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Abstract— Robot PROGRAMMING BY DEMONSTRATION
(PbD) aims at developing adaptive and robust controllers
to enable the robot to learn new skills by observing and
imitating a human demonstration. While the vast majority
of PbD works has focused on systems that learn a specific
subset of tasks, our work explores the problem of recognizing,
generalizing, and reproducing tasks in a unified mathematical
framework. The approach makes abstraction of the task and
dataset at hand to tackle the general issue of learning which
of the features are the relevant ones to imitate.

In this paper, we present an implementation of this
framework to the determination of the optimal strategy
to reproduce arbitrary gestures. The model is tested and
validated on a humanoid robot, using recordings of the
kinematics of the demonstrator’s arm motion. The hand path
and joint angle trajectories are encoded in HIDDEN M ARKOV
M ODELS. The system uses the optimal prediction of the
models to generate the reproduction of the motion.

I. INTRODUCTION

Robot PROGRAMMING BY DEMONSTRATION (PbD) ex-
plores novel means of implicitly teaching a robot new
motor skills. It takes inspiration in a large and interdisci-
plinary body of literature on IMITATION LEARNING from
Psychology, Ethology and the Neurosciences. To provide a
robot with the ability to imitate is advantageous for at least
two reasons: it provides a natural, user-friendly means of
implicitly programming the robot; it constrains the search
space of motor learning by showing possible and/or optimal
solutions.

The vast majority of PbD works focused on systems that
learn a specific subset of tasks. In contrast, our work aims
at exploring the issue of recognizing, generalizing, and
reproducing arbitrary tasks [1]. We follow a recent trend
of research that aims at defining a formal mathematical
framework for imitation learning [2], [3]. The approach
makes abstraction of the task and dataset at hand to tackle
the general issue of learning which of the features are
the relevant ones to imitate.

In this paper, we present an implementation of this
framework to the determination of the optimal strategy to
reproduce meaningful arm motion.

In some tasks, the hand path is a sufficient description of
the motion (e.g. writing), while in other tasks, a description
of the complete joint angle trajectories is necessary (e.g.
dancing). Since the hand path contains less information
than the joint angle trajectories, it would be helpful, for a
given task, to determine whether a robot should reproduce

only the hand path or whether the full gesture of the
demonstrator is required.

To test the generality of our approach at extracting
relevant information, we teach a robot the task of drawing
letters. In this task, the system should find that the hand
path representation is sufficient to describe the task.

II. RELATED WORK

Imitating low-level tasks, such as gestures, has been
studied extensively [4], [5], [6], [7], [8], [9], [10], and
shows excellent performance at reproducing exact trajec-
tories. However, it often requires too many parameters to
represent the exact trajectory, and shows poor generaliza-
tion capabilities. In this paper, we investigate the use of
HIDDEN MARKOV MODELS (HMMs) to both recognize
and generate gestures, by extracting and learning the min-
imal set of features needed for the task, i.e. by selecting
the optimal data representation.

HMMs have been used successfully for speech recogni-
tion [11], handwriting recognition [12], or visual recogni-
tion of sign language [13]. HMMs have also been applied
successfully to recognize body motion trajectories [14],
[15]. However, in these works, the role of HMMs stops
usually at the recognition part. The reproduction of gesture
from HMM, generalized from the data used to train the
HMM model, has not been studied extensively [16]. A
few works in Computer Graphics have adapted the HMM
learning algorithms to determine the topological properties
of the model, in order to improve the synthesis of new
stylistic motion and to identify common elements in a
motion [17]. Our approach follows and complements these
works by exploring the use of HMMs both as recognition
and synthesis models of human motion within the same
robotic application.

The closest work to ours is the recent work of Inamura
et al [18], who use continuous HMM for comparison and
playback of motion data with a humanoid robot. Their ap-
proach aims at learning the optimal key-points in the joint
angle trajectories. Our system uses instead known charac-
teristics of human motion in a data preprocessing phase to
extract the key-points. Specifically, data are segmented at
the inflexion points of the trajectory, in order to implicitly
reflect the correlations across the joint angles. We tackle
gesture learning as a data reduction problem, decomposed
into a low-level processing part for segmenting the signal,
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Fig. 1. Data processing loop. The raw data are segmented into key-
points, and the sequence of these key-points is classified using HMM. To
reproduce continuous data, a sequence of key-points is then retrieved by
the HMM, and the data are interpolated between these key-points.

and a high-level processing part, that classifies the gestures
using HMMs. Both processes are reversible to permit the
reproduction of gestures (see Figure 1).

III. EXPERIMENTAL SETUP

A. Experimental scenario

The demonstrator draws in the air several examples of
the same five figures, representing the stylized letters A, B,
C, D, E, similarly to what is used in the Palm Graffiti c©

writing software (see Figure 2). A set of motion sensors
attached to the demonstrator’s arm and torso record the
absolute orientation of the arm during the demonstration.
The joint angle trajectories of the arm and the hand path in
3D Cartesian coordinates are reconstructed from the motion
sensors data and encoded in a set of HIDDEN MARKOV

MODELS (HMMs). Once the training is completed, the
HMMs are tested on their ability to recognize the hand path
or joint angle trajectories, on which they have been trained.
They are subsequently used to regenerate a generalized
representation of the trajectory and to give a confidence
measure on which controller to use to reproduce the task,
either by copying the hand path or by copying the joint
angle trajectories. This experimental scenario is designed to
test the validity of our approach, and to determine whether
it could be applied to more complex tasks that involve
manipulation of objects requiring different Cartesian and
joint angle constraints.

B. Hardware

The kinematics of the demonstrator’s motion are
recorded by three Xsens motion sensors, that measure the
3D rate-of-turn, acceleration and earth-magnetic field, and
provide 3D absolute orientation data at 100Hz. They are
attached to the body of the demonstrator (torso, upper arm,
and lower arm). After calibration of the sensors, four joint

Fig. 2. Resulting free figures of demonstrated (thin lines) and retrieved
(bold lines) trajectories, generalized over the demonstrations. Top: using
hand path with continuous HMM . Bottom: using joint angle trajectories
with discrete HMM .

angle values are computed from the absolute orientation
matrix of the sensors (see Figure 4), taking as reference
the sensor fixed on the torso.

In collaboration with the Humanoid Robotics and Com-
putational Neuroscience department (HRCN) at the Ad-
vanced Telecommunications Research Institute Interna-
tional (ATR), we implemented part of the system on DB,
an anthropomorphic hydraulic robot with 30 DOFs (each
arm with 7 DOFs), mounted at the pelvis.

C. Preprocessing of the data

We consider a gesture as a sequence of typical events
in the trajectory. Events are the inflexion points (i.e. local
minima and maxima) of the joint angle trajectories. Such a
segmentation aims at extracting known features of human
motion. Indeed, studies on the coordination of joint angles
of the arm, during typical human manipulation tasks, have
shown that there are correlations between different joint an-
gles that change during distinct phases of the manipulation
process [19], [20].

The trajectory of each joint angle a ∈ [1, A] of the
arm (A=4 in our application, see Figure 4) is smoothed
continuously during the acquisition of data, with a 1D local
Gaussian smoothing filter of size 7. The resulting smoothed
dataset consists of a set of joint angle values and associated
time values. The set of key-points {θa

i , tai } is extracted
online (i ∈ [1, Ia]), with the first key-point marking the
beginning of the trajectory. A key-point is then created
if it is a local minima or maxima, with a sufficient angle
difference ε1 and time lag ε2 between two consecutive key-
points, i.e. if the following conditions are satisfied:

dθ

dt
= 0, |θi − θi−1| > ε1, ti − ti−1 > ε2

where ε1 and ε2 are thresholds set respectively to 0.2[rad]
and 0.1[sec]. This procedure is repeated until the arm is
said to be stopped, i.e. if the following conditions are
satisfied:

|θa
i − θa

i−1| < ε3, tai − tai−1 > ε4 ∀a ∈ [1, A]

where ε3 and ε4 are set to 0.1[rad] and 1[sec]. The last
key-point marks the end of the trajectory, such that taIa =
tai − ε4. Figure 4 shows the key-points extracted from the



Fig. 3. A left-right continuous HMM with N=5 hidden states and 2
output variables yt and y′

t. P (qt = j|qt−1 = i) is the probability to go
from state i to state j at time t. p(yt|qt = i) and p(y′

t|qt = i) are the
emission distributions of variables yt and y′

t while in state i.

joint angle trajectories, during drawing of the letter A.
A demonstration is excluded from the training set if the
total number of key-points for all joint angle trajectories is
below a threshold fixed to 14, i.e. if

∑A
a=1 Ia < 14.

It is thus possible to repeat different gestures continu-
ously, with a short pause to signal the start and the end of
a gesture. The short transition from the end of a gesture to
the starting point of the next one is automatically canceled.

The hand paths in Cartesian space, relative to the body
of the user, are computed from the smoothed joint angle
trajectories, given an estimate of the limb lengths and the
position of the motion sensors on the body. The prepro-
cessing methods are the same as above, except that the
set of key-points {�xi} = {Xi, Yi, Zi} are created if there
is a change in the X ,Y or Z direction, with a minimum
distance of 80[mm] between two consecutive key-points.

IV. STOCHASTIC MODELING OF TRAJECTORIES

One of the greatest difficulty in recognizing sequential
patterns is to deal simultaneously with the inherent statisti-
cal variations in the sequence and with the variations in the
observed features. HIDDEN MARKOV MODEL (HMM) can
overcome this problem1. HMMs consist of stochastic finite
state automata where the states sequence is not observed
directly. Each state has an underlying probabilistic function
describing the distribution of observable outputs. Two
concurrent stochastic processes are involved, one modeling
the sequential structure of the data, and one modeling the
local properties of the data (see Figure 3).

Most HMM applications are designed to be trained with
a large set of data. In contrast, robot PbD requires that
the number of demonstrations remains small enough, so
as to ensure that the user is not forced to repeat an
unbearable number of times the same task [21]. Hence,
prior knowledge is inserted in the HMM, in the form of
biased transition probabilities.

A. Choice of the HMM topology

The data preprocessing phase gives us enough informa-
tion to fix the HMM topology, so as to produce highly
structured and accurate models during learning. Each hid-
den state represents a key feature j in the trajectory,
and is associated with a stochastic representation of the

1People unfamiliar with HMM should refer to [11]

observable yj . The most general approach uses a fully-
connected model. However, training of these models leads
to ambiguous model with high entropy, not suitable for
production purpose. We use a left-right model, with the
particularity that self-transitions are not allowed (see Figure
3), because the preprocessing step already eliminates key-
points describing the same key feature in the trajectory. The
number of states of a model is defined by N = maxk(Ia

k )
where Ia

k is the number of key-points for the joint a in the
trajectory k of the training set. We set the constraints on
the hidden state transition probabilities:

P (qt = j|qt−1 = i) = 0 ∀j ≤ i or ∀j > i + δ

where δ is a parameter fixed experimentally, representing
the expected noise in the key-points occurrence, i.e. the
number of key-points that the HMM is allowed to skip. To
evaluate δ, we first set it to a large value (for example
δ=N), and train the HMMs using the desired dataset.
After training, some connections will remain unused, i.e.
P (qt = j|qt−1 = i) < C7 for j > i + δ (C7=0.01 in
our application). The maximum value of δ found is then
an estimator to represent the sequences, based on a typical
training dataset. In our application, δ=2 was found as an
estimator. It means that no more than one key-point can be
skipped in the sequence (see Figure 3).

The state transition probabilities are set to P (qt = i +
1|qt−1 = i) = 0.8 and P (qt = i + 2|qt−1 = i) = 0.2 at
initialization. The initialization of the parameters is biased
to allow fast convergence to a local solution, even with a
small set of training data. The 4 joint angle trajectories are
represented by 4 HMMs, that encode the set of key-points
{yj , y

′
j} = {θa

j , taj } (2 output distributions for each state).
The hand path is represented by a single HMM that encode
the set of key-points {yj , y

′
j , y

′′
j } = {Xj , Yj , Zj} (3 output

distributions for each state).

B. Discrete and continuous modeling of output distribution

Our system has been tested with discrete and continuous
observation distributions. The property of a discrete distri-
bution is that there is no a priori on the distribution form
of the observations. However, to perform a good statistical
estimation of a distribution, the number of data must be
significantly larger than the number of parameters to be
estimated. The more observation symbols are allowed,
the more training data must be used to train the model
successfully. The most successful applications of discrete
HMMs use Vector Quantization to create a codebook that
maps each element yj of an observation sequence to
M symbols. With Vector Quantization, the codebook is
created with the whole training dataset. The learning phase
is clearly separated from the recognition phase, and is done
offline using a large set of training data. This is a severe
drawback to learn new motions, as our application requires
the addition of a new model of gesture, if this gesture has
not been recognized by the other models. Since the creation
of a new model would imply the re-estimation of both the
codebook and the HMMs for all the other gestures, it is
not suited for our system.
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Fig. 4. Joint angle trajectories for a single demonstration (thin line) of
the stylized letter A. Key-points are extracted and encoded in the HMM.
The trajectory is reproduced (bold line) using the sequence of key-points
retrieved by the HMM and a cosine fit. Graphs 1-4: with discrete HMM .
Graphs 5-8: with continuous HMM .

To overcome this problem, we proposed in [1] to provide
a fixed homogeneous codebook that describes all possible
observations in the feature space. A linear discretization
in time and joint angle space is then performed. The
number of segmentation points in time corresponds to the
number of states of the model (N=7), while the number
of segmentation points along the joint angle dimension
corresponds to the number of observable symbols (M=5).
The values for N and M were chosen as a trade-off
between generalization and accuracy of the representation
of the trajectories that we want to learn and reproduce.

Continuous HMMs use a parametric description of the
distribution. We assume that a single Gaussian is sufficient
to approximate the continuous observation distribution of
every component of the observation yj (see Figure 3). A
mixture of Gaussians can model complex distributions and
approximate any shape of distributions. However, it is not
useful in our system, since the training is performed with
too few training data to sufficiently model a distribution
with a mixture of Gaussians. Thus, each observation yj

has a preferred value µyj
, with variance σ2

yj
.

When a new gesture model is created, the values in
the sequence are initialized to µyj

= yj , and σyj
are set

to a large value (200). If multiple training sequences are
available, one of the longest sequence is chosen randomly.

C. Training, recognition and reproduction of trajectories

The transition probabilities P (qt = j|qt−1 = i) and the
emission distribution p(yt|qt = i) are estimated by the
Baum-Welch iterative method. The forward-algorithm is
used to estimate a log-likelihood value Pn

k that an observed
sequence k could have been generated by the model n,
see [11] for details. The confidence factor represented by
Pn

k depends on the observation length and the number of
states of the model. A common approach used by HMM-
based recognition systems is to construct an anti-model
for each model, using all the training data except the ones
belonging to the model. Each gesture is then evaluated by
the model and the anti-model. The log-likelihood of the
model is compared to the log-likelihood of the anti-model
to decide if an observed sequence belongs to a model or
not. The computational cost to build and evaluate the anti-
models are too high for our application. The creation of a
new model, when presenting a new gesture, requires that
all the anti-models are reevaluated.

To overcome this problem, we use a method similar to
the one of Kim and Chien [22], using a model-dependent
threshold calculated during training. Each model m ∈
[1, G] is trained with Km sequences {Okm

}. Pn
km

is the
log-likelihood that the sequence of observation Okm

, used
to train the model m, could have been generated by the
model n ∈ [1, G]. Pn

km
is maximal for n = m. Let {Pn

km
}

be the ordered series according to n, following a decreasing
order. ∆Pkm

= P 1
km

− P 2
km

gives a measure of distance
across two model’s predictions. Tm = α · minkm

(∆Pkm
)

defines a relative threshold for the model m, with α a factor
of acceptation (α ≤ 1 guarantees that all the sequences
used to train a model will be recognized by this model).
In our implementation, we use G=5 and α=0.9.

For the reproduction of a gesture, the Viterbi algorithm is
used to retrieve the best sequence of hidden states and the
associated key-point values. The corresponding trajectory
is then reconstructed by applying a 3rd-order spline fit
when using the Cartesian trajectory (see Figure 2, top),
and by applying a cosine fit when using the joint angle
trajectory (see Figure 4). The cosine fit corresponds to
a cycloidal velocity profile, and keeps the key-points as
inflexion points during the reproduction.

V. RESULTS AND PERFORMANCE OF THE SYSTEM

A. Recognition rates

The system was tested on a dataset generated by a
single user demonstrating 5 different stylized letters (see
Figure 5). For each letter, 5 demonstrations were used to
train the system, and 5 to test the system. The continuous
HMMs were trained and tested on both the joint angle
trajectories and the hand path. For each letter, the mean and
standard deviation of the log-likelihoods (5 test sequences)
are reported in Table I. Since the different demonstrations



MAj
MBj

MCj
MDj

MEj

SAj
-2.4±0.1 -9.0±0.7 -25.0±6.3 -14.9±6.7 -6.4±1.7

SBj
-28.6±6.0 -2.6±0.1 -41.3±9.1 -19.2±5.0 -28.5±4.7

SCj
-10.0±2.5 -7.8±1.1 -2.1±0.2 -14.7±7.8 -3.7±0.3

SDj
-20.9±8.3 -7.2±3.6 -26.6±6.7 -2.6±0.2 -19.4±9.3

SEj
-34.4±6.3 -14.9±1.0 -27.0±8.6 -31.2±10.0 -2.9±0.1

MAc MBc MCc MDc MEc

SAc -4.4±0.2 -30.6±2.4 -13.0±2.1 -6.3±0.7 -6.8±0.6
SBc -24.6±1.6 -4.6±0.1 -24.6±1.6 -20.3±7.0 -24.6±1.6
SCc -15.5±1.4 -5.3±0.9 -3.8±0.2 -6.6±0.5 -5.2±0.8
SDc -31.9±2.4 -5.7±0.4 -31.9±2.4 -4.6±0.3 -12.3±8.9
SEc -30.3±6.1 -10.1±2.0 -28.5±9.7 -7.3±0.4 -4.8±0.4

TABLE I

LOG-LIKELIHOODS FOR THE TEST SEQUENCES SA , SB , SC , SD , SE

RECOGNIZED BY MODELS MA , MB , MC , MD , ME , USING EITHER THE

JOINT ANGLE TRAJECTORIES (TOP) OR THE HAND PATH (BOTTOM).

MAj
MBj

MCj
MDj

new
SAj

100% 0% 0% 0% 0%
SBj

0% 100% 0% 0% 0%
SCj

0% 0% 100% 0% 0%
SDj

0% 0% 0% 100% 0%
SEj

(new) 0% 0% 0% 0% 100%

MAc MBc MCc MDc new
SAc 100% 0% 0% 0% 0%
SBc 0% 100% 0% 0% 0%
SCc 0% 0% 80% 0% 20%
SDc 0% 0% 0% 80% 20%

SEc (new) 0% 0% 0% 0% 100%

TABLE II

RECOGNITION RATES OF SEQUENCES SA , SB , SC , SD , SE BY THE MODELS

MA , MB , MC , MD (SE IS RECOGNIZED AS A NEW MOTION), USING EITHER

THE JOINT ANGLE TRAJECTORIES (TOP) OR THE HAND PATH (BOTTOM).

of a letter followed very similar joint angle trajectories
and hand paths, the associated models produced the best
recognition (highest log-likelihoods in the diagonal of the
tables). The hand path is noisier because it is reconstructed
from the joint angle trajectories, which can explain the
slightly lower recognition values.

To test the performance of the system to classify known
gestures and new gestures, we trained the models with
the letters A,B,C,D in the training set, and tested the
recognition with the letters A,B,C,D,E in the test set.
Recognition rates for joint angle trajectories and hand path
are reported in Table II.

With the small test set used in the experiments, all the
known gestures are recognized in joint angle space. As
expected, all the unknown gestures SEj

are recognized as
new ones. In the Cartesian space, two known hand paths are
recognized as new ones (deletion errors). The recognition
rates are slightly lower, probably due to the reconstruction
errors, but it reveals that this data representation is still
sufficient to recognize and reproduce the task.

B. Reduction of the number of data

For one letter, the number of data recorded at 100Hz
for the hand path is on average 240 ± 60. The number of

Fig. 5. Demonstration and retrieval of stylized letters, using discrete
HMMs . Each joint angle trajectory is demonstrated 5 times. Trajecto-
ries are then recognized and a generalization of the demonstrations is
produced.

parameters used to encode the hand path in the HMM is on
average 40±12, which reduces the quantity of information
to 83 ± 1%. For one letter, The number of data recorded
for the joint angle trajectories are on average 900 ± 250.
The number of parameters used to encode the joint angle
trajectories in the HMMs are on average 76 ± 6, which
reduces the quantity of information to 92 ± 2%. About
twice the information is needed to encode the joint angle
trajectories in HMM comparing to the hand path.

VI. DISCUSSION AND CONCLUSION

The property of HMMs to compensate the sequential
and amplitude variance in the signal is used successfully
in our application to analyze hand path and joint angle
trajectories. The limited number of connections between
the states is found experimentally, and is optimized to
achieve easy reproduction of gestures without degrading
learning and recognition performance. Thus, the estimated
HMM recovers a structured finite-state machine, quite close
to a data-generating mechanism, even with a small number
of training data.

Our experiments have shown that the parametric de-
scription is qualitatively more appropriate to model the
key features extracted from the trajectories. Continuous
models lead to better recognition rates with small database,
because the interpolating effect of the Gaussian is used to



produce a rough distribution, with only few training data.
The computation of continuous models is slower, but as
the key-points are extracted from the trajectory by a fast
preprocessing method, only the sequences of key-points are
encoded in the models, with a single Gaussian and limited
connectivity between the states. It allows the system to run
on a standard PC, with fast and efficient training. Hence,
gesture recognition can be performed while the trajectory
is recorded.

This paper has presented an implementation of an
HMM-based system to recognize and reproduce gestures.
It has been tested and validated in simulation and on a
humanoid robot, using kinematics data of human motion.
The model compares the prediction of a set of HMMs, that
encode the motion in different data representations.

The model is general in the sense that no information
concerning the data is encapsulated in the segmentation
or the HMM modeling, and makes no assumption on the
form of the dataset. Preprocessing of the data, however,
assumes that the important features of the motion are
encapsulated in the correlations across the joint angles.
Thus, a coarse representation of the data, retaining only the
inflexion points of the joint angle trajectories, is sufficient
to represent the essence of a gesture. Such an assumption
is supported both by the literature on human motion and
by the results of our modeling that gives a high qualitative
reproduction of the data.

This system has been developed to determine the optimal
means of encoding the dataset, i.e. to determine if the hand
path is sufficient to describe the task to reproduce, or if
a joint angle representation is needed (more information
needed than the hand path). In the preliminary experiments
presented here, both the hand path and joint angle trajecto-
ries representations are recognized by the HMMs, and can
thus be used to reproduce the motion. The results show
that the hand path data representation is still sufficient to
encode the relevant features of the task, while using less
information than the joint angle representation.

Further experiments will use motions that require a spe-
cific data representation, to determine whether the relevant
motion is the hand path or the joint angle trajectories,
by analysing the task under different constraints (e.g.
obstacles, different initial postures). The framework will
then be tested with more complex motions such as ma-
nipulation tasks, performed by different users in different
environments.
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