand-driven methods are the oldest and simplest ways for animation creation[Sturman,
1985]. An animator determines manually postures (”key-frames”) of an articulated character
by defining positions and orientations on its joints at specific animation times (”key-times”).
The final motion results in a smooth interpolation between the corresponding key-frames.

On the one hand, these methods are dependent on the animator technical and artistic
skills. The choice of the key-frames is crucial to reproduce a motion as realistic as possible.
In addition, the posture design is complex due to the important DOFs number a human skele-
ton is composed. On the other hand, commercial software [Maya R©, 2005; MotionBuilder R©,
2005; 3ds Max R©, 2005; Carrara R©, 2005] are available to help the animator (Fig. 2.1). They
provide tools for the animation pre-visualization, interpolation methods or rigs to manipu-
late body parts easily. Even offering a great control on the motion, these methods are quite
labor intensive as many postures must be created, in general 25 per animation second. As the
invested time increases drastically for complex skeletons, hand-driven techniques are more
adequate for cartoon animation. In this case, the used characters are based on simplified
skeletons as the realism is less demanding.
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Figure 2.1: Key-frame creation in the commercial software Carrara ([Carrara R©, 2005]).

2.1.2 Model-driven Methods

Model-driven methods explicitly describe how movements are generated, and use compu-
tation to propagate changes in high-level parameters to changes in low-level parameters.
Therefore, these methods typically have a small number of high-level parameters which can
be modified to change the generated motion. We can distinguish two classes of model-driven
techniques, either based on kinematics or physics.

Kinematics Most of the kinematic approaches rely on the biomechanical knowledge, and
combine direct and inverse kinematics [Multon et al., 1999]. They do not necessarily pre-
serve physical laws and focus on the kinematics attached to a skeleton (positions, speeds and
acceleration of the rigid body parts).

During the eighties, methods have been developed to generate locomotion patterns, driven
by high-level parameters such as step length and frequency. Zeltzer in [1982; 1983] defines
finite state machines to control the synthesized human gait. The states represent bundle
of key-frames which are interpolated to produce a desired walking motion. Boulic et al.
in [1990; 2004] presents a walking engine built from experimental data on a wide range of
normalized speed. It allows to animate virtual humans of any size driven by two high-level
parameters: the linear and angular speed.

Other approaches aim at ensuring that the feet do not penetrate into the ground. Bruderlin
and Calvert [1989] introduce a method which changes the character’s root so that its origin
is always fixed on the support foot during the walking motion. As the leg in this system
contains only one joint, the resulting animations may look artificial. The authors improve
this technique by adding more DOFs to model the leg. It produces smooth and parameterized
walking gaits [Bruderlin and Calvert, 1993]. Finally, an analogous method is applied to
running motions [Bruderlin and Calvert, 1996]. In [Chung and Hahn, 1999], the foot position
of the support leg is controlled prior to the swing leg. In addition, a collision avoidance
module is used to generated stair climbing walking (Fig. 2.2, a).

More sophisticated methods offer other motion controls. The method presented in [Sun
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and Metaxas, 2001] adapts the walk to uneven terrain (Fig. 2.2, b) by deforming original
motion generated in a 2D space of step length and step height parameters. The original
motions are represented in the sagittal plane whose orientation is progressively modified
according to the locomotion direction. Tsumara et al. [Tsumura et al., 2001] propose a
locomotion well adapted for brisk direction changes, by handling the next footprint positions.
However, the speed can not be controlled by the user.

a b

Figure 2.2: Example of walking motions obtained by kinematic approaches. (a): Stairs climb-
ing [Chung and Hahn, 1999]. (b): Walking for curved path and uneven terrain [Sun and Metaxas,
2001].

One of the main drawbacks of these methods concerns their lack of motion realism.
The animations look too robotic and seem not very familiar for the human eye. Therefore,
physical models improve those negative aspects.

Physics Since real human movement is governed by the laws of physics, the elaboration
of a physically-based model is a natural strategy for animating motion. Such a model com-
putes each body part displacement as a function of their mass distribution and of the torques
generated at each joint. The main difficulty of this approach consists in specifying of all
forces to apply to a system so as to move it. While average mass distribution can be found
in the biomechanics literature [Winter, 1990], the determination of joint torques to achieve a
particular motion is difficult (i.e. the ”control” problem).

Earlier works [Girard and Maciejewski, 1985; Girard, 1987; Raibert and Hodgins, 1991]
propose hybrid approaches by combining kinematics and dynamics to animate simple legged
figures. However, these pioneering techniques are not able to animate the full body of a
complex character. Controllers have been therefore used in order to provide the forces and
torques to apply to the body parts, according to given constraints. Hodgins et al. [1995]
propose control algorithms based on finite state machines to describe a particular motion
(running, bicycling, vaulting), and on Proportional Derivative (PD) servos to compute the
joint forces and torques. This method is improved by Wooten et al. [1996; 2000] allowing
the switch from one to another controller for generating transitions between jump and landing
motions, while preserving balance. In [Faloutsos et al., 2001b], the balance is also controlled
to generate motions recovering from a fall (Fig. 2.3). Ko and Badler [1996] propose a method
which first generates a locomotion sequence using kinematics. Then dynamics rules are
enforced to improve the animation realism, notably by maintaining balance with respect to
human strength limits.
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Figure 2.3: Motion sequence of a recovery from a fall [Faloutsos et al., 2001b].

The use of dynamics to control the motion of an articulated figure is very difficult. On
the one hand, controlling an n DOFs body dynamically means controlling n actuators; this
is at least as difficult as, and much less intuitive than, controlling n joints directly. On the
other hand, once a controller has successfully been created, one can attempt to adapt it to
new circumstances. For example, Hodgins and Pollard in [1997] introduce a technique for
adapting physical controllers to different morphologies and skeleton types. For cyclic motion
like walking, Laszlo et al. [1996] improve the motion stability in a dynamic environment by
adding a closed-loop control to an open-loop system. The closed-loop control is based on
forcing the gait motion back to a stable limit cycle after a perturbation is applied. The
control is effected by manipulating hip pitch and roll. Finally, Faloutsos et al. [2001a; 2003]
propose a method allowing the composition of different controllers in order to generate,
still realistic, but more complex motions by using simpler controllers. The composition can
be performed manually or determined automatically through learning methods like Support
Vector Machine (SVM).

Besides being costly in computational time, dynamic simulation can generate physically
plausible but not necessarily believable motions. Neff and Fiume [2002] propose creating
more natural looking motion through an antagonist joint control model in place of a PD
control. This system allows the modeling of tension and relaxation for specific joint, making
a motion stiffer or lither. However, dynamic simulation often produces motion that lacks
important features of natural human motions. Moreover, the controllers provide at present a
relatively narrow range of realistic motions. Therefore, complex composite controllers have
to be designed, capable of synthesizing a full spectrum of human-like motor behaviors. In
addition, physically based methods demand too much user assistance with a high parameter
dimension, inappropriate for human animation systems.

2.1.3 Data-driven Methods

Motion capture technique (Fig. 2.4) offers an alternative source of highly realistic movement
sequences used for a variety of data-driven motion synthesis methods. The motion acquisi-
tion systems allow the estimation of the joint positions and/or orientations of a real performer.
These parameters are then adapted to a virtual character in order to result in an animation
which reproduces the original motion accurately. We distinguish five main categories of mo-
tion capture systems: video, optical, magnetic, mechanical and ultrasound systems. They
all own their advantages and drawbacks influencing directly on the motion quality and time
production [Menache, 2000]. The price of such systems is quite expensive and a strong prac-
tical experience is needed before using them. Recently, motion capture technique has been
improved to use it at home as an interface for computer and video games. The idea consists
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in reducing the number of markers placed on the body’s performer and the camera setup
which is normally expensive [Chai and Hodgins, 2005]. A video-based method has been
also proposed [Starck et al., 2005] to combine image based reconstruction and video-based
animation techniques, allowing to capture motions with camera studio. It allows to provide
animations with the appearance of complex surface dynamics such as cloth.

Figure 2.4: Motion capture systems. From left to right: Mechanical system ([Gypsy 4 R©, 2005]),
Magnetic system ([MotionStar Wireless 2 R©, 2005]), Optical system ([Vicon Motion System R©,
2005]).

The main disadvantage of motion capture resides in the lack of flexibility: the final mo-
tion can not be easily modified (the motion has to be often re-recorded) and it is only valid for
characters having similar proportions as the performer. Therefore, motion editing algorithms
have been developed in order to adapt, modify or deform original motions.

Even most of the approaches classified under this section are based on raw data obtained
by motion capture, they can also be applied to data coming from keyframe animation, phys-
ical simulation or even another data-driven synthesis algorithm. In addition, we focus on
methods that are not directly related to the following themes: parameterized motion, con-
straints detection and enforcement, and motion blending. Those topics, strongly connected
to this thesis, will be exposed in further sections.

Signal Processing Specific works have tried to represent the motion in a non Euclid-
ean space so as to benefit from other properties. Bruderlin and Williams [1995] applied
techniques from image and signal processing domain to designing, modifying and adapting
animated motions. The motion is considered as a time-varying signal which is decomposed
by applying a multiresolution filter [Burt and Adelson, 1983]. The low frequencies con-
tain general, gross motion patterns, whereas high frequencies contain details, subtleties and
most of the motion noise. The frequency bands can be individually adjusted by varying their
influence on the final motion (Fig. 2.5, a). This method is applied to multitarget motion
interpolation, waveshaping and motion displacement mapping. In [Unuma et al., 1995], a
motion representation based on Fourier series is used to compare and quantify a character-
istic (tiredness, sadness, joy) between similar movements (Fig. 2.5, b). For example, the
parameter ”briskness” is obtained by the subtraction of a ”normal” walk from a ”brisk” walk
expressed in the Fourier domain.
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a b

Figure 2.5: (a): Frequency band modification [Bruderlin and Williams, 1995]. (b): Interpolation
and extrapolation of tired walk [Unuma et al., 1995].

In [Amaya et al., 1996], the difference, for a given subject, between an emotional and a
neutral motion is expressed as an emotional transform. This latter is computed as a warp ap-
plied to the timing and amplitudes of the neutral motion. Finally, these warps can be applied
to other neutral motion types in order to add similar emotional content. Perlin in [1995]
uses principles from procedural texture synthesis to create subtle human movements such
as shifting of weight and fidgeting while standing. Rythmic and stochastic noise functions
determine time varying parameters that drive characters. The fundamental motion of each
joint is sinusoidal with additive randomized noise used to prevent the motion from becoming
repetitive. However, controlling the randomization is far from straightforward and may yield
unpredictable results that can be physically impossible.

Motion Warping To deform a motion with precise goals, the first solution consists in
modifying the body joint orientation in order to get a new posture. In [Witkin and Popović,
1995], the authors introduce a variant of displacement mapping called motion warping. The
animator interactively defines a set of key-frames inducing a set of constraints. These are
used to derive a smooth deformation preserving the fine structure of the original motion.
However, it is difficult to ensure the geometric constraint enforcement between key-frames.
In addition, motion warping methods are purely geometric techniques and operate on each
DOF independently, without understanding the motion structure. They are not well suited
for adjustments requiring coordinate movements, such as grasping actions with modification
of object location. In such cases, not only the joint hand is affected, but also other joints like
the elbow or shoulder.

a b

Figure 2.6: (a): The jumping luxo lamp [Witkin and Kass, 1988]. (b): Differently sized charac-
ters pick up an object [Gleicher, 1998].
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Space-time Constraints (Kinematic) In order to alter coherently multiple DOFs of
an original motion and over a continuous time period, constraint-based techniques can be
applied. Discussed and classified in [Gleicher, 2001a], these methods provide effective tools
to interactively manipulate a motion clip by changing some important movement proper-
ties. Space-time constraints were first introduced to the graphics community by Witkin and
Kass [1988]. The authors demonstrate the viability of this approach with a jumping Luxo
lamp: its motion is quite compelling as it crouches in anticipation of a jump and compressed
to absorb the impact (see Fig. 2.6, a). The user specifies the start pose, end pose, and a phys-
ically based objective function. Then the optimizer aims at finding the best motion satisfying
the described constraints. This is performed by minimizing an objective function described
with penalty functions and defined over animation time.

However, several factors limit the application scope of these space-time approaches.
First, it is difficult to formulate a desired deformation as mathematical constraints. Sec-
ondly, the complexity of the system to optimize (local minima, computation time) forces to
limit the posture number as well as the skeleton’s DOF number. Thirdly, the animator has to
specify carefully the time interval for which the motion is modified. In fact, a too big interval
may lead to an important possible solution set inducing a convergence towards an undesired
local minimum. On the contrary, a too short time interval may restrict the solution space
so as to find any appropriate solution. Finally, this technique is not applicable to real-time
animation as it needs the original motion over a time interval.

Subsequent research has focused on ways to make these constraint-based approaches
more viable. Cohen in [1992] proposes an interactive motion deformation tool improving
the constraint definition. The creation of space-time windows helps to subdivide the prob-
lem (and the complexity) into subset problems. In addition, the constraints can be expressed
as conditional equations in order to activate constraints only under specific conditions (e.g.
when the distance between two joints is smaller than a given threshold). The approach
presented in [Gleicher, 1997] enables the user to interactively position characters using di-
rect manipulation. The numerical constraint problem is then solved fast enough to provide
interactive feedback. A similar technique is used in [Gleicher, 1998] to perform motion re-
targeting, i.e. to adapt an animation sequence from one character to another with different
limb lengths and proportions (see Fig. 2.6, b). Also Gleicher [2001b] exploits a space-time
constraint solver for interactively editing the path traversed by a character.

Space-time Constraints (Dynamic) Using those previous editing methods, it is very
difficult to specify stylistic attributes such as ”gracefully” or ”like Charlie Chaplin”. More-
over, the physics is omitted which can lead to unrealistic situations. Instead of adjusting
only kinematic properties, other algorithms have been designed to preserve physical correct-
ness. In [Popović and Witkin, 1999], dynamics is introduced with space-time constraints
defined on a simplified model. Hence, the original motion is projected onto a less complex
skeleton, with fewer DOFs. The constraint system is then solved and the result is adapted
to the original skeleton. The produced animations are dynamically not absolutely perfect,
but are visually convincing. More recently, Liu and Popović [2002] apply also a simplified
dynamical model and space-time constraint to generate animation from a small set of key-
frames. This input data is firstly analyzed by extracting geometrical constraints. Then other
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basic physical laws are added in order to formulate a complete space-time system. Even if
these methods produce pleasant animation, they are well adapted only for high-energy mo-
tions. In addition, the results are still dependent on the animator choices, like the simplified
skeleton [Popović and Witkin, 1999] or the key-frames [Liu and Popović, 2002]. Fang and
Pollard [2003] formulate the physical constraints on aggregate force which is a representa-
tion of all external forces and torques that would have to be applied to the character’s root to
explain its motion. The optimization is performed in time linear to the number of character
DOFs, whereas in general derivative computation is of quadratic complexity.

a b

Figure 2.7: (a): Modified jump by raising the landing position and introducing an hurdle which
forces raising of the legs during the flight stage [Popović and Witkin, 1999]. (b): An advanced
handspring motion on an uneven terrain [Liu and Popović, 2002].

Instead of performing the optimization over the entire motion duration, Tak et al. [2002]
propose to find the optimum value at every frame in order to run the method at interactive
speed. Two consecutive filters are applied: the first enforces dynamic constraints per-frame
and the second ensures the inter-frame consistency. To create more realistic motions through
constraints optimization, Safonova et al. [2004] apply PCA (Principal Component Analysis)
to selected motion capture data containing similar behavior than the required motion. Then,
constraints expressed in the world frame (start/end postures, foot contact timing) are pro-
jected onto the low-dimensional space obtained by PCA. The optimization is solved in this
space improving the efficiency and convergence thanks to the example motions. However,
the final animation still does not approach the fidelity of captured motion.

Dynamic Simulation Motion capture is often combined with dynamic simulation for the
purpose of producing realistic human like motion. In [Pollard, 1999], motion data is ”scaled”
in order to modify some parameters like character’s features (e.g. the size or skeleton), the
velocity and acceleration. The algorithm first fits a simple task model to the input motion.
This task model, described with physics, is then scaled in a physically correct manner. The
final motion is obtained by adjusting the scaled motion by the simple model to the roughly
scaled input motion. Shin et al. [2003] introduce an efficient method to improve physical
plausibility of motion capture data. Instead of using optimization techniques to find the more
natural postures, this approach is based on hierarchical displacement map. The zero moment
point (ZMP) constraint is enforced for ground phases (Fig. 2.8, a) and parabolic center of
mass (COM) trajectory during flight phases. The simplicity and speed of this method is
intended only for slight adjustments of an original motion.
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a b

Figure 2.8: (a): Original and touched up climbing uphill [Shin et al., 2003]. (b): Simulated
reaction of a kick (red) and reaction segment from a database (green) [Zordan et al., 2005].

Zordan and Hodgins [1999] present a system to capture the subtle details that make mo-
tion appear natural while maintaining physical realism. Upper-body motion data is converted
to joint angles and used as the desired values for dynamic controller. This latter calculates
using a proportional-derivative servo the appropriate torques so as to reach the desired angle
values. In addition, environmental and task constraints are added to the system. This method
is improved in [Zordan and Hodgins, 2002] by considering the whole human body with bal-
ance, control for hitting and simulated reactions to hits. For example, two characters can
interact with boxing movements. Motion capture sequences are modified to hit specific loca-
tions, and the method simulates the corresponding reaction. The problem with this method
is that once the effects of an impact are over, there are no schemes to return to motion cap-
ture control. For example, a punch can be as strong as to make the opponent falling down.
Hence, Zordan et al. [2005] introduce a method which compares the simulated reaction with
reaction segments from a motion library and determines the best one. The simulation is
then smoothly blended with this best motion segments in order to generate a coherent and
complete animation (Fig. 2.8, b).

2.2 Method Comparison

All presented methods, classified by hand-driven, model-driven and data-driven techniques
have advantages and disadvantages. Illustrated in Fig. 2.9, the different approaches are sum-
marized according to two criteria: the motion realism and the motion control freedom pro-
vided to an animator.

Hand-driven techniques allow the creation of realistic animations with a very important
freedom for the animator to control the motion, constrained neither by visual realism nor
physical accuracy. Actually, most of the 3D movies and games use keyframe animation se-
quences. However, this very flexible method has a price. It requires incredible investment of
time and only skilled and talented designers produce realistic human motions. Model-driven
approaches generate motions with less motion control freedom and realism. However, kine-
matic methods concentrate the control on a small set of high-level parameters, allowing an
easier and more intuitive motion parameterization. In addition, the motion is generally cre-
ated on-the-fly, but suffers from too robotic and jerky movements. The other part of model-
driven methods, namely those based on physics, produce more realistic results but need lot of
computational time (over several minutes). Moreover, for a valid resulting motion, physical
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accuracy does not imply visual realism. For example, a grasping movement can be simulated
with various physically correct alternatives some of which may appear oddly and unnatural.
Apart from these drawbacks, the motion control is driven by many parameters, difficult to
directly interpret. Hence, data-driven methods have been developed.

Motion realism
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Figure 2.9: Summary of motion synthesis approaches according to the motion realism versus
motion control freedom for animators.

Since the advent of motion capture systems which return high realistic motion without
any control, the number of data-driven methods has exploded. Generally, these approaches
produce motions with high realism thanks to the captured input data. The methods based
on signal processing offer a weak control on the animation. In fact, the correspondences be-
tween motion parameters and frequencies are difficult to establish and the induced filtering
can lead to less impressive results as the original motions. Motion warping techniques give
lot of control freedom to the animators as key-frames are modified by hand. However, the
motion realism is not ensured on the entire final sequences. Results can be improved with
space-time constraint methods which consider a motion as a whole continuous sequence. In
contrast, the constraint definitions have to be as intuitive as possible, reducing also the ani-
mator control. Finally, dynamic simulation allows to modify and enhance an original motion
capture data by adding physical accuracy. The main advantage is that simple input data like
rough key-frames are sufficient in order to produce convincing results. However, besides
their expensive computational cost, these methods are limited to high dynamic motions.
Nevertheless, the data acquisition is one of the stumbling blocks for data-driven methods. In
fact, motion capture systems are expensive and need lots of pre-processing work to clean the
recorded motions before using them. Moreover, while data-driven synthesis could be applied
to any creature whose movements can be captured, in practice it is primarily applicable to
humans. In contrast, most of the hand- and model-driven methods can be applied to a wider
range of body, with varying topology and joint structure.

In the following sections, we focus on previous work strongly related to the topics cov-
ered throughout this thesis.
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2.3 Parameterized Motion

This section is dedicated to the related work on the continuous parameterized motion gen-
eration, performed on-the-fly. This is the first main topic of this thesis. The focus is on
data-driven methods based on motion capture data, producing currently results with the most
realism and believability. The main difficulty concerns the elaboration of a parameterization
which maps high-level motion characteristics with non-intuitive parameters, specific to the
motion generation method. In this section, we discard approaches based on physics as they
are too costly for real-time methods.

2.3.1 Scattered Data Interpolation

Guo and Robergé [1996] present one of the pioneering work which consists in a motion
control mechanism driven by measurable terms like the velocity or step length. Their method
converts a motion sequence composed of key-frames into an abstract parameterized curve
referred to as a 1D frame space. These 1D frames are used to build higher-dimensional
frame spaces where new sequences can be generated by linear combinations. The authors
propose a frame space for locomotion driven by three parameters: the locomotion type,
stride length and stride height. This method is improved in [Golam and Wong, 2000] by
considering a motion with densely spaced signals instead of a small amount of key-frames.
It allows to establish motion correspondences dynamically and produces better results for
mixing stylistic different walking patterns. However, these two approaches are limited to a
small number of input data in order to keep real-time performances.

Other approaches allow a multidimensional motion interpolation over a wide range of
scattered input data. Rose et al. [1998] chose an interpolation scheme based on RBF (Radial
Basis Function) to produce parameterized motions. Input motions are firstly manually classi-
fied by activities (”verbs”) and characterized by a parameter vector. The motion data is then
represented by B-Spline control points which model the DOF functions over time. In addi-
tion, the motions attached to a given verb are structurally aligned by using a time warping
process based on [Bruderlin and Williams, 1995]. To generate a new motion, a combination
of RBF and polynomials is selected and provides the B-Spline coefficients corresponding to
the requested parameterized motion. The polynomial function provides an overall approxi-
mation of the example motion space, while the RBF locally adjust the polynomial so as to get
the exact example motion when the user gives its corresponding parameter vector (Fig. 2.10).
Sloan et al. [2001] adopt cardinal basis functions for further performance improvements.

This RBF-based technique is incorporated in [Park et al., 2002a] for on-line locomotion
synthesis and provide weights to be assigned to the example input motions. New motions
are then generated by performing a weighted linear combination of the example data, using a
multiple quaternion interpolation scheme. In addition and compared to previous approaches,
this work proposes an on-line retargeting method based on [Shin et al., 2001] which allows to
adapt the generated motion to different human size and terrain (Fig. 2.11, a). Recently, Mukai
and Kuriyama [2005] improve the RBF function construction described in [Rose et al., 1998]
by defining a specific kernel function for each input motion according to its characteristics.
This approach is based on geostatistics which takes into account the correlation between
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Figure 2.10: A reach sampled across two axes of the goal position for the hand. The green
figures (encircled) are the example motions. The rest are created through the Verb and Adverb
mechanism [Rose et al., 1998].

spatial distances and corresponding control parameters. It results in an accurate motion
interpolation.

Even efficient enough to perform real-time motion synthesis, the above scattered data
interpolation approaches force each input motion to contribute to the generate motion. On
the one hand, it induces a computational efficiency which is dependent on the number of
example motions. On the other hand, the method provides rough results when the user
requests parameters far from the examples as interpolation weights are based purely on the
linear approximation.

Therefore, other methods propose to parameterize motions with fewer examples. Pettré
et al. [2002] propose to represent motion captured data into the frequency domain, similar
to [Unuma et al., 1995]. The authors use walking cycles characterized with two parame-
ters: linear and angular speeds. The original motions, expressed with Fourier coefficients,
are projected into this 2D parameter space, and a Delaunay triangulation is performed. This
approach is analogous to the one described in [Sun and Metaxas, 2001]. Hence, according to
a given parameter pair, the three nearest neighboring motions can be selected to performed a
weighted linear interpolation between them. However, the method may produce discontinu-
ities when given new parameters a changeover from one to another triangle is necessary. In
addition, the approach does not take into account the time-warping in order to align identical
motion structures together. In [Kovar and Gleicher, 2003], a more general motion interpo-
lation method is proposed, by addressing the time-warping among other problems. A new
data-structure, referred to as registration curve, is introduced. This concept ensures automat-
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ically a consistent time-warping and an alignment of the humanoid root node for all input
motions. In addition, physical constraints of the input motions are appropriately interpo-
lated. To obtain a new motion, the user sets weights on manually selected motion examples
(Fig. 2.11, b). Their attached registration curve allows to perform a consistent interpolation,
based on the technique explained in [Park et al., 2002a]. Nevertheless, this method does not
provide a direct correspondence between the weights and high-level parameter of motions
and is therefore not intuitive for the animators.

a b

Figure 2.11: (a): Locomotion on a terrain [Park et al., 2002a]. (b): A parameterized clip build
from a straight walk (far right) and one with a sharp 180 degree turn (fat left) is used to create
sharp path changes in a continuum of directions [Kovar and Gleicher, 2003].

For motion interpolation, the selection of the necessary example motions over the entire
input dataset can be performed automatically. The general strategy of sampling the space of
interpolation is originally introduced by Wiley and Hahn [1997], leading to grids of regular
samplings in the parameter space. According to a given parameter combination, a region
can be determined in the parameter space and the interpolation is performed between the
motions only included in this area. Other works are based on this strategy. Zordan and
Hodgins [Zordan and Hodgins, 2002] generate dense sets of example motions as an aid for
inverse kinematics tasks, while Rose et al. [Rose et al., 2001] improve the accuracy of the
resulting motions by adding additional samples to parameter space.

Recently, another alternative method is proposed in [Kovar and Gleicher, 2004] to select
the example motions. Given a segment of the motion data set (”query”), the method locates
and extracts motion segments that are similar, representing the same action or sequence of
action. This search is performed repeatedly, by taking the extracted segments as new queries.
This process finished, the extracted segments are applied to perform a k-nearest-neighbors
interpolation, as suggested in [Allen et al., 2002]. This allows to explicitly constraint inter-
polation weights to reasonable values and to project points outside the accessible region of
parameter space back onto it. Lately, many works have been dedicated to search algorithm
from motion databases. Forbes and Fiume [2005] propose to project the database and the
query into a weighted PCA space. The weight assigned to the body joints can be modified
according to the nature of the query. Another approach [Müller et al., 2005] alleviates the
query formulation by the introduction of Boolean features like ”the right foot is in front of
the left foot”.

In general, the weights assigned to example motions have no simple relationship to mo-
tion features. In [Kovar and Gleicher, 2003], the user has to set manually the weights and

25



Chapter 2. State of the Art in Character Animation

no motion extrapolation is possible. The methods based on scatter data interpolation [Rose
et al., 1998; Park et al., 2002a] produce rough results when the user parameters are far from
original input data as the interpolation is purely based on the linear approximation. Parallel
to our research, Kovar and Gleicher [2004] have proposed a function mapping weights to a
parameter vector. However, this approach assumes that the parameter are composed of joint
positions and orientations, appropriate to generate goal-actions such as grasping or kicking,
but not for movements where high-level parameters are required, like the locomotion speed
for example.

2.3.2 Statistical Methods

Statistical methods are also applied to the motion parameterization problem. The method
presented in [Pullen and Bregler, 2000] synthesizes 2D motion by adding random variations
on the original training data. Correlations among numerous features of the data are taking
into account and are modeled with a Kernel-based density representation of the joint prob-
ability distributions. This density representation is preferred as the shape of the distribution
points is not a Gaussian pattern. Such correlation observations are also applied in [Pullen and
Bregler, 2002] in order to enhance a sketched key-frame animation with motion capture data.
Markov model is another technique used for 3D animation. In [Chenney and Forsyth, 2000],
a Markov chain Monte Carlo algorithm is used to sample multiple animations that satisfy
constraints for the case of multi-body collision of inanimate objects. For articulated char-
acter animation, Brand and Hertzmann [2000] uses Hidden Markov Models along with an
entropy minimization procedure to learn and synthesize motions with particular style. Their
appealing method computes automatically structural correspondences and extracts style be-
tween motion sequences (Fig. 2.12). This approach, even impressive, suffers form a complex
mathematical framework which is dependent on a specific parameterization. In addition, the
animations are not generated in real-time.

Figure 2.12: Five motion sequences synthesized from the same choreography, but in different
styles (one per row). The actions, aligned vertically, are tiptoeing, turning, kicking, and spinning.
The odd body geometry reflects marker placements in the training motion-capture [Brand and
Hertzmann, 2000].

Principal Component Analysis (PCA) is another statistical method used in many and
different fields for decades. This method is employed as a data compression technique to
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identify the significant variations in the data and eliminate the redundancy in the representa-
tion. Recently, PCA have been applied to Computer Graphics topics. The Morphable Model
of 3D faces presented in [Blanz and Vetter, 1999] performs a PCA to estimate the probability
distributions of a database of faces around their average. In addition, the initial database di-
mension is considerably reduced, improving computational performance. This model allows
the parameterization of 3D faces according to facial expressions and attributes. Based on
this system, it is possible to reanimate faces in images and video with different facial expres-
sion [Blanz et al., 2003] or to exchange faces in images [Blanz et al., 2004], independently
of the illumination or viewpoint of the face to modify.

PCA is also well appropriate for data compression in animation. Alexa and Müller [2000]
apply PCA to represent geometric key-frame animations allowing an adaptive compression.
In [Bregler et al., 2002], a similar approach is used to capture the motion style of cartoons
and retarget it into 3D models, 2D drawings or photographs (Fig. 2.13). For specific human
animation, motion capture sequences represent often large data due to the high sampling
rate and the important number of DOFs a virtual human body contains. A special attention
has to be drawn for the motion data representation applied to PCA. When data are 3D joint
positions, velocities or accelerations, PCA can be directly applied, as used in [Arikan et al.,
2003] to reduce the dimension of motion feature vectors.

Figure 2.13: 3D example of key-shapes for the input cartoon and corresponding output key-
shapes [Bregler et al., 2002].

For joint angle measurements which have a non-Euclidean geometry, it is necessary to
approximate them into the Euclidean space by the use of the exponential maps for exam-
ple [Pennec and Thirion, 1997; Grassia, 1998; Alexa, 2002]. In [Lim and Thalmann, 2002],
PCA is firstly used to compress these data and then motion parameterization is performed on
the reduced space using the RBF interpolation technique from [Rose et al., 1998]. The main
interest of this approach is that each motion example is considering as a point in the PCA
space, on the contrary to the following approaches. Tanco and Hilton [Tanco and Hilton,
2000] propose a motion synthesis system which uses PCA to perform a two level process
based on Markov chain. However, the method is limited to a very small number of data
(about approximately 500 frames).

The synthesis of idle motions in [Egges et al., 2004] is also based on PCA to facilitate op-
erations such as blending and fitting of motions. This allows the production of small posture
variations and personalized change of balance. Safonova et al. [2004] reduce the input data
dimension using PCA so as to perform physically based motion synthesis more efficiently
(Fig. 2.14). Troje [2002] presents an approach to parameterized walking motions, repre-
sented by 3D marker positions, with attribute like gender or mood. The method consists in
applying firstly a PCA to each captured data and then to represent it by temporal sine func-
tions. Finally, a second PCA is applied to all of these dimensionally reduced motions pro-
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ducing a new space where discriminant functions [Zhao et al., 1998] are used for determining
the contribution of each dimension with respect to attributes. Despite of interesting results,
this approach is limited for motion synthesis application. Firstly, the data are not represented
into the joint angles spaces, inducing length modification for the body limbs. Secondly,
an attribute change implies undesired consequences like the locomotion speed modification.
Recently, a method [Grochow et al., 2004] based on Scaled Gaussian Process Latent Variable
Model (SGPLVM) allows the mapping from a low-dimensional space (latent space) to a fea-
ture space which characterizes motions (joint angles, velocities and accelerations). Hence,
a kernel function maps the correlation between postures according to their corresponding
representations in the latent space. The method generalizes RBF interpolation, providing an
automatic learning of all RBF parameters. The authors present applications for interactive
character posing, which can replace conventional Inverse Kinematics solver. However, the
SGPLVM technique requires some tuning and optimizations for its use in real-time motion
synthesis based on large motion capture databases.

Figure 2.14: A back flip sequence synthesized using the method described in [Safonova et al.,
2004].

Finally, another application domain use PCA for gait analysis, tracking and recogni-
tion. In [Gonzàlez et al., 2005], the authors suggest a comparison framework which allows
to evaluate the variation of the joint angles between different subjects, while performing a
same action like walking. The method differentiates between male and female walker. Con-
cerning body tracking, Urtasun and Fua [2004a] use our PCA approach to reconstruct the
3D animation of a tracked human locomotion. This method allows also to recover motion
parameters used for motion recognition [Urtasun and Fua, 2004b].

To summarize, previous works discussed above suffer from a number of limitations. First,
there is no intuitive way to create a motion with specific high-level parameters, especially for
motion generation beyond the captured domain (i.e extrapolation). To alleviate this problem,
the input motions have to be separated into clusters, according to their parameters. Hence,
the motion interpolation and extrapolation are precisely performed on those separated clus-
ters, with intuitive and quantitative high-level parameters, like locomotion speed. Another
limitation of the previous work concerns the motion adaptation to any kind of virtual char-
acter. In this thesis, we address to model a framework allowing the production of generic
animations, applicable for various character sizes.
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2.4 Motion Constraints

One of the main problems for parameterized motion techniques concerns the preservation
of hard constraints. In this section, a hard constraint is considered from its geometrical
point of view: for a given body part called end-effector, a goal position has to be reached
and enforced within a period of time. A well known example of such constraint exists in
locomotion patterns where the foot has to be fixed for a given duration when it touches
the ground (referred to as footplant). However, a constraint has to be detected firstly, by
identifying over time its begin and end, and then to be enforced over this duration at a given
position.

2.4.1 Constraint Detection

Very few results on constraint detection can be found in the literature. A specific category of
methods allows the detection of footplants in motions. Several methods [Kovar et al., 2002a;
Menardais et al., 2004] apply user-chosen threshold values to detect those constraints. A
footplant is identified when both position and velocity of the foot are under theses threshold
values. Lee et al. [2002] extend this approach for constraint detection between body seg-
ments and objects in a environment. The method considers relative position and velocity
between a segment and an object in order to decide whether they are in contact or not.

Bindiganavale and Badler [1998] introduced a method based on the concept of the ef-
fector acceleration zero-crossing, allowing to avoid checking constraint at every animation
frame. The collision between two points of interest, a virtual human’s finger and a table for
example, is checked only at zero-crossing of the second derivative of these points. Hreljac
and Marshall [2000] use a similar technique to determine the heel-strike and toe-off times in
walking motion. Their results are compared with measures performed on force platforms.

Finally, Liu and Popović [2002] present a generic method to detect constraints. All
the points on a character’s body remaining fixed for some period of time are identified as
constrained. In addition, close constraints are merged if the duration between constraints is
under specified threshold values. Salvati et al. [Salvati et al., 2004] extend this method to
detect constraints relative to moving objects in a scene (e.g. a hand touching a ball).

In addition to being off-line, all those techniques prove to be unreliable if the original
motion is noisy. In fact, the threshold values are closely related to the nature of the considered
motions. As a consequence, they may vary whether the motion is a walking, running or
jumping activity, inducing a manual fine tuning of these threshold values. In this thesis,
we propose a footplant detection method which is on-line and determines threshold values
automatically with respect to the motion characteristics.

2.4.2 Constraint Enforcement

Once a constraint is detected, it has to be enforced in order to adjust its associated end-
effector at a specified positions and/or orientation. Constraint-based techniques discussed
in Sub-section 2.1.3 (paragraphs Space-time Constraints) are computationally expensive and
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remain difficult to provide a correct mathematical formulation corresponding to the desired
enforced constraints. Hence, this enforcement stage can be solved by applying the Inverse
Kinematic (IK) technique. Its use in animation dates back to some of the earliest system [Gi-
rard and Maciejewski, 1985; Korein, 1985]. Roughly explained, the IK algorithm automat-
ically computes value of each individual DOF of an articulated system in order to satisfy a
given task usually expressed in Cartesian space. This technique requires the resolution of
complex non-linear equations and is usually expressed as a constraint-satisfaction problem.

Two main classes of IK algorithms can be distinguished: analytical and numerical. For
very simple robotic manipulators with few DOFs, analytical (or closed-form) solutions can
be found by direct resolution of the non-linear equations [Paul, 1981]. The advantages of
those approaches are multiple. They are based on a fast computing, ideal for real-time appli-
cation, and on robust solutions ensuring smooth resulting trajectories without ill-conditioned
equations in certain character configuration [Maciejewski, 1990]. In the character anima-
tion field, several researchers have addressed the case of arm and leg control: Korein [1985]
provides an interesting analytic solution based on explicit joint redundancy and applied to
a seven DOF arm that deals with joint limits, and Tolani et al. [Tolani et al., 2000] also
discuss similar procedures. Inspired from these approaches, Lee and Shin [1999] propose
a framework for motion editing based on a simplified IK algorithm. The user-defined con-
straints which must modify an original motion are satisfied with a hierarchical sequence of
adjustments. At each stage, the IK algorithm is performed independently on each frame
and a spline is fit to the resulting displacements, with the knot spacing growing smaller at
later stages of the algorithm (Fig. 2.15, a). Another simplified analytical IK algorithm [Shin
et al., 2001] allows on-line skeletal reconstruction from motion capture data with a particular
attention for the interaction between end-effectors and objects in the environment by mea-
suring their proximity. Finally and closer to our intention, Kovar et al. [Kovar et al., 2002b]
introduce a specialized analytical method to clean-up footskate from motion capture data.
The authors take measures to avoid ”popping” artifacts that can occur when a limb is near
full extension. In such situations, the key idea consists in extending the leg length. How-
ever, this ”trick” is not usable for an animator who works with virtual characters as similar
as possible to real humans and therefore represented by a rigid body like those based on
H-ANIM [2005]. In addition, this footplant enforcement method needs to delay animation
frames. Consequently, this solution not intended for on-line motion synthesis.

However, despite its intrinsic efficiency, analytic IK suffers mostly from lack of flexibil-
ity. Numeric IK (see [Welman, 1993] for a survey) address this issue by solving sophisticated
constraints for an arbitrary number of end-effectors and joints on complex skeletons [Zhao
and Badler, 1994]. For instance, Yamane and Nakamura [2003] divide the constraints into
two priority layers. Weighted priorities can also be assigned to the tasks so as to favor one
task rather than another when they come into conflict, for an arbitrary number of constraints.
Similarly, postures are modified in [Baerlocher and Boulic, 2004] by additionally controlling
the center of mass (COM). From this work, an efficiently improved technique is applied to
motion editing [Le Callennec and Boulic, 2004] (Fig. 2.15, b). Numerical IK algorithms are
also applied to motion retargeting approaches which exploit the output of multiple sensors
attached to the limbs in order to convert them to a virtual character [Molet et al., 1997].
In [Stolze et al., 1997], the user can additionally control the tradeoff between accurate joint
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a b

Figure 2.15: (a): The hierarchical motion editing technique applied to a live-captured walking
motion . At each stage, the knot spacing grows smaller [Lee and Shin, 1999]. (b): Final deformed
motion (left), deformed motion without COM constraint (middle) and input motion (right) [Le
Callennec and Boulic, 2004].

orientations and accurate joint positions. A more flexible method is proposed in [Monzani
et al., 2000] to handle geometrically and topologically different characters, by using an inter-
mediate skeleton. Adjustment is then performed through IK by smoothing joint trajectories
before and after the constraint enforcement.

For on-line performance, a hybrid solution based on the inverse rate control technique
and joint redundancy is provided by Choi and Ko [2000]. To attain the same objective,
Kulpa et al. [2005] propose a motion representation independent of the character’s morphol-
ogy. With this representation, complex constraints can then be rapidly enforced by applying
a Cyclic Coordinate Descent algorithm. Finally, other approaches for precise motion syn-
thesis, like manipulation tasks, can combine numerical IK with predefined motion capture
postures [Yamane et al., 2004] to ensure realism in the final motion. In [Grochow et al.,
2004], a statistical method based on motion capture data allows first the reduction of the
motion space dimension, and secondly to define constraints on poses, replacing traditional
IK solvers.

While powerful, all these motion editing techniques need improvements to be integrated
into an on-line motion generation system, whose footplants are automatically detected and
enforced. In this thesis, we introduce a technique to substitute the off-line animator’s task,
consisting in building up the end-effector trajectories, by an automatic process. These tra-
jectories allow the foot to be re-positioned in order to keep it fixed on the floor level during
a constraint.
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2.4.3 Motion Anticipation

To deal with end-effector trajectories automatically and in real-time, it is necessary to antic-
ipate the motion in order to obtain future frames of the current animation. Butz et al. [Butz
et al., 2003] classify anticipatory mechanisms in four categories: implicit, payoff, sensorial
and state-based. We focus on the latter category, dealing with mechanisms in which predic-
tions about future states directly influence current behavioral decision making. In general,
anticipation is applied to explore unknown virtual environments, where virtual agents are
equipped with multi-sensory systems [Conde and Thalmann, 2004]. A collaborative multi-
agent context may also be based on anticipation in order to predict the internal state of other
autonomous virtual agents [Veloso et al., 1998]. To our knowledge, only a few works deal
with motion anticipation. Labbé et al. [Labbé et al., 2004] propose to anticipate periodic
movement trajectories in a prey-predator situation. Steering methods [Reynolds, 1999] can
anticipate a motion according to a given desired speed and/or a target to reach. However,
these techniques consider the virtual human as a simple 3D model composed of six degree
of freedom, instead of a complete articulated system.

To conclude this survey on motion constraints, we summarize the main drawbacks of
the previous methods. Firstly, the constraint detection methods are unreliable in an on-line
context. Secondly, constraint enforcement methods do not consider the re-positioning of the
foot. Finally, anticipation methods based on a real-time locomotion engine do not provide
future body postures. In this thesis, we propose a method which aims to provide a complete
on-line system to handle motion constraint problems: adaptive constraints detection and
smooth constraint re-positioning and enforcement.

2.5 Motion Blending

Motion blending is a technique which combines multiple input motion data according to
time-varying weights. It allows to generate either new parameterized motions or transitions
by assembling smoothly one animation to another one. The blending techniques give par-
ticular attention to the alignment of similar structures of the input motion (time-warping)
and to the transition time and duration. In this section, we focus on previous work for mo-
tion blending specifically dedicated to the transition generation problems. Note that some
techniques discussed in this section have been already presented in previous sections as they
combine motion generation with blending.

Precursor works treat the motion as a time-varying signal. Signal processing technique
have therefore been developed to perform blending between motions by varying the fre-
quency bands of the signal [Bruderlin and Williams, 1995], or the Fourier coefficients [Unuma
et al., 1995]. However, disadvantages appear rapidly: the transition method in [Unuma
et al., 1995] is not invertible, support phase of the feet are not considered in [Bruderlin and
Williams, 1995]. Other approaches combine motion parameterization with linear blending
transitions [Guo and Robergé, 1996; Rose et al., 1998; Golam and Wong, 2000; Park et al.,
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2002a]. These methods control the blending by changing blend weights of input motions
during a period of time given by the user. In addition, similar structures of the blended
motions are synchronized in order to avoid blending a right with a left foot hopping action.

Kovar and Gleicher [2003] propose an automatic algorithm for determining these identi-
cal motion structures. In addition, the constraints of the blended motions evolve according
their assigned weights. However this solution does not allow to add a new input motion
dynamically. It needs to be compared to all existing ones in a pre-processing stage. In con-
trast, Menardais et al. in [Menardais et al., 2004] proposes a synchronization method to
perform dynamic blending. If a requested transition is currently unfeasible due to incom-
patible support phases, the blending is shifted until it becomes possible (Fig. 2.16). Another
approach [Ashraf and Wong, 2000] proposes a decoupled blending to resolve diverse coor-
dination configurations between upper and lower body-halves, restricted to cyclic motions.
Relevant events of input sequences are manually labeled and correspondences between them
are established. Therefore all motions have to be known in advance. In addition, the blend-
ing is performed at an interactive frame rate. Another method [Boulic et al., 1997] proposes
a weighted joint trajectory blending from basic motions called actions. A set of active joints
with a priority is defined for each action, allowing the mixing of a walking with a hand
waving action for example.

Figure 2.16: Synchronization sequences between running and handball shot [Menardais et al.,
2004].

Previous methods offer the possibility to perform transition, but the decision when these
can be effectively executed, i.e. the transition time, is let to the animator. This technique
is used in the video game industry and is referred to as ”motion graphs” or ”move trees”.
An expert user explicitly decided which and when motion clips could be connected. Hence,
several works propose to automate this graph construction. Techniques to synthesize seam-
less streams of video from example footage [Schödl et al., 2000] have been adapted for large
motion capture database in order to detect possible transitions between all of these motions.
Kovar et al. [Kovar et al., 2002a] analyze posture similarities by comparing pairs of motions,
frame by frame. A metric function is defined, based on a Euclidean distance between specific
and weighted 3D joint positions. This function measures the distance between two frames:
a result smaller than a specified threshold indicates a possible transition between these two
frames. A motion graph is then constructed, where edges represent either pieces of original
motions or possible (synthesized) transitions, and nodes choice points where motions join
seamlessly. The use of this graph allows the animation of a character along a predefined
path, with the style of the motion (represented by annotation such as ”lazy walk”) option-
ally restricted on different parts of the path. A similar approach is presented in [Lee et al.,
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2002] except that the cost metric distance is based on weighted joint angles and speeds.
Then a statistical analysis based on HMM allows the expression of the probability matrices
to determine transitions. As an application, the method can generate a motion that best fit a
video sequence. In addition, an interface is proposed where a user can directly select what
motion is to take place next. Another analogous approach in [Arikan and Forsyth, 2002]
builds a hierarchical motion graph and applies a randomized search to extract motions from
the graph, which satisfy user-specified constraints such as their durations and joint angles at
given key-frames. The metric consists in computing the difference between joint positions
and velocities and the difference between the torso velocities and accelerations in the torso
coordinate frame. Finally, an extension of this concept of motion graph has been proposed
for group animation, called Group Motion Graph [Lai et al., 2005]. Each node of such graphs
represents a specific group configuration and edge transition between configurations.

Figure 2.17: A walking motion generated to fit a path using the motion graph technique pre-
sented in [Kovar et al., 2002a].

However, motion graphs methods have drawbacks. As pointed by [Arikan and Forsyth,
2002], the definition of a universal metric function is a hard problem. For example, the tran-
sition threshold in [Kovar et al., 2002a] has to be manually quantified, as different kinds of
motions have different fidelity requirements. In addition, some metric functions contain non
intuitive weight values, difficult to parameterize. For example, the proposed set of weights
used for the cost metric function in [Lee et al., 2002] is compared to an optimal set in [Wang
and Bodenheimer, 2003]. Even if the presented user study - applied on one performer with-
out highly dynamic motions - reveals better results for the optimal set of weights, it remains
difficult to evaluate it under various conditions. A second disadvantage concerns the transi-
tion duration. Actually, even if the starting point of a transition is found automatically, its
duration has to be determined manually. In the study of [Wang and Bodenheimer, 2004], se-
quences with fixed or variable transition durations have been evaluated by some volunteers.
As a result, the users preferred transition durations that are adapted to the context. Thirdly,
the on-line insertion of a new motion into the graph is impossible, as all input motions have
to be compared pairwise to re-construct the directed graph. This implies that transitions oc-
cur only between fixed motions from the database without any possible parameterization.
Finally, the motion database must contain only captures from a single character and the pro-
duced motion fits this character uniquely. In the next two paragraphs, we discuss methods
which tackle those drawbacks.

A number of researchers extend the motion graph concept so as to give more assistance
to the users by providing a simpler and more understandable structure. Gleicher et al. [Gle-
icher et al., 2003] describe how motion graphs can be inappropriate for interactive systems
that require fast response times. Since these graphs are unstructured and their connectivity
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Figure 2.18: The motion is constrained to interpolate the ”push” frame while running before and
after the constraint [Arikan et al., 2003].

is complex, it is difficult to know what motions are possible. The authors develop a sys-
tem which eases the animator tasks by choosing appropriate transitions that can be created
around a given posture. In [Arikan et al., 2003] dynamic programming is applied to pieces
of motions in order to synthesize off-line a motion from given user annotations. Those can
be either geometrical constraint to pass through like forcing a posture to occur at a spe-
cific time or combined actions like walking and waving, or running and push at a given
frame (Fig. 2.18). For the special case of rhythmic motion synthesis (Fig. 2.19), the method
in [Kim et al., 2003] first extracts automatically motion beats and then structures the input
motion into a graph, with a classification with respect to their rhythmic parameters. Hsu et
al [2004] propose an extended approach to map control specifications (e.g. a leader dance
motion) to a target motion (e.g. a follower dance motion). The method builds a database of
control and target segments where those are synchronized motions that together represent a
primitive semantic instance of the mapping. Finally, the use of motion graph is evaluated
in [Reitsma and Pollard, 2004] for the special problem of character navigation task in an en-
vironment. In a first step, the motion graph is pruned to ensure that the generation of motions
along a given path does not lead to dead ends. Then the evaluation concerns the ability of
resulting motions to follow the shortest path between two points, and the coverage degree
of the environment with a given motion graph. As a conclusion, the authors observe that
motions of small duration in the database are necessary to reach points in the environment
and that a large variety of motion is demanded, like stopping, turning, stepping.

a b

Figure 2.19: (a): A ballroom scene and marching soldiers [Kim et al., 2003]. (b): A problematic
task solved in a unnatural way using motion graph. The red (dark) path is the desired path. The
green (pale) path is the shortest path available using this motion graph [Reitsma and Pollard,
2004].
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Chapter 2. State of the Art in Character Animation

Even if all these blending techniques are widely accepted and used, transitions are not
totally controlled and can produce incoherent results. In the study of [Wang and Boden-
heimer, 2004], sequences with fixed or variable transition durations have been evaluated by
some volunteers. As a result, the users preferred transition durations that are adapted to the
context. Approaches taking account for the dynamics like [Rose et al., 1996; Wooten and
Hodgins, 2000] can control valid transitions by modifying physical parameters such as an-
gular velocity or center of mass. However, the parameter setting is not straightforward and
the motion generation is an off-line process. Recently, a momentum-based method has been
developed in [Abe et al., 2004]. Starting from a single motion capture sequence, a space
of new physically plausible motions is pre-computed without parameterization effort. Al-
though on-line blending can be performed between these motions, the method is limited to
high dynamic movements. Furthermore the transition time and duration are constant. From
the earliest work allowing motion parameterization on graph node [Rose et al., 1998], other
advanced methods propose to improve the control of transitions. Park et al. [Park et al., 2003]
add captured transitions to blend walking, running and standing motions more realistic. Re-
cently, captured transitions for locomotion activities are performed by taking into account an
acceleration parameter [Kwon and Shin, 2005]. However, the available transitions inside a
node are not sufficient enough to avoid abrupt blending.

To conclude this overview dedicated to motion constraints, three main drawbacks emerge.
Firstly, the constraint detection methods are unreliable in an on-line context. Secondly, con-
straint enforcement methods do not consider the re-positioning of the foot. Finally, anticipa-
tion methods based on a real-time locomotion engine do not provide future body postures.
In this thesis, we propose a method which aims to provide a complete on-line locomotion
system to handle motion constraint problems: adaptive constraints detection and smooth
constraint re-positioning and enforcement.

2.6 Motion Planning

Motion planning increases the autonomy of virtual character. Generally, given initial condi-
tions and a goal, a path planner method provides a path to follow. Concerning the special
case of locomotion tasks, the planner provides the path taking into account the obstacle
avoidance problem. Additionally, this path is transformed into a trajectory which gives the
adequate locomotion parameters at each time step. We focus on this specific problem by
listing appropriate approaches.

The probabilistic roadmap methods (PRM) sample the configuration space randomly at
preprocessing time, to construct an accessible point graph called a roadmap. This latter is
then used to search for a path during the planning stage [Kavraki et al., 1996]. These meth-
ods have empirically demonstrated good performances for difficult problems. Moreover,
this approach is generic, applicable to navigating car-like robots with non-holonomic con-
straints, humanoid robots with many degrees of freedom, but also molecules movements in
biochemistry.
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Figure 2.20: Resulting motion constructed with the footprints (red and blue) computed by the
path planning [Choi et al., 2003].

Pettré et al. [Pettré et al., 2003a,b] apply PRM to get a collision-free 2D path in a 3D
environment. This path represented by Bezier curves generates a trajectory encapsulating
linear and angular speed variations. Finally a walking animation is generated according to
those variations. Another approach based on PRM is presented in [Choi et al., 2003]. The
roadmap is constructed by randomly sampling foot positions and orientations to form the
graph nodes. The connection between two nodes is possible if a subsequence searched in a
motion capture database approximates the given foot configuration well. The final animation
from a given start and goal position is obtained by traversing the graph. The input motion
clips are adapted to the foot configuration described in the graph nodes (Fig. 2.20). Recently,
a similar method [Sung et al., 2005] has been proposed for crowd simulation. It uses a
motion graph structure to obtain approximate collision-free motions which match constraints
requiring a characters to be in specific poses, positions and orientations at specified times.
Those motions are then refined through a fast randomized search algorithm. However, these
techniques are only designed for static environment and are not adapted to real-time context.
Other footprints approaches can be applied to generate animation given a PRM. Tsumura et
al. [Tsumura et al., 2001] present a locomotion method adapted to abrupt direction changes
by using the next footprints positions. However, this method does not control the locomotion
speed, and results in coarse motion quality. Van de Panne [1997] proposes to compute the
leg motion of an articulated figure given a set of footprints with their timing. However, this
approach is not real-time and not tested on human-like figure.

Other approaches based on A* algorithm allow to search a path into a tree structure at
interactive or even real-time performance. Kuffner in [Kuffner, 1998] proposes to subdivide
the 2D scene projection into a regular grid of cells. Each cell is labeled as free or occupied
by an object. A collision-free path is then search using a dynamic programming algorithm
such as A*. The final animation is generated using only a single walking cycle played at
varying frequency according to a proportional derivative controller. However, due to the 2D
projection, the obstacles are considered as a wall and can therefore not be stepped over.

Recently, finite state machine (FSM) have been used to abstract different behaviors [Lau
and Kuffner, 2005; Chestnutt et al., 2005]. From a current behavior state, the FSM proposes a
set of possible next behavior states to be reached. The optimal one is then chosen by applying
an A* search algorithm so as to find the solution which is less costly. Hence, the results are
highly dependent on the database size. In addition, the approach in [Lau and Kuffner, 2005]
allows to jump over obstacles (Fig. 2.21). However, those have to be assigned to a specific
motion clip. It is therefore not possible to add an obstacle dynamically in the scene without
having its corresponding jumping motion in the database.

The previous approaches are not well adapted for dynamic scene where the number and
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Figure 2.21: A dynamic environment with a falling tree. Left: Before it falls, the characters are
free to jog normally. Center: As it is falling, the characters can neither jog past nor jump over
it. Right: After it has fallen, the characters can jump over it [Lau and Kuffner, 2005].

position of the obstacles are not known in advance. In [Park et al., 2002b], the method pro-
poses to modify the computed path jammed by a moving obstacle. The solution is based on
the work of Badler et al. [Badler et al., 1996] using repulsive force assigned to the obstacle.
However, this technique is off-line and was applied only to the hand movements. Kathib et
al. [Brock and Khatib, 2002] introduce a method which represents the path as a deformable
elastic strip. From a previously planned motion, the path can be modified in real-time ac-
cording to moving obstacles intruding it. Originally designed for robot motions, this method
can be applied to virtual human. However, the skeleton is controlled dynamically, reducing
the complexity of motion activities (e.g. ski).

Finally, the approach in [Go et al., 2004] allows the steering of a 3D point into a dynamic
environment by selecting the best trajectory among predefined ones. However, this technique
is well adapted for 3D point animation such as a spacecraft, but still difficult to adapt for
virtual human whose motion constraints are much more complex. In fact, the pre-computed
trajectories have a constant linear speed.

In this thesis, we improve the previous work by addressing the problem of dynamic obstacle
avoidance by the generation of appropriate motions on-the-fly, instead of searching into a
database of pre-computed motion sequences. As the obstacle dimension and position are
unknown in advance, the trajectory has to be computed not only efficiently to preserve real-
time capability of the animation system, but also precisely in order to prevent any collision
between the character and obstacle.
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Motion Modeling
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Chapter 1
Fundamentals

The modeling of human motion consists in describing a formal system based on laws
derived from real observations. This system, driven by parameters, aims at the syn-
thesis of new motions. The human motions are so diverse that it would be unrealistic

to imagine a unique model. In this thesis, the motion modeling is therefore restricted to two
basic human activities: the locomotion, from walk to run, and the jump activity. First, we
focus on the essential material necessary to provide such a model (or system). In this chapter,
the objectives consist in describing the acquisition of real motions, and choosing a method
facilitating the elaboration of the system laws.

1.1 Data Acquisition

Various technologies allow the acquisition of real motion data. In the field of Biomechanics,
instruments such as goniometers, accelerometers or the electromyography (EMG) are used
to get specific motion information. However, it is still difficult to describe precisely the
corresponding human motion from that data. We opt for another technology, namely the
motion capture. This choice is motivated by its main advantage: the high level of realism.
Our setup is composed of an optical motion capture system [Vicon Motion System R©, 2005]
with eight cameras working in the infrared spectrum at a frame rate of 120 Hz. The recorded
performances are executed by an actor who wears a stretch suit with reflective markers, as
illustrated in Fig. 1.1 (a). They are placed at strategic locations, in order to reconstruct best
quality joint movements.

The motion acquisition protocol proceeds as follows. For locomotion, this activity is
performed on a treadmill. In order to be more familiar and comfortable with it, the actors
(or subjects) were first asked to train during approximately 5 minutes before being captured.
Then walking and running sequences of approximately one minute have been recorded, by
setting a constant treadmill speed for each take (Fig. 1.2). In the end, the locomotion database
is composed of motions which differ from three parameters: the subject, type of locomotion
and speed.

The validity of performing treadmill instead of overground locomotion has been an issue
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a b

Figure 1.1: (a): An actor wearing the stretch suit. (b): From the Vicon user’s guide: the location
of reflective markers (front and back side).

of debate for many years. In short, the treadmill walking induces a shorter stride length and
increased cadence [Stolze et al., 1997] as well as running [Schache et al., 2001]. The reasons
are many: anxiety, caution, lack of optical flow. The material (e.g. the walking surface)
and mechanical (e.g. belt speed fluctuations) properties of the treadmill is also associated to
kinematic and dynamic variations in motions. Moreover, motorized treadmills can signifi-
cantly affect the variability and local stability of gait. Dingwell et al. [Dingwell et al., 2001]
demonstrate that the locomotor variability is reduced while improving the stability.

Figure 1.2: Motion capture session of walking on a treadmill.

For jump activities, the acquisition protocol is the following. We asked the subjects to
perform long jump, either with a walking or a running run-up, in order to clear an obstacle.
This latter is represented by two small boxes, one indicating the take-off foot position and
the other the landing foot position (Fig. 1.3). For our experiment, we limit the capture by
recording only jumps with right take-off foot. The subjects had to adapt their run-up speeds
so as to execute the requested jump length as most naturally.

As the motion capture data technique produces noisy data, a cleanup stage is neces-
sary, executed using a commercial software [Vicon Motion System R©, 2005]. The motion
sequences have to be free from artifacts in order to validate the applied motion model cor-
rectly. Actually, the use of bad quality sequences corrupts the final results. The validation of
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1.2. Principal Component Analysis

Figure 1.3: Motion capture session of jumping.

those results becomes difficult if we have to distinguish drawbacks between the input motion
and the motion model. The cleanup stage consists first in ensuring the marker trajectory
continuity. A marker trajectory can be interrupted during a time interval on account of oc-
clusion. The motion capture system may also swap the trajectories of two near markers. The
second point concerns the elimination of marker trajectories called ”phantom” which come
from false reflection due to the presence of reflective material in the capture area. Finally, all
marker trajectories are filtered to produce smooth curves.

Additionally to this cleanup stage, the motion sequences are manually split so as to obtain
a ”motion unit”. In case of locomotion, we define the motion unit (or cycle) as the sequence
of two steps, beginning and ending with the same foot event. We arbitrarily choose this
event as the right heel strike. As these motion units are cyclic, the beginning posture has
to match the ending one. This process, referred to as ”cyclification” is performed using a
commercial software [MotionBuilder R©, 2005]. More sophisticated cyclification approaches
(fine parameterization, automation) can be implemented [Ahmed et al., 2003; Wagner da
Silva et al., 1999]. However, in our situation, the commercial solution is enough satisfying.
The jump motion unit is also determined by the sequence from the right heel strike event to
the next same event. Hence, this sequence holds the three phases of a jump: the take-off,
flying and landing. Note that all motion units are expressed as marker 3D positions varying
over time.

1.2 Principal Component Analysis

The motion units described in the previous section constitute the motion database which
forms the real data observations used in our motion model. In order to define this model, we
propose a method facilitating the elaboration of its laws. The method has to be capable of
working with our database, composed of a large number of motions, each being represented
by a succession of frames (or postures).

With this aim in mind, the choice of motion representation is important. In [Rose et al.,
1998], the joints are represented by Euler angles. The authors approximate the joint ani-
mation curves with a uniform cubic B-spline specified by a determined number of control
points. Other techniques [Kovar and Gleicher, 2003; Park et al., 2002a] use directly the
joint orientations at each frames, expressed with quaternions. We choose this representation
approach by exploiting the Principal Component Analysis (PCA). As this algorithm reduces
drastically the data, we can abstract the input motion as a single entity, as opposed to previous
methods dividing the animation frame by frame [Alexa and Müller, 2000; Alexa, 2002].
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Chapter 1. Fundamentals

PCA is a wide-spread statistical method whose central idea is to reduce the dimension-
ality of an input dataset which contains certain relation between its different variables. Even
though one of the first explanations of the PCA has been published early in the 20th century,
it is only since the 80s that this technique becomes popular [Jolliffe, 1986]. Many areas
take advantage of PCA: biology, chemistry, climatology, demography, ecology, economics
or psychology. Since the mid 90’s, Computer Vision and Computer Graphics have also
demonstrated a growing interest in this subspace analysis technique, particularly in shape
parameterization and animation.
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Figure 1.4: Result of a PCA applied on a 2D dataset. In red, the first principal component, in
green the second (orthogonal to the first).

Essentially, PCA transforms a set of correlated variables into a set of uncorrelated vari-
ables which are ordered by reducing variability. The uncorrelated variables are linear com-
binations of the original variables. As PCA reduces the dimension of the original data, the
coefficient number of the linear combination can be smaller than the number of variables
with minimum loss of data. Hence it produces a more compact and better description of the
data, as shown on Fig. 1.4. The first Principal Component (PC) explains the greatest amount
of data variation; the second principal component defines the next largest amount of variation
and is orthogonal to the first principal component, and so on until having reached a sufficient
number of principal components to describe the original dataset.

The Appendix B introduces some basic statistical and linear algebra background, as well
as the PCA technique necessary to understand the next paragraph focused on PCA applied
to motion data.

1.3 A PCA Algorithm for Motion Data

We present the PCA algorithm applied on our capture motion data, where a motion is consid-
ered as a sample. We start with an example composed of n samples being time normalized
to get an identical fixed frame number Nframe. A sample, composed of frames Fi, is defined
as a motion vector θ:
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θ = (F1, . . . ,FNframe
) (1.1)

where its dimensions are (1 × p), p = Nframe · d, where d represents the frame dimension.
The p value (p > n) corresponds to the number of observation variables whose variance
have to be minimized by the PCA. The PCA algorithm runs as follows:

1. Construct a motion matrix M of dimension (p × n) so that the i-th column contains a
motion vector θi.

2. Compute θ0 as the average vector of all n motion vectors, in order to center the re-
sulting reduced space with respect to the whole dataset. A new motion matrix M̃ is
therefore defined as:

M̃ = (θ1 − θ0,θ2 − θ0, . . . ,θn − θ0) (1.2)

3. Compute the eigenvectors ei and the eigenvalues λi, (i = 1 . . . p) from the covariance
matrix C = M̃M̃T . Note that for i = [n + 1, n + 2, . . . , p], λi = 0 .

4. Approximate a motion vector θ with the eigenvectors associated to the first k largest
eigenvalues as follows:

θ = θ0 +

p∑
j=1

αiei ≈ θ0 +
k∑

j=1

αiei = θ0 + αET (1.3)

where α = (α1, α2, . . . , αk) is a coefficient vector and E = (e1, e2, . . . , ek) a matrix
of the first k PCs (or eigenvectors).

In practice, the eigenvalue computation of the covariance matrix can be generalized to
the problem of eigenvalue decomposition of a matrix C = AAT . Substituting the singular
value decomposition (SVD) on the matrix A = VΣUT in AAT , we can observe that the
eigenvalues of AAT (same as these of ATA) can be computed using the singular values held
in Σ. Furthemore, the eigenvectors of AAT are contained in V (and U for ATA). Hence,
the eigenvalues and eigenvectors computation can be computed in two ways. The first one
consists in applying SVD on the matrix A of type (n × p). To improve the computational
speed-up, SVD on AT is preferred if the are less columns than lines (i.e. n < p) [Press
et al., 1992], as described in Algo. 1. The other alternative is based on the eigenvalue de-
composition. This process is optimized by selecting between AAT and ATA the matrix
having the lowest dimension. Actually, the matrix ATA has the same eigenvalues λi as
AAT (the remaining n − p values equal zero), and its eigenvectors ui are an expression of
the eigenvectors vi of AAT (see Appendix B):

vi =
1√
λi

Aui (1.4)

The complete process is summarized in Algo. 2.
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Algorithm 1 Singular Value Decomposition
if nbcol ≥ nbline then

svd(A, V, S, U)
EigVa = diag(S)*diag(S)
EigVe = V

else
svd(AT, V, S, U)
EigVa = diag(S)*diag(S)
EigVe = U

end if

Algorithm 2 Eigenvalue Decomposition
if dim(AAT) � dim(ATA) then

EigVa = eigenvalues(AAT)
EigVe = eigenvectors(AAT)

else
EigVa = eigenvalues(ATA)
EigVe = (1/sqrt(EigVa))*A*eigenvector(ATA)

end if

Instead of using the covariance matrix, its ”normalized” form, namely the correlation
matrix, can be chosen. However, the eigenvalues and eigenvectors of the correlation matrix
do not have a simple relationship with those of the corresponding covariance matrix. The
PCs for correlation and covariance matrices do not give therefore equivalent information.

A major argument for using correlation matrix is that PCA based on covariance matrices
produces PCs sensitive to the unit of measurement used for each variable of the original
data. If the observed variables are expressed in different measurement units, it implies a
large difference between their variance, and the variables whose variances are largest would
tend to dominate the first few PCs. The resulting PCA space is therefore conditioned by the
magnitude of the variables instead of their intrinsic relations.

However, statistical inference is difficult on PCs computed with correlation matrices. In
fact, the principal coefficients are given for standardized variables and are therefore less easy
to interpret directly. In practice, covariance matrices are preferred if the measurement unit
are identical for all sample variables. Though as a preventive measure, the standard devia-
tions of all variables are compared. Large differences between them alert that considerable
differences exist between the PCs for the correlation and covariance matrices. In that case,
the contribution ci of each i-th PCs for both alternatives is measured as follows:

ci =
λi∑p

j=0 λj

(1.5)

If the contributions of the first few PCs computed with the covariance matrix are much
significant than those from the correlation matrix, the covariance option is preferred.
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1.4 Conclusion

In this chapter, we have described the acquisition process of real motions necessary for the
motion modeling. An optical motion capture system is used to capture walking, running and
jumping sequences, varying by parameters such as for example the performer, the speed,
the jump run-up and length. The motion data has been carefully post-processed so as to be
free from noise and have been segmented in motion units. We have also described the PCA
method which is able to reduce the dimension of the motion database by the generation of a
new space. The first dimension of this resulting PCA space explains the greatest amount of
data variation, the second dimension the second greatest variation, and so on. This reduced
space is therefore very appropriate to identify laws which have to describe the observations,
i.e. our variety of motions. We have also analyzed the motivations to choose between the
covariance and correlation matrix for the PCA computation.
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Chapter 2
Generation of Motion Units

2.1 Introduction

This chapter is dedicated to the identification of laws characterizing the motion, by ap-
plying PCA to the captured (original) motion units described in the previous chapter.
Those laws, driven by parameters, aim at the generation of new motion units, either

inside the convex hull spanned by the original motions (motion interpolation) or beyond it
(motion extrapolation). The law parameters have to describe the motion at a high-level in or-
der to provide adequate assistance to animators using this model. In addition, the parameter
dimension is supposed to be large enough to produce diversified motion units.

The elaboration of these laws is based on the following methodology:

� First we choose a motion representation for our data which we want to observe. The
choices are motivated by the nature of the motion capture data and the potential of a
motion representation for PCA application.

� PCA is then applied on this motion data, by considering a motion as a single observa-
tion. We decide either to compute the covariance or the correlation matrix, depending
on the input data. In addition, the contribution (or influence) of the PCs is evaluated to
determine the dimension of the resulting PCA space.

� This reduced space is analyzed in order to draw laws which characterize our motion
model. The strategy is to relate the coefficients (or scores) of a motion, expressed in
this space, to its parameters. Those relationships are visualized on 2D graphs to help
the analysis.

In the next sections, we describe step by step this methodology, applied to our motion
capture data.
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2.2 PCA on Angular Data

The very straightforward idea when dealing with motion capture data is to use directly the
3D marker trajectories. However, this approach does not ensure that the distance between
the connected markers remains constant, as the PCA approximates the 3D marker trajecto-
ries. By experiments, the modification of an original motion by the variation of its Principal
Coefficient values emphasizes this approximation. Hence, the resulting motion may violate
basic properties of the human movements: joint limits, floor penetration and gravity force.
To tackle this problem, some controllers can be added to correct the generated motions.
However, this solution is difficult to implement, as the correction to apply is very significant.

For those reasons, we choose another motion representation. We convert our motion data
into the joint angle space. The 3D marker trajectories are mapped on a human skeleton 2.1.
This latter is represented using the standard H-Anim [H-ANIM, 2005] which describes a
hierarchical skeleton with specific joint names. The use of the joint angle space is motivated
by two important points. First, the length of the limbs remains constant, independently on
the joint angle values. Secondly, it is possible, for a generated joint angle value, to check if it
is out of some joint limits [Korein, 1985]. Therefore, this motion space is more appropriate
to handle the problems encountered with the motion representation based on 3D marker
positions.

Figure 2.1: A posture from real to virtual human. From left to right: Real performer; 3D
positions recorded by motion capture; converted positions into the joint angle space map onto a
simple character; and onto a skinned virtual human.

We have to choose over the various joint parameterizations which have been put forward
by the graphics community over the last two decades. Their suitability with respect to dif-
ferent applications are discussed by Grassia in [1998]. He concludes that there is no ideal
parameterization and emphasizes that no single parameterization is free of singularity in R3.
By contrast, unit quaternions and rotation matrices avoid singularities (i.e., they are safe from
gimbal lock) since they work in a different space. We opt for the compact quaternion para-
meterization. A rotation is represented by a unit quaternion which lies on the hypersphere
S 3 embedded in the four-dimensional Euclidean space R4.

The application of PCA on joint rotations is problematic. PCA is a linear technique
and therefore well adapted for linear data. However this technique reaches its limits when
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the data is nonlinear, for example the joint rotations which are commonly represented with
quaternions in a non-Euclidian space. Therefore, our original motion data which is repre-
sented by quaternions, has to be converted into a parameterization embedded in R3. This
parameterization is referred to as exponential maps and is introduced in [Grassia, 1998].
This technique, based on a tangent space, maps a vector in R3 describing the rotation axis v
and the magnitude φ (i.e. ||v||) of a three DOF rotation. Hence, a unit quaternion q can be
formulated as follows:

q = exp(v) =

[
sin

(
1

2
φ

)
v

φ
, cos

(
1

2
φ

)]T

(2.1)

Using Eq. 2.1, q can be mapped into the log space:

ln(q) = v (2.2)

We represent our motion data with exponential maps in order to bring all the benefits of a
Euclidean parameterization: addition is really addition for example. However, this parame-
terization is subject to the following caveat [Grassia, 1998]. Either the considered exponen-
tial maps must have ”small” norms, or their axes of rotation must not diverge ”too much”
from parallel.

We illustrate this limitation by defining 25 orientations qyi around the Y-axis (from −π
to π) and 25 similar orientations qzj around the Z-axis (from −π to π). For each pair of qyi

and qzj , the mean orientation is computed in two ways: first using the SLERP interpolation
([Shoemake, 1985]) between two quaternions (mslerp), and secondly using the linear inter-
polation with the two corresponding exponential maps vyi and vzj (mexpmap), as described
in Eq. 2.3:

mslerp = ln (SLERP (qyi,qzj, 0.5))

mexpmap =
||ln(qyi) + ln(qzj)||

2
(2.3)

Fig. 2.2 shows the difference between those two means, for each pair qyi and qzj . This dif-
ference increases as the orientations are far from zero, indicating that the linear interpolation
becomes less appropriated.

The frames Fi (1 ≤ i ≤ Nframe) which compose a motion vector θ, as described in
Eq. 1.1, are therefore defined as follows:

Fi = (p̂ri, ln(q̂ri), ln(q1i), . . . , ln(qmi)) (2.4)

where p̂ri is the translation and q̂ri the quaternion of the character’s root, and qji for j > 0
the local transformation of the j-th body’s joint. In our configuration, we use a skeleton
composed of 26 joints, leading to a body having 40 DOFs.

To validate the use of exponential maps for our motion data, we compute their norms in
all θ from our database, for each joint and at each frame Fi. From all observed joints, we
note that exponential maps related to the knee joint contain the most important norm variation
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Figure 2.2: The difference between mslerp and mexpmap for each pair qyi and qzj .

(see Fig. 2.3, left). We have therefore to make sure that their corresponding axes of rotation
are ”near” from each others. At each frame Fi, the maximal angle between those axes of
rotation is computed (see Fig. 2.3, right). It results that for a significant norm of exponential
maps at a given frame, the corresponding axis are ”near” from each others. Hence, we are
allowed to apply Euclidean operations to our motion data represented by exponential maps.
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Figure 2.3: Left: Each curve represents the evolution of the norm of the exponential map related
to left knee joint, for a given motion. Right: The maximal angle between all axes of rotation of
exponential maps representing the knee joint (for all θ of our locomotion database) at each frame
Fi.
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2.3 Walking and Running Motion Units

In this section, we focus on the two next points of our methodology described in the in-
troduction of this chapter: the application of the PCA and its analysis to draw laws which
characterize our motions. We first apply PCA either using covariance or correlation ma-
trix. Then we select the number of PCs and finally we analyze the resulting PCA space to
establish relationship between coefficients and motion parameters.

We use the locomotion capture database described in the previous chapter (Section 1.1).
In the next two sub-sections, we present our motion model. For a better understanding of our
approach, we propose a simplified situation in the following sub-section (2.3.1). In fact, we
focus on walking sequences captured on individual performers in order to observe one high-
level motion parameter: the speed. Then, in the second sub-section (2.3.2), we introduce
more variety by using our complete locomotion database. Hence, two high-level parameters
are added: the type of locomotion (either walk or run) and personification (the styles of the
captured subjects).

2.3.1 Single High-level Parameter Variation

The underlying idea is to identify laws able to generate a parameterized motion vector θ(s),
or more precisely a walking cycle, where s represents a locomotion speed value. This aim
in mind, a PCA space is computed by applying the PCA algorithm described in the previous
chapter (Section 1.3) on a matrix M̃k, computed by subtracting the mean motion θ0 to each
column of Mk. This matrix is composed of Nwalk,k

seq samples. They correspond to various
walking motion vectors θ from a specific subject k, and to a standing posture. This posture is
necessary in order to obtain a motion sample corresponding to the null speed. The p sample
variables whose variances have to be maximized are the three components of the global
translation p̂ri and orientation ln(q̂ri), as well as the other orientations ln(qji) attached to
the body, for a given i-th frame.

PCA is either performed with covariance or correlation matrix. We choose the covari-
ance matrix as the measurement unit is the same for all elements of the data, except the
global motion p̂r. Nevertheless, a further comparison between the standard deviation of the
p sample variables is performed. The computation of the standard deviation σpi

for a given
variable pi over j observations is executed as follows:

σpi
=

√√√√1

n

n∑
j=0

(pij − p̄i)2 (2.5)

where p̄i is the mean of all pij observed. An observed pi sample variable represents a com-
ponent of either p̂r, ln(q̂r) or ln(q).

We observe on Fig. 2.4 that the standard deviation relative differences are not consider-
able. The larger differences correspond to specific joint whose rotations change significantly
between the samples: the knees, the ankles and the elbows. Furthermore, the single variable
measured in another unit, namely the global motion p̂r, has a similar variance magnitude
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as the other joints. The same observations are also consistent for the other subjects. The
covariance matrix is therefore a correct choice.

200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sample variables

S
ta

nd
ar

d 
de

vi
at

io
n

Difference in standard deviation for walking sequences

Figure 2.4: . The standard deviation of each variable of the walking motion matrix M̃k, for a
given subject k.

The PCA algorithm applied to the covariance matrix of M̃k returns a matrix Ek con-
taining the first m PCs (with m ≤ Nwalk,k

seq ) that are orthogonal vectors (or eigenvectors)
describing the PCA space, and a vector αk holding the coefficient values of these first m
PCs. In this new space, a motion θ can be approximated by:

θ ≈ θ0 +
m∑

i=1

αk
i e

k
i = θ0 + αkEkT

(2.6)

The number m of the first PCs, determining the dimension of the PCA space, has to
be fixed. As illustrated in Fig. 2.5, the contribution of the first PCs to the total motion
information is very important, while other PCs do not provide relevant relation. Therefore,
we choose to set m so that PCs represent more than 80% of the original information.

As only the speed parameter differs in the motion matrix M̃k, the resulting PCs ek
i tend to

characterize the variance between slow and fast motions. Therefore, our goal is to find a rela-
tionship Awalk,k(s) that maps the coefficient vectors αk describing our original motions with
their corresponding speed values. Hence, for a given speed, a function returns a coefficient
vector αk in order to generate a walking motion with the desired speed as follows:

θ(s) = θ0 + Awalk,k(s)EkT
(2.7)

We analyze the PCA spaces of Nsubj subjects. For each PCA space Ek attached to a
given subject k, the coefficient vectors αk of the Nwalk,k

seq original motions are compared
to their corresponding speed values. Fig. 2.6 gathers the resulting comparison for the first
two PC dimensions, for each subject in their own space. We determine a function model
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Figure 2.5: The cumulative percentage of the PCs for the five subjects of our database.

which best fits coefficient with speed values. At a first glance, the data seem to be fit by
a polynomial model. However, such a model is unenforceable for extrapolation, in case
motions are generated beyond their original speed range. Indeed, a parabolic approximation
on the data of Fig. 2.6 (left) returns a same coefficient value αk

1 (and therefore a same motion
θ) for two distinct speeds. For functions of higher degree number, undesired variations
appear in-between the sampled data, leading also to a non-bijective function. However, a
linear relationship is clearly apparent for motions having a speed greater than 3.0 km/h,
representing the minimal captured speed.
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Figure 2.6: Comparison between the motion speed values and their corresponding coefficient
for the five subjects. Left: The first principal coefficient values αk

1 . Right: The second principal
coefficient values αk

2 .

Our proposed approach consists in describing a vector function Awalk,k(s) as follows:

Awalk,k(s) =

{
Awalk,k

lo (s) for 0 ≤ s < sw

Awalk,k
hi (s) for s ≥ sw

(2.8)

where sw corresponds to the minimal captured speed in the input motion.
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The first function Awalk,k
hi (s) is computed by considering the coefficient vectors αk of

the original motions and their corresponding speed values s, excluding the speed value zero.
Hence Awalk,k

hi (s) approximates αk by α̃k for a given speed s:

Awalk,k
hi (s) = α̃k = as + b (2.9)

where a and b have to be determined. A linear least square fit is performed over the j
increasing speed parameter values, by minimizing the sum of the square distances between
the j-th coefficient vector αk

j with their associated speed sj , and the approximated one α̃j
k,

as the following equation describes:

n∑
j=1

(
αk

j − α̃j
k
)2

=
n∑

j=1

(
αk

j − asj − b
)2

(2.10)

where n = Nwalk,k
seq − 1 is the number of motions of the subject k, excluding the standing

posture having a null speed, represented by the coefficient αk
0.

The approximation of the second vector function Awalk,k
lo (s) can also be performed by a

linear model, between the coefficients αk
0 and Awalk,k

lo (sw). However, a linear interpolation
between motion data, which is non-linear, produces unsatisfying animation results if the
motion postures are rather different. As αk

0 represents a standing and Awalk,k
lo (sw) walking

postures, it is therefore evident that the linear approximation is not well appropriate.
The idea is to give much more influence to the coefficient of the walking posture. We

model a function which has a slope important at Awalk,k
lo (0), and near to zero at Awalk,k

lo (sw).
The behavior of the function y = xm, plotted in Fig. 2.7 for m = 0.2 . . . 1, corresponds to
our need. The function slope can be adapted by varying m, from m = 1 to produce the
previous linear solution to smaller values increasing the slope at x = 0.
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Figure 2.7: The function xm for x = 0 . . . 1 and m = 0.2 . . . 1.

This model is adapted to our data, leading to the definition of the vector function Awalk,k
lo (s)

as follows:
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2.3. Walking and Running Motion Units

Awalk,k
lo (s) = αk

0 + b′sm (2.11)

where

b′ =
Awalk,k

lo (sw) − αk
0

sw
m

(2.12)

In our experiments, we define m = 0.4.
To summarize this sub-section, a motion unit θ(s) can be generated by varying the speed

parameter s. For a given subject k, Awalk,k(s) defined in Eq. 2.8 returns a coefficient vector
α which is substituted in Eq. 2.6 to compute θ(s), leading to the Eq. 2.7. The described
approximation function Awalk,k(s) allows not only to interpolate, but also to extrapolate
walking cycles beyond the captured domain.

We propose to extend this motion modeling for more high-level motion parameters. Be-
sides walking, the running is the most used locomotion pattern. Moreover, it is necessary
to add stylistic variations between produced animations. In the next sub-section, we extend
our PCA-based modeling method to higher parameter dimensions and we aim at using the
similar approximation functions we describe in this sub-section.

2.3.2 Multiple High-Level Parameter Variation

In addition to the speed, we aim to increase the parameter dimension of the motion vector θ.
We therefore introduce more variety by constructing a motion matrix M composed of walk-
ing and running cycles from Nsubj different subjects. In this configuration, three high-level
parameters should drive the motion generation:

• The locomotion speed s

• The locomotion weight wloco which varies between the two locomotion types walk
(wloco = 0) and run (wloco = 1).

• The personification vector wsubj which contains Nsubj elements. Each of those ele-
ments is defined by wsubj,k and corresponds to the normalized weight assigned to the
k-th subject so that

∑Nsubj

k=1 wsubj,k = 1.

All of those build a parameter vector Ψ = (s, wloco,wsubj) which allows the characteri-
zation of a locomotion cycle θ(Ψ).

2.3.2.1 Main PCA Level

Similarly to the previous sub-section 2.3.1, a PCA algorithm is performed on the matrix
M̃, by subtracting the mean motion θ0 from M, producing a PCA space as described in
Eq. 2.13. Note that M contains all motions from Nsubj subjects, including the standing
posture for each subject. We call this new space the ”main PCA”. Fig. 2.8 depicts all α of
the original walking, running and standing motions, in the first two PCs.
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θ ≈ θ0 +
m∑

i=1

αiei = θ0 + αET (2.13)
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Figure 2.8: The motion database projected into the main PCA space (first two PCs). Observe
the clustering behavior by subject and type of locomotion.

From this main PCA, we want on the one hand to improve the efficiency of the motion
generation and on the other hand to perform correct speed extrapolation, as done before in
case of walking motions from a single subject. These goals can be achieved by using RBF
(Radial Basis Function) and polynomial functions to perform multidimensional scattered
data interpolation, initially introduced by Rose and Cohen in [Rose et al., 1996]. To increase
the efficiency of this method, an enhanced version is presented in [Sloan et al., 2001], and
used for human locomotion generation by Park et al. [Park et al., 2002a]. The main idea
of these techniques consists in associating weight values to the original motions, according
to a given parameter vector. However, this method has a drawback: all original motions
contribute to the computation of a new motion. Actually, even if the user desires a parame-
terized motion from a single subject, the weights of all other subject’s motions may not be
null. Therefore, this method is limited to a small number of original data, to limit the com-
putation time. As soon as the speed parameter value, for a given subject, goes beyond the
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captured data, the resulting motions are not satisfying as they are, influenced by the weights
of other subjects, as illustrated in Fig. 2.9.

Figure 2.9: Method comparison for a running motion generated beyond capture data (16 [km/h]).
The left character posture (yellow) is obtained by polynomial and RBF method and the right one
(blue) by ours. Observe the difference at the elbow joint.

In concrete terms, we introduce a method that treats the speed extrapolation individually
for each subject and type of locomotion. Firstly we aim at excluding the influence of other
motions, as opposed to [Rose et al., 1998], and secondly we use the method presented in
the previous sub-section ( 2.3.1) where only the speed parameter varies. At a first thought,
the example motions in the main PCA (Fig. 2.8) can be classified by subjects and type of
locomotion. Then a linear least square fitting may be applied on these groups of motions
differing only by their locomotion speeds. Therefore, for a given speed, the resulting fit-
ting function provides the coefficient combination of the main PCA to compute the desired
motion. However, we propose a hierarchical PCA space structure that helps to classify the
motions and allows to perform the linear least square in a lower dimension than the one of
the main PCA space.

The main PCA, as illustrated in Fig. 2.8, shows relatively compact clusters related to
subjects and type of locomotion. As the final goal is to group motion data having only
one parameter that varies (the speed), the classification can be divided into two successive
stages: the first which groups the data per subject, and then the second which subdivides
theses groups by type of locomotion. This classification can be executed automatically by
applying a simple clustering method like K-means [MacQueen, 1967]. For the fist stage we
give the number of clusters (two in our case). Hence, the algorithm distinguishes exactly
walking from running motions, as illustrated in Fig. 2.10, left. Then, for each of those
clusters, we indicate to the algorithm one sample per subject to improve the classification
accuracy. As a result, all running motions are separated by subject correctly, whereas only
three walking motions are assigned to their corresponding subject incorrectly, as depicted in
Fig. 2.10, right. This error has to be manually corrected.

At each of these two classification stages, the PCA algorithm is executed on each created
group of motions. It results a set of PCA spaces which are arranged in order to build a
hierarchical structure. The question is how to determine this structure. The first intuitive
ideas consists in separating the motion data by their type of locomotion, as Fig. 2.8 suggests.
Actually, the first component seems to isolate running from walking motions. However, two
reasons turn this observation down. One concerns computation efficiency and the other the
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Figure 2.10: Classification results obtained with the K-means algorithm. Left: Classification by
type of locomotion. Right: Classification by subject.

quality of the animation. Before going into details, we present our hierarchical method which
separates the subjects before their type of locomotion. A complete overview of the hierarchy
is shown in Fig. 2.11.
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Figure 2.11: Overview of the hierarchical structure of PCA spaces. On the right, the matrices
(with their dimensions) describing the space at each level (k stands for k-th subject).

2.3.2.2 Sub-PCA Level 1

The main PCA’s coefficient vectors α are grouped by subject and form Nsubj groups. The
group related to the subject k is composed of Nk

seq coefficient vectors. A second PCA algo-
rithm is applied to those groups, resulting in Nsubj new PCA spaces, referred to as ”sub-PCA
level 1”. In one of these spaces, a coefficient vector αk relative to a specific subject k can be
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expressed as follows:

αk ≈ αk
0 +

b∑
j=1

βk
j f

k
j = αk

0 + βkFkT
(2.14)

where βk represent a coefficient vector and Fk = (fk
1 , fk

2 , . . . , fk
b ) the b first eigenvectors,

with b ≤ Nk
seq. The vector αk

0 represents the average of the Nk
seq coefficient vectors αk for a

subject k.
The first two dimensions of the βk, corresponding to all motions relative to a subject k

expressed in Fk, are plotted and superimposed for all subjects in Fig. 2.12. From this figure,
three distinct clusters clearly emerge, one for each locomotion type (standing, walking and
running). For all subjects (they do not share identical PCA spaces, but are superimposed
for graphical representation convenience), the first PC separates data from walking and run-
ning, while the standing posture (represented by the outliers in Fig. 2.12) is more considered
as a special case of walking. The visualization in the first two PCs is sufficient, as their
eigenvalues explain the most significant variations among the αk.
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Figure 2.12: The fist two values of the coefficient vectors βk for all k subjects (superimposed)
in the sub-PCA level 1.

These sub-PCA level 1 spaces are well-suited to parameterize a motion with the second
high-level parameter: the locomotion weight wloco. In fact, in each Fk, the coefficient βk
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are classified in two groups, by locomotion type: walking and running. We therefore iden-
tify Nwalk,k

seq coefficient vectors for walking, referred to as βwalk,k, and N run,k
seq for running,

referred to as βrun,k. Note that the coefficient vector representing the standing posture is
integrated in both groups in order to give a lower bound (where the speed is null) for the
generation of new motion units.

Hence, for a given subject k and given speed s, a linear interpolation is performed in the
PCA space Fk between βwalk,k and βrun,k. The resulting βk is therefore obtained as follows:

βk = (1 − wloco)β
walk,k + wlocoβ

run,k (2.15)

2.3.2.3 Sub-PCA Level 2

However, the βwalk,k and βrun,k remains to be computed, according to the high-level parame-
ter speed s. We construct the last level of our hierarchy by applying again a PCA algorithm
on each group of the βwalk,k and βrun,k respectively. This operation performed on each sub-
ject, leads to 2Nsubj new PCA spaces, called ”sub-PCA level 2”. For example, the PCA for
walking motions of a given subject k is described as follows:

βwalk,k ≈ βwalk,k
0 +

c∑
j=1

γwalk,k
j gwalk,k

j = βwalk,k
0 + γwalk,kGwalk,kT

(2.16)

where γwalk,k is the coefficient vector and Gwalk,k = (gwalk,k
1 ,gwalk,k

2 , . . . ,gwalk,k
c ) the c

first eigenvectors (c ≤ Nwalk,k
seq ). The vector βwalk,k

0 represents the average of all coefficient
vectors βwalk,k for the k subject. The basis Grun,k for the running motions is analogously
computed.

This third hierarchical level is composed of different PCA spaces having motions that dif-
fer only by their speed values, a similar situation as presented in the previous section (2.3.1).
The coefficient vectors γwalk,k and γrun,k of each sub-PCA level 2 are depicted in Fig. 2.13
with respect to their corresponding speed. The spaces of each subject are superimposed, with
the walking motions on the left side and running motions on the right side respectively of the
figure.
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Figure 2.13: Speed and the first dimension of the coefficient vectors (sub-PCA level 2) for all
subjects. Left: γwalk,k corresponding to walking. Right: γrun,k corresponding to running.
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We apply therefore the same approximation method used for a single parameter variation.
For each subject k, two approximation functions are defined similar to Eq. 2.9 and Eq. 2.11.
Their goal is to determine a coefficient vector γwalk,k and γrun,k respectively for a given
speed s. Those two functions are described as follows:

Awalk,k(s) =

{
Awalk,k

lo (s) for 0 ≤ s < sw

Awalk,k
hi (s) for s ≥ sw

Arun,k(s) =

{
Arun,k

lo (s) for 0 ≤ s < sr

Arun,k
hi (s) for s ≥ sr

(2.17)

2.3.2.4 Motion Unit Computation

The computation of a motion unit with respect the parameter vector Ψ is computed in a
bottom-up way, from the lowest to the highest hierarchy level. For each PCA level, one
or more coefficient vectors are computed according to a specified parameter from Ψ. In
general, a motion unit θ(Ψ) is computed as follows:

θ(Ψ) = θ0 +

⎡⎣Nsubj∑
k=1

wsubj,k

(
αk

0 + βk(Ψ)FkT
)⎤⎦ET (2.18)

where βk(Ψ) is described as:

βk(Ψ) = (1 − wloco)
(
βwalk,k

0 + Awalk,k(s)Gwalk,kT
)

+wloco

(
βrun,k

0 + Arun,k(s)Grun,kT
)

(2.19)
The resulting vector functions associated to each lowest PCA space of the hierarchical

structure allows to compute the corresponding coefficient vectors Gwalk,k and Grun,k given
the high-level parameter s. We show the resulting functions for only one subject (k = 1).
The results for the others subjects are depicted in Appendix C, from Fig. C.1 to Fig. C.4.
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Figure 2.14: Resulting approximation functions for walking (left) and running (right) for the
subject k = 1.
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2.3.2.5 Hierarchical Order

As mentioned previously, it remains to explain the choice of separating the data first by
subject. Imagine the situation with Nsubj subjects who compose the database, having each of
them Nwalk,k

seq walking and Nwalk,k
seq running motion samples. Independently of the separation

scheme, the third level of hierarchy is composed of 2Nsubj sub-PCA level 2, one for walking
and one for running motion per subject. The computation time to generate motion in these
spaces is similar for both alternatives. The second level of hierarchy is different according to
the classification method. If it is by subject, Nsubj sub-PCA level 1 spaces containing each
Nwalk,k

seq + N run,k
seq motions are created, otherwise two spaces: one having Nwalk

seq motions, the
other N run

seq , defined as follows:

Nwalk
seq =

Nsubj∑
k=1

Nwalk,k
seq (2.20)

N run
seq =

Nsubj∑
k=1

N run,k
seq (2.21)

Finally, the main PCA space is the same for both separation options, containing N tot
seq =

Nwalk
seq + N run

seq motions.
The underlying idea is to perform the most often occurring interpolation in the lowest

PCA space dimension. The separation first by type of locomotion is preferred when Nsubj

is significant or when all wsubj,k contribute to the motion computation. On the contrary,
when wloco vary more often and few wsubj,k contribute to the computation, the separation
by subject is preferred. We believe that the parameter vector Ψ which defines a locomotion
style is less used than the parameter wloco allowing transition from walk to run. In addition to
this computation time optimization, the prior separation by subjects produces better results
in practice, especially when extrapolating cycles beyond captured data.

2.4 Jump Motion Units

We can apply the motion interpolation and extrapolation method presented in the former
section to other classes of motion. The genericity potential of the method is demonstrated
by applying it to long jump motion database described in the previous chapter 1, section 1.1.
These motions have a different structure than the locomotion: they are non-cyclic and have
not been recorded on a treadmill. Moreover, other parameters are varying: the type and
length of the jump.

Similar to the locomotion case, a motion matrix M is composed of jumping sequences
having three parameter variations: the subject, the type of jump (walking or running run-up)
and jump length. The standing posture is not added to M. The reason is that the minimal
jump length is greater than zero, and near to the minimal jump length the subject was asked
to perform. The goal is to compute a jump θ(Ψ) where the jump length l is substituted for
the speed s in Ψ.
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PCA is applied on the derived matrix M̃ and the resulting main PCA space (computed
as described in Eq. 2.13) is depicted in Fig. 2.15. The hierarchical PCA method is applied to
separate the motions first by subjects, then by type of jump and finally by jump length. In this
last hierarchical level, a linear least square fit is performed between the motion coefficients
and their corresponding jump length values.
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Figure 2.15: Walking jumps (cross) and running jump (circle) in the first two PCs. A color,
whose intensity is proportional to the jump length, is assigned to each subject (totally 7 subjects).

We improve the efficiency of the jumping computation by treating separately the walk-
ing and running run-up jumps. Actually, the parameter wloco is either 0 or 1, but never in-
between, as opposed to the locomotion where smooth transition from walking to running (or
inversely) may occur. Hence two independent jump motion structures are created, leading
to a hierarchical structure of only two levels: the main PCA in which the parameter vector
wsubj drive the interpolation and the sub-PCA level 1 (described in Eq. 2.14) where the pa-
rameter l is used to compute corresponding coefficient vectors. The parameter vector Ψ is
therefore simplified by removing the wloco parameter.

At this latter level, a vector function AjmpW,k(l) (in case of walking run-up jumps) and
AjmpR,k(l) (in case of running run-up jumps) is necessary for each space attached to each
subject k. This function is composed of a single linear approximation. The Fig. 2.17 il-
lustrates the relation between the walking (left) and running (right) jump length and the
first dimension of their coefficients for all subjects. Note that for graphical representation
convenience, the sub-PCA level 1 spaces are superimposed. The functions AjmpW,k(l) and
AjmpW,k(l) are computed similarly to Eq. 2.9 where the coefficient vectors βk are substituted
for α.

For the subject k = 1, the results in the sub-PCA level 1 spaces for the first PCs are
illustrated in Fig. 2.16. We consider also the other remaining PCs, as most of the case at
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least two PCs are needed. Here, the linear fit is less accurate. In fact, as those PCs are
less influential, the data are more spread. The results for the others subjects are depicted in
Appendix C, from Fig. C.5 to Fig. C.8.
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Figure 2.16: Resulting AjmpW,k(l) function for walking (left) and AjmpR,k(l) for running
(right) jump for the subject 1.
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Figure 2.17: Jump length and the first coefficient vectors β for all subject (left walking jump,
right running jump).

To summarize, a walking jump θ(Ψ) is computed as follows:

θ(Ψ) = θ0 +

⎡⎣Nsubj∑
k=1

wsubj,k

(
αk

0 + AjmpW,k(l)FkT
)⎤⎦ET (2.22)

A running jump is computed analogously.

2.5 Results

The presented motion modeling method structures motion capture data in order to gener-
ate new locomotion cycles or jump sequences. In this section, we describe precisely the
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construction of the PCA hierarchical structure.
From five captured subjects (see Table 2.1) having performed locomotion activities, four

cycles have been extracted for each speed ranging from 3 to 7 [km/h] by increment of 0.5
[km/h] for walking, and from 6 to 12 [km/h] by increments of 1 [km/h] for running. In the
end, it leads to a total of 300 motion units, sampled and time-normalized arbitrarily at 25
frames, and represents an amount of 5 MB of data storage.

Activity Subject Identification Gender Leg length (in meters)
Locomotion 1 Male 0.93

2 Female 0.88
3 Male 0.98
4 Female 0.91
5 Male 0.87

Jump 1 Male 0.86
2 Male 1.0
3 Male 0.98
4 Female 0.88
5 Male 0.98
6 Female 0.90
7 Male 0.87

Table 2.1: Description of the subjects in our locomotion and jump databases.

The hierarchical PCA structure applied to this database is described in Table 2.2. It
shows the number of PCs and the percentage of original information they can retrieve. The
data reduction factor of each hierarchical level is also indicated. From the original 5 MB of
data only 200 kB is needed to store the complete hierarchical structure.

Name of Number of Data Data
PCA space PCs percentage reduction factor
Main PCA (E) m = 9 95% 29
Sub-PCA level 1 (Fk) b = 2 95% 11
Sub-PCA level 2 (Gwalk,k) c = 1 95% 3
Sub-PCA level 2 (Grun,k) c = 1 95% 3

Table 2.2: Description of PCA spaces structure for locomotion.

For the jumps, seven subjects (see Table 2.1) have performed totally 208 walking and
running jumps whose distribution is summarized in the Table 2.3. We obtain approximately
three different jump length for each type of jump. The distances range from 0.4 to 1.2 [m],
by increments of 0.4 [m] for the walking jumps, respectively from 0.8 to 1.6 [m] for running
jumps. Normalized to 25 frames, these sequences correspond to 3 MB.

The next Table 2.4 describes the two hierarchical structures, one for each type of jump.
For the sub-PCA level 1 spaces, we select the minimal number of PCs that retain at least
the 80% of the original data. Discrepancies are observed, mainly caused by the difficulty to
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perform many jumps with a similar style, on the contrary to locomotion cycles performed on
a treadmill. In addition, the reduction factor is 10 for both main PCA (walking and running
jumps) and approximately 21 for all other sub-PCA level 1.

Subject k #walking jumps #running jumps
1 15 14
2 17 18
3 16 14
4 12 13
5 16 13
6 16 18
7 13 13

Table 2.3: Number of jumps per subject.

PCA space name #PCs Data percentage
Main PCA (walking jump, E) m = 9 80%
Sub-PCA level 1 (F1) b = 1 80%
Sub-PCA level 1 (F2) b = 3 85%
Sub-PCA level 1 (F3) b = 1 85%
Sub-PCA level 1 (F4) b = 2 95%
Sub-PCA level 1 (F5) b = 2 90%
Sub-PCA level 1 (F6) b = 2 95%
Sub-PCA level 1 (F7) b = 1 80%
Main PCA (running jump, E) m = 9 80%
Sub-PCA level 1 (F1) b = 2 87%
Sub-PCA level 1 (F2) b = 2 80%
Sub-PCA level 1 (F3) b = 2 86%
Sub-PCA level 1 (F4) b = 2 84%
Sub-PCA level 1 (F5) b = 2 94%
Sub-PCA level 1 (F6) b = 1 90%
Sub-PCA level 1 (F7) b = 2 92%

Table 2.4: Description of PCA spaces structure for jump motion.

2.6 Conclusion

In this chapter, we have presented a method based on PCA to interpolate and extrapolate
motion units. The representation of these non linear data is carefully chosen. A motion con-
sidered as sequences of 3D positions is unreliable, entailing the violation of basic physical
properties. The constant length of the character’s limb is no more preserved and the feet
penetrate significantly in the ground. We therefore opt for a representation of joint state in

68



2.6. Conclusion

the angle space. In order to apply motion data expressed in this non-linear space to the PCA
algorithm, we use the exponential map parameterization. This is possible as our exponential
maps contain either small angular values or small divergences between their axes of rotation.

Our method considers locomotion cycles or jump sequences as motion units, character-
ized by different parameters: personification (i.e. the performer’s style), locomotion weight
and speed (or jump length). The projection of these motion units into PCA spaces, struc-
tured hierarchically, allows to interpolate and also extrapolate new cycles or sequences given
a parameter vector. As opposed to approaches computing a new motion frame by frame,
our method generates at once the cycle or the complete sequence. Moreover, the successive
motion classifications by specific characteristics improve the motion extrapolation quality.

In the next part of this thesis, we present results of this modeling method applied to 3D
character animation. In fact, this presented method is not sufficient to animate characters
by continuously varying the motions parameters. First, a normalization stage is necessary,
in space as well as in time. The space normalization ensures the genericity of computed
motions to any character size. As the input data are time-normalized, the duration of a
motion has to be determined with respect to its parameters. Then a method is required
to generate a continuous stream of motion with parameter variation. Finally, this motion
modeling method is validated by comparing it with the original captured motions and is
balanced against another possible alternative.

In addition, this stream can be improved by enforcing basic foot constraint, allowing
straight locomotion to be turned into curved locomotion for example. Last but not least, the
locomotion has to be smoothly harmonized with jump sequences to produce seamless transi-
tion. Hence, the next part of this thesis tackles also these requirements, essential for character
animation, and provides incrementally method results applied to 3D character animation.
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Chapter 1
Locomotion and Jump Engines

1.1 Introduction

An animation engine has to produce a continuous stream of motions driven by high-
level parameters. This chapter presents the elaboration of two engines, one for the
locomotion and the other dedicated to the jump activity. From the motion modeling

method presented in the previous chapter, we propose to generalize the computed motion
units in order to adapt them to any character’s size and to reconstruct their timing. A char-
acter is then continuously animated by computing new motions inside the hierarchical PCA
structure driven by high-level parameters. The resulting synthesized animations are then
compared with the original captured motions.

The generalization of the used heterogeneous input data is an important aspect to produce
animation adaptable to any kind of virtual humans. Indeed we captured various subjects
having not only differences in motion parameter (speed, type of locomotion, jump length,
type of jump), but also, and more significantly, differences in size. Two normalization stages
are necessary: one in space, the other in time.

1.2 Space Normalization

The space normalization is performed on the input motion data, composed of translations
and rotations. All translation values from the motion vectors θ, being in fact the position
of the humanoid root p̂r, have to be divided by the leg length H of the captured subject. In
our case, as all of our captured data are converted to a single character model, we divide p̂r

by the leg length Hmocap of this model. The rotation values do not need to be normalized,
as explained in [Murray, 1967]. In this work, Murray demonstrated that all the leg relative
angles in the sagittal plane (hip, knee and ankle) show very similar trajectories for all adult
men for the same value of normalized speed sn defined in Eq. 1.1.

sn =
s

H
(1.1)
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We generalize this statement to the running. For jumping motions, the jump length is substi-
tuted for the locomotion speed and then normalized according to the leg length.

1.3 Time Normalization

The time normalization stage (or time-warping) is more complex. Every original input mo-
tion has a specific duration. However, as the motion matrix applied to PCA must have the
same number of lines for each column, the motions have been time normalized. Conse-
quently, every motion has an identical duration, i.e an identical number of frames. After
having computed a new motion, the specific duration of this new motion has to be retrieved.

The standard time-warping methods [Bruderlin and Williams, 1995; Guo and Robergé,
1996; Rose et al., 1998; Park et al., 2002a; Kovar et al., 2002a] need to align explicitly
the similar structures from the input motions. For example, when a transition is performed
from a slow walking to a fast running motion, those methods vary continuously a normalized
weight from 0 (i.e slow walking) to 1 (i.e fast running). The interpolation is therefore applied
on two very different motion structures.

Our proposed method skips this alignment operation thanks to a subdivision interpola-
tion scheme. For the previous example, it consists in interpolating successively between a
walking and a running motion at a same given speed. The speed varies iteratively, from slow
to fast, as well as the type of locomotion parameter (from walk to run). This simplification
is reasonable since our motion database offers a big density of motions sampled by various
speed values. For jumping motions, we observe that the essential motion information is de-
scribed in one plane, namely the sagittal plane. Artifacts are therefore restricted to possible
slight foot sliding. We introduce later in this thesis a method to correct those eventual motion
shortcomings.

Our time-warping method is therefore limited to the construction of a function returning
the corresponding generic time given the actual time of the animation. We define similarly
to [Boulic et al., 1990, 2004], the generic (or normalized) time with a variable ϕ = [0 . . . 1],
referred to as the cycle phase. The right heel strike event corresponds to the first frame of the
cycle (ϕ = 0), the left heel strike to the middle frame of the cycle (ϕ = 0.5). At each time
step ∆t = ti − ti−1 of the actual time, the phase is updated according to the current motion
parameter vector Ψ as follows:

ϕi = ϕi−1 + ∆ϕ = ϕi +
∆t

CycleDuration
= ϕi + ∆tF (Ψ) (mod 1) (1.2)

where F (Ψ) is the frequency function. It allows to determine the cycle frequency of the
current motion which is characterized by Ψ.

In the next two sub-sections, we present a model to define the frequency functions Floco

for walking and running, and Fjump for jumping respectively.
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1.3.1 Walking and Running Frequencies

The goal of the frequency function Floco is to determine the frequency of the motion unit
(walking or running cycle) for a given parameter vector Ψ. To simplify, we start first to
determine Floco with respect to a single parameter: the normalized speed sn. Inman in [Inman
et al., 1981] proposes a model for this frequency function, focusing on walking patterns of
various subjects. This model is called the Inman law and it is described in Eq. 1.3.

Floco(sn) = 0.743
√

sn (1.3)

We compare this function to our original data, by extracting the inverse duration of the
performed cycles for each k subject and type of locomotion. Then their corresponding speeds
are normalized to the leg length of the captured subject. Fig. 1.1 illustrates the evolution of
the frequencies with respect to normalized speed for five subjects, and the comparison with
the Inman law.
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Figure 1.1: Comparison between the Inman law and the approximation of frequency functions
for walking and running motions from our database

As this Inman law does not fit exactly our walking data and is does not apply to running
data, we construct two new frequency functions for walking (Fwalk

loco ) and running (F run
loco ) mo-

tions respectively. Before describing them, two requirements are taken into account. First,
a frequency function has to be defined per subject, as described in [Bruderlin and Calvert,
1996]. The authors mention that different subjects have a different ratio stride frequency
versus stride length. Actually, each human adapts this ratio in order to get its most comfort-
able walk. The second requirement concerns the precision of the frequency function. In fact,
a bad frequency induces a cycle frequency unsynchronized with the speed, producing foot
sliding.
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Hence, we define for each k-th subject a walking and a running frequency function re-
spectively Fwalk,k

loco and F run,k
loco . The accuracy of those functions is enhanced by an approach

which computes the frequency based on synthesized instead of original motions. The fre-
quency of a synthesized motion, defined as the inverse of the motion duration tmotion, is a
priori unknown. However, it can be induced by measuring the path (or the traveled distance)
proot of the root joint p̂r throughout a motion unit, for a given normalized speed sn. Hence,
the frequency function Fwalk,k

loco for a subject k can be computed as follows:

Fwalk,k
loco (sn) =

1

tmotion

=
sn

proot

(1.4)

It remains to explain the computation of proot. As the motions have been captured on a
treadmill, their path can not be directly measured. We distinguish therefore two approaches,
one for walking and one for running.

For walking motions, the path of a given motion can be approximated by doubling the
step (or stride) length lstep measured in the first posture of this motion. The step length is
the Euclidean distance measured between the right and the left heel joint, projected into the
sagittal plane. However, instead of measuring this step length during the animation gener-
ation (i.e on-the-fly), we propose the construction of a function fwalk,k

path (sn). This function
returns on-the-fly the doubled step length corresponding to a given speed sn

According to the observations in [Bruderlin and Calvert, 1996], the stride length is lin-
early dependent on the speed. In our experiments, performed on motions generated by our
modeling method, Fig. 1.2 shows a strong linearity between the speed and the stride length,
starting from the minimal normalized speed swalk

n,min we captured. A linear least square is
therefore computed between the measured step lengths and their corresponding speeds to
determine a linear function asn + b. Below swalk

n,min, a polynomial approximation of type csn
m

is performed, where m = 0.4 yields experimentally to the best results. Hence, a function
fwalk,k

path (sn) is determined as follows, for each subject k:

proot ≈ 2lstep = 2fwalk,k
path (sn) = 2

{
cwalk,ksn

0.4 for 0 < sn ≤ swalk
n,min

awalk,ksn + bwalk,k for sn > swalk
n,min

(1.5)

where awalk,k and bwalk,k are the resulting coefficient of the linear least square performed on
the subject k, and cwalk,k the coefficient so that cwalk,kswalk

n,min
0.4

= awalk,kswalk
n,min + bwalk,k.

For running motions, the computation of the frequency function F run
loco (sn) is carried out

differently, as the stride length can not be directly extracted at the first posture of motion
unit, due to the flying phase. In addition, as our data have been captured on a treadmill, the
last posture of a motion unit does not hold translational information. The idea is therefore
to scale the measured distance between right and left heel at the first frame by a factor r to
obtain the correct lstep. By expermients, r = 3 produces the best results to limit foot sliding,
for all captured subjects. The frequency function F run,k

loco is determined as follows, for the
subject k:

F run,k
loco (sn) =

sn

proot

(1.6)

76



1.3. Time Normalization

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
Walking

Normalized speed [s−1]

S
te

p 
le

ng
th

 [m
]

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
Running

Normalized speed [s−1]

S
te

p 
le

ng
th

 [m
]

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5

Figure 1.2: Stride length lstep given a normalized speed, for five subjects. Left: Walking cycles.
Left: Running cycles.

where proot is described as:

proot ≈ 3lstep = 3f run,k
path (sn) = 3

{
crun,ksn

0.4 for 0 < sn ≤ srun
n,min

arun,ksn + brun,k for sn > srun
n,min

(1.7)

The generalization of this time-warping function to the other high-level parameter varia-
tion (wloco and wsubj) is performed by a weighted linear interpolation. First, for each subject
k, a frequency function F k

loco(sn) is computed using a linear interpolation between the walk-
ing Fwalk,k

loco (sn) and running F run,k
loco (sn) function, according to the given locomotion weight

wloco parameter. Then the final frequency function is obtained by interpolating the F k
loco(sn),

weighted by the personification vector wsubj . The final locomotion frequency is therefore
defined as:

Floco(Ψ) =

Nsubj∑
k=0

wsubj,k

[
(1 − wloco)F

walk,k
loco (sn) + wlocoF

run,k
loco (sn)

]
(1.8)

1.3.2 Jump Frequency

The time normalization for the jumping motions is quite different. On the contrary to cyclic
motions whose duration variation is very slight between cycles having similar parameters,
two original jumps may have a different duration for a given subject and jump length. In
fact, the observation of our jumping data do not shows obvious relation between the jump
length and its duration, as illustrated in Fig. 1.3. In practice, for a given subject and jump
length, our motion model generates a jump as an approximation of all original jumps having
the same length. The reason comes from the linear approximation performed on the PCA
spaces. However, these original jumps have different duration and their influence on the
generated jump is unknown. It is then difficult to determine exactly the duration of this new
jump.
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Figure 1.3: Comparison between the jump length and its duration, for seven subjects. Left:
Walking jumps. Right: Running jumps.

Our goal is to find a frequency function Fjump which returns a unique frequency (and
therefore a unique duration) for a given jump motion unit described by the parameter vector
Ψ. From a physical point of view, there is no direct relation between the jump length and
its duration. In fact, the duration is linearly dependent only on the vertical jump speed
measured at the end of the take-off phase, while the jump length depends also from the
horizontal jump speed. In addition, our jump motion unit includes the take-off and landing
phase whose durations have to be also computed. Therefore, we can not compute the jump
duration purely physically.

For those reasons, we propose an approach similar to the locomotion case, by approxi-
mating the duration tmotion of a generated jump. To simplify, we consider first walking jumps
with a variable normalized length ln performed by a subject k. The frequency function is de-
fined as:

Fwalk,k
jump (ln) =

1

tmotion

≈ s̄

proot

(1.9)

where s̄ is the normalized average speed of the root joint during the jump. On the contrary
to the locomotion case, this speed is not a measured parameter and is a priori unknown.
We therefore elaborate a function fwalk,k

s̄ which approximates s̄ with respect to the known
parameter ln.

We analyze the original jumps to elaborate a relationship between the normalized mean
speed s̄ and jump length ln. For a given original jump j, its speed s̄j can be computed as
follows:

s̄j =
1

NjH

Nj∑
i=2

||p̂ri − p̂ri−1||
∆tj

(1.10)

where Nj is the frame number and ∆tj the frame rate of the original jump j, and H the
subject’s leg length. In order to determine the type of the approximation function fwalk,k

s̄ (ln),
the correlation coefficients between the measured s̄ and their associated normalized jump
length are computed and summarized in Table 1.1. It results that the coefficient values are
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near to 1, indicating a strong linear relation. We can therefore apply a linear least square fit
on the couples s̄ and ln to determine fwalk,k

s̄ (ln). For the running jumps, the similar approach
is used to determine the function f run,k

s̄ (ln).

Subject k Walking jump Running jump
1 0.9857 0.9345
2 0.9478 0.9149
3 0.9823 0.9603
4 0.9833 0.9577
5 0.9714 0.9617
6 0.9684 0.8841
7 0.9509 0.9486

Table 1.1: The correlation coefficients computed between the normalized jump mean speed s̄
and its normalized jump length ln, for a given subject and type of jump.

From Eq. 1.9, it remains to compute the path proot of the root joint. For the similar reason
than the locomotion case, we propose to compute this path on the synthesized motions. As
the jumping motions are not capture on a treadmill, we can use their translation p̂ri directly
for the path computation:

proot =

Nframe∑
i=2

||p̂ri − p̂ri−1|| (1.11)
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Figure 1.4: Computed jump duration according to parameterized synthesized jumps. Left:
Walking jumps. Right: Running jumps.

Instead of computing this proot on-the-fly when the frequency function has to be evalu-
ated, we propose to approximate directly Fwalk,k

jump (ln) with observed synthesized jumps. In
our experiments, performed on various synthesized jumps, we compute their frequency with
Eq. 1.9, using f run,k

s̄ (ln) and Eq. 1.11. Fig. 1.4 shows a strong linearity, for a given subject k
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and jump type, between the normalized jump length and their duration (inverse frequency).
A linear least square is therefore computed between those values, leading to the following
approximation (subject k, walking jump):

Fwalk,k
jump (ln) ≈ awalk,kln + bwalk,k (1.12)

where awalk,k and bwalk,k are the coefficient found by the least square fit. Analogously, the
function F run,k

jump (ln) is approximated for running jumps.
The general jump frequency function Fjump(Ψ) is performed as follows. For a given

wloco value, which is either 0 or 1, the frequency is obtained by interpolating the Fwalk,k
jump (ln)

or F run,k
jump (ln), weighted by the personification vector wsubj . The final jump frequency is

defined as:

Fjump(Ψ) =

{∑Nsubj

k=1 wsubj,kF
walk,k
jump (ln) for wloco = 0∑Nsubj

k=1 wsubj,kF
run,k
jump (ln) for wloco = 1

(1.13)

To conclude, the presented locomotion and jump frequency functions have to verify that
the update of the motion phase ϕ described in Eq. 1.2 is monotonic. This condition allows
to avoid going back to the past, especially when strong speed variations occur. The phase
increment ∆ϕ has therefore to be equal or greater than zero. This is verified as ∆t ≥ 0, and
as Floco � 0 and Fjump � 0 are ensured.

1.4 Continuous Motion Generation

In this section, we explain the procedure to generate a continuous animation from the gener-
ated normalized motion unit θ(Ψ) by our motion modeling method.

In a pre-processing stage, the hierarchical PCA structure and the approximation func-
tions in the lowest PCA spaces are computed, as described in Part II, chapter 2.2. For the
locomotion, the structure is composed of one main PCA, Nsubj sub-PCA level 1 (one per
subject), and 2Nsubj (walking and running) sub-PCA level 2 spaces. For the jump activity,
two hierarchical structures are needed, one for each jump type. Those consist of one main
PCA and Nsubj sub-PCA level 1 (one per subject).

During the animation, we represent a motion as a continuous function over time

M (t) = (pr(t),qr(t),q1(t), . . . ,qn(t)) (1.14)

where pr(t) and qr(t) represent the global position and orientation of the root node and
qi(t), for i > 0, the local transformation of the i-th joint.

To compute M (t) at a given time t = ti (i.e. a posture), three stages are necessary: first,
if Ψ has changed, a motion unit θ(Ψ) has to be generated. Then the current time is wrapped
into the normalized time to find the corresponding frame Fi in θ(Ψ). Finally, the global
translation and rotation are updated.
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1.4. Continuous Motion Generation

The first stage works as follows. At any time when the animator requires a motion para-
meter change, a new θ(Ψ) is generated. As the methods described in our motion modeling
do not consider the normalized parameter speed and jump length , the given speed s (respec-
tively jump length l) from Ψ is substituted by s′ (l′) as follows:

s′ = s
H

Hmocap l′ = l
H

Hmocap (1.15)

where H corresponds to the leg length of the current animated character, and Hmocap of the
character who had performed the original sequences.

A new motion unit is then generated according to this ”normalized” parameter vector
Ψ, by traversing the PCA structure form the lowest to the highest level. At each level,
the coefficient vectors of the corresponding PCA spaces are computed with respect to one
high-level parameter from Ψ and are used to go up in the hierarchy. This process is well
described in Part II, Eq. 2.18 for the locomotion and Eq. 2.22 for jumps. To finalize this
space normalization stage, all global translations pri from the frames Fi composing the new
generated θ(Ψ) are scaled by the leg length H . In fact, this is necessary as the original data
have been normalized by the leg length of the captured subject.

The second stage consists in dynamically unwrapping the normalized time into the cur-
rent time ti, by updating the locomotion phase from the previous ϕi−1 to the current ϕi.
Actually, to the elapsed time ∆t = ti − ti−1 corresponds a ∆ϕ, computed as described in
Eq. 1.2. The resulting phase ϕi is multiplied by the total frame number Nframe of a motion
unit so as to obtain a frame index idx = ϕiNframe. This index has to correspond to a specific
frame F(ϕi) from θ. However, as the frames of θ are regularly sampled, we define F(ϕi)
as:

F(ϕi) = SLERP(F�idx�,F�idx�,
idx − �idx�
�idx� − �idx�) (1.16)

where SLERP(a, b, p) defines the spherical linear interpolation [Shoemake, 1985] between
the joints of the posture a and p, with an interpolation weight p. Hence, we can define a
continuous function θ(Ψ, ϕi) of the motion unit θ(Ψ) as:

θ(Ψ, ϕi) = F(ϕi) = (p̂r(ϕi), q̂r(ϕi),q1(ϕi), . . . ,qn(ϕi)) (1.17)

We remind that p̂r(ϕi) and q̂r(ϕi) contain only the translation and orientation of treadmill
locomotion.

Finally M (ti) has to be constructed in the global coordinate system as the root node of
θ is expressed in a local coordinate system aligned with the body. In addition, this node
contains in case of locomotion only local translation and orientation oscillations of the mo-
tion, as the original cycles of the motion model are performed on a treadmill. Therefore,
according to the linear velocity v (whose norm ||v|| equals s), pr(ti) and qr(ti) of M (ti)
are modified with respect to the elapsed time ∆t = ti − ti−1:

pr(ti) = pr(ti−1) − p̂r(ϕi−1) + p̂r(ϕi) + v∆t
qr(ti) = qr(ti−1) ∗ q̂r(ϕi−1)

−1 ∗ q̂r(ϕi)
(1.18)

For the jump motions, the speed value is neglected as the motion’s global translations
have been effectively captured.
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Chapter 1. Locomotion and Jump Engines

1.5 Results

Concretely, on-the-fly high-level parameter can be changed, producing a smooth update of
the motion in real-time. When the human size is scaled, the cycle frequency is directly
influenced in order to avoid feet sliding. Fig 1.5 illustrates a walking cycle with a continuous
human size variation.

Figure 1.5: A walking cycle with a continuous human size variation.

By varying the speed s, the presented motion model generates locomotion from 0 up to
12 [km/h] for walking patterns (see Fig. 1.6), and from 0 to 17 [km/h] (see Fig. 1.7), wide
beyond the original data.

Figure 1.6: Postures of walking at identical instant, with two virtual humans having different
size and personification parameters. From left to right, only the speed varies: 2.0, 6.0 and 10.0
[km/h].

Outside those bounds, undesired behaviors appear. First, the lower arms reach the head
level with the elbows having an unrealistic rotation. Secondly, the double support phase
for walking is no longer ensured. The transition from walking to running (and inversely)
obtained by varying continuously the parameter wloco is seamless, modifying the dynamics
of the movements and the arm trajectories, which are higher for running.

Finally, the personification parameter wsubj is less easy to exploit, as we did not capture
exaggerated locomotion patterns such as lazy, happy or explosive. Techniques presented
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1.5. Results

Figure 1.7: Postures of running at identical instant, with two virtual humans having different
size and personification parameter. From left to right, only the speed varies: 4.0, 8.0 and 18.0
[km/h].

in [Neff and Fiume, 2003, 2005] can be applied to make the animated characters more ex-
pressively, by modifying the motion amplitude for example. Nevertheless, the weights asso-
ciated to the subjects can be mixed to obtained new stylized motions. These are preserved
over the speed range and locomotion weight because the hierarchical PCA structure decou-
ples speed, locomotion weight and personification. Fig. 1.8 illustrate two personification
weight combinations, inducing essentially different arm trajectories.

Figure 1.8: The sequence of a half running cycle for two different personification vectors.

The generation of jump sequences is different, as the parameter vector Ψ is not modified
while the jump is performed. The jump length can be varied from 0.3 to 1.7 [m] for walking
jump (see Fig. 1.9). From the original captured data, a jump can be extrapolated at maximum
with a length of 40% bigger than the maximal captured jump length. For running jumps, the
jump length vary from 0.5 until 2.0 [m] (see Fig. 1.10), representing a maximal jump length
of 25% bigger than the maximum captured jump length. In practice, the longer the jump, the
more the chest tilts forward and the step length increases. The human size can be changed.
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Chapter 1. Locomotion and Jump Engines

Thanks to the normalization of the jump length according to the leg length, for a given
jump length, a smaller human has to perform a more ”difficult” jump than a bigger human.
The personification parameter wsubj is more relevant to use as in the locomotion case. The
database contains more diversity, and therefore allows to distinguish different jump styles.

Figure 1.9: Sequence of a walking jump of two virtual humans having different size and person-
ification parameters. The jump length is 1.4 [m], beyond captured data.

Figure 1.10: Sequence of a running jump of two virtual humans having different size and per-
sonification parameters. The jump length is 1.7 [m], beyond captured data.

In terms of performance, 24 sec are necessary to construct the PCA structure for locomo-
tion and jumps, and to compute the approximation functions. The updating for the generation
of a new motion is performed within 0.23 milliseconds on a CPU 1.8 GHz machine. As our
model computes the entire locomotion cycle, we can infer that one frame can be potentially
updated in less than 0.01 milliseconds.

1.5.1 Validation

The validation of the resulting generated animation is firstly achieved by visualizing them.
They look smooth and realistic. However, even if the human eye is a good judge, we pro-
posed an objective approach, by comparing the difference between original and synthesized
motions. Motion comparison techniques propose two approaches. The first one, presented
in [Kovar et al., 2002a] measures the distance between two motions by considering 3D points
placed on the body. Another metric is described in [Lee et al., 2002] which measure differ-
ence of joint angles and velocities. For these two techniques, weights can be assigned to
the body parts, in order to give more influence to specific body’s parts. However, it remains
difficult to find an appropriate weight configuration [Wang and Bodenheimer, 2003].

We choose a metric based on the joint angles difference referred to as the geodesic
norm [Buss and Fillmore, 2001]. For each frame to compare, we square the Euclidean norm
of the difference between original and generated joint rotations, defined with exponential
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1.5. Results

maps (see Part II, Eq. 2.1). The metric function drot(q1,q2) which measures the difference
between two rotations expressed by the unit quaternions q1 and q2 is therefore computed as:

drot(q1,q2) =
∣∣∣∣ln(q1q

−1
2 )
∣∣∣∣2 (1.19)

For two motions to be compared, this metric function is applied to every joint of the body.
The results can be represented in a distance matrix where each cell contains the computed
difference for a given joint, at a given frame. Owing the difficulty to set weights on the body
joints, we modify the distance matrix by selecting the most relevant joints for our animation
context: shoulder and elbow joints for the arms; hip, knee and ankle joints for the legs. In
order to be able to quantify this metric, we compare two very different motions in Fig. 1.11,
namely a slow walking with a fast running.

Fig. 1.12 illustrates two comparisons between the mean of four original cycles and the
corresponding synthesized one: walking at 5.5 [km/h] with subject k = 3 and running at 8.0
[km/h] with subject k = 2.
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Figure 1.11: Distance between original slow walking (3.0 [km/h]) and a fast running motion
11.0 [km/h]) for a same subject.

To investigate the complete database, our metric function should be applied on all original
motions, compared with their corresponding synthesized version. However, to get a more
compact overview of the results, we propose a new metric function dmotion which returns
the distance of two compared motions. For a given pair of captured (or original) θc(Ψ)
and generated (or synthesized) θg(Ψ) motion, the metric function dmotion (θc (Ψ) ,θg (Ψ))
is defined as follows:

dmotion(θc,θg) =
1

Njoints

N∑
i=1

⎡⎣ 1

fmax

Nframe∑
j=1

drot(qcij
,qgij

)

⎤⎦ (1.20)

where qcij
and qsij

are the i-th rotations at the j-th frame, Njoints the measured joint number.
This process is performed on all walking cycles, and their dmotion are stored in a matrix.

Each column determines a walking speed, and each lines an original motion, classified by
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Figure 1.12: Distance between the mean of four original cycles and the corresponding synthe-
sized one. Left: subject k = 3, walking at 5.5 [km/h]. Right: subject k = 2, running at 8.0
[km/h].

subject (Fig. 1.13, left). To quantify the numeric results of this matrix, a second one is
constructed, representing the maximum variance of the original captured data having the
same parameters. Each cell of this matrix represents the maximum distance dmotion between
the original cycles of a same subject at a given speed value (Fig. 1.13, right). We observe that
the generated motions with our method are very similar to the original ones, demonstrating
the quality of results. Actually, the variation between an original and a synthesized cycle is
approximately 30% smaller than the maximal variation between the corresponding original
cycles. For walking motions at high speed (above 6 km/h), the variation becomes bigger.
This is probably due to the difficulty for the performer to keep a constant style at such
unnatural walking speed.

The same matrices are constructed for the running motions. Conclusions similar to the
walking case can be drawn: the variation between an original and a synthesized cycle is ap-
proximately 20% smaller than the maximal variation between the four corresponding original
cycles. In addition, the variation between the running original cycles is roughly identical to
the one in case of walking, except the subject k = 4 at 12 km/h which holds the biggest
difference.

We carry out the same distance comparison for the jump motions. Original motions are
classified by their length, in three groups corresponding to the asked jump length during the
motion capture sessions: length near to 0.6, 1.0 and 1.4 [m] for the walking run-up, and
near to 1, 1.4 and 1.8 [m]. To each of these original motions we compare a synthesized
jump having the same length. The computed distance is stored in a matrix, whose results
for the walking jumps and running jumps are depicted in Fig. 1.15 respectively Fig. 1.16. In
absolute, we observe bigger variance for the walking jumps than for running jumps. These
differences may be explained by the difficulty to reproduce several jumps of the same length
with an identical style, especially in the walking jump as the initial speed is rather slow.

Finally, the length of synthesized jumps is measured and compared to the one given as
motion parameter in the model, for each subject. The results are illustrated in Fig. 1.17.
Only two subjects (k = 2 and k = 3) show a curve which is not parallel to the ”ideal case”,
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Figure 1.13: Validation of the synthesized walking motions: the distances between the syn-
thesized motions and the corresponding original ones are smaller than the maximum distance
of the four original (note that the different color scaling for both graphs). Left: The distance
dmotion, at given speeds, between the synthesized and its corresponding four original motions
(labeled from #1 to #4). Right: The maximum dmotion, at given speeds and subject k, between
the corresponding four original motion samples.

representing a perfect matching between required and measured jump lengths. However,
we observe that at least in the captured domain the results are good. In the running case,
again two subjects (k = 3 and k = 7) produce less satisfying results. Beyond the captured
domain, we notice excellent outcomes for big length. For small lengths, the jumps are not
approximated that well, as it is not natural to perform such jumps in real life.

1.5.2 Discussion

In this section, we discuss first the scalability of our method, and secondly the quality of
the hierarchical PCA structure by concretely comparing it to another approach, using the
proposed metrics.

The dimension of our motion database has to be large in order to apply PCA. In fact,
this method is based on statistics and needs enough sample data to validate it. However, the
sample number in each of the lowest PCA spaces can be at least decreased to two samples so
as to compute their associated linear approximation functions. We have tried our model with
fewer motions as in our original database, producing similar results. Nevertheless, possible
outliers in the lowest PCA spaces have to be identified as the approximation method will be
more sensitive to them, especially with very few sample number.

On the contrary, the dimension database can be increased by adding new captured sub-
jects for example. This is interesting to produce more stylized motions. As a consequence,
the hierarchical structure has to be recomputed and the number of retained PCs from the main
PCA space becomes bigger. Its progression is dependent on the inter-variability between the
captured subjects, as more PCs are necessary to explain significant motion diversity. We
have tested the progression of the number of PCs by adding incrementally the motions of
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Figure 1.14: Validation of the synthesized running motions: the distances between the synthe-
sized motions and the corresponding original ones are smaller than the maximum distance of the
four original (note that the different color scaling for both graphs). Left: The distance dmotion,
at given speeds, between the synthesized and its corresponding four original motions (labeled
from #1 to #4). Right: The maximum dmotion, at given speeds and subject k, between the
corresponding four original motions.

one new subject in our motion matrix. The results are summarized in Table 1.2, indicating a
logarithmic tendency.

# subject # PCs
1 3
2 5
3 7
4 9
5 9

Table 1.2: The number of retained PCs (to represent 90% of the original data) with respect to
the number of subject in the motion matrix.

Another approach presented in [Urtasun et al., 2004] allows the addition of a new per-
former without re-computing the hierarchical structure. This approach improves the person-
ification diversity, by using a single sample of a new subject. This sample is projected onto
our main PCA space. The authors use our motion modeling to generate all possible motions
from all existing Nsubj subjects having the same parameters as the projected one. A metric
based on the Mahalanobis distance is used to measure the distance between those motions
and the projected one. The normalized distance between the i-th subject corresponds to the
weight wsubj,i of the personification vector wsubj . Hence, wsubj is fully determined to pro-
duce the projected motion. The other parameters wloco and s (or l) can be varied in order to
generate new motions with respect to the new subject.

The second point of this discussion focuses on the hierarchical PCA structure, presented
in Part II, Chapter 2. Instead of it, one could classify the motion by subject and type of
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Figure 1.15: Validation of walking jump motions: comparison between original and synthesized
motions, classified by k-th subject and length.

locomotion directly at the main PCA level and compute the approximation functions in this
space. This alternative, referred as ”flat” structure, has three points which work against it.

First, the hierarchical approach is the most intuitive way to match high-level parameters
with PCs. By applying this structure, the correspondence can be visualized in a very small
dimension (one or two). It allows therefore to get a better control to judge easily the quality
of the linear approximation.

Secondly in terms of computational cost, the flat structure method is more expensive. In
fact, the PCs number of the main PCA is strongly related to the subject number. This directly
affects the computational cost of the linear least square fit, achieved in the dimensions of
the main PCA space. On the contrary, we can assume that for the hierarchical method,
independently of the subject number, the sub-PCA level 1 has at most two PCs and only one
in the sub-PCA level 2. This hypothesis is confirmed by our experiments and the fact that
motions of a same subject do not contain high variance. Actually, depending on the main
PCA dimension, the number of operations to compute a new motion in the flat structure is at
most twice as much as the hierarchical structure.

Finally, we compare the results produced by both methods, for similar parameterized
original motions. The metric presented in Eq. 1.20 is used to compare between the syn-
thesized motion and the mean of original motions for a given parameter vector Ψ. In the
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Figure 1.16: Validation of running jump motions: comparison between original and synthesized
motions, classified by k-th subject and length.

convex hull defined by the captured motions, we observe that the flat method emphasizes the
differences observed when applying the hierarchical structure (see Fig. 1.18 for an example).
Therefore, the hierarchical structure method produces more reliable motions. For motions
generated beyond the range of captured data, the major difference concerns the upper body
parts, accentuated in case of running motions, as illustrated in Figure 1.19. The lower body
joints contain fewer differences, but could produce different step length and therefore foot
sliding. In practice, these differences are difficult to notice.

1.6 Conclusion

In this chapter, we have improved the motion modeling method so as to produce character
animation with continuous high-level parameter variation. Thanks to a normalized space, our
method is adaptable to any virtual human size. In addition, the time normalization method
retrieves the original animation duration for locomotion cycles as well as jump sequences
with respect to the user parameters.

To our knowledge, no work has proposed a real-time parameterized jumping engine
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Figure 1.17: Comparison between the given jump length l introduced as parameter and the
effective synthesized jumping length. Left: Walking jumps. Right: Running jumps.
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Figure 1.18: Comparison of the distances between the mean of four original walking motions
and their corresponding synthesized motion. Left: The synthesized motion is generated using
the hierarchical method. Right: The synthesized motion is generated using the flat method.

based on motion capture data. Works such as [Safonova et al., 2004; Liu and Popović, 2002]
include physics but motions are not computed in real-time. Nevertheless techniques based
on scattered data interpolation [Rose et al., 1996] or blending [Park et al., 2002a] may be
applied. In this case, their associated time-warping methods require that the user specify the
duration of a generated jump as a supplementary parameter, in order to distinguish it from
others having a same length. Another technique presented in [Kovar and Gleicher, 2003]
can be applied to jumping motions. The animator would have to specify implicitly the jump
duration, by assigning different weight values to original jumps of similar length.

The resulting animations demonstrated the ability of the method to produce new motions
inside the convex hull of the motion capture database, as well as outside. The effective jump
lengths of the synthesized sequences have been measured and compared to the given user
parameters, leading to excellent results except for two subjects in case of running jumps.
The resulting animations have been also validated by comparing them with the original cap-
tured ones. We proposed a distance function based on joint rotation difference to quantify
the variance between the synthesized and original motions. The results are good, as this vari-
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Figure 1.19: Distances between the hierarchical and flat method with motion parameters beyond
captured data. Left: Walking motion at 10 [km/h]. Right: Running motions at 15 [km/h].

ance for a given parameter vector is approximately twice smaller than the maximum variance
between the original motions with similar parameters. Further investigations can be applied
to our synthesized motions, by evaluating their visual fidelity. Quality metrics or heuristics
are needed to achieve this, but the quality is often difficult to define. In [O’Sullivan et al.,
2003], metrics are proposed to evaluate simple animations of objects, while recently Ren et
al. [2003] present metrics which evaluate human animations from motion capture. In addi-
tion, Safonova and Hodgins [2005] analyze the physical correctness of motion interpolation
and suggest small modification for more natural looking animations.

Our metric function is also applied to balance the hierarchical PCA structure against an-
other approach, a flat structure based on a single PCA level. In addition to save computational
cost, the hierarchical structure has shown less variance compared with the flat structure.

One of the interesting aspects of the presented method is that motions are not considered
as a sequence of frames, but as a complete entity. Due to the dimension compression, the per-
formance to update the current motion is similar, and even better than traditional per-frame
continuous animation methods [Rose et al., 1996; Park et al., 2002a; Kovar and Gleicher,
2003]. Our approach is particularly appropriate to achieve motion anticipation in order to
control the foot constraints for example, as presented in the next chapter.
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Chapter 2
On-line Adaptive Footplant Detection and
Enforcement

2.1 Introduction

It results from the previous chapter that our motion engine method generates in real-time
parameterized motions, fulfilling therefore a fundamental property in character anima-
tion. Actually, it is necessary, on the one hand, to produce animations controlled by

high-level parameters, like changing the locomotion style and speed to walk around a virtual
environment. On the other hand, small continuous variations of those parameters increase
and sustain the believability of character movements. These variations have to be performed
on-line, reactive to user’s requests or to autonomous agents.

Concurrently, the resulting animation should be as realistic as possible, notably by main-
taining basic physical constraints. Among them, keeping the foot planted on the floor dur-
ing a period a time (referred to as footplant in this thesis) is a common problem in virtual
character animation. This foot-floor constraint preservation has entailed the elaboration of
numerous methods, divided into two distinct stages: the detection of a footplant and its en-
forcement.

The traditional methods [Bindiganavale and Badler, 1998; Menardais et al., 2004] which
detect the start and end of a footplant, use global thresholds on the position and velocity
of the feet, independently of the motion type containing the footplants. However, thresh-
old parameters for a light walk are not compatible with a high dynamic run. In addition,
these methods assume that the motions are free from noise and artifacts such as foot sliding.
Therefore, in this chapter, we tackle a first problem: the footplant detection in real-time. We
propose an adaptive on-line method which takes into account the nature and the quality of
the motion to determine threshold values automatically. In addition, this detection technique
utilizes the motion structure to determine restricted periods of time when a constraint has to
be investigated.

Concerning the second stage, many methods enforcing footplants are based on special-
ized IK (Inverse Kinematics) solvers [Lee and Shin, 1999; Shin et al., 2001; Kovar et al.,
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2002b]. All, except for the method of Kovar et al. [Kovar et al., 2002b], can be applied on-
line, for example for motion retargeting [Park et al., 2002a] or to maintain foot constraints
during the transition between two motion capture clips [Lee et al., 2002]. However, these
approaches are unadapted when the original position needs to be modified at the constraint
time. In practice, imperfect input motions may contain a footplant whose foot trajectory
ends above the ground. In this case, the constraint position has to be re-positioned on the
ground, while ensuring a smooth motion correction. Hence, we address a second problem
in this chapter: real-time constraint re-positioning and enforcement. We correct a posture
with the new constraint positions by using a numerical IK algorithm, robust enough to work
on-line. In order to avoid an abrupt change in the constraint location, we introduce an ease-in
phase based on a displacement map, allowing to modify the motion towards the new posture
smoothly. Similarly, an ease-out phase allows to seamlessly release the constraint. In addi-
tion, we improve the motion realism by defining two effectors (heel and toe) on each foot
which control the footplant.

To deal with the two main problems presented in this chapter, we introduce an approach
based on anticipation. As described in [Berthoz, 2000], the human’s brain simulates and
anticipates the future in order to adjust the present. This proactive concept is modeled in our
method by obtaining future frames of the current animation in order to react according to
the future. Actually, as the constraint detection method is adaptive (i.e. the method adapts
its parameters according to the current foot trajectory), it needs to know the foot trajectory
in advance. For footplant enforcement, the corrected posture at the start of the constraint is
required beforehand. In this case, future motion information is also crucial. However, the
motion is generated on-line, producing a continuous stream of frames with uncertain varia-
tions due to the parameter changes. Therefore, to compensate these two paradoxical goals,
we introduce a novel approach capable of anticipating the motion. According to the motion
state, described with its current and desired high-level parameters, our method computes
future information as to react correctly in the present.

Footplants 

detection

Footplants 

Numerical 

anticipation

Current and desired 

motion parameters

Motion capture data

Corrected

motion

Basic

cycles

Composite

cycle

Patterns
Pattern 

modeling

Effectors configuration

Figure 2.1: System overview

A complete overview of our system is depicted in Fig. 2.1. To illustrate our methodology,
we focus on locomotion patterns, providing walking and running cycles. At any time, the
user can determine either current high-level parameters, or desired ones which have to be
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reached after a specific period of time. In addition, effectors can be configured in order
to modify the foot constraint location. According to the varying parameter set, the motion
anticipation module computes multiple anticipated frames, each of them stemming from
motion units according to the parameter variation. Footplants are also detected on those
motion units, and are enforced using a numerical IK solver. In addition, we refer the postures
from anticipated frames to as a composite cycle. Postures from this cycle are used to ensure
a smooth transition from the unconstrained to the constrained state.

2.2 Motion Anticipation

We define the term of motion anticipation as the ability to generate future motion postures.
In the case of off-line animation processes, these postures are directly at disposal. The par-
ticular case of on-line motion generation is much more complicated. In fact, traditional
animation methods [Rose et al., 1998; Park et al., 2002a] compute the postures frame by
frame, according to an elapsed ∆t time between two animation updates. To anticipate pos-
tures, it is necessary to have a method which is efficient enough not to alter the real-time
motion generation process, in terms of update rate. In addition, the anticipation has to take
into account possible parameter variations, such as changes in the locomotion speed.

To address on-line anticipation, we base our approach on the motion modeling method
presented in the previous chapter which generates a motion as a whole locomotion cycle as
opposed to the standard frame by frame approach. Actually, the PCA algorithm considers
eigencycles and not eigenframes. Therefore, an entire time-normalized walking or running
cycle is computed at once, according to given motion parameters.

2.2.1 Current Posture Computation

The posture of a character at any time ti of an animation is computed using M (ti), as
Eq. 1.14 describes in Part III, Section 1.4. We introduce a new parameter, the angular speed
ω, in order to generate curved motions. From Eq. 1.18, the global position pr(ti) and orien-
tation qr(ti) of M (ti) are therefore modified with respect to the elapsed time ∆t = ti− ti−1:

pr(ti) = pr(ti−1) − p̂r(ϕi−1) + p̂r(ϕi) + v∆t
qr(ti) = qr(ti−1) ∗ q̂r(ϕi−1)

−1 ∗ q̂r(ϕi) ∗ Rot(ω∆t)
(2.1)

where Rot(α) defines the rotation of the yaw angle α.

2.2.2 Anticipated Posture Computation

To anticipate the motion, our method generates not only M (ti), but also any future posture
M (ti + ∆T ), in real-time and at any point in time ti. Fig. 2.2 illustrate the anticipation of
13 postures, with a constant time interval between each posture. The yellow bodies at the
leftmost on the images represent the current postures, whereas the others are anticipated. To
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Chapter 2. On-line Adaptive Footplant Detection and Enforcement

explain the posture computation, we consider two contexts: one where the parameter vector
Ψ does not vary (Fig. 2.2, left), and one where it continuously varies (Fig. 2.2, right).

Figure 2.2: Motion patterns with anticipation. The yellow posture (on the leftmost) represents
the current frame, while the others (from yellow to red, towards right) are anticipated postures.
Left: Invariant motion parameters.Right: Variation of the speed parameter.

We propose the creation of a buffer containing n anticipated postures, with a constant
time interval between postures. For the first context (we assume that the angular speed is
null), the j-th posture M (ti + j∆T ), for j = 1 . . . n, is computed analogously to M (ti).
As θ(Ψ) contains all the cycle frames, only the root node has to be updated according to
Eq. 2.1, by substituting ∆T for ∆t.

The second context considers a continuous variation of Ψ. Let Ψj be the parameter
vector at time tj = ti + j∆T . Hence, the computation of the j-th posture at time tj involves
the generation of a new motion pattern θ(Ψj). We refer to the set of all these n new patterns
as composite cycles. Then, the root node of each M (tj) is sequentially updated, starting
from j = 1 until j = n, to take into account for the continuous parameter variation. Eq. 2.2
described one update step, where ∆T = tj − tj−1.

pr(tj) = pr(tj−1) − p̂r(ϕj−1) + p̂r(ϕj) + d(∆T )

qr(tj) = qr(tj−1) ∗ q̂r(ϕj−1)
−1 ∗ q̂r(ϕj) ∗ Rot(

ωj+ωj−1

2
∆T )

(2.2)

where ωj is the angular speed at time tj .
The function d(∆T ) approximates the translation component of a curved trajectory. As-

suming that the ∆T is small enough to consider the parameter variation between tj−1 and tj
as linear, the translation approximation can be written as
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d(∆T ) =

⎛⎜⎝ sin(αj−1 +
ωj+ωj−1

2
∆T )

||vj||+||vj−1||
2

∆T
0

cos(αj−1 +
ωj+ωj−1

2
∆T )

||vj||+||vj−1||
2

∆T

⎞⎟⎠ (2.3)

where vj and αj are the linear velocity, respectively the yaw angle at time tj . In our coordi-
nate system, a null yaw angle coincides with a forward locomotion direction along the world
Z-axis. Fig. 2.3 illustrates the approximated root translation (the red line) of an original
curved motion (the green curve).

X-axis

Z
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xi
s

pr(tj-1) 

pr(tj) 

(ωj+ωj-1)∆T/2  

αj-1   

d(∆Τ) 

Figure 2.3: Top-view of the original root trajectory (green curve) approximated by the function
d(∆T ), illustrated by the red line, for a given ∆T = tj − tj−1.

In practice, the anticipation of the local orientation of a given joint is not sufficient. We
also need to know its position in the global coordinate system, in particular for foot joints
in order to compute their Euclidean distance to the floor. With this aim in mind, the human
body hierarchy has to be traversed, starting from the root node until the desired node, by
multiplying every local node orientation. This operation is expensive, and it severely limits
the number of anticipated frames given a continuous varying real-time animation context.

In short, given a controlled parameter variation (e.g. characterized by a set of parameter
values to be reached within a desired period of time), the proposed method is able to antic-
ipate postures and the Cartesian location of body segments in a global coordinate system.
This material is used for footplant detection and enforcement, as explained in the next two
sections.
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2.3 Footplant Detection

A virtual human’s activity can be segmented into parts having specific constraint types, al-
lowing a formal description of its motion. One of the most important constraint type is
the footplant, defined as a period of time during which a foot or part thereof (e.g. ankle,
toe) remains in a fixed position with respect to the ground. We consider a footplant with
two joints: the ankle (or heel) and the metatarsal (or toe) joints, according to the standard
H-ANIM [H-ANIM, 2005] skeleton. The knowledge of constraint information is crucial in
many situations. For example, it allows either to structurally align motions [Rose et al., 1998;
Park et al., 2002a] or to correct artifacts such as footskate [Kovar et al., 2002b]. A footplant
has to be detected with methods which have to return precise results. Actually, a too short
footplant duration would not totally correct the foot sliding. Conversely, too long duration
would stretch the leg when reaching the joint limits, resulting in motion discontinuities.

2.3.1 Thresholds on Cartesian Position and Speed

The detection of a footplant can be solved by using a standard method based on the current
vertical position (or height) and translation speed of the foot, as described in [Lee et al.,
2002; Menardais et al., 2004]. At each animation frame, foot constraints are checked. The
foot is considered to be in contact with the ground when its position and linear speed are
lower than specific thresholds.

However, this approach is not reliable for noisy or badly calibrated motion capture data.
Fig. 2.4 illustrates the vertical position and speed values of a foot in function of time, for
noisy data. Here, the determination of a position threshold εp is difficult. If the threshold
value is too small (see threshold A on Fig. 2.4, left), the footplant is too short. By increasing
the value, the footplant may be split into several pieces (see threshold B), or may be too
long (see threshold C). This footplant splitting problem exists for the setting of the speed
threshold εs as well (Fig. 2.4, right).
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Figure 2.4: Problem of threshold values for footplant detection on noisy data: the correct foot-
plant start frame (circle) and end frame (cross). Left: The vertical trajectory of the foot. Right:
The speed curve of the foot.

To tackle this problem, the computed joint position at frame i may be replaced by an
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average of the n+1 positions from frame i− n
2

to frame i+ n
2
, using our anticipation method

for future frames. In this way, the influence of peaks in noisy data is reduced. However, the
difficulty remains to determine an appropriate n value. Our experiments have shown that this
method fails to detect short footplant duration when increasing n.

In addition to the footplant splitting problem, the εp and εs thresholds are dependent
on the input motions, due to their quality or their characteristics. During a single motion
capture sequence, the quality may change, for example when one or more foot markers have
been clumsily moved by the performer. Hence, the reference floor level moves up or down,
entailing the need to modify εp. Different motion characteristics also result in adapting the
εs threshold. For instance, Fig. 2.5 depicts the ankle speed over time, for a fast running and
a slow walking motion. If a unique εs is used, the footplant detection fails at least for one
of the two motions. In addition, an appropriate threshold for the heel is not necessarily valid
for the toe.
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Figure 2.5: Right ankle linear speed value comparison between a slow walking (red) and a fast
running (blue) motion. The circles indicate the start and end of the footplant.

One solution consists in determining an empiric threshold function, whose given motion
characteristics return the corresponding εp and εs values. However, this approach is unprac-
tical due to the significant number of parameters influencing the thresholds: motion speed;
motion capture quality; performer style; joint type.

2.3.2 Adaptive Positional Threshold

We overcome these difficulties by detecting footplants on locomotion patterns in an on-line
manner, using our motion anticipation technique. Roughly speaking, our method uses a
vertical position (height) threshold only. This latter is adaptively computed by investigating
a specific fixed set of frames of the input patterns.
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We discard the speed threshold, which allows avoiding its problematic setting and im-
proving the detection method efficiency. In fact, when the foot position is under εp, the speed
threshold allows to identify unconstrained foot motion above the floor. This occurs typically
during the swing phase, when the constrained foot leaves the floor and goes forward for the
next step. Therefore, we aim at defining, in our patterns, a period of time during which we
ensure that the foot has to be fixed to the ground if its position is under εp.

We make use of the observations performed on time-normalized walking and running
patterns. From them, we assert that for a given type of locomotion (walk or run), a foot joint
constraint occurs roughly inside a fixed time interval, regardless of other motion characteris-
tics. Therefore, our method investigates this time interval, referred to as the enclosed frames
defined from Fb to Fe, in order to detect the correct frame F ′

b, at which the constraint starts,
and F ′

e, at which the constraint ends (see Fig. 2.6). Those frames have a corresponding index
computed with the idx(F) function which returns the F frame index of the given frame F .
Hence, the frame index of F ′

b is F ′
b = idx(F ′

b).
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Figure 2.6: Schematic representation of the constraint detection method, with its parameters.
The arrows indicate the successive comparisons between the vertical joint position (at a given
frame) and the threshold value εp, in order to detect the correct frames at constraint start and end.

Instead of using a fixed threshold value, εp is computed adaptively according to the cur-
rent θ(Ψ) motion unit. From this motion and for a given foot joint, we attach the set of
frames I = (Fb, . . . ,Fe). Then, the global heights hb and he of the given joint are extracted
from the bounding frames Fb and Fe respectively. In order to determine εp adaptively, we
assume that the mean h of these two values is related to the pattern properties, namely its lo-
comotion speed and style. To confirm, we compare various h values computed for the right
heel and left toe, at different locomotion speeds and for 5 subject capture styles. Fig. 2.7
illustrates the results for walking and Fig. 2.8 for running motion units, where each cell
contains the corresponding mean height, in meters.

From these pictures, we infer that h is dependent on the motion parameters and therefore
that the adaptive εp is a function of h. Clearly, the εp threshold has to be greater than the min
minimal vertical position on I, but smaller than h, as described in Eq. 2.4. We introduce the
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Figure 2.7: Joint’s mean height (in meter) for bounding frames Fb and Fe for walking motion
units at various speeds. Left: Right heel comparison. Right: Left toe comparison.

Figure 2.8: Joint’s mean height (in meter) for bounding frames Fb and Fe for running motion
units at various speeds. Left: Right heel comparison. Right: Left toe comparison.

δ constant defined in [0 . . . 1] characterizing the correctness of the default bounding frame
indices idx(Fb) and idx(Fe). As an example, by setting δ close to 1, it means that idx(Fb)
and idx(F ′

b) are close to each other. Fig. 2.6 schematizes the method parameters.

εp = min + δ(h − min) (2.4)

The detection algorithm is described in Algo 3. In practice, the start frame index F ′
b of a

footplant, for a given joint, is detected as follows. We start by comparing the joint’s vertical
position at frame Fb (left circle on curves in Fig. 2.9) with the εp (dashed line in Fig. 2.9)
computed in Eq. 2.4. If the position at frame Fb is already below the threshold (e.g. the curve
representing a 4.5 [m/s] run on Fig. 2.9, bottom), idx(Fb) is assigned to F ′

b. Otherwise, as
long as position is above the threshold, the comparison is shifted to the next frame. When
the comparison fulfills the threshold condition, the current frame index is assign to F ′

b. Anal-
ogously, F ′

e is determined by starting at frame Fe. The threshold comparison is shifted to the
previous frame as long as the current frame value stays above the threshold. In this way, our
method ensures that a footplant never splits off into small pieces.
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Algorithm 3 Constraint detection algorithm for the joint jnt, and given enclosed frames Fb

and Fe. The algorithm returns the correct start and end constraint frame indices, F ′
b and F ′

e

respectively.
{vPos(jnt, F) returns the vertical position of the joint jnt in frame F}
hb := vPos(jnt, Fb)
he := vPos(jnt, Fe)
h := (hb + he)/2
{minVPos(jnt, I) returns the minimal vertical position of jnt over all frames in I}
min := minVPos(jnt, I)
εp := min + δ (h-min)
{Compute the constraint start}
F ′

b := Fb

p := vPos(jnt, F ′
b)

while p > εp do
F ′

b := next(F ′
b)

p := vPos(jnt, F ′
b)

end while
F ′

b := idx(F ′
b)

{Compute the constraint end}
F ′

e := Fe

p := vPos(jnt, F ′
e)

while p > εp do
F ′

e := prev(F ′
e)

p := vPos(jnt, F ′
e)

end while
F ′

e := idx(F ′
e)

2.3.3 On-line Detection

At first sight, this detection method seems inappropriate for an on-line context. The move-
ment needs to be known in advance to obtain hb and he, in order to determine the threshold
εp. Thanks to the anticipation, each frame Fi of motion unit θ(Ψ) can be used at any
time. Therefore, when a new θ(Ψ) is generated, the detection method is applied on the
four joints describing both feet, providing a start and end frame index per constraint in the
time-normalized pattern.

In case of a continuous modification of Ψ, the detection algorithm is executed at each
time step. This is necessary, as θ(Ψ) changes continuously.

2.4 Footplant Enforcement

We address the problem of re-positioning and enforcing a footplant by using the numerical
IK algorithm incorporating the priorities presented in [Baerlocher and Boulic, 2004]. This
method ensures that at least the high priority end-effector goal is achieved at best before
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Figure 2.9: Examples of our motion data for the right ankle vertical position. The circles indicate
the bounding frames. Top: different speed values for walking. Bottom: different speed values
for running.

considering lower priority constraints.

2.4.1 Inverse Kinematics Model

We attach two positional end-effectors on each foot, one for the heel and the other for the toe.
In order to limit the computation time of the IK algorithm, we simplify the IK configuration
by defining two independent IK chains, one for each leg. A chain contains six DOFs, from
the hip joint to the toe joint.

Basically our footplant enforcement method works as follows. In an unconstrained state,
the effector attached to a foot joint is driven by the locomotion pattern. As soon as its
corresponding constraint has to be applied, the effector goal is re-positioned on the floor and
remains fixed during the whole constraint duration. To ensure motion continuity, the effector
trajectory is smoothed around the constraint, by defining ease-in and ease-out phases. We
therefore apply the displacement map technique [Bruderlin and Williams, 1995; Witkin and
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Popović, 1995] by describing a displacement map d(t) in order for the corrected motion
M cor(t) = M (t) ⊕ d(t) to satisfy the detected footplants.

Let C be a constraint defining a position goal Cp for the effector E, active from t1 to t2.
The desired effector trajectory E(t) is built from its original trajectory E0(t) as:

E(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E0(t) +

(
1 − Γ( t−t1+σ

σ
)
)
(Cp − E0(t1)) for t1 − σ � t < t1

Cp for t1 � t � t2

E0(t) + Γ( t−t2
σ

) (Cp − E0(t2)) for t2 < t � t2 + σ

E0(t) otherwise

(2.5)

where σ is the ease-in and ease-out duration. The Γ function is the descending cubic step
function, described in Eq. 2.6 and plotted in Fig. 2.10.

Γ(t) = 2t3 − 3t2 + 1 for 0 � t � 1 (2.6)
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Figure 2.10: The descending cubic step function used for the ease-in/out phases.

Similarly to Lee et al. [1999], we consider a motion as a set of independent character
postures. At each time t = ti, the original posture M (ti) is modified by applying IK with
end-effector trajectories defined in Eq. 2.5. Fig. 2.11 illustrates the original and corrected
vertical trajectories of the two effectors attached to the right foot. In addition, we choose to
set highest priorities on the ankle’s effectors: their constraints occur first and have significant
visual impact. The IK solver therefore ensures that, at least, the ankle constraint is enforced,
before trying to enforce the toe constraint. This effect is visible in Fig. 2.11 (right, between
frames 24 and 28, and between frames 55 and 59), as the corrected toe position trajectory
goes down just after the release of its constraint (position error under than 0.01 meters). At
this instant, the IK algorithm is not able to compute a solution ensuring a correct position for
both effectors, due to an important foot sliding observed in the noisy input data. However,
thanks to the priorities, the position of the ankle joint is perfectly corrected (Fig. 2.11, left).

2.4.2 Ease-in with Anticipation

The end-effector trajectories are constructed in order to ensure smooth motion generation
around the constraint. Examining Eq. 2.5, one can observe that while performing the ease-in
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Figure 2.11: Original E0(t) and corrected E(t) vertical effector trajectories for the right
foot.Left: Effector attached to the ankle. Right: Effector attached to the toe.

phase, the original position of the effector E0 at (the future) time t1 is required.
Thanks to the anticipation, this position and its corresponding constrained position Cp

are computed as follows. At the beginning of the ease-in phase, namely at time t1 − σ, the
anticipated posture M (t1) is computed to extract E0(t1). This position, which corresponds
to the original one of its attached foot joint, is re-positioned to be on the ground and stored
in Cp. Fig. 2.12 illustrates the current posture (yellow) at time t − σ and the anticipated one
(green) at time t1 for each effector.

Figure 2.12: The start of an ease-in phase for each effector. Current (yellow) and anticipated
postures (green) are computed. From left to right: Effectors are attached to: right ankle, right
metatarsal, left ankle and left metatarsal.

2.4.3 Ease-in Activation

Before enforcing a footplant, we have to know its start time t1 in order to activate its ease-in
process at time t1 − σ. This is performed using our footplant detection method, applied dif-
ferently according to three scenarios: constant motion parameter, planned motion parameter
variation and modification of a planned motion parameter variation.
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2.4.3.1 Constant motion parameter

In this first case, the motion parameter vector Ψ is constant over time. At the initialization
stage, triggered at time ti (when Ψ is set), a new cycle θ(Ψ) is computed and footplants are
detected with our method. To systematically check if there is already a footplant to activate,
the [ti . . . ti +σ] time interval is regularly sampled into n ∆t intervals. For each j-th interval,
the time ti + j∆t is used to compute its corresponding locomotion phase ϕj . This value is
multiplied by the frame number Nframe of θ(Ψ) to obtain the corresponding idx(Fj) frame
index in the normalized time. If this frame index is more than or equal to the F ′

b of a foot
joint, a constraint is et for time ti + j∆t. As ti + j∆t < σ, the ease-in phase is immediately
activated.

After this initialization stage, at any t time, the future t + σ time is transformed into
the normalized time to detect if a constraint needs to be activated. This is necessary as the
initialization stage does not ensure that all constraints have been detected. In fact, only those
over the time interval [ti . . . ti + σ] have been considered.

2.4.3.2 Planned motion parameter variation

In this case, a new Ψ′ has to be reached within a given duration ∆m, involving a controlled
change of Ψ′ over time (linear in our case). We therefore assign a Ψ′

j parameter vector to
each future time ti + j∆t, for which a new θ(Ψ′

j) locomotion cycle is generated and foot-
plants are detected. Then, analogously to the previous case, the corresponding idx(Fi) frame
index for time ti +j∆t is extracted and compared to F ′

b. In practice, refreshing the constraint
boundaries at each time step is currently too expensive for real-time. Hence, frame indexes
F ′

b and F ′
e are pre-computed by applying the detection method on motions with various para-

meter vector (7 and 11 different normalized speed values for walking, respectively running
cycles). Theses frame indexes are then used to determine the ones of θ(Ψ′

j) by applying
linear interpolation. Our results confirm the pertinence of this approach as can be seen in
Section 2.5 of this chapter.

2.4.3.3 Modification of a planned motion parameter variation

This last case handles the situation in which a planned variation is interrupted by a new
one at time t′. For each future ti + j∆t time, a new locomotion pattern is computed and
footplants are detected, similarly to the previous case. However, if an effector is in an ease-
in phase when the variation is interrupted, its trajectory has to be carefully modified, as its
goal position Cp and time t1 have changed, due to the new motion parameter configuration.

Fig. 2.13 illustrates this modification schematically. First, the effector trajectory E0(t),
depicted by the blue line, is continuously modified to reach the Cp constraint. This creates a
new trajectory E(t), depicted by the dashed blue line. Due to the motion parameter changes
at a time t′ during the ease-in phase, a new E ′

0(t) original effector trajectory is provided
(green curve). We have therefore to modify E(t) in order to reach the new goal position C ′

p

at a new time t′1. We modify Eq. 2.5 in order for the effector trajectory, modified from E ′
0(t)

to remain smooth. Therefore, from time t′ the effector trajectory, depicted by the red dashed
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line, is updated as follows:

E(t) = E ′
0(t) +

(
1 − Γ

(
t − t′

t′1 − t′

))
(E ′

0(t
′) − E(t′)) + Γ

(
t − t′

t′1 − t′

)(
C′

p − E ′
0(t

′
1)
)

(2.7)
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Figure 2.13: Step variation during the ease-in phase. The blue and the green curves correspond
to the original effector trajectories, the dashed blue and red curves to the modified one.

Fig. 2.14 illustrates the smoothness of the modified effector trajectories. The animation is
generated first by continuously increasing the walking speed. This process is then interrupted
by another parameter variation, consisting in a transition to a running motion.

2.5 Results

First we describe the different components of our system prior to presenting some on-line
application examples.

2.5.1 Putting it all together

For our experiments, we used the motion generation method described in the previous chap-
ter to generate the locomotion units. Those are composed of 25 frames and animate an
H-ANIM body with 40 DOFs. To speed up the motion anticipation computation, only the
lower body postures are computed. All the 25 posture configurations, including the joint
global positions, are calculated within 1.3 ms.

Then the enclosed frame set I has to be determined, for walking and running cycles, and
for each joint needing floor contact detection. We use the values summarized in Table 2.1.
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Figure 2.14: Original E0(t) and corrected E(t) vertical effector trajectories for the right foot.
The animation first describes a walk which continuously speeds up before being interrupted by a
continuous transition to a run. Left: Effector attached to the ankle. Right: Effector attached to
the toe.

These frames’ indexes define the interval in which the constraint detection algorithm is per-
formed. In our experiments, δ is equal to 0.4, and the exact starting and ending constrained
index frames F ′

b and F ′
e for all joints, are computed in less than 0.05 ms.

Joint’s name idx(Fb) idx(Fe) idx(Fb) idx(Fe)
(walk) (walk) (run) (run)

Right ankle 1 12 1 7
Right metatarsal 3 15 1 9

Left ankle 13 26 (mod 25) 12 19
Left metatarsal 15 29 (mod 25) 13 22

Table 2.1: Frames interval for each constrained joint, observed on 25 frames locomotion cycles

After detecting the constraint relative to an effector, the method continuously checks
whether a constraint has to be enforced in a near future, in order to activate the ease-in
phase. The computation time for footplant enforcement depends on the number of joints
whose trajectory is modified by the IK algorithm. On average, 1.8 ms are necessary to
smoothly enforce the two footplants, representing four constraints.

Finally, we have tested our method with a continuous motion parameters variation and
we obtained a maximal computational cost of 4.7 ms per frame. This is the most expensive
case, as it entails pattern computation for each future time ti + j∆t.

2.5.2 Foot Sliding Correction

The first experiment consists in cleaning up the foot sliding and penetration into the ground.
Our original motion shows some artifacts, as illustrated on the top row of Fig. 2.15. This is
due to the input motion capture data and the PCA algorithm used to reduce data dimension-
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ality. The footplants are then correctly detected and re-positioned, no more foot sliding is
perceptible and IK does not introduce discontinuities during the animation.

Figure 2.15: Foot sliding clean up. Top: Original motion. Bottom: Modified motion.

2.5.3 Stylistic Edition

Another application of our methodology is to create small stylistic variations of the generated
motion, by modifying the location of one (or more) end-effector during its constraint. In our
example, the right toe constrained position is displaced, as depicted in Fig. 2.16, to produce a
pigeon-toed effect. At the beginning of the ease-in phase, we modify the anticipated toe joint
position corresponding to the start of the constraint. This modification consists in a rotation,
having its center placed at the right ankle joint, around a perpendicular axis to the ground.
The rotation angle is set in order to direct the toe towards the left ankle.

2.5.4 Continuous Parameter Variation

The on-line reactivity to user parameter modification is an important aspect of our method.
At any time, the user or the Artificial Intelligence (AI) driving the autonomous agent can
define a new motion parameter set that has to be reached in a given period of time. The
smooth parameter evolution is performed by a controller. In our implementation, we control
the parameter evolution linearly. Let us imagine a slow walking pattern. By setting a higher
speed value and changing the locomotion from walk to run, the motion will simultaneously
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Figure 2.16: Modification of the right toe position produces a right pigeon-toed walking motion.

accelerate and start to run (see Fig. 2.17). Therefore, the motion is continuously modified
while guaranteeing that the footplants detection and enforcement are still coherent with the
corresponding parameter values.

Figure 2.17: Continuous parameter variation, from a walk at 0.8 m/s to a run at 1.9 m/s (para-
meter variation within 3 sec).

2.5.5 Curved Path

In the last experiment, our straight-line locomotion cycles are adapted so as to produce a
curved path, illustrated in Fig. 2.18. The motion angular speed is continuously changed and
therefore modifies the yaw angle of the root node. Thanks to our method, the foot remains
fixed to the floor during the constraint, while the root rotates. When the constraint is relaxed,
the ankle first smoothly reaches its original trajectory. The toe is fixed to the ground a little
longer, allowing it to rotate around its position.
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Figure 2.18: Walking to running with angular speed variation. The red stick figures in the
zoomed frames correspond to the original motion.

2.6 Conclusion

To correct a keyframe animation, an animator has to detect footplants manually by labeling
the constrained frames. Then the enforcement of these constraints is performed using meth-
ods either based on numerical or analytical inverse kinematics. We improve this process by
presenting an on-line animation system based on the generation of anticipated postures to
detect, re-position and apply footplants. This system enhances not only the motion quality
by correcting foot sliding, but also the flexibility of our locomotion engine by considering
also the angular speed parameter.

The detection algorithm is robust because it exploits the properties of the motion (e.g.
speed, type of locomotion, human size) from which the foot constraints have to be extracted
on-line. For a given motion, we define adaptively only one vertical position threshold value
for each joint describing a foot. The threshold intrinsic normalization allows the method
to work for any human size. A numerical IK solver with priorities is applied to re-position
and enforce a footplant, described by two end-effectors. The priorities set on these end-
effectors ensure to exactly reach at least one goal position. Our method maintains smooth
end-effectors trajectories by anticipating postures at a constraint.

The generated motion continuity has also been evaluated. We can modify the goal po-
sition for a given footplant, allowing to introduce some smooth stylistic variations in the
original motion. We also modify the root yaw orientation to perform curved motion, leading
to very satisfying results. The coherence of the method is ensured, as the motion parameters
vary continuously. Finally, the method is computationally tractable as even in the worst sit-
uation, where parameters have to be updated at each time step, a frame update is performed
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in less than 5 ms.
A limitation of our method concerns the IK method, which is per-frame based. Theo-

retically discontinuities may occur, as the current modified frame is computed relatively to
the original one. Therefore, it could happen that the IK solver finds very different resulting
postures for two original consecutive frames, leading to discontinuities between the modified
frames. In practice we never observed motion discontinuities during our experiments. An
alternate approach would be to compute the current modified frame by applying IK to the
previously modified one.

In our example, the curved motion generation may produce important end-effector posi-
tion modifications in the case of important angular speed with low linear speed. In such an
extreme situation the constraint duration of the foot on the outer curve could be reduced.
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Chapter 3
Coherent Transition Generation between
Locomotion and Jump

3.1 Introduction

The animation engine presented and detailed in the Chapter 1 (Part III) allows to gen-
erate two classes of motion: the locomotion, characterized by a continuous stream
(cyclic) of parameterized walking or running patterns, and the jumping motion, char-

acterized by independent sequences (episodic) of parameterized jumps. However, an anima-
tor may need to join a walking action with a running jump, so that a character could clear an
obstacle for example. The simplest solution consists in retrieving the most appropriate tran-
sition clip from a motion capture database [Kovar et al., 2002a; Arikan and Forsyth, 2002;
Lee et al., 2002]. The search criteria are based on the current motion parameters, such as
the speed and the type of locomotion, but also on the requested jump parameters, such as
the length. This approach has obviously two main drawbacks. First, the user’s request does
not necessary match exactly the motion found in the database, or even worse, can return any
motion clip. The quality of the resulting query is improved as the motion number increases
in the database. Still, it induces the second drawback: the computation time goes up as the
best motion has to be chosen from more possible candidates.

In this chapter, the goal is to focus on a real-time method which generates the transitions
(or blend) itself, without searching from a motion clip database. Keeping this idea in mind,
it is important first to ensure the dynamic coherence between the blended motions. For
example, once a character starts to jump, the motion can not be modified due to the ballistic
phase. Hence, similar structures from the blended motions, referred to as support phases,
have to be identified and aligned in time.

Traditional blending methods [Kovar and Gleicher, 2003; Rose et al., 1998; Menardais
et al., 2004] assume that the footplants composing a support phase are already provided from
manual identification. We propose therefore an improvement by providing two complemen-
tary footplant detection methods. The first one is based on the detection algorithm presented
in the previous chapter of this thesis, adapted for locomotion. However, this method reaches
its limits for jumping motions. In fact, various jumps contain more variety than various lo-
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Figure 3.1: A transition generated by our method

comotion patterns. For that reason, another detection method is necessary. It is based on
a semi-automatic technique which consists in manually pre-labeling the support phases of
only a sample of parameterized motions. Owing to a relationship between these motion pa-
rameters and their support phases, the footplants of any new generated motion are detected
on-the-fly. Finally, these support phases are dynamically aligned in time, as soon as the user
requires a transition. We therefore stand out from static methods [Kovar and Gleicher, 2003;
Rose et al., 1998] which align motions in a pre-processing stage.

From this support phase detection, the choice of a transition time (or instant) and duration
is the second important aspect of a transition method. All of the works mentioned above
perform blending as soon as it is requested by an animator. In some situations, the resulting
produced motion is not coherent: the blending of two walking motions that are out-of-phase
or the transition from a walk to a jump whose length does not match the run-up speed for
example. This comes from either an incorrect chosen transition time and/or duration, or from
a violation of dynamic motion properties. Hence, our method also controls the blending by
choosing the appropriate transition time and duration, and by finding automatically a motion
that minimizes dynamic incoherence.

To illustrate our method, we focus on the blending from cyclic to episodic motions. An
episodic motion is played once, while cyclic motion is played repeatedly. We apply our
locomotion engine, able to vary continuously its type between walking and running, with the
two jumping engines: walking and running jumps.

Briefly explained, our methodology is decomposed into two stages. The off-line stage
allows to identify the different support phases (e.g. single support with the left foot on the
floor) during which the motions can be blended. The second stage is performed on-the-fly,
driven by a state machine. As soon as a jump is requested, the method generates a run-up
phase over a multi-dimensional parameter space, to best fit the different dynamic properties
between the locomotion and the jump. Then the transition starting time is determined, by
detecting automatically the correct support phase. The blending is performed during this
phase. Finally, at the end of the jump, the locomotion parameters are smoothly restored to
their initial values.
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3.2 Method Overview

When a cyclic motion is played in real-time, an episodic motion may occur on the request of
an animator. Therefore, a blending has to be executed, to generate a seamless transition from
walking (running) to jumping and then back to walking (running). Without loss of generality,
we assume in this chapter that a jump starts with the right take-off foot.

First we define eight foot events (see Table 3.1) which interact with the floor. These are
needed to identify the different support phase types described in Fig. 3.2. A support phase
is defined as a period of time during which one foot (single support) or two feet (double
support) touch the ground. We simplify this definition by assuming that the heel touches
always the floor before or simultaneously the toe, and conversely when the foot leaves the
floor.

Table 3.1: Foot events interacting with the floor
Event name abbreviation

Right heel strike RHS
Right heel off RHO

Right toe strike RTS
Right toe off RTO

Left heel strike LHS
Left heel off LHO

Left toe strike LTS
Left toe off LTO

RHS RTO

LHS LTO LHS LTO

RHS RTO

Single support Single support Double support

Right foot

Left foot

Figure 3.2: Description of the support phase types

To control the blending, we model a state machine, composed of six states (Fig. 3.3). The
neutral state corresponds to the continuous cyclic locomotion, parameterized by the vector
Ψ. As soon as the animator or the application level (for example an autonomous agent)
desires to perform a jump, he sets a parameter vector Ψjump to generated the corresponding
jumping sequence. Then the model goes to the next state, where the speed s and locomotion
weight wloco from Ψ are adapted to match those from Ψjump.

When the motion properties are compatible with the desired jump, the model starts the
transition once the support phases of both motions contain similarities. However, it is not
sufficient to compare double with single support phases as suggested by Menardais et al.
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Figure 3.3: The state machine for controlled blending

in [2004]. Indeed, as illustrated in Fig. 3.4, the blend between a double support phase with
the right foot backward (walking) and a single phase with the right foot forward (jump)
produces incorrect result.

Therefore the blending starts only when the event RHS is detected (state 3). To ensure
on-line performance, this detection is carried out using a method explained in Section 3.3.2.
This blending is performed, from walking (or running) motion to jumping motion, until the
RTO event. After that, the jumping motion is played until the LHS event is encountered,
going to the next state. This state activates the blending back to the locomotion until the
LHO. Finally, the locomotion engine returns to its neutral state, by modifying the motion
parameters to the values they had before the jump request.

Single support

Double support

Figure 3.4: Incompatible support phases to blend a walk with a jump motion
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3.3 Controlled Blending

We describe precisely the method to control a blending operation from locomotion to a jump,
composed of three stages. Firstly the locomotion is adapted to generate a run-up phase com-
patible with the requested jump, ensuring a coherent transition. The second stage determines
the transition time and duration automatically. Finally, the transition itself is performed by
aligning in time the two blended motions.

3.3.1 Coherent Motion Adaptation

Imagine that a jump, described with a parameter Ψjump, is requested at time t1 while the
character is animated by a locomotion cycle parameterized with Ψ1 whose its speed is s1.
Two properties have to be satisfied before effectively operating the transition: the final run-
up speed s2 to be reached before execution the jump at time t2 and the run-up duration
trunup = t2 − t1.

3.3.1.1 Final Run-up Speed

In order to preserve the dynamic coherence, a jump of a specific length l can only be per-
formed for a locomotion speed range. To determine this range, we analyze jumps from our
motion capture database to establish a relationship between the jump length and the run-up
speed. Actually, the actors were asked to adapt the most natural run-up speed to execute a
jump of a given length. This limits high dynamic variations between the run-up phase and the
jump. Therefore, the speed s2 measured just before the jump execution can be approximated
by the mean speed of this jump.

We extract from all jumps in the database their mean speed. This latter is computed by
dividing the traveled distance of the character’s root during the jump sequence (from RHS
to LTO event) by the jump duration (see Eq. 1.10, Part III). Fig. 3.5 and 3.6 illustrate the
resulting relation between the jump length l and the mean speed s for walking respectively
running jumps. Clearly, the best approximation function of these data is obtained by per-
forming a linear least square. Two functions are then constructed, one for each type of jump,
returning the mean speed which corresponds to the run-up speed s2 of a given jump length:

fW (l) = s2 = 0.97l − 0.04 ± 0.1 (3.1)

fR(l) = s2 = 1.16l − 0.13 ± 0.15 (3.2)

Note that we add a tolerance to these functions. Actually, depending on the performer
skill level, a given jump length matches several acceptable mean speeds. This speed range
is illustrated in Fig. 3.5 and 3.6 by the stripe built from the positive to negative tolerances of
the linear approximation.

Therefore, given a jump length, a range of speed values is determined. If the current
locomotion speed s1 is outside of this range, we propose two motion adaptation scenarios:
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Figure 3.5: Walking jumps: relation between the mean speed and length. Given a jump length,
the stripe delimited by the linear approximation (middle dashed line) and the lower and upper
tolerances defines allowed speed values just before the jump. The gray zone indicates not com-
monly feasible jumps.

• The priority is given to the jump execution. A new jump is generated, with the ap-
propriate length and type which correspond to the current locomotion parameter. This
solution is well adapted to game environment where the user’s actions need to be
quickly executed.

• The priority is given to the jump parameters. The current motion is adapted by a
continuous speed variation until reaching an acceptable speed the jump requires. Ad-
ditionally and simultaneously, the current locomotion weight wloco is adapted to the
one of the jump. When the jump is finished, the locomotion parameters are gradually
restored to their initial values. This solution is interesting when a character has to clear
accurately an obstacle having specific dimension.

3.3.1.2 Run-up Duration

The determination of the run-up phase duration trunup is necessary for the second priority
scenario, ensuring a coherent transition. We describe a first approach which is based on a
constant speed variation.

According to the linear speed variation ∆s = s2 − s1, the duration trunup have to be
chosen so as the induced acceleration is less than a threshold εa:
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Figure 3.6: Running jumps: relation between the mean speed and length. Given a jump length,
the stripe delimited by the linear approximation (middle dashed line) and the lower and upper
tolerances defines allowed speed values just before the jump. The gray zone indicates not com-
monly feasible jumps.

a =
∆s

trunup

≤ εa (3.3)

To compute trunup, we consider the next possible time when the transition to jump is
possible. In fact, a transition starts only at a specific foot event which occurs once during a
locomotion cycle, namely when the current phase ϕi = 0 (mod 1) (see Sub-section 3.3.2).
We define ϕ1 the phase at time t1 and ϕ2 the phase at time t2. The run-up duration can be
therefore approximated using Eq. 1.2 (Part III):

trunup = t2 − t1 = (ϕ2 − ϕ1)
2

Floco(Ψ1) + Floco(Ψ2)
(3.4)

where the frequency variation is approximated by considering it as constant between t1
(where motion parameters are Ψ1) and t2 (where motion parameters are Ψ2).

In order to determine the number of locomotion cycle to wait before performing the jump,
Eq. 3.4 is evaluated by setting ϕ2 = 1. This operation is repeated by adding 1 to ϕ2 (i.e. an
additional cycle) as long as the returned trunup does not satisfy the acceleration condition
described in Eq. 3.3.

However, this approach involves a linear speed variation during this run-up phase and
can generate several locomotion cycles before executing the jump. Hence the take-off foot
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position is not fixed and depends on the current motion and jump parameters. We address
this problem later in this thesis (see Part IV, Chapter 1).

3.3.2 Transition Time and Duration

Many works [Rose et al., 1998; Kovar and Gleicher, 2003; Menardais et al., 2004] have
demonstrated the necessity to take into account the support phases when blending is per-
formed. In fact, incompatible foot constraints can not be blended (e.g. a right hoping with a
left hoping) as they violate the motion properties. These support phases also allows to blend
several motions in a synchronous way. The algebraic relation proposed in [Menardais et al.,
2004] determines dynamically the transition time by checking the support phases’ compat-
ibility of the blended motions. For example, a double support is always compatible with a
single support.

However, the double support defined from LHS to RTO in a walking motion (Fig. 3.2 and
Fig. 3.4) is incompatible with the single support from RHS to RTO for a jump starting with
the right take-off foot. Actually, the right leg is in front of the character trunk at the double
support and back at the single support. Our method avoids this drawback by guaranteeing
that the blending from locomotion to jump occurs during the single support phase defined
between RHS and RTO, and similarly from jump to locomotion between LHS and LTO. In
that way, those support phases determine not only the transition time, but also the transition
duration.

Still, it remains to detect the foot events from the blended motions. As our method is
foreseen to works dynamically, without knowing those motions in advance, these events have
to be detected in real-time. For locomotion patterns, we apply the footplant detection method
presented in the previous chapter (Section 2.3), which is able to return the foot event’s frame
indices in the normalized time, at any time and for any motion parameters.

On the contrary to locomotion, it is however difficult to apply this method to jumping
motions. The δ value described in Eq. 2.4 of the previous chapter has to be adapted regarding
the type and the performer of the jumps. Our experiments show that for various walking
jumps performed by different subjects the δ value varies significantly. Fig. 3.7 illustrates the
trajectory curves (sagittal plane) and the detected RTO events (circles) of the right heel for
different jump lengths performed by two subjects. By applying a δ = 0.6, the RTO events
from the subject v = 1 are correctly detected. Conversely, those of subject v = 2 occur too
late compared to the manually labeled events, represented by squares in Fig 3.7, right. A
correct detection is obtained with δ = 0.3.

Another example in Fig. 3.8 illustrates the difference of δ according to the jump type
performed by a same subject (v = 7 in our situation). As the RTO events for walking
jumps are correctly detected with δ = 0.75, those for running occur too late compared to the
manually labeled events, represented by squares in Fig 3.8, right. A detection matching those
squares is obtained with δ = 0.35. One can observe that, for the given RTO event, there is
at most only one frame between the badly and correctly detected frame index. However, for
high dynamic motion such as running speed, the joint’s vertical position of two consecutive
frames can differ in more than 10 cm. It is therefore important to label the different foot
events correctly.
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Figure 3.7: The RTO detection result (circles) on jumps for two subjects with δ = 0.6. The
curves represent the right heel trajectories projected into the sagittal plane. Left: The RHO
events are correctly detected (circles). Right: The RHO are correctly detected with δ = 0.3
(squares) while the circles indicate the detection results with δ = 0.6.

It becomes evident that for jumping motions, the determination of the δ value is depen-
dent on two parameters: the performer and jump type. For each of those parameter combina-
tions, we need therefore the correct foot event of a selected subset (∼ 25% of the total jump
motion database) of different jump length to choose δ accurately. Hence a subset of jumping
motions from each subject and jump type has been manually labeled, as shown in Fig. 3.9.
The observation of those foot events leads to the conclusion that given a subject, they are ap-
proximately linearly dependent on the jump length. Instead of determining δ values, linear
approximations are computed for each foot event, with respect to the subject and jump type.

To summarize, the feet events of the motions generated in real-time can be instanta-
neously computed. For walking and running, we apply the detection method presented in
Part III, Section 2.3, for jumping the method based on linear approximation of manually
labeled subset of motions.

3.3.3 Time-Aligned Blending

The support phases of two blended motions may have different durations, depending on the
motion properties. For a similar jump, one subject can put the take-off foot longer on the
floor than another one. Hence, it is necessary to align in time the support phases which are
blended.

Let A be a motion where frames Fa1 and Fa2 delimit a support phase which has to
be blended with the motion B having a compatible support phase from frames Fb1 to Fb2.
According to the elapsed time step ∆t, we have to compute the time aligned frames Fa and
Fb, as illustrated in Figure 3.10.

While the motions are generated in a generic time and have a same total frame number
of Nframe, the frequencies Fa and Fb (computed as described in Part III, Section 1.3 in
Chapter 2, Eq. 1.8 and Eq. 1.13) associated to the motion A respectively B are used to update
the current motion phase ϕcur. During the blending, we define the frequency F which varies
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Figure 3.8: The RTO detection (circles) on walking and running jumps for one subject with
δ = 0.75. The curves represent the right heel trajectories projected into the sagittal plane. Left:
The RHO events are correctly detected (circles). Right: The RHO are correctly detected with
δ = 0.35 (squares).

from Fa to Fb, and a phase variable ϕcur. For each elapsed time ∆t, the phase is updated as
follows:

ϕcur = ϕprev + ∆tF (3.5)

Hence, the current frame Fa of the motion A is computed as described in the next equation
(Eq. 3.6).

Fa = ϕcurNframe (3.6)

To find the corresponding time-aligned frame Fb in the motion B, we define a blending
weight parameter p which varies from 0 at the blending start, to 1 at the blending end. This
parameter indicates the normalized progression of frames in both motions and is computed
as follows:

p =
Fa −Fa1

Fa2 −Fa1

=
Fb −Fb1

Fb2 −Fb1

(3.7)

From this latter equation, Fb is determined and then interpolated with Fa to compute
the blended frame F . As the frames hold a posture expressed with quaternions, each joint’s
rotation of F are computed by the spherical linear interpolation method [Shoemake, 1985]
using the parameter p. The root global position is similarly computed by a linear interpola-
tion between the jump’s and the locomotion’s root position. For this latter, as the patterns are
originally generated on a treadmill, we add the displacement corresponding to the current
speed. Additionally, the frequency F is computed by performing a linear interpolation from
the frequencies Fa to Fb, parameterized with p.
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Figure 3.9: Manual labeling of the foot events, for the seven captured subject performing various
jump lengths. Left: Walking jumps with a length variation from 0.4 to 1.6 [m]. Right: Running
jumps with a length variation from 0.8 to 2.0 [m].
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Motion A

  Fb1 Fb
Nframe

Nframe

Fb2

Fa2FaFa1

Motion B

Figure 3.10: Frame alignment between motion A and B

3.4 Results and Conclusion

We have integrated our state machine model in our animation engine. Animators can steer
a virtual human by changing the speed s, locomotion weight wloco and the personification
wsubj . In addition, jumps can be parameterized with a desired length l, personification and
type.

Figure 3.11: Comparison of blending from a walking to a running jump. Top: The sequence is
generated using traditional blending technique. Bottom: The sequence is generated by first mod-
ifying the speed and locomotion type before performing the jump. Finally, the motion parameters
are smoothly restored to the initial ones.

At any time, the user can trigger a jump. The model adapts automatically on the fly the
current motion to preserve speed coherence based on observations made on 105 walking and
103 running captured jumps. Therefore, the speed and type of locomotion may be modified
during a specific period of time (Fig. 3.11, bottom). After some experiments, we choose an
εa value of 0.2 [m/s−2]. This value corresponds to the half mean acceleration of a sportsman
who sprints a 100 meters race.

Additionally, the method decides when and how long to perform the blending operation
to jump, by taking into account the motion support phases. The generated transition is seam-
less and performed in real-time, having a duration time varying from 0.2 to 0.5 second. Our
blending algorithm is based on spherical linear interpolation between the quaternions of each
joint, using a linear weight function. Other weight variation schemes such as a cubic step
function [Kovar et al., 2002a; Kovar and Gleicher, 2003; Rose et al., 1998] produce similar
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results with only subtle differences.
Compared to earlier approaches [Kovar et al., 2002a; Arikan and Forsyth, 2002; Lee

et al., 2002] on finding possible transition time over large motion capture database, our
method presents advantages. First, we do not need to perform a pre-processing step involving
all the clips of the database. This allows us to generate dynamically parameterized motions.
Then our methodology determines transition time and duration automatically, in contrast
to [Kovar et al., 2002a] where transition thresholds have to be specified by hand. Finally,
we adapt the current motion by modifying its parameters to enforce the requested blending,
unlike previous methods that either do not allow the transition or perform it without adapta-
tion [Kovar and Gleicher, 2003] or at possibly incorrect support phases like in [Menardais
et al., 2004].

We illustrate the improvement provided by our blending method. The top image of
Fig. 3.11 shows a transition from walking to running jump, using a traditional blending
method such as [Park et al., 2002a]. One can observe that the jump length is large regarding
the step length, leading to a dynamic incoherence. The bottom image shows the same situa-
tion by applying our technique. The motion is adapted by modifying the speed and the type
of the locomotion according to the requested jump.

Some artifacts may nevertheless occur due to the original motion quality. Therefore,
like many other blending methods, we apply a correction algorithm. We use the footplant
enforcement method presented in Part III, Section 2.4. This allows to control the foot posi-
tion, preventing sliding effects. This correction is efficient enough not to alter the real-time
performance of the animation.

The motion adaptation phase is performed by a linear speed variation over a specific
number of steps, determined according an acceleration tolerance. Consequently, the global
position of the take-off foot is variable, according to the motion parameter configuration at
the jump’s trigger time. However, in some situations, the take-off foot position is important
and has to be precisely placed in front of obstacles in order to jump over it without touching
it. Hence, in the next part of this thesis, its first chapter introduces a method which determines
a speed variation according to the constraint on the take-off foot position.
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Chapter 1
Obstacle Handling in Dynamic
Environments

1.1 Introduction

In the previous chapters, we essentially address the problem of generating animations with
the possibility of varying high-level parameters. These variations can be controlled by an
animator, who scripts a scenario by describing the virtual human actions. For example,

an action may look like ”From the position P, human H accelerates until reaching the speed
S”. While the final animation is generated on-line, the parameter variations are predefined, in
contrast to video games. In that case, a user controls the parameter variations of its character
in real-time, by means of an interface such a joystick.

Figure 1.1: A jump sequence without the take-off foot position control. The run-up phase is
performed independently of the obstacle position, inducing a collision between the character and
the obstacle.

In this chapter, our goal is to apply the animation methods proposed in the previous
chapter of this thesis to animate an autonomous character confronted with obstacles similar
to the one shown on Fig. 1.1. To represent situations as close as possible to the reality,
obstacles are created dynamically, on-the-fly, i.e. at any time during runtime. This scenario
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simulates the moment when a real human notices an obstacle in front of him.
We have therefore to elaborate a method which first decides whether the obstacle can

be jumped over or got round. According to the retained choice, the motion parameters are
then consequently modified. This approach is based on mechanisms allowing the navigation
around a virtual environment in a life-like and improvisational manner. We refer this concept
to as the term behavior, as described by Reynolds [Reynolds, 1999]. The author divides the
motion behavior into three layers of hierarchy: strategic planning, path determination and
animation.

Our purpose is to apply this model to solve the problem of handling obstacles in a dy-
namic environment. As opposed to traditional methods that consider the objects (or obsta-
cles) of a scene as static [Choi et al., 2003; Pettré et al., 2003a; Go et al., 2004; Sung et al.,
2005] or described with pre-defined trajectories [Hsu et al., 2002; Lau and Kuffner, 2005],
we aim at handling obstacles that are not known in advance, but generated on-the-fly, during
the animation process.

Consider an obstacle that dynamically ”appears” in front of a walking autonomous char-
acter. The first level of the motion behavior model selects an appropriate action strategically,
regarding the current motion parameters and the obstacle position. Basically, two actions are
possible: either to get round the obstacle or to jump over it. Then, the next level elaborates
a path the character has to follow. This path determination step entails linear/angular speed
and type of locomotion variations, and the determination of a jump length in case of clearing
the obstacle. This information is finally sent to the third hierarchical level, responsible for
generating correctly the final animation of the character. The schema on Fig. 1.2 summarizes
the actions at each level of the behavior model.

We simplify the problem by neglecting the obstacle height, which is constant and very
small. Moreover, jump motions starts only with a right take-off foot. To tackle this problem
of dynamic obstacle handling, techniques from the robotics are improved, by adding specific
human properties to emphasize the behavior believability. In addition, these techniques have
to be enough efficient for real-time reactivity. In the next sections, we detail the methodology
of each layer.

1.2 Strategic Planning

The first stage concerns the action selection, by determining a strategic planning method.
The probabilistic roadmap technique [Kavraki et al., 1996] needs the number and position of
all obstacles present in the scene, and therefore can not be applied to dynamic environment.
Moreover, in such context, the path from a starting to a goal position is originally free.
Hence, as soon as an obstacle prevents a direct way, our planning method decides either to
go round or to jump over this obstacle.

An obstacle (illustrated in 3D in Fig. 1.1) is defined by a flat box (e.g. a puddle of water)
with a center position Cobs, length lobs and width wobs. Let t1 be the time when an obstacle
is dynamically created in front of a virtual human. This virtual human is described with its
current position pr(t1) and normalized heading direction h(t1). We assume, for convenience,
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Figure 1.2: The three layers of the motion behavior model for dynamic obstacle handling.

first that this heading direction is constant, and second, that the obstacle faces up a character
always perpendicularly and has a constant height. We discuss in the last section of this
chapter how this particular case study can be extended to solve more general problems.

The vector from the character position to the front of the obstacle is represented by d.
The position just in front of the obstacle is defined as Pstart = pr(t1) + d. In addition, at
time t1 the character’s motion is parameterized with Ψ1 = (wsubj1 , wloco1 , s1) and angular
speed ω1.

This environment configuration in mind, the choice to clear an obstacle or not is deter-
mined by performing different tests. The first one checks if the obstacle length lobs is included
in the jump length range that a human is able to performed. Two ranges are defined, from
lwmin

to lwmax and from lrmin
to lrmax , for walking respectively running jumps. By default, the

current locomotion w1
loco determines the type of the jump. However, a requested length be-

tween lwmax and lrmax compels a walking motion to be smoothly modified towards a running
one.

Assuming that a given jump length lj lies between the minimal and maximal boundaries,
we compute the required speed s2 to execute this jump. According to its type and length (i.e
the obstacle length wobs), lj is inserted into either Eq. 3.1 or Eq. 3.2 from Part III, Chapter 3
(dedicated to the transition from locomotion to jump) to determine the corresponding s2 and
wloco2 of Ψ2, for the time t2. This time corresponds to the jump start. In the case where
s2 < s1, we avoid decelerating before executing the jump by setting s2 := s1. The jump
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Figure 1.3: Top-view of the environment configuration at time t1, when an obstacle is generated
dynamically. According to the decision planning, either the red or the blue path is determined.

length lj is therefore adjusted by inserting s2 into either Eq. 3.1 or Eq. 3.2.
The next test evaluates the mean acceleration ā computed between the time t1 and the

jump start, as described in Eq. 1.1.

ā =
s2 − s1

||d||
s̄

≤ εa (1.1)

where s̄ represents the mean between the s1 and s2 speeds. To avoid too abrupt speed mod-
ifications, an acceleration threshold εa is fixed and corresponds to the maximal acceleration
a non sporting human can achieved. Beyond this value, the obstacle has to be got around.

From this first level of our motion behavior model, the presented rules allow an au-
tonomous character to decide either to jump over or to get round the obstacle. The next
section focuses on the second behavior level.

1.3 Path Determination

The path determination stage allows the construction of a trajectory which depends on the
decision retained at the strategic layer. In the next two sub-sections, we present the methods
either to get round or to jump over the obstacle.
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1.3.1 Getting Round

When an obstacle can not be jumped over, the character has to get round it by passing either
by its right or left side. We arbitrarily choose the left side and we define a point Pobs to go
through, depicted in Fig. 1.3 and computed as described in Eq. 1.2, where h′(t1) is orthogonal
to h(t1) (see Fig. 1.3).

Pobs = Cobs + h′(t1)(
wobs

2
+ δlobs) (1.2)

The underlying idea is to move this point away from the obstacle regarding its length, in order
to avoid a possible collision. We fix therefore a value δ ∈ [0 . . . 1] in order to determine the
influence of the obstacle length. In addition, the character’s original trajectory is joined by
defining a second point Pend to go through, by a symmetry of the point pr(t1) according to
the axis traversing the obstacle, perpendicular to d.

The path which avoids the obstacle is then determined by those two points Pobs and Pend,
with their directions similar to h(t1). Bezier curves can be applied to construct a smooth
path [Pettré et al., 2003b]. It has then to be transformed into a trajectory respecting veloc-
ity and acceleration constraints, a classical problem in Robotics [Lamiraux and Laumond,
1997]. However, we prefer to adopt the steering model proposed in [Boulic, 2005]. This
latter allows to go through a desired position (like [Reynolds, 1999]), with a desired heading
direction at that position. This steering method ensures the reach of the target, thanks to
a process that anticipates either the success or failure of the reach, and adjusts the desired
speed accordingly. In addition, pre-calculated data greatly reduces the computational cost,
which is appreciable for our real-time context.

Hence, the getting round of the obstacle is performed in two steps. The first one is
initialized by setting the target position Pobs and direction h(t1) to the steering model. As
long as the target is not reached, the model updates at each animation time step the character’s
linear and angular speed, according to the previous the character’s position as well as its
linear speed and locomotion phase. As soon as the first target is reached, the second phase is
engaged similarly, by setting the new target position Pend and direction h(t1).

1.3.2 Jump Run-up Computation

When the jump is feasible, its run-up phase should be generated so as the right take-off foot
is finally placed as close to the obstacle as possible and the locomotion speed corresponds
to the required jump length. To solve this problem, the algorithm presented in [Choi et al.,
2003] may be applied. It consists in generating randomly a series of footprints between the
start and the end of the run-up motion, and then in adapting appropriate motion capture clips.
Another method which provides less precise results search for a suitable motion capture clip
in an enhanced motion graph structure [Lau and Kuffner, 2005]. However, as those methods
are interactive and do not ensure the speed constraint, we propose an alternative approach.
This allows an on-the-fly generation of a motion sequence which corresponds to the obstacle
constraints.

The fundamental idea of our method is to compute a footprint combination matching the
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following constraint formulation: ”Position the right take-off foot at Pstart with a locomotion
speed s2 and type wloco2 . In other words, we have to determine a motion parameter variation
Ψ(t) from Ψ1 at time t1, i.e at the obstacle generation, to Ψ2 at time t2, when the character
is located at Pstart. First we assume that wsubj1 = wsubj2 = wsubj , as these parameters have
no implication in the problem of obstacle handling. Second, we define the variation from
wloco1 to wloco2 as linear, as validated in a previous chapter (Part III, Chapter 3). Finally, we
define the speed variation function (or speed profile) S(t), from s1 to s2.

The simpler approach consists in describing the speed variation S(t) with a linear func-
tion, involving a constant acceleration, coupled with a constant function, as described in
Eq. 1.3. To ensure the character reaches Pstart at time t2, the speed varies from s1 to s2

during t1 and t′. Then the speed is constant until t2, as illustrated in Fig. 1.4 with different t′

values.

time
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s2 

t1 t‘ t‘ t‘ t‘ t2 

pr(t1) pstart

ϕ1 ϕ2

Figure 1.4: Linear speed variation from s1 at position pr(t1) to s2 at Pstart: over different
variation scenarios, one have to match the right take-off constraint at position Pstart.

S(t) =

{
at + b for t1 ≤ t ≤ t′

s2 for t′ ≤ t ≤ t2.
(1.3)

However, this approach is not enough generic. For example, if s1 = s2, the speed can not
vary and the phase constraint at t2 is therefore no more guaranteed. Also if the final desired
speed is s2 = 0 (e.g. to stop just in front of an obstacle), t′ has to be equal to t2. Otherwise,
the null speed s2 is set before reaching the position Pstart.

We propose to tackle those drawbacks by applying another speed variation model, based
on a quadratic function:

S(t) = at2 + bt + c (1.4)
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Figure 1.5: Quadratic speed variation from s1 at position pr(t1) to s2 at Pstart. Over different
variation scenarios, one have to ensure the right take-off foot at position Pstart.

The three parameters a, b and c determine the shape of the function in order to match
the take-off foot goal position, final speed and locomotion phase conditions (Fig. 1.5). In
addition to these unknown, the t2 duration of the variation is to be computed. In total, four
equations have to be determined. The first two match the initial and final conditions of the
speed profile, assuming that t1 = 0:

S(0) = c = s1

S(t2) = at22 + bt2 + c = s2
(1.5)

Then the traveled distance d = ||d|| between pr(t1) and Pstart is expressed as a function
of time and speed:

d =

∫ t2

0

(at2 + bt + c) dt =
1

3
at3 +

1

2
bt + ct (1.6)

Finally, we use the locomotion phase constraint to describe the last equation. Let be ϕ1

defined as the current phase of the character at time t1. In order to ensure the right heel strike
event at time t2, the phase ϕ2 has to be an integer value. In addition, this phase corresponds
to the cycle number executed between t1 and t2. The phase update allows to determiner the
last equation, using the frequency function Floco(Ψ) defined in Eq. 1.8 (Part III, section 1.3):

ϕ2 = ϕ1 + Floco(Ψ)t2

= ϕ1 +

[
n∑

i=1

Floco(wsubj,
1

t2
((t2 −

i

n
t2)wloco1 +

i

n
t2wloco1), S(

i

n
t2))

t2
n

]

= ϕ1 +

∫ t2

0

F (wsubj, (1 − t)wloco1 + twloco2 , S(t)) dt (1.7)
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However, the solution of the integral in Eq. 1.7 is complex to compute. In fact, the
frequency function Floco is defined by two different functions, according to the speed value
(see Part III, Sub-section 1.3.1). Therefore, the integral in Eq. 1.7 has to be divided into parts
during which the frequency function is either defined by the first or the second function. The
number and the duration of these parts are unknown. It introduces an additional difficulty
which we aim to avoid to ensure real-time performances.

To solve this problem, the frequency function is expressed as a linear interpolation be-
tween the two frequency functions Floco(Ψ1) and Floco(Ψ2). Hence, we approximate Eq. 1.7
with Eq. 1.8 by assuming that the frequency function is linear between t1 and t2.

∫ t2

0

F (wsubj, (1 − t)wloco1 + twloco2, S(t)) dt ≈ Floco(Ψ1) + Floco(Ψ2)

2
t2 (1.8)

Finally, the four unknown a, b, c and t2 are computed by solving the system composed
of the four described equations (Eq. 1.5, Eq. 1.6 and Eq. 1.8).

However, the value of ϕ2 which actually corresponds to the performed cycle number
before the jump, remains to be determined. For given parameters s1, s2, ϕ1 and d, a too big
ϕ2 involves a negative speed during a time interval (Fig. 1.6, left). In practice, it means that
the number of cycle is so important that the character has to slow down, and even to walk
backwards when the speed is negative, which is not the intention of the method. Conversely,
a too small ϕ2 (i.e. a small number of cycles) entails an abrupt speed variation not physically
feasible by the character (Fig. 1.6, right). Fig. 1.7 illustrates the speed variation S(t) (blue
surface) for a continuous ϕ2 variation. Observe the negative speed variation for some ϕ2

values.
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Figure 1.6: Left: ϕ2 is too big and violates the condition S(t) ≥ 0. Right: ϕ2 is too small and
entails a too strong acceleration.

Hence, we determine ϕ2 which generates the variation closest to the linear one. Actually
this linear variation entails the smallest acceleration variation, which has to be below the
acceleration threshold εa defined in Eq. 1.1. The algorithm is composed of two phases.
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Figure 1.7: The function S(t) (in blue) for different ϕ2, given s1 = 1, s2 = 1.6, ϕ1 = 0.1 and
d = 5. The red plane corresponds to S(t) = 0 and helps to visualize when S(t) < 0. The white
plane represent the final speed (S(t) = s2).

First, ϕ2 is initialized by assuming that the speed variation is linear. Using the approx-
imation of Eq. 1.8 in Eq. 1.7 and by computing t2 = 2d

s1+s2
= t2Lin, the final locomotion

phase is rounded as follows:

ϕ2 =

⌊
ϕ1 +

Floco(Ψ1) + Floco(Ψ2)

s1 + s2

d + 0.5

⌋
(1.9)

Secondly, this approximated phase value is adjusted iteratively. This value, added to the
given input parameters s1, s2, ϕ1 and d, allow the unknowns a, b, c and t2 to be computed in
order to generate the function S(t). From its derivative dS(t)

dt
= A(t) = 2at + b, we compute

the slope m = 2a.
A negative m involves that either the extremum of S(t) is a maximum inside [0 . . . t2] or

the speed decreases always from s1 to s2, as illustrated in Fig 1.8. In both cases, the target
phase ϕ2 may be increased. Hence, this phase is iteratively incremented by 1. At each i-th
iteration, the new parameters ai, bi, ci and t2i are used to compute the acceleration difference
∆ai defined as follows:

∆ai = |A(t2i) − A(0)| = |2ait2i| (1.10)
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Chapter 1. Obstacle Handling in Dynamic Environments

The algorithm stops when ∆ai ≥ ∆ai−1 or when the speed variation provides negative
speed values, easily tested using the extremum of S(t).

time
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Figure 1.8: Speed variation S(t) (black curve) where the acceleration slope is negative. The
arrow indicates that by increasing ϕ2, S(t) approaches the red line illustrating the linear speed
variation, from t = 0 until t = t2Lin. Left: The maximum is between t = 0 and t = t2. Right:
The extremum is outside [0 . . . t2]

On the contrary, a positive m indicates that the target ϕ2 may be decreased (Fig. 1.9).
The algorithm proceeds iteratively by decrementing the phase, and stops similarly to the
case where m is negative. In addition, it is ensured that the final ϕ2 ≥ 1.
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Figure 1.9: Speed variation S(t) (black curve) where the acceleration slope is positive. The
arrow indicates that by decreasing ϕ2, S(t) approaches the red line illustrates the linear speed
variation, from t = 0 until t = t2Lin. Left: The minimum is between t = 0 and t = t2. Right:
The extremum is outside [0 . . . t2].

The path determination is therefore completed by providing the motion parameter vari-
ations either when getting round or jumping over obstacles. The next section explains how
these parameter variations are applied to animate a virtual human.

1.4 Animation

The animation engines proposed in the previous chapters of this thesis are applied to move
the character confronted with an obstacle. If the obstacle has to be got around, our locomo-
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tion model is continuously controlled only by the new linear and angular speeds provided
by the path determination layer. In case of clearing the obstacle, the required jump is first
generated. Then the linear speed is modified regarding its variation S(t) computed in the
previous layer. The locomotion type modification, if necessary, is performed by a linear
interpolation during the speed variation. When S(t) reaches the final speed s2, we execute
the blending from locomotion to jump and inversely by applying the method described in
Chapter 3 (Part III). Finally, just after the jump, the current speed and type of locomotion
are restored to the initial speed s1 and locomotion weight wloco1 .

1.5 Results

In our developed real-time application, a jump can be generated at any time by the animator.
The jump dimension and its distance to the current character’s position are generated ran-
domly over a predefined range of values. The distance is selected between 2 and 10 [m], the
obstacle length between 0.4 and 2.6 [m] and width between 1 and 6 [m]. The obstacle height
is constant and set to 0.1 [m].

Figure 1.10: The obstacle is got round by the character.

We present the results when the character gets round the obstacle. Fig. 1.10 illustrates the
situation where the obstacle can not be jumped over. In fact the final run-up speed necessary
for this jump length entails a too important acceleration starting from the initial character
locomotion speed. The path goes through the first way-point placed on the obstacle side
and the second one placed in order to recover the path followed if the obstacle were jumped
over. In the resulting generated animation, we notice that the linear speed is significantly
decreased near to the two way-points. This is due to the steering method we used. In fact,
this method is highly dependent on a database of pre-computed trajectories. At any time and
for a given locomotion parameter situation, the method searches for a correspondence in this
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Chapter 1. Obstacle Handling in Dynamic Environments

database. If it fails, the current parameters are modified in order to find a correspondence. In
our case, the speed is automatically decreased to match a trajectory in the database.

In situations where the character jumps over the obstacle, we illustrate two speed vari-
ation results, explaining the optimal ϕ2 computation. In the first example (Fig. 1.11), the
approximated ϕ2 = 13 returns a negative slope m. The phase is augmented until reaching
the variation closest to the linear one. As the curve defined with ϕ2 = 14 leads to a ∆a
greater as the previous one, ϕ2 = 13 is selected. For a pedagogical purpose, the graph on
Fig. 1.11 depicts curves from ϕ2 = 9 to ϕ2 = 14.
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Figure 1.11: Increase of the run-up cycle number. Starting from ϕ2 = 13, ϕ2 = 14 is selected
among different speed variations S(t) for a given ϕ1 = 0.3, s1 = 0.2 [m/s], s2 = 1.6 [m/s] and
d = 16 [m].

The second example (Fig. 1.12) illustrates the situation where the phase ϕ2 is iteratively
decremented until the optimal value ϕ2 = 1. The corresponding speed variation shows two
t2 solutions to reach s2. However the solution is unique (t2 = 2.09) due to the ϕ2 constraint.
One can observe that the variation with ϕ2 = 2 provides in absolute a less accelerated
solution. However, our method is based on the relative acceleration difference between the
start and end of the variation. This is the reason why ϕ2 = 1 is preferred, as this solution
offers less difference, despite that the absolute accelerations at t = 0 and t = t2 are high.
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Figure 1.12: Decrease of the run-up cycle number. Starting from ϕ2 = 4, ϕ2 = 1 is selected
among different speed variations S(t) for a given ϕ1 = 0.1, s1 = 0 [m/s], s2 = 0.9 [m/s] and
d = 1.6 [m].

We illustrate in Fig. 1.13 a scenario where the current locomotion speed and type are
modified in order to clear the obstacle. According to the obstacle dimension, the performed
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jump needs a fast final run-up speed, executed by running. Our method computes the foot-
prints positions (i.e. the speed variation) so as to place the right take-off foot as close as
possible to the obstacle, with the required speed and type of locomotion. After jumping over
the obstacle, the motion parameters are restored to the initial ones.

Figure 1.13: The obstacle is jumped over. From a slow walking to a fast running, the method
computes the footprints positions (right foot in purple, left in yellow) in order to place the right
take-off foot as close as possible to the obstacle.

Our model constraints the current locomotion phase to be null when the 3D root position
pr is in front of the obstacle. However, the right foot at this phase is forward positioned
regarding pr, as the legs are apart in order to perform the next step. We therefore reduce
the distance d by the resulting step length at speed s2. In that way, the right foot is exactly
placed in front of the obstacle.

In practice, we enhance the state machine presented in Chapter 3 (Part III) by embedding
the three presented behavioral layers, as illustrated by Fig. 1.14. Thanks to the performance
of our method (about 4µ sec on average to compute a speed variation), we are able, in
addition to generate the required jump, to compute the speed variation at any time during
the animation. It is therefore possible to animate an autonomous character which handles
obstacles appearing dynamically.

We have also evaluated the quality of our method. We run our method in a dynamic en-
vironment, where obstacles are generated on-the-fly by randomly selecting their dimensions
and their position to the moving character. The error E is computed by subtracting from the
start obstacle’s position Cobs − 1

2
Lobs the effective position of the right toe Ptoe at the jump

start. Hence, a quantitative measurement of the method precision is performed. Histograms
on Fig. 1.15 and Fig. 1.16 illustrate the experiment results, by counting the jump number
with respect to the precision of the take-off foot position. The error is computed for 353
obstacles jumped over with a constant initial walking speed s1 = 1.1 [m/s], respectively for
334 obstacles with a running speed of s1 = 1.5 [m/s]. The foot is correctly placed within an
error of 5 [cm] (for a character’s leg length of 0.88 [cm]) in more than the 70% of the jumps.
The remaining 30% are decreasingly distributed until a maximal error of 20 [cm]. In addi-
tion, we try to quantify the influence of the frequency function approximation (Eq. 1.8) on
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Figure 1.14: The state machine allowing either to go round or to jump over an obstacle.

E regarding speed difference between s1 and s2. At a first thought, we can intuitively induce
that the lengthier the jump, the bigger the error. The graphs on Fig. 1.15 and Fig. 1.16 depict
each jump (represented by a circle) according to its length and take-off foot position error.
We conclude that that E is not directly influenced by big length jumps (i.e. final speed s1).
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Figure 1.15: Results of 353 obstacles jumped over with an initial walking speed s1 = 1.1 [m/s]
Left: Histogram representing the measured error E. Right: Comparison between the measured
error E and the jump length to jump over an obstacle.

1.6 Conclusion and Discussion

In this chapter, we have presented a new behavior model for obstacle handling in dynamic
environments. When an obstacle of a specific length suddenly appears in front of a mov-
ing autonomous character, the method chooses first whether to go round or jump over the
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Figure 1.16: Results of 334 obstacles jumped over with an initial running speed s1 = 1.5 [m/s]
Left: Histogram representing the measured error E. Right: Comparison between the measured
error E and the jump length to jump over an obstacle.

obstacle. For the first choice, the linear and angular speeds vary to generate a path which
avoids the obstacle. For the second choice, a quadratic speed variation is computed. This
latter ensures that the right run-up foot is placed just before the obstacle and that the charac-
ter has an appropriate speed allowing performing the required jump length. The method is
fully dynamic as the motions are generated on-the-fly, without knowing about the environ-
ment topology. In addition, the method performance (4µ sec) allows to maintain real-time
capability of the animation.

Comparing to similar previous work [Lau and Kuffner, 2005], our method is based on a
continuous parameter animation. The motion resulting precision is therefore not dependent
on the database size as the exact desired motions are always available thanks to our animation
engines (locomotion and jump). Furthermore, our method does not need to know in advance
the obstacle location over time. In case of moving obstacles, we can iteratively apply our
motion planning method to correct the speed variation.

The steering method used to get round the obstacle decreases the linear speed near to the
way-points. This problem can be solved by placing two way-points near to the obstacle side
to subdivide the problem complexity. Another idea is to place two way-points to recover the
original path, one with the position and the other for the direction.

Our speed variation method is also adapted for other scenario. In fact, it can generate ac-
cording initial and final conditions set on the locomotion speed and foot positions. Imagine
that the character has to jump over a low wall from a standing position (without run-up). The
speed variation is computed by setting to zero the speed to be reached at the obstacle begin-
ning. Another interesting problem solved by our method concerns the locomotion combined
with stairs climbing. It is important to be sure that either the right or the left foot is placed
just in front of the first stair. In this case, the method computes a speed variation ensuring
that the final phase equals either 0 (right foot) or 0.5 (left foot). However, this final phase
can take any other value according to the desired task.

During the run-up phase, the model estimates the locomotion frequency variation by a
linear function. This approximation allows a drastic computational costs reduction without
decreasing the result quality. Actually, even when the speed variation is important, the foot
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is placed in average with less than 10 [cm] close to the obstacle. We can nevertheless ensure
that the foot never touches the obstacle by reducing the distance to the obstacle and increasing
the length of the jump. The precision of the take-off foot position can be improved by re-
computing our speed variation during the run-phase, at a specific sampling rate.

The choice of a quadratic variation model is motivated by its efficiency and flexibility, al-
lowing to handle special cases such as identical initial and final speeds. However, our method
induces an acceleration discontinuity, even though we limit the acceleration difference dur-
ing the variation. Other polynomial variation models of higher degree can be elaborated, in
order to add constraint for ensuring acceleration continuity. Still, our opinion is that those
models increase the computational costs and do not guarantee a significant improvement in
the animation believability. Actually, we think that the human eye is not extremely sensitive
to acceleration discontinuities as our results provide already pleasant animations.

Other obstacle types can be handled with our method. For an obstacle which is different
from a box and does not face up the character perpendicularly, we construct a bounding box
around it. This bounding box, illustrated in Fig. 1.17 (left), defined as rectangular and facing
up the character perpendicularly, is then used to solve the jumping problem. Our method
can also be adapted for situations where the character walks towards the obstacle with an
angular speed. For example when a character turns at a street corner, and sees an obstacle
as schematized in Fig. 1.17 (right). As the distance d (from the character position to the
obstacle) is function of the angular speed, the strategy consists first in determining a range
of fixed angular speed variation. Then, for each of those variations, the distance is computed
in order to determine the linear speed variation. It results a beam of trajectories from the
character position to the obstacle (Fig. 1.17, right). Finally, from this beam, one trajectory
has to be selected.
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Figure 1.17: Top-view with different obstacle types and situations. Left: The obstacle is
wrapped by a bounding box. Right: Beam of possible character trajectories, with different
angular speed variation.

To conclude, we do not consider the obstacle height. However, our method can be easily
adapted for such situation. At the strategic planning layer level, the parameter height may
lead to other decisions like a different final run-up speed or the stop in front of the obstacle.
In this latter case, our method provides a speed variation given the final speed equal to zero.
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Software Implementation

In this chapter, we present the main software tools which have been implemented for
our animation engine. It consists of three software modules: the first to construct the
hierarchical structure of our motion database, the second in form of two library named

libLOCO to generate parameterized animations and libMOCO to detect and enforce con-
straints, and finally the third to control and visualize results on virtual humans.

2.1 PCA Hierarchical Structure

The construction of the hierarchical structure composed of PCA spaces is performed by two
functions written in Matlab. This process is performed once, in a pre-processing phase.

The first allows to read animation files contained in a directory which compose a motion
database. In these files, the representation of the positions and orientations of each joint over
time is based on the VRML format. The positions are normalized by the leg length of the
captured subject while the rotations are converted into exponential maps. This process is
repeated for all motions from the database, and finally it results in a motion matrix where
each column represents a motion.

The second function applies a PCA algorithm to this motion matrix and builds the suc-
cessive hierarchical levels. At each level, the data are separated into groups with a standard
K-means algorithm provided by Matlab. PCA is applied to each group and its results are
written into a file.

2.2 LibLOCO and LibMOCO Libraries

The animation engine is implemented in library form called LibLOCO. Technically this li-
brary is written in C++ and has dependencies on existing libraries developed in our research
lab. These libraries allow the abstract representation of virtual humans with local and global
joint matrices. They also provide functions for matrix algebra computation, and a numerical
Inverse Kinematic solver.
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Our library allows the creation of an object which represents an instance of the animation
engine. During its creation, the files created by the Matlab functions are read according to
the hierarchical structure. This latter is stored into the run-time memory. In addition, the
skeleton of a virtual character (described using the H-Anim standard) is created and assigned
to this engine. Then, the animation parameters are assigned throught an interface of public
functions. Finally the motion is generated by updating the skeleton with respect to a given
elapsed time.

In connection to this library, another one called LibMOCO has been developed to control
a motion by detecting and enforcing foot constraints. We decided to write it separately from
the animation engine so that this library can be used with other animation tools. LibMOCO
takes as input the animated skeleton and an instance of an IK solver. As an output, the
skeleton is controlled according to the foot constraints.

2.3 Applications

The previous described libLOCO and LibMOCO are linked to two applications, one to gen-
erate animation by scripts and the other to animate a character in an on-line manner.

2.3.1 Scripted Motion Generation

The application, called AnimaGene, allows to generate an animation by the mean of a XML
script. The concept is based on a time-line on which different actions and transition elements
are successively placed in a chronological order. Each action and transition element has a
defined duration.

An action is either locomotion or jump. For the locomotion, the action is characterized
by the parameters personification, walk/run, linear and angular speed. The modification
from a parameter configuration to another one is determined by a transition element. The
jump action is characterized by the parameters personification, walk/run jump and length.
Optionally, the position of the take-off foot can be specified. The transition from the current
locomotion parameter to the requested jump is performed automatically and do not need a
transition element.

Concretely, an animator writes the list of parameterized actions and transition into an
XML file according a specific syntax (see Fig. 2.1 for an example). Then AnimaGene scans
and parses this file and produces the resulting animation into a destination file. The output
format is VRML so as to play the animation in a simple and light 3D viewer.

Note that this application has been used by professional animators in the framework of a
European project called MELIES. They generated a small movie where a man was walking
along a harbor.
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Action WALK

Transition

Action RUN

Figure 2.1: A script based on the XML syntax used for AnimaGene. This example describes an
animation sequence composed of a walking followed by a running.

2.3.2 On-line Motion Generation

Another application was developed for the on-line generation of motions. Called Anima-
tionTool, this application consists in a graphical user interface (GUI) designed in QT with
an embedded 3D viewer based on Open Inventor. This viewer is placed on the left part of
the application (see Fig. 2.2). The application displays rigid, non-skinned virtual humans
according to the skeleton created in the instances of the animation engine. The proportion of
these virtual humans can be modified on-line by changing their leg lengths.

To animate these characters, the interface on the right part of our application (see Fig. 2.2)
allows the on-line control of each characters. All parameters can be modified by either
inserting a numerical value of by moving sliders. It is also possible to enforce the reach of
new parameters values during a given duration.

To make a character jump, the user has to press on a button. In that case, the character
motion is automatically adapted before performing the jump in order to be coherent with the
required jump. To create obstacles dynamically in the 3D scene, the user has to simply press
a control key which activates the random creation of an obstacle in front of the controlled
character. The application generates the corresponding animation so as to jump over or get
round the obstacle according to the parameter configuration.

One of the main goals of this AnimationTool application was to get a simple system for
testing our research work. Therefore, the basic design of the characters and the 3D environ-
ment was intentional in order to focus on the animation problems. However, as our engine
can serve for other applications like Virtual Reality training systems for example. Hence, our
application has been integrated into VHD++ development framework [Ponder et al., 2003].
VHD++ is targeted for the rapid component-based development of 3D applications with a fo-
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Figure 2.2: Interface of AnimationTool.

Figure 2.3: Different virtual characters animated by our engine in the VHD++ platform.

cus on virtual humans. It allows among others the rendering of large 3D scenes and skinned
characters. Fig. 2.3 illustrates four characters animated by our locomotion engine in the
VHD++ platform, while Fig. 2.4 and Fig. 2.5 show different jumps.
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Figure 2.4: Different virtual characters performing various jumps in the VHD++ platform.

Figure 2.5: Sequences of a jump performed in the VHD++ platform.
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Chapter 1
Conclusion

In this chapter, we conclude first by summarizing the objectives and the results, and sec-
ondly by describing our contributions. Thirdly, we give outlook on further research di-
rections and possible extensions.

1.1 Summary

The aim of this thesis was to propose an on-line locomotion engine for virtual humans so
as to make them move and jump in an environment. In addition, the engine controls the
clearing of possible dynamic obstacles in this environment. The directives guiding the engine
conception were:

• to extend existing motion generation methods by developing a single animation system
capable not only of generating motions, but also first of improving the quality results
and secondly of adapting the motion to dynamic environments;

• to propose simple and efficiency methods at each level of our animation system in
order to preserve real-time performances, motion realism and genericity;

• to give useful tools to animators or simulation processes for the animation generation.

Our approach was based on motion capture data composed of locomotion cycles and
jumping sequences performed by various subjects. The representation of such motions has
been simplified using a statistical method to facilitate the elaboration of a parametric model.
This model has been structured into hierarchical levels in order to allow an intuitive motion
parameterization: speed, type of locomotion and personification. Moreover, a normalization
stage in time and space was introduced in order to adapt the produced animation to any
character size. We also demonstrated the genericity of the motion model by applying it to
cyclic motions (walking and running) as well as non-cyclic ones (jumping).

The guarantee of basic constraint preservation during the real-time motion synthesis has
been ensured by firstly designing a new detection method for foot-floor interactions. Sec-
ondly, those constraints have been smoothly enforced using a novel mechanism.
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The problem of assembling locomotion with jump actions was also dealt with. We in-
troduced a method based on real observations of people performing jumps, which ensures
a coherent on-the-fly synchronization between a required jump and the current locomotion
parameters.

Finally, we have proposed a motion planning technique which reacts to obstacles in a
dynamic environment, by automatically adopting a new trajectory. According to the para-
meter configuration, our method adapts the locomotion in order to jump over or to avoid the
obstacle.

We have implemented those techniques in a single animation engine, capable of animat-
ing characters in an on-line manner. Two applications using this engine have been designed
to alleviate the animator’s work. In the first, animations can be generated by means of scripts
describing motion parameters over time. The second is composed of a user interface to
control the character animation in real-time.

1.2 Contributions

1.2.1 Motion Parameterization

Motion parameterization in Computer Animation is a wide topic still under exploration but
already providing interesting results. However, the existing locomotion synthesis approaches
lack in intuitive and/or accurate motion parameterization. In addition, they actually compute
the final parameterized posture frame by frame, at each time-step.

We propose a new motion synthesis approach by structuring a motion capture database
into hierarchical levels. At each level, a statistical method (PCA) is applied to the captured
motions which are then grouped by a given high-level parameter characterizing them. In
this way, we contributed to generate accurate motions at each level by an interpolation be-
tween motions having similar attributes. This scheme not only allows the production of new
motions inside the convex hull determined by the original data, but also beyond it (extrap-
olation). To compute an entire posture set at once in a very efficient way, we proposed to
apply PCA in order for the algorithm to consider the statistical variation between the com-
plete motions instead of their individual frames. With similar performances to existing frame
by frame methods, we proposed to compute the entire set of postures at once from a motion
unit, like a locomotion cycle for example.

In the literature, motion models do not consider character size. All motions from the
database therefore have to come from the same character. If characters of different sizes
have to be animated, it is necessary to adjust the final motion with a retargeting method.
Our model, however, is generic. It takes into account the character size and considers it as
a high-level parameter. The motion is directly generated according to the proportions of the
animated character. Besides this data normalization, our model is also generic in the sense
that a large variety of motions can be parameterized, including cyclic locomotion (walk, run)
and non-cyclic sequences (jump).

The results of this contribution have been published in several papers for international
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conferences and journal [Boulic et al., 2003; Glardon et al., 2004a,b; Urtasun et al., 2004].

1.2.2 Constraint Detection and Enforcement

A special constraint in character animation, namely the foot-floor interaction, is important to
consider as its preservation increases the realism of generated motions. Thanks to the ability
of our motion model to compute an entire motion unit and therefore to obtain postures in the
future, we bring two complementary contributions in this context of foot constraints.

The first contribution concerns the detection of such a constraint in an on-line manner.
Thanks to the available motion unit, we extended an off-line technique for its application to
on-line motion synthesis. In order to replace the manual fine-tuning of control parameters
required by off-line approaches, our technique automatically adapts those parameters with
respect to properties of the current generated motion.

The second contribution consists in developing a constraint enforcement method which
not only maintains a foot fixed during its constraint but also allows to re-position this foot at
ground level, at a given location. Using the motion unit in order to anticipate the constrained
foot position, the method provides a smooth enforcement before and after the constraint.

The combination of these two approaches has shown an improvement in the quality of
final motions. This solution, by using future information of the motion, allows the modifica-
tion of straight line locomotion so as to follow a curved path.

The results of this contribution is in review process for a journal submission [Glardon
et al., 2006a].

1.2.3 Coherent Motion Transition

A number of approaches have been explored to generate transitions between different types
of motions. Some aim at finding transition time automatically from a big motion database,
in an off-line manner, while others attempt to synchronize two different actions in an on-line
manner. However, the actions are always pre-defined and can not be parameterized during
the animation run-time.

We contributed to improve the transition generation (i.e. blending) by proposing a tech-
nique which takes into account the different dynamic properties of the motions to be blended.
Our technique is able to perform on-line transitions from a current locomotion to any jump
type (and inversely) by adapting the locomotion so as to be compatible to the requested jump.
This compatibility criterion consists in a functional model based on real motion observations.

In addition, the transition time and duration are automatically determined on-the-fly
through our constraint detection method. Hence, our contribution greatly expands the an-
imator freedom. In fact, from any locomotion characteristics and any parameterized jumps
selected by an animator, our method automatically generates a coherent transition.

The results of this contribution have been published in [Glardon et al., 2005].
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1.2.4 Dynamic Obstacle Handling

Previous motion planning techniques focus on solving collision-free paths in complex envi-
ronments. They are interactive at the best case, but do not generate motions. Additionally,
they are never adapted for dynamic environments where the obstacle configuration is un-
predictable. While other approaches tend to be on-line, they can still not handle dynamic
obstacles, and produce rough animation results.

We contributed to change this situation by presenting a method which mirrors, as closely
as possible, the behavior of a human confronted with an obstacle to jump over. In fact, the
humans react as soon as they see an obstacle, and they do not need to know the position of
all obstacles in the environment. Hence, our method constructs the appropriate trajectory as
soon as an obstacle is created in front of an animated character. The technique we propose
computes the adequate speed profile to adopt along the path towards the obstacle. This profile
ensures first that the take-off foot is placed as close as possible to the obstacle, and secondly,
that the final run-up speed corresponds to the required jump. The obstacle can also be got
round when it is too big to be jumped over.

Thanks to this contribution, it is feasible to animate on-line autonomous agents which are
reactive to a dynamic environment. Together with the previously presented contributions for
character animation, it is an appropriate means to precisely clear obstacles. More generally,
our method is able to generate a continuous motion which corresponds to given initial and
final conditions set on the locomotion speed and foot positions.

The results of this contribution have been accepted for publication ( [Glardon et al.,
2006b]).

1.2.5 Integration and Applications

The final contribution of this thesis consists in the integration of all the animation tech-
niques we have proposed. The main difficulty was to preserve the real-time performance,
while reaching a compromise between motion quality and on-line generation. Thanks to the
appropriate tradeoff between efficiency and precision proposed in each of the previous con-
tributions, we have implemented a complete animation engine fully controlled by high-level
parameters and reactive to dynamic obstacles.

To test our final engine, a 3D application was developed. The animation of a character
is possible through a user interface. At any time, the animator can generate an obstacle with
random dimensions and place it in front of the character at a random distance. The engine
reacts automatically by modifying the current locomotion parameters in order to clear the
obstacle. A succession of randomly created obstacles provides a test bed, and allows for the
observation and evaluation of the important aspects of our animation model: smooth high-
level parameterization; constraint enforcement; take-off foot position; transition generation.

Finally, we contributed to the creation of a motion database composed of more than 500
minutes of animation. Besides its usefulness to the research community for motion analysis
and synthesis, this raw material is valuable. On one hand, motion capture systems are expen-
sive and the post-processing work to clean the final animations is prohibitive. On the other
hand, only a few research labs or commercial companies open their motion databases to the
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public.

1.3 Perspectives

1.3.1 Result Improvements

The animation engine resulting from this thesis provides with an intuitive and continuous
control of the generated motions, allied to the possibility of interaction with the environment
of the animated character. However, some aspects of our method could be improved.

First, we emphasized the need for an on-line animation engine. Along this thesis, we
reached the compromise between motion quality and efficiency for each component of our
engine. Nevertheless, the constraint detection may provide results which are not precise
enough for short time constraints. As a consequence, the constraint enforcement becomes
infeasible and artifacts appear in the final corrected motion. This is essentially due to the
truncation of the start and end constraint times. To minimize this problem, a solution consists
in increasing the sampling rate of the motion.

Second, the parameterization with respect to the captured subject, namely the personifi-
cation parameter, is difficult to use in our system, especially for the locomotion. The main
causes are the use of a treadmill for the capture and the lack of diversity in our database.
Several approches may improve the influence of this personification. Clearly, the capture of
exaggerated locomotions performed by an actor would be a good initiative. Another option
would be to modify the final motion by wielding the motion amplitude or the offset between
limbs and body.

To conclude, our motion modeling is based on statistical and approximation methods.
Besides its advantages (efficiency, simplicity), this method, by definition, needs an important
number of motions. Even if we have obtained acceptable results reducing the number of ex-
amples, it degrades the guarantee of quality and accuracy of the results. The combination of
our motion modeling with recent approaches, which interpret PCA as a particular Gaussian
process, can be a method to restrict the number of necessary input data while keeping good
quality results.

1.3.2 Concrete Applications

The development of our animation engine opens wide application perspectives. One of the
most popular concerns the game and movie industry. In these domains, the current applied
techniques combine motion capture with manual edition by keyframing. Despite its signif-
icant cost in time and money, such approach is still used as it provides the best quality and
control for animations. The technology transfer from research to industry requires the orga-
nization of new work methods and new training for designers and animators. However, this
transfer is becoming more and more effective, especially for animations with low level of
details, like background character motions.

Simulation of human behaviors is another interesting application for our engine. For

157



Chapter 1. Conclusion

town planners, it is important to experiment their environment modifications by simulations
giving rapid feedback, ideally on-line. In most cases, they need a large amount of people
walking and running in the urban traffic, and jumping over small obstacles such as sidewalks,
puddles of water or roadworks. Our method is very appropriate for parameterized animation
of crowds thanks to the computation of a motion unit at once, and not frame by frame.
In fact, when the character’s motion parameters are not modified during the animation, no
extra computation is needed. For crowd simulations, this approach allows for the reach of
a compromise somewhere between continuous parameter variations of few characters, and
fixed, keyframe based, animations of thousands of characters. The principle consists in
updating, at each time step of the simulation, the motion parameters for only few characters.

Our motion modeling is also applicable for medical applications, especially in orthopedic
domains. After undergoing a surgery, people have to follow rehabilitation exercises. These
can be realized with special motorized prostheses which help the patient to walk, for exam-
ple. Our motion modeling could control the motion of those prostheses. Another important
aspect in rehabilitation is the motion comparison between an injured and a healthy person.
By overlapping motions generated by our engine with the patient’s ones, the physician has a
technical and pedagogical tool to explain the correction the patient should bring.

1.3.3 Future Extensions

In the future, our animation engine can be extended particularly to provide more flexibility
and autonomy.

In this thesis, we dealt with jumps of variable lengths. In reality, however, people per-
form a wider variety of jumps according to the environment they are confronted to. We can
imagine jumps of variable heights, jumps without run-up or jumps with a level change be-
tween the take-off and landing positions. Modeling of such motions is possible using our
methodology. For example, in case of jumps without run-up, our motion planning method is
capable of determining the speed variation so as to stop the character exactly in front of the
obstacle.

Another interesting extension is the combination of a perception system with our ani-
mation engine. This system could simulate the human perception to detect obstacles in the
environment. After this detection, the obstacle is analyzed in order to determine the way the
character will react. For example, if this obstacle can be jumped over, the jump type has to
be chosen as well as its parameters.

Recently, the evaluation and validation of synthesized motions have emerged, and this
research topic is in vogue. The underlying idea is to understand the human mechanism which
determines whether a motion is realistic or not. At this time, specific type of motions can be
evaluated by physically based validation. We can imagine a method which evaluates a wide
spectrum of motions as well as transition between them. Such methods could be applied to
our engine in order to validate and/or improve our approach to generate animations.
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Appendix A
List of Notations

Throughout this document, scalar are denoted by small letters such as s, vectors by small
boldface letters such as v. Matrices are denoted by capital boldface letters such as M.

Motions
Description Notation

Motion unit θ

Number of frames in a motion unit Nframe

Continuous motion function (over time t) M (t)

i-th frame of a motion Fi

Motion phase ϕ

Position of root joint in motion unit, at i-th frame p̂ri

Orientation of root joint in moiton unit, at i-th frame q̂ri

Position of root joint, at i-th frame pri

Orientation of root joint qri

Orientation of the j-th joint, at i-th framet qji
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Motion Parameters
Description Notation

Locomotion parameter vector Ψ = (s, wloco,wsubj)

Speed s

Locomotion weight wloco

Personification vector wsubj

Personification i-th element wsubj,i

Angular speed ω

Jump Length l

Motion Capture Sequences
Description Notation

Number of database subject Nsubj

Number of walking sequences Nwalk
seq

Number of running sequences N run
seq

Number of sequences of the k-th subject Nk
seq

Number of walking sequences of the k-th subject Nwalk,k
seq

Number of running sequences of the k-th subject N run,k
seq

Minimum captured speed for walking sw

Minimum captured speed for running sr

PCA Spaces
Simple PCA Components Notation
Walking

PCA Matrix of Principal Components Ek

(for the k-th subject) Vector of the j-th Principal Component ek
j

Coefficient Vector αk
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Hierarchical PCA space Components Notation
Locomotion

Main PCA Matrix of Principal Components E

Vector of the j-th Principal Component ej

Coefficient Vector α

Sub-PCA level 1 Matrix of Principal Components Fk

(for the k-th subject) Vector of the j-th Principal Component fk
j

Coefficient Vector βk

Sub-PCA level 2 Matrix of Principal Components Gwalk,k

(walk, Vector of the j-th Principal Component gwalk,k
j

for the k-th subject) Coefficient Vector γwalk,k

Function returning γwalk,k given a speed s Awalk,k(s)

Sub-PCA level 2 Matrix of Principal Components Grun,k

(run, Vector of the j-th Principal Component grun,k
j

for the k-th subject) Coefficient Vector γrun,k

Function returning γrun,k given a speed s Arun,k(s)

Hierarchical PCA space Components Notation
Walking Jump

Main PCA Matrix of Principal Components E

Vector of the j-th Principal Component ej

Coefficient Vector α

Sub-PCA level 1 Matrix of Principal Components Fk

(for the k-th subject) Vector of the j-th Principal Component fk
j

Coefficient Vector βk

Function returning βk given a jump length l AjmpW,k(l)

Hierarchical PCA space Components Notation
Running Jump

Main PCA Matrix of Principal Components E

Vector of the j-th Principal Component ej

Coefficient Vector α

Sub-PCA level 1 Matrix of Principal Components Fk

(for the k-th subject) Vector of the j-th Principal Component fk
j

Coefficient Vector βk

Function returning βk given a jump length l AjmpR,k(l)
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Frequency Functions
Description Notation

Motion frequency function F

Locomotion frequency function Floco

Locomotion frequency function of the k-th subject F k
loco

Locomotion (walk) frequency function of the k-th subject Fwalk,k
loco

Locomotion (run) frequency function of the k-th subject F run,k
loco

Jump frequency function Fjump

Jump frequency function of the k-th subject F k
jump

Jump (walk) frequency function of the k-th subject Fwalk,k
jump

Jump (run) frequency function of the k-th subject F run,k
jump
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Appendix B
Background Mathematics

In this appendix, we present the mathematical background used in this thesis. The first
section introduces basic statistical definitions. The second presents two matrix decom-
position used in linear algebra. In the last section, the Principal Component Analysis

(PCA) method is described.

B.1 Basic Statistics

This section contains the definitions and rules for the mean, variance, standard deviation,
covariance and correlation for a given sample dataset X = (x1, x2, . . . , xn) extracted from a
population. Note that the definitions have been stemmed from [Bronstein et al., 1995].

B.1.1 Mean

The arithmetic mean, or more specifically the population mean, µX of X, is defined as
follows:

µX =
1

n

n∑
i=1

xi = E(X) (B.1)

The rules for the mean are:

E(aX + b) = aE(X) + b (B.2)
E(X + Y) = E(X) + E(Y) (B.3)

B.1.2 Variance

The variance σ2
X of X is defined as follows:
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σ2
X =

1

n

n∑
i=1

xi − µX = E
(
xi − E (X)2)

= E
(
x2

i − 2xiE (X) + E (X)2) = E
(
X2
)
− E (X)2

= VAR (X) (B.4)

The rules for the variance are:

VAR(aX + b) = a2VAR(X) (B.5)
VAR(X + Y) = VAR(X) + 2VAR(X,Y) + VAR(Y) (B.6)

where the rule B.6 is only true if X and Y are two independent variables. variables.

B.1.3 Standard Deviation

The standard deviation σX of X is defined as follows:

σX =
√

σ2
X =

√
VAR (X) = SD (X) (B.7)

B.1.4 Covariance

The covariance σXY between X and Y is defined as follows:

σXY =
n∑

i=1

(xi − E (X)) (yi − E (Y)) = E ((xi − E (X)) (yi − E (Y)))

= E(xiyi − xiE (Y ) − yiE (X) + E (X) E (Y)) (B.8)
= E (XY) − E (X) E (Y) = COV (X,Y) (B.9)

The covariance indicates the degree of association of two variables X and Y. If σXY is
positive, the relation between these two variables is increasing, and inversely when σXY is
negative. If the measurement units of the two variables are different, the multiplication of
those units returns the unit of the covariance. Therefore, the covariance is sensible to the unit
changes.

B.1.5 Correlation

The coefficient correlation ρXY between X and Y is defined as follows:

ρXY =
COV (X,Y)√

VAR (X) VAR (Y)
= CORR (X,Y) (B.10)
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The correlation, defined between −1 and 1, is the normalized covariance and does not
have unit. The correlation, in contrast to the covariance, does not vary when the measurement
units of the data are changing.

B.2 Matrix Algebra

This section focuses on a brief overview of the eigenvalue decomposition and the singular
value decomposition to introduce the concept of PCA. Note that the definitions have been
stemmed from three books [Nipp and Stoffer, 1992; Press et al., 1992; Jolliffe, 1986].

B.2.1 Eigenvalue Decomposition

Let A be a quadratic matrix of type (n×n). The classical mathematical eigenvalue problem
is defined as the solution of the following equation:

Avi = λivi i = 1, 2, . . . , n (B.11)

where vi are the eigenvectors and λi the corresponding eigenvalues of A. If the matrix A is
symmetric (A = AT ), the following properties can be derived:

1. A has exactly n eigenvalues.

2. The eigenvectors build an orthogonal basis.

3. A can be decomposed into a diagonal matrix D whose elements contain the eigen-
values of A, and an orthogonal matrix U(i.e.UTU = I) whose rows contain the
corresponding unit eigenvectors. The decomposition is described as:

A = UDUT = UDU−1 (B.12)

B.2.2 Singular Value Decomposition

Singular Value Decomposition (SVD) methods are based on the following theorem of linear
algebra:

Theorem 1 Any (m × n) matrix A whose number of rows m is greater than or equal to its
number of columns n can be written as the product of an m × n column-orthogonal matrix
V, an n× n diagonal matrix Σ with positive or zero elements (the singular values), and the
transpose of an n × n orthogonal matrix U.

The singular values di hold in Σ are defined as follows:

di =
√

λi i = 1, 2, . . . , n (B.13)
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where the λi are the eigenvalues of the matrix ATA. Their corresponding eigenvector ui are
called the right singular vectors of A, and the corresponding eigenvector vi of AAT the left
singular vectors. Thereby the matrix ATA holds the same λi(
= 0) eigenvalues of AAT :

ATAui = λiui

AATvi = λivi (B.14)

Furthermore, we can write:

Aui = divi =
√

λivi

ATvi = diui =
√

λiui (B.15)

It is to observe that ATA and AAT are symmetric matrices and therefore have orthog-
onal eigenvectors matrix, U and V. The SVD performed on the matrix A is defined as
follows:

A = VΣUT (B.16)

B.2.3 PCA on Single Dataset

Suppose that x is a vector of p random variables, and that the variance of the p random
variables and the structure of the covariance or correlations between the p variables are of in-
terest. By applying a PCA on this vector, we have first to look for a linear function αT

1 x = z1

which has a maximum variance. Next we look for a linear function αT
2 x = z2, uncorrelated

with αT
1 x = z1 , which has a maximum variance, and so on. The αT

i x correspond to the
coefficient of the i-th principal component (PC). The following equation describes the com-
putation of the first PC component z1:

αT
1 x =

(
α11 α12 . . . α1p

)
⎛⎜⎜⎜⎝

x1

x2
...

xp

⎞⎟⎟⎟⎠ =

p∑
i=1

α1ixi = z1 (B.17)

In order to find the value αi, the computation of the variance of αix is described in
Eq. B.18 by using rules of Eq.B.5. The maximization of the variance is performed using the
technique of Lagrange multipliers (see [Jolliffe, 1986] for further details). As a result, the
vector αi are the eigenvectors of the covariance matrix of x, αi corresponding to the largest
eigenvalue, and so on.

VAR (α1x) = VAR

(
p∑

i=1

α1ixi

)

=

p∑
i=1

α2
1iσ

2
i + 2

(
p∑

i=1

p∑
j=i+1

α1iα1jσij

)
= αT

1 COV (x) α1 (B.18)
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B.2.4 PCA on Sample Dataset

Concerning the problem based on sample dataset, we replace the vector x by the matrix A
containing in each row an observation Ai. The number of column in A represents therefore
the number of variables of the dataset (p for example), and the number of row corresponds
to the number of samples (n for example). We look for the linear function Aα1 = z1 which
has a maximum variance. Comparing to the case of single dataset, the difference is that the
coefficient of the PC is a vector containing the coefficient for every sample. Eq B.19 defines
the coefficient vector z1 of the first PC for every sample.

Aα1 =

⎛⎜⎜⎝
a11 a12 . . . a1p

a21 a22 . . . a2p

. . . . . . . . . . . .
an1 an2 . . . anp

⎞⎟⎟⎠
⎛⎜⎜⎝

α11

α11

. . .
α1p

⎞⎟⎟⎠ =

⎛⎜⎜⎝
∑p

i=1 α1ia1i∑p
i=1 α1ia2i

. . .∑p
i=1 α1iani

⎞⎟⎟⎠ =

⎛⎜⎜⎝
z11

z12

. . .
z1n

⎞⎟⎟⎠ = z1

(B.19)
In order to find the value α1i, we define the variance σ2

k of a variable at the k-th column
of the matrix A as follows:

σ2
k =

1

n − 1

n∑
i=1

(aik − āk)
2 (B.20)

where

āk =
1

n

n∑
i=1

aik k = 1, 2, . . . , p (B.21)

The maximization of those variances leads to a covariance matrix C whose eigenvectors
return the αi vectors. The covariance between the j-th variable and the k-th variable is
defined as follows:

Cij =
1

n − 1

n∑
i=1

(aij − āj) (aik − āk) (B.22)

Thus, the matrix C can be written as

C =
1

n − 1
ÃT Ã (B.23)

where Ã is a (n × p) matrix with (i, j)-th element (aij − āj). This representation is very
useful because the eigenvectors of C are the same as ÃT Ã and the eigenvalues differ from a
factor of 1

n−1
.

To summarize, the eigenvectors ei have to be computed from the covariance matrix C,
by the use of SVD methods for example. Hence, a matrix E is defined with its columns
which contain the eigenvectors ei classified in decreasing order. The general form of PCA
applied to the matrix A can be written as:

ÃE = Z (B.24)
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In addition, as
Ã = A − Ā (B.25)

the matrix A can be defined as:
Ã = Ā + ZET (B.26)
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Fit Functions on PCA Spaces

C.1 Walking and Running Motion Units
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Figure C.1: Resulting fit functions for walking (left) and running (right) for the subject 2.
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Figure C.2: Resulting fit functions for walking (left) and running (right) for the subject 3.
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Figure C.3: Resulting fit functions for walking (left) and running (right) for the subject 4.
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Figure C.4: Resulting fit functions for walking (left) and running (right) for the subject 5.
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C.2 Walking and Running Jump Motion Units
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Figure C.5: Resulting fit function for walking (left) and running (right) jump for the subject 2.
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Figure C.6: Resulting fit function for walking (left) and running (right) jump for the subject 3.
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Figure C.7: Resulting fit function for walking (left) and running (right) for the subject 4.
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Figure C.8: Resulting fit function for walking (left) and running (right) for the subject 5.
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Figure C.9: Resulting fit function for walking (left) and running (right) for the subject 6.
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Figure C.10: Resulting fit function for walking (left) and running (right) for the subject 7.
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Appendix D
Pecub’s Cartoons

The humoristic illustrations appearing in this thesis have been drawn by Pécub, a renowned
cartoonist located in Aubonne, Switzerland. The illustrations used for the private defense
and public presentation of this thesis are presented below. The author of this thesis holds the
copyright of all cartoons, a present of his parents who are good friends of Pécub.
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Figure D.1: PCA performed on angular data instead of 3D marker positions (see Part II, Sec-
tion 2.2).

Figure D.2: Time normalization to determine the duration of a generated motion (see Part III,
Section 2.2).
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Figure D.3: Foot sliding effect which has to be corrected (see Part III, Chapter 2).

Figure D.4: Footplant detection method (see Part III, Section 2.3).
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Part V: Appendix D. Pecub’s Cartoons

Figure D.5: Footprint position computation to place the take-off foot as close as possible to the
obstacle (see Part IV, Section 1.3.2).

Figure D.6: Improvement of our method to dynamically handle various obstacle type (see
Part IV, Section 1.6).
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Figure D.7: Limitations of the methods presented in this thesis (see Part V, Section 1.3).

Figure D.8: Future perspectives with other activities which can be parameterized with our mo-
tion modeling (see Part V, Section 1.3).
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Z. Popović and A. Witkin. Physically based motion transformation. In Proceedings of ACM
SIGGRAPH, Annual Conference Series, pages 11–20, 1999. 2.1.3, 2.7

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C. Cambridge
University Press (second edition), 1992. 1.3, B.2

K. Pullen and C. Bregler. Motion capture assisted animation: Texturing and synthesis. In
Proceedings of ACM SIGGRAPH, Annual Conference Series, pages 501–508, 2002. 2.3.2

K. Pullen and C. Bregler. Animating by multi-level sampling. In Proceedings of Computer
Animation, pages 36–42, 2000. 2.3.2

M. Raibert and J. Hodgins. Animation of Dynamic Legged Locomotion. In Proceedings of
Computer Graphics and Interactive Techniques, pages 349–358, 1991. 2.1.2

P. Reitsma and N. Pollard. Evaluating motion graphs for character navigation. In Pro-
ceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages
89–98, 2004. 2.5, 2.19

L. Ren, A. Patrick, A. Efros, J. Hodgins, and J. Rehg. A data-driven approach to quantify
natural human motion. In Proceedings of ACM SIGGRAPH, Annual Conference Series,
2003. 1.6

C. Reynolds. Steering Behaviors For Autonomous Characters. In Proceedings of Game
Developers Conference, pages 763–782, 1999. 2.4.3, 1.1, 1.3.1

189



Bibliography

C. Rose, B. Guenter, B. Bodenheimer, and M. Cohen. Efficient generation of motion tran-
sitions using spacetime constraints. In Proceedings of ACM SIGGRAPH, Annual Confer-
ence Series, pages 147–154, 1996. 2.5, 2.3.2.1, 1.6

C. Rose, M. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimensional motion
interpolation. IEEE Computer Graphics and Applications, 18(5):32–41, 1998. 2.3.1,
2.3.1, 2.10, 2.3.1, 2.3.2, 2.5, 2.5, 1.2, 2.3.2.1, 1.3, 2.2, 2.3, 3.1, 3.3.2, 3.4

C. Rose, P.-P. Sloan, and M. Cohen. Artist-directed inverse-kinematics using radial basis
function interpolation. In Proceedings of Eurographics, 2001. 2.3.1

A. Safonova and J. Hodgins. Analyzing the physical correctness of interpolated human
motion. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation, 2005. 1.6

A. Safonova, J. Hodgins, and N. Pollard. Synthesizing Physically Realistic Human Motion
in Low-Dimensional, Behavior-Specific Spaces. In Proceedings of ACM SIGGRAPH,
Annual Conference Series, 2004. 2.1.3, 2.3.2, 2.14, 1.6

M. Salvati, B. Le Callennec, and R. Boulic. A Generic Method for Geometric Contraints
Detection. In Proceedings of Eurographics, short presentation, sep 2004. 2.4.1

A. Schache, P. Blanch, D. Rath, T. Wrigley, R. Starr, and K. Bennell. A comparison of
overground and treadmill running for measuring the three-dimensional kinematics of the
lumbo-pelvic-hip complex. Clinical Biomechanics, 16(8):667–680, oct 2001. 1.1
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