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Abstract. To fulfill a need for natural, user-friendly means of inter-
acting and reprogramming toy and humanoid robots, a growing trend
of robotics research investigates the integration of methods for gesture
recognition and natural speech processing. Unfortunately, efficient meth-
ods for speech and vision processing remain computationally expensive
and, thus, cannot be easily exploited on cost- and size-limited platforms.
Personal Digital Assistants (PDAs) are ideal low-cost platforms to pro-
vide simple speech and vision-based communication for a robot.
This paper investigates the use of Personal Digital Assistant (PDA) inter-
faces to provide multi-modal means of interacting with humanoid robots.
We present PDA applications in which the robot can track and imitate
the user’s arm and head motions, and can learn a simple vocabulary to
label objects and actions by associating the user’s verbal utterance with
the user’s gestures. The PDA applications are tested on two humanoid
platforms: a mini doll-shaped robot, Robota, used as an educational toy
with children, and DB, a full body 30 degrees of freedom humanoid robot.

1 Introduction

End-user communication with robots is usually provided either by PC-based user
interfaces, using common programming techniques, or by simple button-based
remote controls. While these methods are very suitable for highly constrained
environments, where reprogramming of the robot need not be continuous, these
are undesirable for applications requiring the robot to work with laymen in their
daily environment.

With the recent introduction on the market of affordable humanoids and toy
robots (for example [12]), children as well as adults have started to spend a
significant part of their leisure time engaging with these creatures. Toy robots
have to fulfill a very difficult task, that to entertain, and, in some cases, that to
educate [3, 7]. To this end, they are provided with behaviors that, in some ways,
emulate the behaviors of the natural creatures they mimic [1, 5].

To fulfill a need for natural, user-friendly means of interacting and reprogram-
ming toy and humanoid robots, a growing trend of robotics research investigates
the integration of methods for gesture recognition and natural speech processing,
as part of algorithms for robot programming by demonstration, e.g. [10, 9, 15].
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Fig. 1. Robota, and the connection of a small camera to the iPAQ PocketPC, using an Expansion

Pack to read Compact-Flash memory cards.

Providing robots with capabilities for speech and vision, such that they mimic
human everyday communication, is an open research issue. Efficient methods for
such processing remain computationally expensive and, thus, cannot be easily
exploited on cost- and size-limited platforms. The rapid development of multi-
media applications for Personal Digital Assistants (PDAs) make these handheld
devices an ideal low-cost platforms to provide simple speech and vision-based
communication for a robot. PDAs are light and can, therefore, easily fit a small
robot, without overburden the robot’s total weight. PDAs are easy to handle:
they can be carried in one hand or in a pocket. Therefore, they can easily be
used as a multi-modal remote-control for directing full-size robots.

There is a growing interest in developing PDA applications to remotely con-
trol mobile robots, e.g. [11, 17, 13, 16]. The present work follows closely such a
trend and investigates the use of PDA interfaces to provide easy means of direct-
ing and teaching humanoid robots. Specifically, we develop PDA applications in
which the robot can track and imitate the user’s arms and head motions, and
can learn a simple vocabulary to label objects and actions by associating the
user’s verbal utterance with the user’s gestures. The applications are tested on
two humanoid platforms: a mini doll-shaped robot, Robota, used as an educa-
tional toy with children, and DB, a full body 30 degrees of freedom humanoid
robot.

This paper is divided as follows: Section 2 describes the architecture of the
PDA language acquisition game, and its implementation in the Robota toy hu-
manoid robot. Section 3 presents the implementation of the PDA language ac-
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quisition game in the full size DB humanoid robot. Results for both experiments
are given in Section 4. Finally, Section 5 discusses the results in the view of the
current and further developments.

2 PDA Application for the Robota Toy Robot

2.1 PDA Tools

Fig. 2. Screenshot of the language acquisition application running on the iPAQ. The user has a

visual feedback of his movements captured by the camera, with colored areas where the tracking

take place.

The PDA used in our application is the iPAQ 3850 PocketPC. It is provided
with a StrongARM 32-bit RISC Processor working at 206MHz, with 64Mb of
RAM. It communicates with the robot via a serial interface. A FlyCam-CF

camera is connected to the iPAQ via a CompactFlash Memory Card slot, through
the PocketPC Expansion Pack (see Figure 1). The camera faces the user, taking
snapshots of 160x120 pixels at a 15 images/sec frame rate. The PocketPC with
the camera is mounted on the front of the robot.

CONVERSAY and ELAN software development kits (SDKs) provide speech
recognition and speech synthesis of spoken English. Vision and speech processing
are performed by the PocketPC.

The operating system (OS) and development tools used for our applications
are Microsoft PocketPC 2002, and embedded Visual C++ (freely available on
Microsoft website). The SDKs used for speech recognition, speech synthesis and
camera data acquisition are available only for the PocketPC 2002 OS. Transition
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of our application to free OS such as Linux will be considered when more open
source codes will be available for speech processing and camera data acquisition
for PDAs.

2.2 Robota

Fig. 3. Interconnectivity across the different microcontrollers and the PocketPC, for the mini-

humanoid robot Robota.

Robota’s Hardware Robota is a mini-humanoid robot of 5 degrees of freedom
(DOFs). It is 45cm high, for a weight of about 1500g. It has five Maxon-A

DC Motors with clutches to drive its two legs, two arms and head, 5 associated
potentiometers, as well as 6 switches (see full description in [3]). Robota’s motors
are driven by a PIC 16F84A microcontroller. Robota’s sensors are monitored by
a second PIC 16F84A microcontroller. The PocketPC interfaces the motor and
sensor cards via RS232 serial connection. Motor and sensor cards are interfaced
through SPI protocol. The PC, shown in dotted lines in Figure 3, is used only
for programming the PocketPC.

Robota’s Applications The Robota project aims at developing an educational
high-tech toy that exploits multi-modal means of human-robot interaction, such
as speech and vision. Robota is currently being used at the undergraduate level
for hands-on robotics practicals and in pilot studies with normal children and
children with autism [3, 7].

Studies with autistic children investigate the use of imitation games to help
them learn coordinating, and interactive skills fundamental to social interactions
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[8]. In these games, the robot mirrors the user’s movements of the arms and face
(see Figure 4).

2.3 Language Acquisition Game

Fig. 4. Robota mirrors the motion of the user’s arm. A PDA with a camera, mounted on Robota’s

belly, tracks the motion of the user’s arms and face continuously. A speech processing engine running

on the PDA tracks the user’s verbal input. The robot learn the meaning of the vocal utterance (e.g.

“This is your arm”) by associating the user’s verbal input with its arms and face motion.

We developed a language learning game for the iPAQ 3850 PocketPC. In this
application, the robot can learn, through a simple imitation game, a vocabulary
to describe its body features and its perception of external objects. A built-in
imitation module allows the robot to imitate (in mirror fashion) the user’s motion
of the arms and the face (see Figure 4 and 1). The robot associates the user’s
vocal utterance with its visual perceptions of movement and with the motor
commands executed during the imitation. Once the robot has correctly learned
the meaning of a word, it can then execute the motors commands associated
with that word: hence, performing the correct action upon verbal command.

Social interactions have structure that can be exploited to simplify the imple-
mentation of the language acquisition game. We have implemented two funda-
mental means of human social interaction: imitation and turn taking. Imitation
is an attentional mechanism [4, 2]. Through the imitation game, the user can
force the robot to go through a specific set of perceptions. In our application,
the imitation game is used by the teacher, e.g. to lead the robot to perceive the
action of lifting up an arm or to watch a specific object by looking in a specific
direction. Thus, the imitation game focuses the robot’s attention on the relevant
visual features, reducing importantly the amount of storage required for visual
representation, and, therefore, increasing the speed of learning.
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Turn taking allows to clearly separate the act of learning and the act of
repeating. In the architecture of our application, the learning phase, during which
the robot imitates the user and acquires knowledge, and the retrieval phase,
during which the robot reproduces what it has learned, are clearly separated.
The two key-sentences “Listen!” and “Try it now!” are used to switch the robot’s
controller into either the learning mode or the rehearsal mode, respectively.

2.4 Control Architecture
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Fig. 5. Control architecture for the PDA language acquisition game.

Figure 5 shows a schematic of the control architecture of the PDA language
learning game. A speech module and a vision module perform a preprocessing of
the speech and camera data to simplify the robot’s perception of the environment
prior to learning. Speech and vision are then associated, and can be retrieved to
control the robot.

Speech Module Sentences and words from the speech stream are extracted by
the CONVERSAY Automatic Speech Recognition (ASR) engine, using prepro-
grammed syntactic rules. The syntax is described as a set of rules (see Figure
6). Multiple sentences can then describe a same meaning. In our system, only
a subset of keywords are kept for further processing by the learning module.
These keywords are shown in dark gray in Figure 6. With Robota, for example,
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Fig. 6. Representation of the grammatical rules used by the speech recognition system in the

Robota application. The grammatical rules are defined as rules of transition. The keywords retained

for further processing are shown in dark gray.

when the user says “This is your face”, the ASR detects the use of an indexed
grammar. In the present example, the grammar, encoded by the programmer,
specifies that “This is your” is always followed by a noun, here “face”. Among
the list of nouns that the ASR is programmed to recognize, the word “face” is
in this example the keyword that is extracted and processed for learning. The
advantage of a syntax definition instead of a list of sentences is that the de-
scription is shorter, use less computational power, and can generalize sentences.
The user can then omit unimportant words without perturbing the system. For
example, both sentences “This is arm” and “That is your arm” will extract the
keyword “arm”. In Figure 6, three different syntax categories are described. The
top-left category gives order to switch between learning (sentence “listen”) and
retrieval phase (sentence “try it now”). The top-right category shows the gram-
matical model for learning and retrieval of the keywords. The bottom category
show how to combine different keywords, when the system has been sufficiently
trained. Ordering “Lower your left arm” to the robot will use at the same time
keywords “lower”, “left” and “arm”.

Vision Module The vision module of Robota grabs images of the upper part of
the user’s body, including the head, arms, and shoulders. It tracks the vertical
movements of both arms and the horizontal movements or rotation of the head.
Tracking of the arms is based on luminosity and optical flow detection. The
luminosity is extracted from the pixels’ RGB color intensity.
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Fig. 7. Defined areas for the arms and face tracking in the Robota application. The vision processing

is performed by the PDA.

The position of each arm and of the head is determined according to three
areas only (see Figure 7), in order to ensure robust detection of movements. The
PocketPC screen displays the image of the user. The areas, where the tracking
of the arms and the face take place, are highlighted in yellow and green. Areas
highlighted in red show the current estimated location of the arms (or hands).
Figure 2 show screenshots of the application on the PocketPC screen. The two
pictures show that the distance between the user and the camera can vary,
without major disruption of the tracking. Indeed, when the user is close to the
camera, the system tracks the user’s hands, and when the user is farther away,
the system tracks the user’s arms.

At the initialization (t = 0), a reference value S representing the sum of pixels
luminosity l, weighted by a factor w specific to each tracking area, is calculated
as follows:

S =

6
∑

k=1

15
∑

x=1

52
∑

y=1

lt=0kxy · wk

At each time t and for each tracking area K = {1, .., 6} of the arms, a
luminosity coefficient stK is calculated as follows:

stK =

∑15
x=1

∑52
y=1 l

t
Kxy · wK

S

where ltkxy stands for the pixel luminosity of area k, at time t and position
x and y in the area (each area is 15 pixels width by 52 pixels height). wk is
a weight value of the area k, that represents a factor to reduce the luminosity
inhomogeneity, due to optical effects of the camera (areas on the peripheral part
looks darker). wk is fixed experimentally, equals to 1.0 for the 4 areas at the
corner of the images, and equals to 1.2 for the areas in the middle.

When the user raises his arm, the system tracks the upper part of the arm,
and the vision system only selects the upper area that the arm has reached. As
the lower part of the arm can pass through the other areas, when doing a natural
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gesture, the following algorithm has been used. For each arm, if we name the
upper area 1, the middle area 2, and the bottom area 3, the selected area j at
time t, used for learning, is defined by:

jt = min
i∈{1,2,3}

{i | sti > T}

The values sti are compared to a threshold value T , fixed experimentally
equals to 0.2. The area that exceeds the threshold with the lowest index is
selected.

The tracking of the face takes inspiration from the works of Gorodnichy
[6]. They show that the nose is the most robust feature for tracking the face,
when using a low-resolution camera. The method is based on a local template
matching, with an intensity pattern designed to match the tip of the nose. The
symmetry and convexity of the nose feature provide a template that is almost
the same during head rotation, and that does not change much with the head
moving toward and away from the camera. In our application, the nose feature is
defined as a small rectangular area of 5 pixels width by 2 pixels height. The size
of the tracking area was optimized manually, so as to ensure a sufficient number
of pixels for processing, while keeping the speed of processing fast enough for on-
line tracking. The position of the nose/face used for the imitation is determined
according to three areas (see Figure 7).
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Fig. 8. The learning module associates vision and speech inputs in an artificial neural network. In

this example, the user has said “This is your arm” and has lowered his left arm. Robota imitates,

and lowers its right arm (mirror imitation). The connection weights between co-activated inputs are

increased.

Learning Module The learning module performs associations of the key fea-
tures extracted by the speech and vision modules. A 1-layer Artificial Neural



10 Sylvain Calinon and Aude Billard

Networks (ANN) performs the association, using Hebbian learning. The weight
of the connection between two neurons is increased if these two neurons are
co-activated. The state of a neuron can be only 0 or 1.

If we note xi the state of the speech input i and yj the state of the vision
input j, the increase of the connection weight wij between inputs i and j is given
by:

∆wij = xi · yj

When another learning or retrieval cycle takes place, the ANN is updated,
and the neurons states are reset to the null value.
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Fig. 9. The retrieval module processes the speech inputs, and outputs motors command to control

the robot.

Retrieval Module The retrieval module is used to test the correctness of the
learning, by requesting the robot to demonstrate its new skills upon vocal com-
mand. The neurons of the speech part act as inputs, similarly to what is happen-
ing in the learning phase. In this mode, the neurons corresponding to the vision
inputs in the learning phase, act as outputs to activate motors commands. Based
on the neural activity of the inputs, the ANN computes the neural activity of
the outputs, following a winners-take-all mechanism.

For each activated input i (xi = 1), we compute the index k where the
weight values between i and j are maximum, to extract only the most relevant
associations:

k = {j | max
j∈{1,2..7}

wij}

The output states yk can then be activated according to a threshold on the
weights (the threshold value is fixed by hand, and takes the value 1):

yk = Θ(wik, 1)
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Motors Command Module The motors command module interprets the out-
put of the ANN neurons. According to the activity of each neuron, it combines
motors masks and basic motors commands, that have been pre-programmed, to
produce the final motion. The sentence “Raise left arm” gives 3 output com-
mands (see Figure 9). One that defines the sense of rotation of the motor (e.g.
the sense corresponding to the word “raise”). One that applies a mask to let
only the arms motors available, and one that applies a mask to let only the left
part of the body motors available. The superposition of the two masks implies
that only the left arm motor will be rotated to raise the corresponding arm.

Feedback Module The feedback module gives a vocal and visual feedback to
the user. The vocal feedback is implemented by letting the speech synthesizer
repeat the keyword extracted by the ASR from the user’s sentence. If the keyword
recognized by the ASR is not the correct one, the user can prevent an incorrect
learning by repeating the sentence until the correct word is extracted. Visual
feedback is given both by the display of the user’s image on the PocketPC screen,
and by the robot imitating the user’s gesture. If the imitation is incorrect (for
example Robota moves the left arm while the user moves the head), the user can
adjust her/his posture with respect to the three tracking areas, highlighted on
the camera image (see Figure 2). The imitation of the gesture informs the user
about a correct or incorrect visual recognition of the arms and face movement.

3 PDA Application for DB Human-Sized Robot

3.1 DB Robot

Fig. 10. Left: The demonstrator teaches the robot words to label the boxes and the directions in

which to move the box. The robot tracks the direction of motion of the boxes and associates the

teacher’s verbal utterance with its observations. Right: After learning and upon verbal request from

the teacher, the robot reproduces the motion of the named box in the requested direction.
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Fig. 11. DB robot application setup.

In collaboration with the Humanoid Robotics and Computational Neuro-

science department (HRCN) at the Advanced Telecommunication Research in-
stitute (ATR), we implemented the PDA-based language learning game on DB,
an anthropomorphic hydraulic robot with 30 DOFs. In these experiments, the
robot learns the names of two boxes and of directions of movements (left and
right). Once the robot has correctly learned the words, it can push the boxes in
a desired direction upon verbal command.

Figures 10 and 11 show the experimental setup for the DB robot, where a
table is placed in front of the robot, with two boxes of different colors on it
(green and pink, to facilitate color tracking). An external stereo vision system
tracks the boxes position.

DB is mounted at the pelvis. It is 1.85 meters tall, weighs 80 kg, and is driven
by 25 linear hydraulic actuators and 5 rotary hydraulic actuators. Each arm has
7 DOFs. The vision system consists of 2 cameras fixed on the ceiling and facing
the robot (see Figure 11). A color blobs tracking system generates blob position
information at 60 Hz. In our application, the vision module of DB robot extracts
relevant changes in the boxes’ position and direction of displacement. Similary
to what what was done with Robota, see Section 2.4, speech and vision inputs
are associated in a ANN, computed on-board of the PDA. During retrieval,
the output neurons activate absolute goal positions, and relative sequences of
movement, such that the robot can push the requested box in the requested
direction. The communication from PDA to robot is still assured by a RS232
serial interface in this experiment, because the aim of this first experiment was
to evaluate the use of the PDA as a remote control. Wireless capabilities of the
iPAQ will be used in further experiments.
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4 Experiments and Results

No detection False detection No detection False detection

 Experiment 1 85% 13% 2% - - -

 Experiment 2 77% 23% 0% 82% 16% 2%

 Experiment 3 86% 7% 7% - - -

Recognition rate
Error rate

Speech Recognition System Vision System

Recognition rate
Error rate

Table 1. Experiments results for the speech recognition system and the vision system processed

by the PDA setup.

Table 1 gives the results from 230 trials over 3 experiments, conducted with
the same user. Experiments 1 and 2 have been conducted with Robota. The first
experiment presents a typical learning scenario where the robot learns the labels
for its limbs (head, arm and leg), the difference between left and right, and
directions of movement (lifting up and down). This experiment uses the inputs
from the potentiometers instead of the vision system for knowing the location
of the limbs. Experiment 2 presents the same learning scenario, using the vision
system presented in Section 2.4. Results from these two experiments show that
the error rate of the speech recognition system increases, when the processing
rate of the iPAQ is disturbed by another task (i.e. by the vision process in
Experiment 1). Experiment 3 has been conducted with the robot DB. There,
the robot learns names for objects (two color boxes), and for directions in which
to move the boxes (left/right). There are no data on the efficiency of the vision
system, since this one was an external system, not performed on the iPAQ (see
Chapter 3.1).

With Robota, we conducted trials with adults (native and non-native English
speakers), in different rooms and under different lighting conditions, and with
two little girls of 4 and 9 years. These trials showed that, when the user is
trained and understands the turn-taking model and the vision system principles,
and when the environment is constrained (clear background, no moving objects
in the background), the system performs correct visual and speech recognition,
and the learning is immediate. However, the robustness of speech and visual
processing decreases quickly in a moving and noisy environment (e.g. when there
are people standing behind the user, or with strong directional light, resulting
in a saturation of the camera).

Experiments with children showed that, at nine years old, the child is per-
fectly able to understand and work with the system. At four years old, the child
could understand the game principle but had difficulty playing the game. The
visual system is, indeed, too constrained, preventing the kid to play freely the
imitation game. The speech recognition is very poor for children voices.
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We conducted a first set of trials with autistic children, in collaboration with
Jacqueline Nadel at the Hôpital de la Salpêtrière in Paris in May 2003. These
trials showed that the system needs to be improved to be successfully used by
the children. The vision tracking system must be improved in order to track
more robustly the child’s movements, even if the child is not centered in the
camera field of view.

The experiments conducted with the robot DB showed that the PDA offers
user-friendly means to control that robot, and that further developments are
worth to be conducted, using the iPAQ wireless capabilities.

5 Further Developments and Conclusion

This work intended to investigate the feasibility of porting a simple language and
imitation game on a PDA. On the one hand, this work allowed to investigate the
use of the PDA interface to teach a full size humanoid robot a basic vocabulary,
which can then be used to direct the robot in a simple manipulation task.

On the other hand, this work investigated whether this embarked system
could replace the previous PC+WebCam setting for Robota. Having an all-in-one
setup for Robota is advantageous for the experiments conducted with disabled
and autistic children [8]. It offers flexibility and a hands-free device, more ac-
ceptable for these children. First trials with normal and autistic children showed,
however, that the robustness of the PDA speech and vision systems have to be
improved before more tests are conducted with children younger than 9.

The limited processing power of the iPAQ constrained us to implement very
simple vision and speech processing. Each module of our system has been devel-
oped to be separately optimized. This allows us to easily increase the efficiency of
one module, taking thus advantages of the new features, accessories, and process-
ing power of the upcoming PDAs. We are currently investigating the integration
of more powerful vision algorithm for skin color and motion tracking on a new
PDA device, improving the programming setup, and possibly using the PDA
wireless capabilities.

In conclusion, the possibilities offered by the iPAQ in terms of computation
and multi-modal sensor interfaces show that applications that deal with speech
and vision are possible, at an affordable price for toy robots. We have also shown
that such handheld devices can be exploited to interact with complex humanoid
robots, offering the advantage of a user-friendly device that can be moved freely.

The closest work to ours is that of Okada et al. [14], who investigated a PDA
application to provide operator’s assistance to a humanoid robot during an object
manipulation task. While the manipulation task performed by the DB humanoid
robot in our work is much simpler than that implemented by Okada et al, our
application went farther in exploring the use of the PDA for teaching (and not
simply directing) the robot, by combining both vision and speech processing.
The learning possibilities (i.e. the vocabulary) were very limited, because the
purpose of the experiment was first to evaluate the functionality of a PDA to
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remotely control the robot. In future work, we will investigate learning of regular
sentences to direct more manipulation tasks.
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