Modeling of Microsegregation in Macrosegregation
Computations

H. COMBEAU, J.-M. DREZET, A. MO, and M. RAPPAZ

A general framework for the calculation of micro-macrosegregation during solidification of metallic
alloys is presented. In particular, the problems of back diffusion in the primary solid phase, of eutectic
precipitation at the end of solidification, and of remelting are being addressed for an open system,
i.e., for a small-volume element whose overall solute content is not necessarily constant. Assuming
that the variations of enthalpy and of solute content are known from the solution of the macroscopic
continuity equations, a model is derived which allows for the calculation of the local solidification
path (i.e., cooling curve, volume fraction of solid, and concentrations in the liquid and solid phases).
This general framework encompasses four microsegregation models for the diffusion in the solid
phase: (1) an approximate solution based upon an internal variable approach; (2) a modification of
this based upon a power-law approximation of the solute profile; (3) an approach which approximates
the solute profile in the primary phase by a cubic function; and (4) a numerical solution of the
diffusion equation based upon a coordinate transformation. These methods are described and com-
pared for several situations, including solidification/remelting of a closed/open volume element whose
enthalpy and solute content histories are known functions of time. It is shown that the solidification
path calculated with method 2 is more accurate than using method 1, and that 2 is a very good
approximation in macrosegregation calculations. Furthermore, it is shown that method 3 is almost
identical to that obtained with a numerical solution of the diffusion equation {method 4). Although
the presented results pertain to a simple binary alloy, the framework is general and can be extended

to multicomponent systems.

1. INTRODUCTION

MATHEMATICAL computations of macrosegregation
development during alloy solidification has received increas-
ing interest during recent years.!'-**] Central to such compu-
tations is a model relating the specific enthalpy and local
average solute concentration to the solid fraction, tempera-
ture, and solute concentrations in the solid and liquid parts
of the two-phase volume elements, i.e., a description of the
local solidification path. Many computations so far have
been based upon the lever rule approximation, i.e., upon the
assumption of local complete mixing of solute in the sohd
and liquid phases. However, the Scheil approximation, which
is based upon the assumptions of complete solute redistri-
bution locally in the liquid, of no solid diffusion, and of
thermodynamic equilibrium at the solid-liquid mterface, con-
stitutes a better description of solidification than the lever
rule for most alloys. Often, even more elaborate models ac-
counting for finite diffusion in the solid dendrtes!'*2* are
needed, particularly if eutectic distributions and/or shrink-
age-induced flows are of interest.?”) Except for the models
in References 26 through 28, there are three main problems
related to the use of nonequilibrium solidification descrip-
tions.
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(1) The approximative analytical expressions accounting
for finite solute diffusion in the solid'*'®) rely on a
simplified presumption concerning the dendritic growth
kinetics, which does not necessarily apply for an in-
dustrial casting situation. For example, the conditions
of so-called parabolic solidification is not met in alu-
minium d.c. casting where local remelting occurs due
to complex boundary conditions.!!!-1230-32]

(2) The analytical expressions in References 14 through 18
are all based upon the assumption of a constant average
concentration within the considered volume element
(i.e., closed system). This assumption cannot be made
in macrosegregation computations since the prediction
of changes in the local average concentration requires
the consideration of an open system.

(3) Accounting for remelting in situations in which
changes in average concentration and/or finite solute
diffusion in the dendrites occur requires that the solute
concentration in the dendritic structure during solidifi-
cation be traced.’>*4 In other words, transport phenom-
ena at two different scales have to be dealt with: the
macro scale of the casting and the micro scale of the
dendrites.

While the situation of no microscale diffusion (i.e.,
Scheil approximation) can be handled in macrosegregation
computations by a tracing method,?335-3"! finite, nonzero
diffusion requires a solution of Fick’s second law for an
appropriate microstructural morphology.?***1 A simplifica-
tion of this two-scale problem has been proposed by Wang
and Beckermann.?¢27! Their method is based upon an ap-
proximation for the diffusion length in the dendrites. An-
other method was recently proposed by Mo,?® who
accounted for the effect of the microscopic solute diffusion
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Fig. 1—Flow chart of a micro-macrosegregation calculation.

in the solid by regarding the concentrations of the alloying
elements in the solid as so-called internal variables for
which evolution equations were derived.

The purpose of the present article is to review various
approaches of microsegregation models which can be im-
plemented in macrosegregation computations and to com-
pare these methods in case studies. The formal mathemat-
ical structure of micro-macrosegregation computations and
the main ideas behind the internal vanable method?®! are
summarized in Section II. A modification of the internal
variable model based upon a power-law approximation of
the solute profile in the dendrites and the similarities be-
tween this model and the approach in References 26 and
27 are also presented, and the power-law approximation is
extended to encompass various microstructural morpholo-
gies. An approximate methodology applying a collocation
method and the exact diffusion problem are then presented.
The algorithm for incorporation of the solidification path
models in macrosegregation computations is presented in
Section III, and particular attention is paid to the treatment
of a eutectic reaction at the end of solidification. Also, the
numerical solution of Fick’s second law in a one-dimen-
sional platelike secondary dendrite arm is presented. Sec-
tion IV is devoted to case studies reflecting solidification
of a closed system as well as possible remelting and vari-
ation of the overall solute content that can occur during the
solidification of a binary alloy. Finally, in Section V, some
of the main assumptions on which the present investigation
has been based are discussed.

II. THEORETICAL FRAMEWORK

A. Mathematical Structure of Micro-Macrosegregation
Computations

The goal of macrosegregation computations is to predict
solute concentration inhomogeneities at the scale of a whole
casting. Such calculations encompass the resolution of the
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averaged continuity equations at the macroscopic scale
(Figure 1). Using known entities at time ¢, the average ve-
locity of the fluid, vi*, the local pressure, p'**, the specific
enthalpy, A'*%, and the average local solute concentration,
w*4 at the next time-step thus can be deduced at some
points of an enmeshment.* In the solidification interval, a

*For the sake of simplicity, binary alloys will be considered here. The
average solute concentration and enthalpy of a small volume element will
be simply noted w and 4 (instead of W and A).

microsegregation model is needed in order to deduce the
local solidification path of the alloy from the known varia-
tions of enthalpy and average solute concentrations. As such,
the micromodel can predict the new temperature, 7'*%, mass
fraction of solid, fi*%, average solute concentration in the
liquid, w{*%, and average solute concentration in the solid,
w4 In the present investigation, emphasis is placed on
the micromodel, assuming that A(f) and w(f) are known
functions of time which could result from the solution of
the macroscopic continuity equations (Figure 1).

Assuming constant thermophysical properties and equal
densities of the liquid and solid phases, the specific en-
thalpy is related to the solid mass fraction and the temper-
ature by

h=cT+ L1~ f) [

where ¢, and L are the specific heat capacity and latent heat
of fusion, respectively. Furthermore, assuming the matenial
to be free of pores, the average solute concentration for a
binary alloy is related to £, w, and w, by

w= (1= fow + fw, (2]

The simplest form of constitutive solidification equations is
the lever rule approximation. Assuming constant liquidus
slope, m, and partition coefficient, £, the lever rule can
mathematically be expressed as

T=T, + mw (3]
w, = kw, (4]

5

where T, is the melting temperature. Combined with Egs.
[1] and [2], these two equations yield f,, T, w, and w, for
given values of w and 4 between the liquidus temperature
and the eutectic temperature.

The assumption of complete solute redistribution in the
liquid is kept in what follows, and thermodynamic equilib-
rium at the solid-liquid interface is imposed. However, the
assumption of complete solute redistribution in the solidi-
fied dendrites being relaxed, Eq. [4] is only valid for the
solute concentration in the solid at the interface, w¥:

w; = kw, [5]

Generally, the superscript * refers to quantities at the solid-
liquid interface.

B. The Internal Variable Model

Instead of linking w, to w, via Eq. [4], W, is considered
as an internal variable which will change due to solidifi-
cation, remelting, and solute diffusion in the dendrites. This
microstructure development is to be quantified by an ordi-
nary differential equation (ODE) relating dw/dt to macro-
scopically defined quantities. As described in more detail
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in References 28 and 34, time derivation of fw, and Leib-
niz’ rule are applied, and equilibrium is imposed at the
solid-liquid interface (¢f. Eq. [5]). Fick’s second law for
diffusion in platelike secondary dendrite arms then gives

I, _ (B BN, 1D,
dt £ dt  f,x3dn

Here, ¢t is time, 1 is a dimensionless vanable normalized
with respect to half of the characteristic secondary dendrite
arm spacing, x,, w(m) is the solute concentration in the
dendrite arm, and D, is the solute diffusivity in the solid.

With Eq. [6] as a starting point, an evolution equation
for w, can be derived, as described in Reference 28. First,
the solute flux at the interface is assumed to be proportional
to the difference between the interfacial value of the solute
concentration and the averaged solute concentration in the
solid phase. Second, it is pointed out that the lever rule
limit can be associated with the largest possible interfacial
flux during solidification or remelting and that the interfa-
cial flux in this limit is proportional to [1 — (1 — k) f]~".
These two considerations lead to the approximative evo-
lution equation

(6]

d_WS = ___kW’ — W‘[ﬂ[‘ + _.D_l—§ ] [7]
dt f L& "e1-qa-wy

where £ is an adjustable parameter. It should be noted that
such empirical constants are normally introduced in internal
variable equations in order to fit experimental data (for ex-
ample, Reference 38).

As pointed out in Reference 33, the special cases of con-
stant w (closed system) and of solidification solely (no re-
melting) can be modeled by the Scheil approximation
without any need to trace the solute concentration in the
dendrnites during solidification. This is equivalent to setting
D, = 0 in Eq. [7]. Furthermore, the evolution equation re-
veals that the lever rule is a limiting case. Since, for D, —
%, the factor multiplying the right-hand-side bracket must
tend toward zero, ie., W, = kw,

C. Power-Law Approximation

A different evolution equation can be derived by assum-
ing a particular approximation for the solute profile in the
platelike secondary dendrite arm. For example, a minor
modification of Ohnaka’sl'®) parabolic profile is

wi(n) =an” +b (8]

which fulfill the symmetry requirement ow/on = 0 at =
0 if v > 1. The constants @ and b can be related to w, and
w;, by the definition

] A0

w, = 7Jo w,(m)dn [9]

and the interfacial equilibrium assumption represented by
Eq. [5]. Hence, it can be shown that

9 kw, — w,
M (y + 1)’—W-* [10]

am A
which inserted into Eq. [6] yields

-
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dw, _ kw, — ww[@ L Do+ 1)]
dt P2 dt  x f

This evolution equation can be regarded as a modification
of Eq. [7] in that the denominator [1 — (1 — £)f;] has been
interchanged with f. The constant vy determining the form
of the solute profile plays the role of an adjustable param-
eter. In what follows, the model will be referred to as the
power-law approximation, while the model based upon Eq.
[7] will be referred to as the internal variable approach.

It should be noted that the solidification equation out-
lined by Wang and Beckermann (Reference 26, Eq. [2])
reduces to Eq. [11] if total solute redistribution in the liquid
and solid-liquid interface equilibrium are assumed. Central
to their derivation is an approximation for the diffusion
length based upon the assumption of a parabolic solute pro-
file, i.e., y is equal to 2. Wang and Beckermann?¢?”! dem-
onstrated that their model is a good approximation when
parabolic sohdification is considered. However, they did
not investigate the performance of the model in situations
in which remelting and/or changes in total solute concen-
tration occur.

(t1]

D. Microstructure Morphology

While Eq. [11] has been denived for a platelike secondary
dendrite arm morphology, the secondary arms of well-de-
veloped columnar and equiaxed dendritic microstructures
are better approximated by cylindrical geometries than by
a platelike morphology. Globulitic structures typical of
heavily inoculated aluminum alloys can be fairly well ap-
proximated by spherical geometries. For such situations, it
can be shown that Eq. [6] is_changed to

a5, _ (KT dl 4D, on:

= (cylindrical) [12]

£ dt x3 an
and
dw, (kW, - W.) df, = 9D, aw; .
—_— e ) TS A, h 1 13
” 7 i f oy (spherical {13]

The dimensionless variable 7 is normalized with respect
to the square of the cylinder radius, n = (x/x,)?, and the
cube of the sphere radius, i = (x/x,)3, respectively, where
x, is the radius of the elementary volume element. These
normalizations of 7 are made in such a way that the defi-
nition of the average concentration (Eq. [9]) remains un-
changed for the spherical and cylindrical geometries. Using
the same power-law approximation for the solute profile
(Eq. [8]), the following evolution equations are obtained:

dw, _ kw = w, [d—ﬁ + 4-54 (v + 1)] (cylindrical) [14]
0

&t dt

and

dw, kw, — W, [dj_: 9D, ] .
RSN B ) S R herical) [1
= L e/ O ] (spherical) - [15]

Please note that with the normalization of 7, a parabolic
solute profile in the platelike, cylindrical, and spherical ge-
ometries is given by y = 2, y = 1, and y = 2/3, respec-
tively.

The evolution equations for the three microstructure mor-
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Fig. 2—Schematic solute profile in the solid and liquid phases of a
platelike secondary dendrite arm, indicating the idea of the collocation
method.

phologies (Egs. [11], [14], and [15]) can be rewritten as a
single equation as follows:

dw, ﬁﬁ—ﬁkﬁ+gﬁw+n
7

16
dt  x3 2_1) [16]

e
where the particular choice of the adjustable parameter vy
= 2/ reflects a parabolic solute profile, and { equal to 1,
2, and 3 represents the platelike, cylindrical, and spherical
geometries, respectively.

E. Collocation Method

As will become apparent in the case studies, the internal
variable approach and the power-law approximation are not
capable of reproducing the changes of the solute profiles
that occur during remelting. For that reason, a collocation
method has been derived; it is equivalent of assuming a
solute profile in the solid given by

w(m =a+ by + c7f [17]

where again 7 is a dimensionless variable normalized with
respect to one-half the secondary dendrite arm spacing, x,
(n € [0, f(D]). Please note that the linear term has been
omitted in Eq. [17] in order to satisfy the zero flux bound-
ary condition at n = 0. The constants a, b, and ¢ are de-
termined at each time-step by a collocation method (as
described in Reference 39). More specifically, they are cal-
culated from the solute balances in the solid, the liquid, and
a fixed subdomain within the dendnte arm (Figure 2). The
solute balances in the solid and liquid phases can be written
for a platelike morphology as

Af, | D,owy
- = w2 =
Gl = w250 (18]
and
d _ dw A Daw
—[(1 - f - = _
U0 = m) = - = ST )

respectively, where the equilibrium condition at the inter-
face, w¥ = kw, has been used again. The solute balance in
a subdomain 7 € [0, ;] gives
d _ - D, ow,
—[fw] = —=— 20
ZUW) = 25 [20]

where the tilde (-) denotes entities taken at the subdomain
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position. By using the relationships

1 {* 1 1
w, =Z j; win)dn =a + gbff + Zcf? [21]

W =a + b + ¢f? [22)
!
T = 2pf + 3¢ [23]
an
WL
D = 257 + 3¢f2 [24]
on

and assuming a certain value for /, e.g., /. = /2, Eqs. [18]
through [20] yield a set of three first-degree equations from
which the parameters a, b, and ¢ can be determined at each
time-step.

F. The One-Dimensional Diffusion Problem

In order to compare and validate the various microsegre-
gation approximations presented in the previous sections,
the diffusion equation in one dimension

Fw,  ow,

o P for x € [0,x,(1)] [25]
where x(f) = x,/(?) is the actual position of the solid-liquid
interface, has been solved. A similar approach to the mi-
crosegregation problem has recently been discussed by
Voller and Sundarraj.?439

The boundary condition at x = 0 1s that of a closed
system (symmetry):

D‘.—% =0 atx=0 [26]

T ox

The boundary conditions that prevail at the moving solid-
liquid interface are given by the local equilibrium condition
on one hand and by a solute flux conservation on the other
hand. The first condition is represented by Egs. [3] and [5].
The flux condition at x = x (z), which can be derived easily
from the integral solute conservation equation, is given by

e (R (R

X, ox dt
atx = x(f) [27}

The initial conditions correspond to f, = 0 and w, = w at
t=0.

III. SOLUTION ALGORITHMS
A. Integration of the Evolution Equations

Restarting the derivation from Eq. [6] and using Eq. [2],
one has the general relationship

4 w4 i
wv ﬁ Klﬁ] Ko+ D
or
4o 9w _df
ZI0 — Ol = — - ket = O, [28]

where @, is the flux of solute at the solid-liquid interface
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Table 1. Transformation Dynamics of the Volume Element

t
t + At Lig|Lig+ a|Lig+ta+ B |a+ B| a
Ligq 1 2 3 4 5
Lig + a 6 7 8 9 110
Lig+a+ 8| 11 12 13 14 |
a+ B 16 17 18 19 |X
a 21 22 X X 125

associated with back diffusion. Following what has been
presented in Sections II-B through E, this term is equal to

_Q kw, = w,
RS Ty,
D= (L= AW = w
2t m-a-ng @

for the internal variable approach
kWI — W.\'
A

s/l

D,
d, = —2’(1 +)
Xp

0-a-~piw-w

=L a+vy 30
5T 72 B0
for the power-law approximation, and
_D.ow a1
A x(z) aT]

for the collocation method and the one-dimensional diffu-
sion equation, respectively. For the first two approaches,
the term w, which appears in the flux (Egs. [29] and [30])
has been replaced using again Eq. [2] so as to keep only
w, and w. For the other two methods, the solute profiles are
calculated.

The average solute content of the small-volume element,
w(t), is assumed to be a known function of time. For a
closed system, w(?) is constant and equal to the nominal
concentration of the alloy, w,, whereas for an open system,
w(?) is deduced from the macroscopic continuity equations
(Figure 1). Accordingly, Eq. [28] allows to calculate w, as
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a function of f,. Using a time-marching scheme with a time-
step At, one obtains

(L= frsyiwps (= )W _ we = w
At At At
— JAtar f~’£.+_m — f: —_ Y
g (FL) - e 132)

by which wi*# can be determined for any value of the solid
fraction, including f**& = 1. (The quantities without the
superscript (¢ + Af) in Eq. [32] stand for values at time ).

B. Solidification Dynamics and Eutectic Reaction

Considering the phase diagram of Figure 3, several sit-
uations can be encountered for a small volume element dur-
ing one time-step. At the beginning of a time-step, the
volume element can be in five different ‘‘states’’: fully lig-
uid (Liq), mushy with the presence of the primary phase
only (Liq + a), mushy with some primary phase and some
eutectic (Liq + « + B), fully solid with some interdendritic
eutectic (a + B), and fully solid without eutectic (a). These
various states are also labeled in the phase diagram of Fig-
ure 3. Because the entire solidification 1s assumed to start
with a hypoeutectic alloy of uniform concentration, mac-
roscopic transport of solute cannot bring a point of the do-
main to a hypereutectic state (e.g., presence of liquid and
B without @). On the other hand, it must be emphasized
that the eutectic reaction (Liq + « + B) in a binary alloy
occurs at fixed temperature and concentration according to
Gibbs rules.

As indicated by Table I, the final state of the volume
element at time ¢ + At is also characterized by (Liq), (Liq
+ @), (Lig + a + B), (a + B), or (). In total, there are
25 possibilities describing the solidification dynamics of the
system, but four of them are discarded: formation of eutec-
tics upon cooling from a supersaturated « solution when
crossing the solvus « line (case 20), dissolution of eutectics
upon cooling in the solid state (case 24), remelting of «
with spontaneous formation of B (case 15), and end of so-
lidification with disappearance of 3 (case 23). Accordingly,
21 situations can occur. For example, cases 1, 19, and 25
correspond to the simple cooling (or heating) of the liquid
or solid. Cases 16 and 21 would be those of a complete
solidification occurring within one time step, whereas the
symmetric situations 4 and 5 are those of full remelting,
etc.

It might look straightforward to determine what will hap-
pen to a volume element once its new specific enthalpy,
h+5 and solute concentration, w'*4/, are known. However,
this is not the case due to the possible formation (or dis-
solution) of eutectics. The procedure is as follows. First,
the enthalpy, A, of a volume element that is liquid at the

lig 2
liquidus temperature defined by w'* is calculated

hpdt = ¢ (T, + mw™4) + L [33]
Second, the temperature of the last solid to form, 7, is
calculated by substituting f7*& = 1 into Eq. [32] under the
assumption of no eutectic formation and inserting the ob-
tained value of w, into Eq. [3]. If T, is found to be smaller
than the eutectic temperature, 7%, then T, is set equal to
T, The associated fraction of solid, ¢, that could form
before the beginning of the eutectic precipitation is also

METALLURGICAL AND MATERIALS TRANSACTIONS A
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some eutectic have formed.

calculated by solving the microsegregation problem up to
the value w(T*) = wi* where wi" is the eutectic concen-
tration (Figure 3). The enthalpy corresponding to the be-
ginning of the eutectic precipitation, 4%, is defined as

et = ¢ T + L(1 — fo) [34]

The various cases that can occur then are as follows:

hr>30 > piEs the cell is fully liquid (Liq)

T, > T and A** > h, =T, the cell is mushy

without eutectic (Lig + a)
T,>Tw and A**<h, =T, the cell is fully solid

without eutectic (a)
T, =T and A+ > b* the cell is mushy

without eutectic (Lig + a)
T, =7T* and k> h*> > ¢, T the cell is mushy

with eutectic (Lig+ a+ pB)
T, =T and A*¥ S T the cell is fully

solid with eutectic (a + B)

In the absence of a eutectic precipitation (Figure 4(a)),
the temperature is considered to be a nonlinear function of
the volume fraction of solid through Eqs. [1], {3], and [32].
The searched value of f1*% is then given by the zero of the
function
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) = h*¥ =, T(F) — L(1 ~ F) [35]

where T(F) = T,, + mw(¥,) (Eq. [3]) and w(})) is the so-
lution of the microsegregation problem (Eq. [32]) when
f*40 is set equal to the arbitrary value 7. The zero of the
function (%, is determined using the algorithm of Brent
(as described in Reference 40).

When some eutectic has formed (Figure 4(b)), the prob-
lem is made difficult for two reasons. First, back diffusion
in the primary phase can partially dissolve some of the eu-
tectics that has formed previously, and second, a variation
of the liquid concentration can bring the open system out
of the purely eutectic reaction (e.g., the system will again
become hypoeutectic if w decreases). These two problems
have been simplified as follows. First, the mass fraction of
the primary phase at the beginning of the eutectic reaction,
fe= is assumed to be ‘‘frozen,”’ and the solute profile in
the primary phase is fixed. Second, small deviations from
the eutectic composition are assumed to change slightly the
fractions of phases f, and f, that form during the eutectic
precipitation but without affecting the temperature. Thus,
these mass fractions are calculated from the two equations

w= (1 — fywp + fow + fw, +f/3W/3 [36]
L=t fat s (37

where w,, wg and wi, and ws* are the solute concentrations
in the two eutectic phases, the eutectic liquid concentration,
and the average solid concentration in the primary phase
just before eutectic precipitation, respectively (Figure 3).

The initial value for w, at the beginning of solidification
is set equal to the current value of w. If remelting occurs
after the solidification has been completed, the initial value
for w, is taken to be the eutectic value, ws*, if solidification
was completed at the eutectic temperature. If the solidifi-
cation was completed above the eutectic temperature, the
estimated solute concentration at the calculated solidus tem-
perature is applied as the initial value. The possibility of
remelting is detected by the condition A'** > h, = c,T,
(i.e., the new enthalpy is greater than the enthalpy of the
last solid to have formed). The solute profile in the primary
phase that was previously frozen can then evolve again, and
the solidus temperature, T*, has to be recalculated taking
into account the diffusion in the solid. Remelting will ef-
fectively occur if A% > h% = ¢, T*.

C. Solution of the One-Dimensional Diffusion Problem

A finite-difference method has been used for solving the
microsegregation problem defined in Section I1I-E, and sim-
ilar to Voller and Sundarraj,**?¥ a Landau transforma-
tion!**2 which maps the solid domain onto the {0,1] inter-
val has been made. With reference to the Appendix for the
details, the equation that has to be solved in the interval
[0,1] is

D, ow, _ ow, | edLow.
x3f? o€ ot f, dt d¢

where € is the nondimensional parameter (£ € {0,1]). For
all the internal nodes (Figure 5), this equation is solved
using finite differences, a fully implicit scheme, and up-
winding (please note, however, that the advection term in
Eq. [38] is small compared to diffusion).

[38]
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Fig. 5—Concentration profiles in solid and liquid (Section 11I-C) and
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redistribution in the liquid; dashed line: finite solute redistribution in the
liquid.

Table 1I. Material Parameters for the Aluminum
Model Alloy

1080 J K g' K
X 100K g™
9 X 1072 m?s™!

Heat capacity c,
Latent heat of fusion L
Solute diffusivity in the D,

solid
Half secondary Xo 30 X 10~°m
dendrite arm spacing
Melting temperature T. 933 K
Liquidus slope m —600 K
Partition coefficient k 0.25 —
Eutectic temperature Tew 820 K
Eutectic liquid wy 0.188 —
concentration

Solute concentrations in  w, and w, 0.047 and 0.9 —
the eutectic phases

The boundary condition at € = 0 is that of a closed
system
ow,
=0 fore=0 [39]
9€
Assuming that solute is completely mixed within the liquid
phase, the boundary condition at the solid-liquid interface
position is given by

D, ow, d witar — 3
T*-..‘fi = a _ 1 _ﬁ)’____‘ﬂ
x%f, o€ dt At

dr.
+( - k):gw;w fore =1 [40]

Since w, = kw, when € = 1, Eq. [40] is a mixed-boundary
condition provided that the variations of w and of f, are
known. The first entity comes from the macroscopic solute
conservation equation. The value of df/dt is guessed by
imposing a new value to £*%. The microsegregation equa-
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tion is then solved using this mixed-boundary condition,
and the process is iterated until the temperature deduced
from the new value of w!*% matches that obtained from the
heat balance with the corresponding value of df/dt. The
same algorithm as the one used for solving Eq. [35] is em-
ployed. Overall vaniations of the average solute concentra-
tion, w, are instantaneously distributed within the liquid
phase.

In order to assess the influence of the complete mixing
assumption made for the liquid phase, a calculation of sol-
ute diffusion in the liquid (Figure 5) has also been per-
formed. Two Landau transformations have been used in this
case, and the velocity of the solid-liquid interface is given
by the solute flux condition at the interface

D, ow, D, ow, - k)g-];w
dr '

2 ~f)as
fore = 1(and 6 = 0) [41]

xif, o€

Here, w, is the concentration in the liquid phase, D, is the
solute diffusion coefficient in the liquid, and the parameter
& is used for the Landau transformation in the liquid phase.
The resolution procedure is similar in this case, Eq. [41]
being again a mixed-boundary condition for the solid and
liquid phases when the problems in these two phases are
coupled. The supplementary condition that must be applied
in the liquid phase at § = 1 is given in this case by
D, ow, dw

S0 -Das & for § = 1 [42]
Please note that this condition resumes to that of a closed
system when w is constant in the volume element. Overall
variations of the average solute concentration, w, are spec-
ified as an input flux.

IV. CASE STUDIES

A binary aluminum model alloy with the simplified
phase diagram shown in Figure 3 is considered. Other sim-
plifications are the assumptions of constant latent heat of
fusion, L, constant and equal density and heat capacity, c,,
of the liquid and solid phases, and constant solute diffusiv-
ity in the solid, D,. The phase diagram characteristics (par-
tition coefficient, &, and liquidus slope, m) are also taken
as constant. The values of the material constants including
those defined in Figure 3 are given in Table II. Typical for
commonly used aluminum alloys, they are such that the
difference between the Scheil and lever rule solidification
paths is fairly significant. Furthermore, the ratio D/xi =
0.01 s7' is such that a solidification path between the Scheil
and lever rule limits is obtained for the solidification times
encountered in most conventional casting processes.

A. Solidification Case, Closed System

A closed one-dimensional volume element whose char-
acteristics are given in Table II is first solidified under the
condition of a linearly decreasing enthalpy. The three sets
of curves shown in Figure 6(a) correspond to an enthalpy
slope of =30, —3, and —0.3 X 10* ] Kg~' s7!, thus leading
to solidification times of about 15, 150, and 1500 seconds,
respectively. For each solidification condition, the temper-
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Fig. 6—(a) Temperature vs solid fraction resulting from calculations in
which there is a steadily decreasing enthalpy corresponding to solidification
times of about 15, 150, and 1500 s. The total solute concentration is 0.05
and constant. Exact results (dashed curves) are shown along with results
obtained with the internal variable models: Eq. [29] with £ = 1.5 and Eq.
[30] with y = 2.5. The Scheil and lever rule limits (dotted curves) are
also shown. (b) Relative error in the temperature vs solid fraction for the
internal variable modeling results of (a). (¢) Interfacial solute flux vs solid
fraction for the situation described in (a) with the shortest solidification
time (about 15 s). The exact result (dashed curve) is shown along with
the results obtained by using Eq. [29] with £ = 1.5 and ¢ = 2.5 and
Equation [30] with y = 2.5.

ature has been plotted as a function of the fraction of solid
according to the two approximate models: the curves la-
beled ‘“Eq. [29]’" and ““Eq. [30]"’ correspond to the solute
flux approximations of Egs. [29] and [30], respectively. The
internal variable model (Eq. [29]) has been used with ¢ =
1.5, whereas the power-law approximation (Eq. [30]) cor-
responds to -y = 2.5. For each solidification condition, these
two curves are compared with the ‘‘exact’” solution given
by the dashed curve, ie., solute flux given by Eq. [31].
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Although this solution is based on a finite-difference
method and a coordinate transformation, it will be called
“‘exact solution’’ subsequently. The two extreme cases of
Scheil and lever rule approximations are also displayed in
this figure with dotted lines. In all the cases shown in Figure
6(a), the average solute concentration, w, is constant and
equal to 0.05 (closed system).

Similarly to what has been shown previously in Refer-
ences 26 and 28, the results obtained with the approximate
models give fairly accurate results for all three solidification
times. As can be seen in Figure 6(a), the agreement is better
for the model based upon the power-law approximation of
the solute profile (Eq. [30]). This is emphasized in Figure
6(b), in which the relative error* in temperature is plotted

* The relative error is defined as the difference between the temperature
obtained with the approximate model (Egs. {29] or [30]) and that given
by the exact solution (solute flux given by Eq. [31]), this difference being
normalized with the temperature.

as a function of the fraction of solid.

A deeper insight into the models can be gained through
a study of the variation of the approximated term in the
equations, namely, the interfacial solute flux in the solid,
@ .. This calculated flux is plotted in Figure 6(c) as a func-
tion of the fraction of solid for the shortest solidification
time (about 15 seconds), i.e., for the case in which the
largest discrepancy between the approximate and exact so-
lutions is observed (Figures 6(a) and (b)). The flux calcu-
lated with the finite-difference technique (dashed curve) can
be compared with the results obtained with the two ap-
proximate models for different values of the adjustable pa-
rameters. As can be seen, the model represented by Eq. [30]
is fairly accurate with y = 2.5, whereas the model repre-
sented by Eq. [29] with £ = 1.5 gives a solute flux which
is too low over the entire solidification range. An increase
of the value of £ to 2.5 leads to a flux which is still too
low at the beginning of solidification but which then be-
comes too large near the end. Hence, it can be concluded
for a closed sohidifying system that the power-law model
(solute flux given by Eq. [30]) gives a better approximation
of the microsegregation problem than Eq. [29] originally
proposed in Reference 28. Therefore, only the power-law
solute profile approximation (Eq. [30]) will be considered
in the remainder of the article.

Concerning the determination of the adjustable parame-
ters, it should be pointed out that the particular value y =
2.5 used in Figure 6 has been chosen because it is close to
the minimum of the relative absolute error averaged over
the entire solidification path for any of the solidification
times 15, 150, and 1500 seconds. It turns out that the cor-
responding relative error in w;, is only 0.1 pct for this par-
ticular choice of vy, whereas that in w, can be up to about
0.5 pct. Another choice of 7y, within the accuracy of the
curves in Figure 6, would not have given any better agree-
ment between approximate and exact solutions (neither
would another choice of the adjustable parameter £).

B. Solidification/Remelting Case, Closed System

When a closed system is continuously solidifying, the
solute profile in the solid has a curvature of constant sign
over the entire solidification path (e.g., the slope of the
profile is a monotonically increasing function of f, if k <
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Fig. 7—(a) Imposed enthalpy vs time, (b) corresponding solidification
path, and (c) interfacial solute flux. Average concentration: w = 0.05 =
constant. The continuous curves in (b) and (c) have been calculated with
the power-law approximation (Eq. [30] with y = 2.5), and the exact results
are shown as dashed curves. In (b), the Scheil and lever rule limits are
shown as dotted curves, and the various points and times labeled on the
exact curve correspond to the times in (2) and (c). (These times are not
set up for the two extreme cases of Scheil and lever rule because the
solidification and remelting parts of these two paths are superimposed
under the assumption of a closed system.)

1). This explains why a power-law approximation of this
profile can give a fairly high accuracy when the enthalpy
is steadily decreasing (¢f. Section [V-A). However, this
does not necessarily imply that the model provides an ac-
curate description of remelting situations. In order to assess
the accuracy of the model based upon the power-law ap-
proximation in such situations, the enthalpy varnation dis-
played in Figure 7(a) is considered for a closed system
(constant concentration of 0.05). During the first 80 sec-
onds, the alloy solidifies. It then remelts during the next 40
seconds before being resolidified. With the selected mate-
rial constants and the time allowed for solid-state diffusion,
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Fig. 8—Calculated solute profiles in a platelike secondary dendrite arm at
different times corresponding to Fig. 7. The dotted and dashed curves for
t = 91 s comespond to the power-law (Eq. [30] with y = 2.5) and cubic
approximations of the solute profile, respectively. The other profiles
(continuous curves) have been obtained with the exact solution.

the solidification path during the first 40 seconds should be
typically in-between those predicted by the Scheil and lever
rule limits.

The solidification path corresponding to the variation of
enthalpy shown in Figure 7(a) 1s displayed in Figure 7(b).
In addition to the Scheil and lever rule limits, two curves
have been plotted: the continuous curve corresponds to the
solidification path calculated with the power-law approxi-
mation (Eq. [30] with y = 2.5), whereas the dashed curve
is the exact solution (Eq. [31]). The various points and
times labeled on the exact curve correspond to the times in
Figure 7(a). As can be seen in Figure 7(b), the approximate
and exact solutions are in fairly close agreement: they both
predict a loop during the remelting period. This agreement
is emphasized in Figure 7(c), in which the interfacial solute
flux in the solid 1s plotted vs time for the two models (Egs.
[30] and [31]). However, it can be seen in this figure that
the approximate model is not as accurate when there is a
change of sign in the enthalpy slope, i.e., when the alloy
starts to remelt near t+ = 80 and when it starts to resolidify
near t = 120 s.

The discrepancy of the calculated solute fluxes during
the remelting period is also reflected in the solidification
paths of Figure 7(b). As already noticed in Reference 28,
the temperature during this period becomes higher than the
value predicted by the lever rule. It is in fact higher for the
approximate model (Eq. [30]) than for the exact solution
(Eq. [31]). As shown in Figure 7(c), this corresponds to the
period of a negative solute flux at the interface. During this
time, the average solute concentration in the solid, w,, be-
comes larger than the value at the interface, w*. As illus-
trated in Figure 8, this phenomenon is closely linked with
a reversal in the shape of the solute profile in the solid. In
this figure, the solute profiles, w(€), calculated with the
exact model are plotted as a function of the normalized
variable, € = n/f(?), for various times (i.e., € € [0,1]). At
time t = 79 s, i.e., before the start of remelting, the shape
of the solute profile is concave (second derivative of w(€)
1s positive). At time t = 91 s, remelting has already taken
place and the solute profile becomes convex near the inter-
face. As a matter of fact, the maximum of w(€) predicted
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Fig. 9—(a) Enthalpy and average solute concentration variations, (b) corresponding temperature, (c) fraction of solid, and () interfacial solute flux. The
continuous and dashed curves correspond to the power-law approximation (Eq. [30] with y = 2.5) and the exact solution, respectively. The dotted lines
in (b) and (¢) show the lever rule limit. In (d), the dotted line has been obtained with the collocation method.

from the exact solution of the diffusion problem does no
longer occur at the interface position (€ = 1 or n = £(?)).
At the same time, the concentration decreases at the solid-
liquid interface while it still increases at the center of the
dendrite arm (€ = 0). The maximum of the solute concen-
tration is gradually displaced towards £ = 0 as can be seen
from the profile drawn at 1 = 120 s (i.e., just before reso-
ldification takes place).

This complex behavior of the solute profile at the onset
of remelting (or more generally at any change of the inter-
face movement direction) cannot be approximated by the
simple power-law approximation represented by Eq. [8],
and it explains why the solute profile at the onset of re-
melting 1s not so well approximated by the power-law
model (dotted curve) at ¢t = 91 s.* These observations were

*The two curves obtained at ¢t = 91 s with the power-law and exact
models seem to have different integrals and thus to characterize various
solute contents. However, this does not mean that the models do not
conserve solute since at that time, the associated fraction of solid (and
hence position of the solid-liquid interface) and temperature (or value of
w,) are different.

the incentive to develop the third approximate model based
upon a cubic polynomial approximation of the solute profile
(¢f- Section II-D), which turned out to give results that are
very close to the exact solution. As an example, the dashed
solute profile shown in Figure 8 for ¢t = 91 s has been
calculated with this method under the conditions specified
in this Section: it is almost identical to the exact profile.
The solidification path predicted with the collocation
method for the remelting situation discussed previously has

METALLURGICAL AND MATERIALS TRANSACTIONS A

not been drawn in Figure 7(b) because it would have been
almost indistinguishable from the exact solution.
Compared to the transformed coordinate finite difference
solution of Fick’s second law, the collocation method is
less CPU time consuming while offering a similar preci-
sion. Compared to the internal variable approach and the
power-law approximation, the collocation method is more
accurate, especially when reversal in the solidification di-
rection occurs. However, the associated computation cost
1s slightly higher since more equations have to be solved
numerically. More specifically, the CPU time on a HP* 735

*HP is a trademark of the Hewlett-Packard Company, Colorado
Springs, CO.

Workstation for the case described in Section IV-B is 0.23,
0.25, and 0.38 seconds for the power-law approximation,
the collocation method, and the solution of the exact dif-
fusion problem with 50 mesh points, respectively.**

**Recent calculations with a finite-difference solution and a nonuniform
mesh refined near the solid-liquid interface have shown that accurate
solutions can also be reached with very few nodal points (typically five
or six nodes), thus reducing also the computation time.

C. Solidification/Remelting, Open System

Macrosegregation is associated with variations in the av-
erage solute concentrations at the scale of the process
mainly induced by convection: they can range up to + 100
pct of the nominal alloy element concentration.!*34445) Un-
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Fig. 10—a) Enthalpy and average solute concentration variations
pertaining to the case of inverse segregation and (b) corresponding
evolutions of the temperature and fraction of solid. The continuous curves
correspond to the power-law approximation (Eq. [30] with y = 2.5) or
the exact solution (i.e., the power-law results are very close to the exact
results). The lever rule and Scheil limits are shown as dotted curves.

der such conditions, the small-volume element associated
with the dendrite arm spacing is no longer a closed system.
In order to test the various microsegregation models for
such an open system, variations of the average solute con-
centration, w, have been imposed as indicated in Figure
9(a). As can be seen in this figure, the average solute con-
centration, w, is kept constant and equal to 0.05 while the
enthalpy, A, decreases during the first 25 seconds. The en-
thalpy is then kept constant, and the average concentration
is first lowered by 20 pct between 25 and 45 seconds (neg-
ative segregation) and then increased by 20 pct between 45
and 65 seconds (positive segregation). Both the enthalpy
and solute concentration are kept constant at times longer
than 65 seconds.

The cooling curve, 7(f), and evolution of the fraction of
solid, f,(f), associated with the enthalpy and solute curves
shown in Figure 9(a) are displayed in Figures 9(b) and (c),
respectively. (Please note that the variations of £(f) when A
is constant are closely associated with the variations of T(¢)
since the heat balance has to be satisfied (Eq. [1])). The
continuous curves are those calculated with the power-law
approximation (Eq. [30]), the dashed ones are the results
of the exact solution (Eq. [31]), and the dotted lines cor-
respond to the lever rule approximation.* As can be seen

*The results corresponding to the Scheil approximation (D, = 0) cannot
be displayed because, as mentioned in Ref. 33 and 34 this approximation
introduces a singular point at the interface under the condition of remelting
of an open system.

in Figure 9(c), the system can still solidify or remelt under
adiabatic conditions (4 = constant) due to variations of the
overall solute content. Remelting (solidification) could even
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occur for a decreasing (increasing) enthalpy if the increase
(decrease) of the average concentration is sufficiently large.
These are precisely the conditions under which freckles can
form in the mushy zone.[*s]

Figure 9 reveals that fairly accurate results can be ob-
tained using the power-law approximation of the solute pro-
file (Eq. [30]) even under the conditions of an open system.
The normalized interfacial solute fluxes displayed in Figure
9(d) indeed show that this model can reasonably accom-
modate variations of the average solute concentration. As
in Section IV-B, however, there are periods of rather poor
agreement between the approximate and exact solutions,
especially when the variation of the interfacial solute flux
is not monotonic. Again, the approximate solution obtained
with the collocation method does not present this drawback
and is very close to the exact solution.

The case study corresponding to Figure 9 has been car-
ried out mainly to assess the limitations of the approximate
models for an open system. It is therefore of interest to
study a case in which the inputs, 4(f) and w(t), are taken
from a ‘‘realistic’> macrosegregation computation. Such a
study can provide interesting results even without the full
micro-macrosegregation coupling. The input shown in Fig-
ure 10(a) has been obtained from Reference 12: it corre-
sponds to the inverse segregation calculated near a cast
surface during directional solidification and to the same ma-
terial data as in Table 11.* The cooling curve, 7{(r), and

*In Ref. 12, the macrosegregation calculation was carried out according
to the lever rule approximation, and the eutectic reaction at the end of
solidification was not taken into account. The thermal boundary condition
at the cast-mold interface was given by a constant heat transfer coefficient
of 2500 W m=3 K-,

fraction of solid, f(¥), corresponding to the variations of
enthalpy, A(f), and solute concentration, w(f), of Figure
10(a) are shown in Figure 10(b). The continuous curves
correspond to both the power-law approximation (Eq. [30]
with ¥ = 2.5) and the exact solution (Eq. [31]), since the
results almost coincide. The results obtained with Scheil
and the lever rule approximations are also shown.** Since

**The Scheil result can be computed without any problem in this case
since there is no period of remelting.

the solidification time is rather short near the surface of the
casting (about 14 seconds), the computed results are much
closer to the Scheil limit than the lever rule. However, it
should be kept in mind that the dendrite arm spacing, which
was kept constant for all the calculations (60 wm), is ex-
pected to be smaller when the cooling rate increases, thus
reducing the Fourier number for solute diffusion in the
solid. ’

Although the present calculations of the solidification
path are not yet fully coupled with a macrosegregation
computation (i.e., the macrosegregation was first estimated
using the lever rule, and the variations of enthalpy and sol-
ute content were then used as input to the microsegregation
model), the microsegregation results shown in Figure 10
for a realistic value of D, (or more precisely of the Founer
number) indicate a need for applying a model more realistic
than the lever rule. Furthermore, they clearly show that the
power-law approximation model is a good alternative to the
numerical solution of the microsegregation problem, at least
when there is no remelting.
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Fig. 11—Effect of the microstructure morphology on the calculated
solidification path. The enthalpy is steadily decreasing and gives a
solidification time of about 150 s (Fig. 6(a)). The total solute concentration
is 0.05 and constant. The results are obtained with the internal variable

model using Eq. {16] with (y{) = 2.5 and the ‘‘morphology factor’’ ¢
equal to 1 (platelike), 2 (cylindrical), and 3 (spherical). Exact results
(dashed curves) along with the Scheil and lever rule limits (dotted curves)
are also shown.

V. DISCUSSION

Solidification shrinkage and pore formation, which in the
present investigation has not been taken into account, can
have an effect upon the formation of macrosegregation.l-!
Studying their effect on the local solidification path requires
a fully coupled micro-macrosegregation calculation. The
previously discussed microsegregation approaches could
easily include shrinkage by interpreting f; as the volume
(rather than mass) fraction of solid and by introducing the
(different) solid and liquid densities in the equations.

Also, dendrite coarsening is neglected. However, the ef-
fect of this phenomenon upon the local sohdification path
of a closed system has been found to be rather limited.?*5!

The thermophysical and diffusivity parameters, which in
the present study have been taken as constants, could easily
be made temperature and/or solute-concentration depend-
ent. The formalism for solving the exact diffusion problem
as well as the different approximative methods are all quite
general and would allow such an extension.

The presented methodologies can also be extended to
apply for multicomponent alloys provided that the phase-
diagram characteristics are known. The concentration w, ap-
pearing in Eqgs. 28 through 31, has purposely not been
replaced by the temperature, which could have been done
for a binary alloy. For a multicomponent alloy, diffusion
of the various solute elements in the primary phase requires
one evolution equation per element,*®} whereas the liquidus
surface is a unique function of all the concentrations, i.e.,
Eq. {3] must be interchanged with

T=T,+ fo me@;,wg,_..,Wy)-dW; [43]

The precipitation of secondary phases in a multicomponent
alloy is certainly more difficult to handle (binary eutectic,
ternary eutectic, erc.).

In order to assess the effect of morphology (cf. Section
1I-C), the temperature vs fraction of solid for the interme-
diate solidification conditions of Figure 6(a) has been cal-
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culated for the three values of the ‘‘morphology factor’” ¢.
The results are shown in Figure 11, in which the continuous
curves have been calculated with Eq. [16] with (y{) = 2.5.
The results corresponding to { equal to 1, 2, and 3 are
compared with the corresponding finite-difference solutions
of the diffusion equation wntten for the corresponding ge-
ometries.* As could be expected, diffusion from the solid-

*The Landau transformation method is similar to that described in
Section I1I-C, the only difference being the form of the Laplacian
operator.

liquid interface is favored when going from a platelike to
a spherical geometry (i.e., when ¢ increases from 1 to 3).
Accordingly, the solidification path moves closer to the
lever rule limit as { increases. Furthermore, the power-law
approximation gives results which are close to the numer-
ical solution of the microsegregation problem, regardless of
the geometry being chosen.

In most aluminum alloys, the liquid diffusivity, D, is
typically three orders of magnitude larger than the solid
diffusivity, D This is why in microsegregation models, the
liquid is assumed to have locally a uniform concentration
(i.e., complete mixing). However, this assumption is usually
made for a closed, solidifying system. In order to assess
the effect of liquid diffusion in open systems and/or in sys-
tems with remelting, the microsegregation problem encom-
passing diffusion also in the liquid phase has been solved
numerically (Section III-C). The value D, = 3 X 107° m?
s~! selected in these computations corresponded to an alu-
minum-copper alloy (Reference 52, Appendix 14). The cal-
culated solidification paths in all the cases previously
presented turned out to be very close to the corresponding
results based on the assumption of complete solute redis-
tribution in the liquid. Hence, there is no reason for solving
the diffusion equation in the liquid phase.

While the assumption of thermodynamic equilibrium at
the solid-liquid interface during solidification applies to
many industrial casting processes, at least for low solidifi-
cation rates, it may lead to problems in remelting situations.
This becomes particularly apparent in the Scheil limit.3%
Under the assumption of D, = 0, Eq. [6] can be rewritten
as

‘% = (——Wf_ W) % [44]

Purposely, the value of the interfacial concentration in the
solid, w¥*, has not been replaced by the equilibrium con-
dition (i.e., w* = kw,)). In this particular case of no diffusion
in the solid, the equilibrium condition can be used when
solidification occurs (i.e., when df,/dt > 0) even for an open
system. However, during remelting (i.e., for df./dt < 0), the
previously frozen profile is remelted. This has two conse-
quences: first, a singular point (or an infinitely thin solute
layer) has to be introduced at the interface in the solid in
order to maintain the equilibrium condition for an open
system;??! second, the previously frozen solute profile has
to be traced, which 1s precisely what the internal vaniable
approach tries to avoid.!?®]

A further discussion of the basic problems associated
with remelting is beyond the scope of the present article.
Most likely, the departure of interface equilibrium which is
observed in rapid solidification (typically growth rate of the
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order of m/s) should occur at much lower speed during
remelting as a result of the low diffusivity in the solid (re-
melting rate of the order of mmy/s). Therefore, even though
the problem of remelting might be tracked with the trans-
formed coordinate solution with sufficiently small meshes
near the interface, the fundamental physics of remelting has
to be studied in greater depth.

V1. CONCLUSIONS

A general formalism has been developed for the calcu-
lation of the solidification path once the enthalpy, 4(f), and
solute content, w(¢), histories are known from the solution
of the macroscopic continuity equations. This formalism
accounts for the back diffusion in the solid phase, for local
remelting, and for the possible eutectic formation at the end
of solidification. From the known vanations of A(f) and
w(t), the local solidification path of binary alloys has been
calculated according to several models:

1. an internal variable approach previously developed by
Mo:128

2. an internal variable approach based upon a power-law
approximation of the solute profile;

3. a collocation method with a third-order polynomial ap-
proximation of the solute profile; and

4. a numerical solution of the solute diffusion. A variation
of this method consisted in solving also the diffusion
equation in the liquid phase and in introducing the var-
iations of solute concentrations via the boundary con-
dition.

Methods 2 and 4 also have been extended to various mi-
crostructure morphologies.

The collocation method (3) and the finite-difference so-
lution of Fick’s second law (4) give solidification paths
which are almost superimposed even when remelting oc-
curs and the system is open. The collocation method offers
the advantage of being more readily implemented into ma-
crosegregation calculations. It has also been shown that the
internal variable approach (1) is inferior to the power-law
approximation (2).

The routine which has been developed for the solution
of microsegregation is general and can incorporate any of
the four models in macrosegregation calculations. It can be
adapted to multicomponent alloys, at least for the primary
phase solidification. Finally, it should be pointed out that
the physics of remelting and the eutectic precipitation in a
complex alloy system have to be studied further in order
to be modeled more precisely.
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Appendix
Landau transformation for the solid-state diffusion
The diffusion equation which has to be solved in each
phase, v = s or /. is
Fw,.  ow,

: - — =0 Al
v ox? ot (A1)

In the solid phase, the variable domain x € [0, x(#)] is trans-
formed onto a fixed domain € e [1, 0], whereas a similar
transformation can be applied to the liquid domain [x(?),
x,] if needed. Thus, one has for the solid phase

X
€= Hf; [A2]

The concentration field, w(x, £), is transformed into w [x(€,
f), t], and the new partial derivatives can be wntten as

2 O Y O
[g]r - [ d0€ ]1 [6x]: xs(t) [ dE ]I [A3]
and
2B
2 = =] +1=]-1=
ot J- at J« ox A atd-

ow, e | ow, | dx,
ot I x(n Laoed dt

Combining Egs. [A1] through [A4] along with the defini-
tion x,(f) = x,f.(¢) finally gives for the solid phase

D, ?w, ow, &df dw,
D, #w, _ aw,  ediow, _ [AS]
x3f? 3e? ot f.dr de
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