
1   THE SOCIAL ASPECT
OF COMMUNICATION

Social learning theory studies the mechanisms by
which an agent learns from its interactions with con-
specific agents. Examples of social learning can be

found in the animal kingdom, and especially in pri-
mate societies, whereby, for instance, one agent learns
new skills by the observation and imitation of anoth-
er agent’s behaviour. At present there is no widely
agreed definition of imitation existing in the animal
and human psychology literature.  The variety of def-
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initions ranges from strong definitions, which require
an aspect of novelty in the imitated behaviour to very
week definitions which have no clear boundaries to
forms of non-imitative social learning like contagion
or social facilitation. Often researchers refer to
Thorpe’s definition of  ‘true imitation’ which is the
‘copying of a novel or otherwise improbable act or
utterance, or some act for which there is clearly no
instinctive tendency’ [53]. However, such a definition
leads automatically to the question of what can be
counted as a ‘novel’ behaviour. On the other hand of
the spectrum we find definitions like one given by
Davis who refers to a behavioural skill which leads to
‘some sort of similarity in behaviour among two or
more individuals’ [15]. Matching behaviour which
involves unlearned species-typical behaviour (like con-
tagion: e.g. synchronised courtship, flocking and
herding behaviour) is then difficult to distinguish
from imitation.  For following behaviour (e.g.  rats
learning to follow a trained rat to food in a maze) the
term ‘matched-dependent behaviour’ is often used.
Thus, from the literature it is not quite clear when the
term imitation should be used properly (see [25] for
an extensive discussion). Applying the term imitation
to artificial systems like physical or simulated agents
poses a number of additional problems. In [41]
Nehaniv and Dautenhahn discuss imitation in terms
of mappings between dissimilar bodies, which can but
need not involve learning. Thus, for the purpose of
this paper we use imitation or imitative behaviour in
the sense of having two agents, a model and an imita-
tor, and both agents are able to actively maintain a fol-
lowing relationship. The capacity to follow is designed
and assumed to be ‘instinctive’. Since our experiments
address learning by imitation instead of learning to
imitate, the imitative behaviour (following) is not
novel.

Imitation capabilities have been studied e.g. in
macaques (see the well known example of the Japanese
macaques of Koshima Island whose habit of washing
potatoes develop from the observation and imitation
of the individual finding of one macaque [26]), in
parrots and mynah birds for reproducing songs [42]
and of course in humans (e.g [9, 37, 55]). Similarly,
recent work showed that artificial agents can also ben-
efit from mutual interactions [14], e.g. for improving
performance in collaborative tasks (e.g. [27, 31]), and
from interactions with humans, e.g. for learning com-

plex motor skills (e.g. [30, 52]). We view learning,
communication1 and imitation as important capabili-
ties to possess by social robotic agents, and our previ-
ous work studied how these skills can be designed and
used by physical autonomous agents. In this paper, we
study grounding and use of communication among
simulated agents, and, in particular, we investigate the
role of social interactions for the sharing of a common
context and the building of joint attention between
the communicative agents.

Recent studies on the development of communica-
tion have addressed the problem essentially from an
evolutionary perspective, (1) either through theoreti-
cal models based on biological studies of brain evolu-
tion (e.g. [16, 46]), or on sociological studies of pri-
mates and human societies (e.g.[2, 18]), (2) or
through computer simulations (e.g. [28, 34, 45, 43,
51]). For  these studies, the symbol grounding problem2

[22] is solved, once the necessary cognitive abilities
have evolved. However, few of these studies consider
the influence of behavioural and social factors on the
development of communication, exceptions are [18,
45]. A common trend among the above mentioned
simulation studies is to give a very simplified physical
description of the communicative agents and their
environment. The communicative agents are
described only in terms of their cognitive (by opposi-
tion to behavioural) abilities that enable production
and reception of the communicative signals. We dis-
tinguish between behavioural and cognitive capabili-
ties. The agent’s behaviour relates to regularities of the
agent’s dynamic interaction with its environment, as
can be detected by an external observer. Behavioural
capabilities are evaluated by having the agent interact-
ing in an environment. Cognition generally refers to
rational processes involved in the acquisition, organi-
sation and use of knowledge, thus, cognitive capabili-
ties refer to internal processes inside an agent.
Cognitive and behavioural capabilities in animals are
closely coupled and dependent on one another.
However, in artificial systems the distinction can be
made much more explicit, since models which are
focusing on cognitive capabilities are often neglecting
or strongly simplifying agent-environment dynam-
icse.g. assuming complete or global information of the
world and other agents).

The cognitive functions involved in grounding of
communication have been simulated e.g. as the
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input/output of an artificial neural network [28], as a
matching process [51] or as a probability function
[43]. The agents in these simulations are disembod-
ied, they do not occupy a physical space (they have no
body, no sensors or actuators, and generally occupy
not more than a single point in the space) and the
result of their actions is atemporal (an action and its
resu lt occur in one time step). But most importantly,
each agent has a perfect and identical perception of
the environment features, based on an abstract model
of the world.

By contrast, in our approach, grounding of com-
munication is a process inherently situated [10] and
dependent on the agent’s embodiment [10], as it is
based on the agent’s individual and subjective world
representation3 which it constructs through its inter-
actions with the environment [13]. We say that two
agents are communicating once they have developed a
similar interpretation of a set of arbitrary signals in
terms of their own sensor perceptions, that is once
they have achieved a similar categorisation [22] of sen-
sor perceptions and have successfully attached them
with the same set of arbitrary signals.  In [5, 7] we car-
ried out physical experiments in which an
autonomous mobile robot was taught by a human
instructor and showed that it is not necessary for two
agents to be of the same type to be able to communi-
cate.  It is not the means by which the agents perceive
their environment that matters but rather that they
can make similar perceptual distinctions and that
these occur in close temporal relationship. In our
experiments, we use an imitative strategy, namely
mutual following of two agents4, to create a perceptu-
al context common to learner and teacher agents,
upon which the learner grounds its understanding of
the teacher’s words.  The set-up does not require that
both agents use the same sensory data or even the
same sensors in order to characterise a word. A con-
crete situation is interpreted on the basis of the learn-
er’s own sensory-motor measurements.

In the computational linguistic studies we men-
tioned earlier ([28, 34, 43, 51]), grounding of com-
munication is regarded as a computational problem
that can be solved solely by means of combinatorial
analysis.  For these authors, categorisation of sensor
perceptions into concepts results from a process of sta-
tistical elimination among all possible meaning-object
pairs, where the most likely pairs, i.e. the most fre-

quently observed, are chosen. However, combinatori-
al analysis alone is not always sufficient to discard all
irrelevant information, as it is often difficult to pres-
ent a sufficiently high number of relevant pair-mean-
ing examples compared to irrelevant ones [16]. There
are also numerous situations in which one feature does
not appear (naturally) without another one, e.g. the
eyes, mouth, nose and other human face features are
bound to appear together with the whole face.  In this
case, combinatorial analysis would fail to attach two
different concepts to the eyes and the face respective-
ly, as there could be no example in which each of these
features appears alone.  Humans overcome this prob-
lem by using attentional mechanisms provided either
by the speaker/teacher (pointing, increasing the tone
of voice, linguistic deixis) or by the listener/learner
(focus of gaze in the direction of the speaker’s gaze or
the direction pointed by the speaker’s finger).
Attentional mechanisms act as a cognitive process
which restricts the number of observations before
combinatorial analysis. However, there is more to
communication than just a single cognitive process.
There is an interactive process between the two com-
municative agents. For those who study the develop-
ment of language in children, it is clear that “to be ef-
fective early language learning must take place in a
social setting .. [where] .. turn taking, mutual gaze and
pointing are social devices .. [used for] .. establishing
a joint attention [between speaker and listener] that
creates a meaningful social setting necessary for the
development of language” [21]. Other works imple-
mented such attentional mechanisms as processes dis-
tinct from the learning mechanisms, e.g. Steels &
Vogt’s pointing strategy [50] and Yanco & Stein’s
action-selection mechanism [57]. By contrast, we
develop a single cognitive architecture which enables
both associative learning, selective attention from
parsing of continuous sensory information, and the
creation of a mutual binding between the two agents
by means of mutual phototaxis (as an underlying
social relationship). In agreement with Deacon’s sug-
gestion [16] that “the acquisition and use of symbols
requires considerable facility for conditional associa-
tive learning, including an efficient short-term mem-
ory for sequences and combinations, and an ability to
easily and rapidly produce new combinations”, we
developed a Dynamical Recurrent Associative
Memory Architecture (DRAMA) [7] which provides
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short-term memory of events, learning of temporal
sequences and fast retrieval of the learned combina-
tions by means of Hebbian mutual associativity. Note
that recent neurobiological studies support such an
Hebbian approach to account for the brain processing
involved in discrimination and categorisation of
words (see [48] for a good review of these studies). In
addition, following Deacon’s suggestion that “symbol-
ic processes and sensory-motor attentional process
may utilise the same neurological computations for
different purposes” [16], in our  architecture the same
learning and retrieving algorithms are used for gener-
ating the symbolic associations (input from a radio
sensor) and the sensor-motor associations, which are
then used for controlling the robot’s movements
(motor activity) and communication (transmission of
radio signals).

This work follows previous experiments in which
we studied grounding of communication in a two-
agent (teacher-learner) set-up [5, 6]. A learner robot
followed a teacher agent, which was in one case a
robot [6] and in another case a human instructor [5],
around in a given environment. The learner robot was
taught to differentiate between locations in the arena
[6] (being on the plane, climbing up and climbing
down a hill) and between different objects [5] (boxes,
coloured patches on the floor) by associating the cor-
rect perceptual combinations with the different radio
signals emitted by the teacher.  Successful results
demonstrated, on the one hand, the efficiency of the
learning architecture at associating structurally differ-
ent sensor patterns under a considerable amount of
noisy data. On the other hand, these experiments
showed the validity of the proposed imitative strategy,
namely mutual following of the two agents, as a
means of transmission of a vocabulary from one agent
to a second heterogeneous agent (a human or a mor-
phologically di fferent robot).

In this paper, we report on three different studies,
which are all carried out in a simulated environment.
In the first part, we study how the imitative teaching
scenario, used in the above described physical experi-
ments in [5, 6], scales up to grounding communica-
tion among a group of robots. In the second part, we
evaluate how theimtative behaviour, namely following
of the teacher agent, benefits the agent by improving
its learning performance. Finally, we implement a case
study in which using the communication system

which was learned in the fir st set of simulation,
improves the learning performance of the commu-
nicative agents in another learning task.  Here, the
agents use the vocabulary to transmit to each other
object locations, hence speeding up the learning of
these locations by each agent individually.  Note that
we will use the term robot as well as the term agent in
the rest of the paper to refer to the simulated mobile
agents. The term robot is used because the agents in
the simulations represent physical robotic  agents, as
used in previous experiments. They have similar sen-
sor and actuator capabilities (sensitivity and range) as
that of the physical robots and use the same control
mechanism (see section 4). The aim of the simulation
studies was to carry out experiments with a group of
robots, what we  could not do in a physical environ-
ment (as we could not have more than two physical
robots). We are however aware that simulations are
not the same as physical experiments and have
addressed this point previously in [7, 5].  Current
work of one of the author investigates the implemen-
tation of the simulations reported here in a real set-up
of several Khepera robots, see section 7.

The rest of this paper is divided as follows. In sec-
tion 2 we explain the scenario of the experiments. In
section 3 we describe the agents’ control architecture
and in section 4 we present the experimental set-up of
the experiments. We report on the results of the exper-
iments in section 5 and discuss in section 6 the con-
tribution of these experiments to the study of the sym-
bol grounding problem in situated robotic agents. We
conclude the paper (section 7) with a short summary
of the results of our studies.

2   THE EXPERIMENTAL SCENARIO

We carry out two sets of simulation studies in which
we investigate first grounding and then use of com-
munication in a group of nine robots.

2.1  Learning the Vocabulary

In the first set (section 5.1), the agents learn a vocab-
ulary to differentiate between coloured patches and to
describe their locations in terms of distance and ori-
entation, i.e. in polar coordinates, relative to a homing
point. The vocabulary is transmitted from a teacher
agent T0, which has a complete knowledge of the
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vocabulary from start, to eight learner agents, which
have no knowledge of the vocabulary at the start of
the experiments. Once a student becomes confident
enough in its learning of the correct signal-meaning
correlation (that is after having observed a sufficient
number of times the same signal-sensor measurement
pair), it becomes teacher in its turn.  The teacher agent
T0 does not learn, that is its definition of the vocabu-
lary remains unchanged during the whole experiment.
The learner agents, however, carry on learning even
when they begin to teach. Thus, a ‘bad’ teacher, that
is a learner agent which has become confident in
incorrect signal-meaning pairs, can become a ‘good’
teacher later in the experiment if it can update aga in
its confidence on the correctness of its word-meaning
pairing under correct external teaching (and reversely
a good teacher can become a bad teacher under oppo-
site circumstances). The level of confidence under
which the learner becomes a teacher is varied in the
experiments and its effect on the learning perform-
ance of the whole population investigated.

Transmission of the vocabulary from teacher agent
to learner agent occurs as part of an imitative strategy,
namely mutual following, between the two agents.
Each agent follows the other by means of phototaxis,
namely tracking lights which are attached to the
robots. Because following is mutual, it results in a
smooth binding between the two agents. The agents
seldom loose sight of each other, because when the
learner runs slower than the teacher waits for it, and
they find each other more easily as they are both look-
ing for one another. While the two agents wander ran-
domly in the environment and follow each other, the
teacher sends radio signals, i.e. ‘words’, to describe its
external perceptions, i.e.  observation of a coloured
patch, or internal perceptions, namely odometry (rel-
ative measure of distance from homing point) and ori-
entation relative to the homing point. The learner
attaches a meaning to the teacher’s signals in terms of
its own sensor-motor perceptions, that is its vision
perception (coloured patches’ detection) and its meas-
ure of odometry and orientation.  While bounded by
the following process, learner and teacher agents are
set in a position from which they share a common
context of both external (face the same direction) and
internal perceptions (perform the same movement,
travel the same distance and on the same ground).
This implicit similarity between the two agents’ per-

ceptions is what enables the learner to make sense of
the teacher’s words, as the teacher talks only of what it
senses, unaware of the actual learner’s perceptions.  It
is thus an unsupervised learning mechanism used in a
teacher-learner set-up. We use a connectionist5 model
for the learning of ‘word’-observation pairs, where
incorrect associations, due to mismatched agent’s
observations, are discarded compared to correct ones
by a process of statistical elimination depending on
their relative frequency of occurrence (cf. section 3).
Further simulation studies are carried out (section
5.1.2), which investigate the importance of the fol-
lowing strategy for the success of the learning by com-
paring the learning curve of the agents with and with-
out this following capability.

This study follows previous experiments which we
carried out using two teacher-learner autonomous
robots. There, the learner robot was taught by the
teacher robot a vocabulary to describe its external per-
ceptions of objects [7, 5] and internal perceptions of
movement [8], inclination [6] and orientation [8].
The teaching scenario was based on the imitative-fol-
lowing strategy, as described above. The study report-
ed here validates the imitative teaching scenario by
showing that it scales up successfully to transmitting a
vocabulary across a group of agents. 

2.2  Using the Vocabulary

In a second set of simulations (section 5.2) we study
how the vocabulary learned in the first set of experi-
ments can be used beneficially by the same group of
nine agents.  The experiments start with all agents
knowing a vocabulary of 31 words for describing the
nine different colours because it could provide fast
computation and the ability for spatio-temporal asso-
ciation and learning of time series, as required by the
task. Note that there is no biological plausibility in the
model and in its implementation. of the coloured
patches present in the environment and their loca-
tions in terms of of 14 distance measurements (meas-
ured by odometry) and 8 angle measurements (using
its compass measurements and the odometry calcu-
lus). As the agents wander randomly around the envi-
ronment, they learn the locations of the coloured
patches by associating the sensor perception of the
particular colour input with the coordinates of the
agent’s own position. When one agent has learned the
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location of a coloured patch, it can further transmit
the coordinates of the location via the communication
channel (using the learned vocabulary) to all other
agents. Each agent can thus learn the coloured patch-
es’ locations from listening to the speaker agent’s talk-
ing and without actually coming across the particular
location itself. This results in a speeding up of the
learning of the whole population, which we study
using two different scenarios for the information
transmission. The transmission occurs as soon as one
agent comes across a coloured patch location (one-to-
many, long distance communication) or only when
two agents come across one another (one-to-one,
short-distance communication).

Note that in the scenarios which we used in our
experiments (i.e. learning of a vocabulary for colour
types and locations in polar coordinates, transmission
of the vocabulary through mutual following of teacher
and learner agents and use of the vocabulary for trans-
mitting information about coloured patches loca-
tions) was inspired by the communication system
used by the Honey bees, following Moukas & Hayes’
robotic implementation [40]. Honey bees communi-
cate through a ‘language’ composed of dance patterns
that form a vocabulary to describe different flower
types and locations, the location being measured in
terms of the distance, measure of energy required to
reach it, and of the direction to follow from the nest.
New born bees ‘learn’ 6 to ground each dance pattern
with a particular sensor perception of sugar, energy
and orientation. It is suggested that the newborn bees
learn the meaning of the dance by associating their
memory of the dance patterns and of the scent of the
flower (of which traces had been brought back by the
dancer bee) with the location of the particular flower,
when they later discover it [19, 36]. Note, however,
that we make no claim as to our system being a valid
model of the Honey bees’ communication system; we
only stress its analogy with this system.

3   CONTROL ARCHITECTURE

Learning of the vocabulary, i.e.  grounding of the
teacher’s signals in the learner robot’s sensor-actuator
state results from an association process across all the
robot’s sensor-actuator states, which is produced by a
Dynamic Recurrent Associative Memory Architecture
(DRAMA). A complete mathematical description of

the architecture is given in [7]. In the following, we
briefly summarise its main properties as given in [7],
and then describe the training and retrieving algo-
rithms which we use in the experiments reported in
this paper.

The complete control system of our agents is com-
posed of a set of event recognition modules (one for
each sensor and actuator) and an associative module
that contains the DRAMA  architecture (see figure 1).
Sensor and actuator information is encoded in binary
(0/1) bit-strings. The event detector modules act as a
selective mechanism on the sensor and actuator infor-
mation.  Once a variation in one sensor measurement
or actuator state occurs, i.e. an event has happened, it
triggers the corresponding event detector module and
the new information is passed further to the associa-
tive module (in the experiments a one bit variation
was considered to be sufficient to trigger the module).
The associative module (DRAMA architecture) con-
sists of a fully recurrent network with self connections
to each unit. The structure of the network is dynami-
cally updated each time a unit has been activated by
an input from the event detector. To each connection
in the network are associated two parameters: a time
parameter and a confidence factor. Time parameters
and confidence factors are updated following Hebbian
rules, providing an associative type of learning; the
time parameters record the time delay between units’
activation while the confidence factors keep a memo-
ry of the frequency of units’ coactivation. The self
connections to the units provide a short-term memo-
ry of the activation of the unit, by sending back the
activity to the unit. The duration of the memory is
limited, as the activity decreases by a fixed ratio after
each passage along the recurrent connection. The unit
activity stops (becomes zero) when the  recurrent
activity is lower than a fixed threshold. The short-term
memory of a unit’s activity enables associations
between patterns of unit activation that have been
delayed in time, a specificity required for solving our
particular learning task (the following strategy implies
that radio signals have to be associated with sensor
measurements which are received with a varying time
delay).
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3.1  Basic Behaviours

In the experiments we report here, DRAMA is used
for both learner and teacher agents.  Each robot starts
with a set of basic behaviours for wandering, obstacle
avoidance and following. The behaviours are prede-
fined by setting in advance the values of the connec-
tion parameters between infra-red sensors, bumpers,
light sensors and the agents’ motors. Obstacle avoid-
ance uses infra-red and bumpers. Following consists of
phototaxis using the light detectors (cross-connectivi-
ty between light sensors and motors). Wandering is a
default input unit to both motors, always active, that
leads the robot to move straight when no other move-
ment is produced by the two other behaviours.
Similarly, the teacher robot’s knowledge of the vocab-
ulary (in the simulations) is predefined by setting the
value of the connections between relevant sensor
information and the radio emitter. Details of the
implementation can be found in [4].

At each time step, i.e. one processing cycle, the
robot’s behaviour is determined by retrieving the net-

work outputs to the actuators (motors and radio emit-
ter) given the current sensor input. The teacher
‘speaks’ (emits radio signals) only when it sees the
learner.

3.2  Training Algorithm

Learning is dynamical and is performed continuously
by updating the connection parameters to account for
variations measured in the sensor-motor state. That is,
at each cycle the current sensor and actuator informa-
tion is compared (in the event detectors) to the infor-
mation measured in the previous cycle. If a variation
is noticed, the new information is passed on to the
associative memory where it is memorised for a fixed
duration, during which it is associated to any incom-
ing event. It is important to understand that the same
network (the DRAMA architecture) is used for learn-
ing (i.e. generating the symbolic associations between
radio sensor and other sensors) and control of the
agent’s behaviours (i.e. motor activity and radio signal
transmission).

(DRAMA Architecture)
Associative Module 

Sensor A 
Input

(e.g. compass)

of sensory system B

Event detector

(e.g. radio receiver and emitter)

sensory System A

detector ofEvent

e.g. motor left

motor right

Sensor B input / Actuator B output

output
Actuator C

Figure 1: Schematic representation of the control system of the learner and teacher agents with three sensor-actuator systems,
e.g. compass, radio and motors. Note that in the experiments the motors do not input to the associative architecture as there is
no external mechanisms for changing their activity, hence the dotted arrows in the figure. Only the output of the architecture
to the motors is used to directing the robot’s movements.
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The success of the learning is determined in the
experiments by comparing the proportion of correct
and incorrect signal-object associations. Learning is
successful when correct associations have been done
more often than incorrect ones.  Incorrect associations
result from a mismatch between teacher and learner
perceptions, where the learner robot associates the
teacher’s radio signal with an incorrect perception
(which does not correspond to that of the teacher).
This mismatch is due to the imperfect following of
the two agents. Note that there is no noise/impreci-
sion in signal transmission, i.e. the signal is perfectly
received. Incorrect associations can also be due to
incorrect emission of the signal, as it is the case in the
experiments (section 5.1) in which we vary the
threshold of confidence under which the learner
robots can speak.  It happens that a learner robot
(which has become teacher) emits incorrect signals
(relative to the definition of the vocabulary), when it
is allowed to speak before it had made the correct sig-
nal-object correlations.

The comparison between correct and incorrect
correlations consists of calculating the ratio between
the values of the confidence factor parameters7

attached to the correctly and incorrectly activated
connections. The confidence factor parameter gives a
measure of frequency of co-activation of the two units
linked by the connection, that is, e.g., of the frequen-
cy of correlation between one signal (one activated
radio unit) and an object’s features (pattern of activat-
ed units in colour, angle and odometry sensors).  In
the stage of learning the vocabulary (section 5.1), we
consider only the connections between the radio sen-
sor units and the units of colour (coloured patches’
feature), angle and odometry sensors (location), while
in the stage of learning the locations of the coloured
patches (section 5.2), we consider only the connec-
tions from the colour sensor to the angle and odome-
try sensors.  Two units are said to be correlated if the
value of the confidence factor associated with their
mutual connection is higher than half the maximal
value of confidence factors for all connections leading
to each of these units. Note that the network’s con-
nections are bidirectional and asymmetric and that we
require correct correlation in both directions.
Learning of the signal-object associations is successful
when all radio units (one unit stands for one signal)
are correctly connected to the corresponding colour-

angle-odometry unit combinations (describing the
corresponding objects), that is once all the connec-
tions between radio units and these other sets of units
satisfy the above mentioned correlation criteria.
Choosing the threshold on correlation to be half the
maximal activation means that we accept a proportion
of up to 50% of noisy data, where the noise consists
of incorrect signal-sensor associations.

Note finally that there is no a-priori limitation on
the number of words the robot could learn; this
depends on the number of inputs (i.e. radio input
units in the experiments) to the network, which fixes
the maximal capacity of the network (i.e. the number
of patterns which can be stored). This capacity has
been evaluated to be of the square of the number of
network units (i.e. N2, where N is the number of
units, see [7]). The system could thus possibly scale up
to learning a vocabulary of much bigger size. In [3, 4],
we report on an experiment with a mini-sized hu
manoid robot (doll-shaped), which is taught by a
human instructor English proto-sentences to describe
its interactions with the instructor. This experiment
exploited DRAMA’s ability for learning sequences of
inputs, which allows learning of the sequence and
combination of the words forming the sentences. The
experiments reported in this paper exploit only
DRAMA’s ability at binary association for word-
meaning pairs.

3.3  Retrieval

The phases in which the robot uses its understanding
of the vocabulary to learn new colour patches’ loca-
tions (section 5.2) is obtained by retrieving the corre-
lated units activity in the colour, odometry and angle
sensors given the particular radio signal. The robot’s
emitter sends three radio signals for describing the
patch type (colour) and its location in terms of angle
and odometry measurements. The three radio signals
retrieve a specific unit activity in colour, angle and
odometry sensors. Learning of the so transmitted
coloured patches’ locations results from updating the
connection between the co-activated units in these
sensors.

A retrieval mechanism based on the notion of
retrieved and real sensor states was implemented to
allow the robots to use their understanding of the
vocabulary to learn new colour patches’ locations
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from hearing another robot’s saying so.  The robots’
predefined understanding of the vocabulary is set-up
by fixing from the start their networks’ connections
between the radio sensor and the colour, angle and
odometry sensor, such as to represent a vocabulary of
31 words to label 9 colours, 14 odometry levels and 8
angle measurements. The robots communicate by
exchanging information about objects’ locations. One
robot’s message is composed of three radio signals (1
byte with 1 bit activated) for describing the object’s
colour and its location in terms of angle and distance
measurements.  When one agent receives a radio sig-
nal sent by a second agent (which produces a pattern
of activity in the radio sensor units), it decodes it by
retrieving the correlated activity in units correspon-
ding to the colour, angle and odometry sensors. That
is, the three radio signals retrieve a specific unit activ-
ity in each of the set of units attached  to colour, angle
and odometry sensors. Learning of location of the
coloured patches transmitted in this way results then
from updating the connections between the co-acti-
vated units in the colour, angle and odometry sensors
(but not the radio sensor, see explanations below).

The sensors’ activities which are retrieved for the
colour, odometry and angle sensors are stored in a
retrieved vector state (one for each sensor), which are
different from the real vector states, which contains
the current sensor measurement. The retrieved and
real vector states of the sensors can be thought of as
two sets of network units, parallel to each other and
receiving outputs from all other units in the network
(as shown in figure 2).  The retrieved vector state does
not input to the network.  Thus, the retrieved sensor
activity in the experiment (which is placed in the
retrieved sensor state) does not affect directly the

robot’s behaviour; that is, it does not participate in
controlling the motors and radio activity (by retriev-
ing the real unit activity in these sensors). However, in
order to control the robots’ speaking, i.e. to activate
the radio emitter to transmit the objects’ locations, a
mechanism is implemented, which transfers the
retrieved state into the real one. This transfer occurs
either when the robot discovers an object or when it
meets another robot and engages in an answer-ques-
tion dialogue (see description of the results below).

Learning of the objects’ locations results then from
association among retrieved sensor states and associa-
tion among real sensor states. It is important to note
that association among retrieved sensor units is done
separately from association among real sensor units.
Thus, in the experiment, the listener agent can either
learn from the retrieved sensor units’ activity (which
correspond to the sensor perceptions ‘transmitted’ by
the speaker robot) by associating mutually the active
units in each sensor system or it can learn from the
real sensor units’ activity (its current sensor measure-
ments), but it does not associate mutually its retrieved
sensor state (speaker’s measurement) with its real sen-
sor state (its current measurement). By definition,
radio measurements are never associated with other
sensor measurements in this experiment. When they
are produced by the speaker, they do not produce an
input activity in the speaker’s radio sensor but rather
an output activity, which is then not forwarded to the
DRAMA associative module (see beginning of section
3 and [7] for explanations); thus, no association
occurs. When they are received by the learner, only
the retrieved sensor states they produce are associated.
Association between real sensor states was defined so
that all except the radio sensor state could be associat-
ed. Figure 3 illustrates the transfer from real to
retrieved sensor states during a two robots’ transmis-
sion of an object’s location.

4   EXPERIMENTAL SETUP

Simulation studies are carried out in a rectangular
arena measuring 700 by 700 units (1 unit = 1cm),
which contains nine objects, coloured patches, which
can be distinguished by their different colours. Figure
4 shows a graphical representation of the simulated
environment with the nine robots.  The objects are
represented as big rectangles of different colours.

Other network units

Real State

Transfer mechanism

Input Output 

Retrieved State

Figure 2: The control system with retrieved and real sensor
states.
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These are coloured patches lying on the ground over
which the robots can run. In the figure, we see the
teacher robot (in dark grey) between five of the eight

learner robots (in light grey), moving between objects
5 and 8. On top of the figure, the result of the robots’
speaking is written for each of the nine robots. The
teacher robot (2nd column) outputs ‘128’. This refers
to the activation of the 8th radio unit in the robot’s
network, which is the radio encoding for the label of
the object, across which the three robots are currently
running. None of the learner robots is speaking, i.e.
they all output ‘0’, as they have not yet seen the object
and thus have not yet associated the teacher’s signal
with the object’s features.

There are nine8 robots, which are equipped with
colour vision (nine colours) to distinguish between
each coloured patch, infra-red vision to see the walls,
light vision in front and back for mutual following by
phototaxis and a radio transceiver to communicate.
They also have a compass which measures bearings of
45 degrees and an odometry sensor which is incre-
mented at each wheel rotation, hence giving a notion
of travelled distance.  Given the compass and odome-
try sensors information, the robots calculate their
positions relative to the centre of the arena. They can
then determine their position in the arena (the angle
(virtual) “sensor”), which is divided in 8 quadrants.
Infra-red and light detectors are associated with a
cone of vision of 180 degrees which is segmented into
eight quadrants. The measurement of the sensor is
given by an 8-bit string where each bit corresponds to
the value measured in each of the eight quadrants (e.g.

Color
Distance
Angle

Signal1
Signal2
Signal3

Signal1
Signal2
Signal3

Color
Distance
Angle

ReceiverEmitter

RealReal Retrieved Retrieved

Figure 3:  Transmission of the location of an object. The emitter robot first translates the real (as measured when it discovered
the object) sensor vector states containing the description of the object features (color, angle, distance) into the three corre-
sponding (retrieved) radio sensor states (signal 1-2-3). It then transfers the retrieved radio states into real ones; that is, it emits
the three signals. The receiver robot picks these signals up by storing them in its real radio sensor state. It then translates these
three signals by retrieving the corresponding retrieved sensor states for color, angle and distance of the object. This information
is further used by the receiver robot to learn the location of the object.
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Figure 4: Simulation studies are carried out in a 2-D simula-
tor, in which the robots are represented as rectangles of 30 by
20 units, a triangle determining the front. Coloured patches
are represented as big rectangles whose number corresponds
to the colour type. There are nine types of coloured patches
with one location for each type. In the figure, we see the
teacher robot (in dark grey) between five of the eight learner
robots (in light grey), moving between objects 5 and 8.
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infra-red=(11000000) stands for an infra-red activa-
tion of the first two quadrants). The range of sensitiv-
ity of the sensors are given in table 1. Each coloured

patch is defined by a different colour. The behaviours
of all robots are calculated by the same routines, that
is there is one network (DRAMA architecture) per
robot and the same retrieving and training algorithms
are applied sequentially to them for determining the
behaviour and learning of each of the robots inde-
pendently9. In order to produce a more realistic simu-
lation10, the following behaviour is made imperfect.
An agent is able to determine the position of the other
agent with respect to its own by measuring the differ-
ence of intensity measured by its eight frontal light
detectors. It can determine the other’s position with a
precision of 20 degrees. In addition, noise11is intro-
duced in the calculation of the robot’s movements in
order to represent the imprecision measured in the
real robot’s movements. The imprecise alignment and
following of the robots leads to differences in their
respective travelling and hence differences in their sen-
sor measurements. Noise, i.e. incorrect teaching-
observation associations in our experiment is due to
this mismatch between teacher and learner percep-
tions, which results from the imprecise robots’ align-
ment (thus the noise is contained between 0 and
20%).

5   RESULTS

In this section, we report first on simulation studies in
which we study transmission of a vocabulary among a
group of nine agents which then use the vocabulary
for transmitting information about object locations.

5.1  Learning the Vocabulary

In a first set of simulations (section 5.1.1), we study
how a common understanding of the vocabulary can

spread among a group of agents when starting with
one teacher agent and when each successful learner
agent can in turn become another teacher. In a second
set of simulations (section 5.1.2), we study the influ-
ence of the following strategy on the learning per-
formance for different learning
tasks.

5.1.1  Social Learning in a Group of Agents

We carry out a set of 10 runs (1 run lasting for
400,000 cycles) in which we study the speed of learn-
ing of a vocabulary of nine words by eight learner
robots, given 1 teacher robot. The nine words refer to
nine different coloured patch types, defined by nine
different colours. The coloured patches are spread
homogeneously in a square area as shown in figure 4.
The learner robots can become teachers, that is they
can emit signals for ‘naming’ the coloured patches
once they have reached a sufficient level of confidence
(specified by a threshold) in their word-colour associ-
ations. We ran 10 simulations with a different value of
the threshold (from 10 to 100) for each. Each thresh-
old value corresponds to considering the agent suffi-
ciently confident in a particular word-colour associa-
tion when it has observed this combination for at least
10, 20, 30, ...,100 times.  This refers to the actual
value of the confidence factors for these word-colour
connections, as the confidence factors are increased by
a value of 1 at each co-activation of the corresponding
units. Because the agents can make incorrect associa-
tions due to mismatched observations of teacher and
learner agents, correct learning of the word-colour
pairs is not immediate but results from the repetition
of the teaching process until incorrect associations can
be discarded from the correct ones by virtue of their
relative frequency of occurrence. Therefore, choosing
too low a threshold on confidence factors can allow
the learner agent to become a teacher before it has
made a sufficient number of correct correlations com-
pared to incorrect ones. In this case the robot would
emit incorrect signals given a colour perception, hence
letting the learner agent following it make an incorrect
association. This would increase the global amount of
noise, i.e. of incorrect association episodes, and could
lead to the failure of the experiment (i.e. unsuccessful
learning for all agents) if the number of incorrect asso-
ciations outnumbers the number of correct ones. This

Table 1: Sensors sensitivity
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is demonstrated by the results of the experiments,
where we observe that learning is unsuccessful as long
as the threshold is lower than 50.

We show in figure 5 the learning curve for four dif-
ferent choices of minimal levels of confidence out of
the ten investigated. We observe that the number of
incorrect correlations increases in the three first exam-
ples, so as to become more frequent than correct ones,
leading finally to unsuccessful learning. Note that the
curves for threshold values greater than 50 have simi-
lar shape to that shown in figure 5.  The simulation
with threshold 50 was carried out for 20000 more
cycles and it was shown that the curve did not
decrease after having reached the maximal value of 1.
The value of 50 for the threshold under which the
learning is successful reflects the proportion of noise,
i.e. incorrect associations due to incorrect matchings
of the teacher-learner perceptions in the particular
set-up. This value would then vary from one experi-
ment to another. In the present case the increase of
the noise which leads to unsuccessful learning is due
to incorrect teaching provided by the learner robots.

The more robots are speaking, the more noise is con-
tained in the teaching. By definition, each robot can
hear only other robots which are in a distance of 1.5
its body size. This means that each robot can be
taught by at most four other robots (when placed in
each quadrant around it). In fact, each robot is usual-
ly taught by two other learners, as the robots tend to
quickly form long chains. If one robot is a bad teacher
then its incorrect teaching spreads quickly to other
robots. We make three observations: 1) There is in
average 20% of noise, i.e. 20 % of associations are
incorrect; this is due to incorrect matching of the
teacher-learner perceptions (as evaluated in the two
agents, teacher-learner scenario [5, 7]); 2) Each
object’s description (angle and distance measure-
ments) overlap with at least two other objects’ descrip-
tions (which makes the association more difficult, as
the correct set of features is less distinct, see discussion
of the architecture’s properties in [7]); 3) Each robot
can be taught at most by two other learners. Given the
three above facts, the noise increase due to one bad
learner is enormous and chances are small that correct
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Figure 5: Learning curve (mean value for all agents) for four different thresholds (10,20,30 and 50) on the radio unit activation.
Learning is unsuccessful as long as the threshold is lower than 50. The lines good and bad represent the proportion of correct
and incorrect respectively signal-object associated pairs over the total number of taught pairs.
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learning would result in this case. Correct learning is
thus ensured when all learners speak only when they
have correctly learned the vocabulary. Each robot is
taught each signal about 5 times during its passage
across one object (the teacher repeats the signal sever-
al times). Correct learning of the vocabulary requires
a statistics of at least 10 passages over each object (i.e.
10 different teaching episodes in which the robot
approaches the object from a different direction).
Therefore, correct learning should occur after about
10 . 5 = 50 associations, i.e. a value of 50 for the con-
fidence factors associated with the signal-object fea-
tures.

The simulations in which learning was unsuccess-
ful were stopped, while the curve of bad association
was still increasing. If we had let the simulations run
longer we could have checked whether the curve
would converge to the maximal value of 1. In this
case, this would have meant that all robots had final-
ly converged to a common definition of the vocabu-
lary, while this definition would have been different
from that initially taught by the teacher robot. The
observation of a shift in the meaning of the words of
the vocabulary for the agent is similar to the ‘emer-
gence of a dialect’ as in the studies of [1, 51] in their

simulations of the development of language. We did
not make this analysis mainly because the aim of our
experiment was to study correct transmission of a
fixed pre-defined vocabulary (and also because these
simulations were extremely long to run), as opposed
to [1, 51] who studied the emergence and variation of
a lexicon as an effect of its transmission. It would of
course be very interesting to carry out similar studies
in the future, using the physical simulation and the
DRAMA architecture. In particular, it would be valu-
able to compare our results with results obtained in
[1, 51] where no physical or behavioural description
of the agents were given. We could then determine the
role played by these physical factors in the transmis-
sion of a language. This point will be further discussed
in section 6.

5.1.2  The Benefit of Following

We carried out a set of ten runs (1 run lasting for
100000 cycles) in which we study the importance of
the imitative teaching scenario, namely mutual fol-
lowing, for a good transmission of the vocabulary. For
these studies we use only three agents, 1 teacher and
two learners. One of the learners does not possess the

Figure 6: Learning curves for follower and non follower learner agents in three different learning tasks: learning a vocabulary
for objects, for scaling values of polar coordinates and for orientation relative to a compass.

Missing
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predefined capability of following another agent by
means of phototaxis. Instead, when it meets one of
the two other agents it simply avoids it as an obstacle
and carries on its random wandering. It can however
learn, similarly to the other learner agent. If it is close
enough to the speaking agent, it can receive its signals.
It can then associate them with all other sensor meas-
urements it made during a short time delay window
(plus minus the short-term memory duration, c.f. sec-
tion 3) before and after the signals’ reception.

Figure 6 shows the learning progress of the two
learner agents (with and without phototaxis capabili-
ties) when learning three different types of vocabular-
ies: 1) a vocabulary to describe the nine objects
(coloured patches) of the environment, 2) a vocabu-
lary to label scaled values of polar coordinates refer-
ring to the objects’ locations and 3) a vocabulary for
the four quadrants of a compass which measures the
robot’s individual orientation.  Learning each of these
vocabularies corresponds to associating radio signals,
i.e. the teacher’s words, with respectively 1) nine dif-
ferent colour measurements (objects’ features), 2) five
different measurements along the odometry scale and
eight different measurements of angle, position in the
arena with respect to 8 quadrants (objects’ polar coor-
dinates), and 3) four different compass measure-
ments. The Y-axis represents the ratio between cor-
rectly and incorrectly learned words. In table 2, we
show the mean values of this ratio over the 10 runs for
each experiment and for each learner robot.

Results show that the non-follower agent is less
successful on average and slower at learning the
vocabulary concerning the coloured patches and the
polar coordinates, and that it was always unsuccessful
at learning the vocabulary concerning the orientation
relative to a compass. These results imply that the
ability of following improves the grounding of extero-
ceptions, as done when naming the coloured patches
detected by different colour perceptions and when

naming its position relative to global polar coordi-
nates. But it is especially important for grounding
proprioceptions, as done when naming its relative ori-
entation. Being close enough spatially is often suffi-
cient for the agents to share a common context of
external perceptions and then to successfully ground
the vocabulary onto the same sensor perceptions.  In
the experiments the non-follower agent learns the
vocabulary concerning exteroceptions correctly
because when it receives the teacher’s signal, it is often
close enough to get a similar measurement of polar
coordinates (the spatial scaling of the environment it
learns to name is wide enough to allow two agents to
share the same set of coordinates at one time) and to
make a measure of colour (detection of coloured
patch) shortly before or after meeting the teacher.
The follower agent is, however, faster and more suc-
cessful at learning because of its constant spatial close-
ness to the teacher agent.  By contrast, it is not suffi-
cient for the agents to be spatially close to one anoth-
er for them to share a common set of internal percep-
tions which would allow them to successfully ground
these proprioceptions onto a common vocabulary.
The imitator replicating the model’s actions by using
the following strategy results in both agents perform-
ing the same movements relative to their body axes. It
also allows it to make other similar internal percep-
tions which are a consequence of its actions, e.g. its
orientation, inclination (see experiments reported in
[6]), and odometry. In the experiments the follower
learner agent implicitly imitates or replicates the
teacher’s movements while following it, and conse-
quently orients its body towards the same direction as
the one pointed to by the teacher. In contrast, the
non-follower agent which tries to avoid the teacher
agent is not or seldom (and then only for a short peri-
od) oriented similarly to the teacher and is thus less
likely to correctly associate the teacher’s signals. This
accounts for the failing of its learning observed in all

objects polar coord. orientation

Foll   Non-foll Foll    Non-foll Foll    Non-foll

Nm-learned-words/total-voc  1.0     0.6  0.5      0.5  0.6      0.0

Table 2: Comparison of learning success of follower and non-follower agent 



425Experiments in Learning by Imitation - Grounding and Use of Communication in Robotic Agents

10 simulations.

5.2  Simulations: Using the Vocabulary

We carried out 3 sets of simulation studies (10
runs each) in which the nine robots use the vocabu-
lary, learned in the experiment of the previous section,
to transmit to each other the location (polar coordi-
nates) of the nine objects (coloured patches) in their
environment. The e xperiment starts with all agents
knowing a vocabulary of 31 words for describing the
9 different colours of the coloured patches present in
the environment and their locations in terms of 14
distance measurements (odometry levels) and 8 angle
measurements. As the agents wander randomly
around the environment, they learn the locations of
the coloured patches by associating the sensor percep-
tion of the particular colour input with the coordi-
nates of their own position. When one agent has
learned the location of a coloured patch it can further
transmit it via the communication channel (using the
learned vocabulary) to all other agents. Each agent
can thus learn the coloured patches’ locations from
listening to the speaker agent’s talk and without actu-
ally coming across the particular location itself. This
results in speeding up the learning of the whole pop-
ulation.

We study two different scenarios for the informa-
tion transmission. The transmission occurs as soon as
one agent comes across a coloured patch location
(one-to-many, long distance communication) or only
when two agents come across one another (one-to-
one, short-distance communication).

In figure 7 we compare the results for three differ-
ent learning scenarios (called Experiments 1, 2 and 3).
In the first case the agents learn the locations of the
coloured patches by making the associations when
they travel over a coloured patch; in this case learning
of the patches’ locations results from each agent’s indi-
vidual search. In Experiments 1 and 3 the agents use
their knowledge of the vocabulary to transmit to each
other information about each patch location. In these
two experiments learning results from both individual
search and from social learning (interaction with
other agents). An agent informs the other agent about
a patch location by emitting a set of three signals, one
corresponding to the colour type, and two correspon-
ding to the ‘words’ for its location in terms of distance

and orientation. The other listener agents learn the
new l ocation by associating together the correspon-
ding three sensor stimuli which have been activated
by the reception of the signals (as explained in the pre-
vious subsection). In Experiment 2 the agents trans-
mit the location of the coloured patch as soon as they
discover it, that is when they travel on it.  The speak-
er robot’s signal can be received by all robots in the
whole arena (long distance communication). In
Experiment 3 the robots’ transmissions of informa-
tion occur only when two robots meet (short distance
communication).  That is, when two robots are close
enough to ‘see’ each other, they engage in a conversa-
tion; each robot speaks in turn, the robot with lowest
numbering (robots are numbered arbitrarily as
1,2,..to 9) first, and asks the other for all coloured
patches whose location it does not know yet. That is,
one robot sends a signal for the colour type (question)
which activates in the receiver agent’s network the
corresponding patch location (if known). The
retrieval process proceeds in two stages: first the cor-
responding sensor stimuli for angle and odometry are
retrieved, and then by transitivity of the associations
the corresponding radio signals are retrieved which
are further emitted by the robot as its ‘answer’ to the
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other robot’s query. The dialogue ends as soon as the
agents become separated after 20 cm (e.g. when one
agent turns in an opposite direction for avoiding an
obstacle or another agent), or when they have enu-
merated all the objects.

We observe that learning of the whole group is
faster when the robots can transmit to each other their
current knowledge, that is the learning curve con-
verges faster in the second and third experiments than
in the first one. Learning is also faster when the trans-
mission can go from one robot to all robots (second
experiment), rather than from one to one (third
experiment).  This is not a surprising result.  Surely,
learning with one-to-many communication is faster
than with one-to-one communication. One-to-one
communication of the objects’ locations speeds up
learning of the locations compared to an individual
search; this is especially due to the fact that the agents
do not stop moving to speak to each other; that is,
they engage in a question-answer dialogue whenever
moving close to one another. Therefore, the dialogue
does not interrupt their random search behaviour
and, thus, communicating with one another does not
delay their individual search behaviour. Dialogues can
therefore only enhance the robot’s knowledge about
locations.

6 DISCUSSION OF RESULTS AND
THEORETICAL IMPLICATIONS

This paper reported on simulated experiments in
which we demonstrated the validity of a connectioist
learning architecture and a teacher-learner scenario
based on imitative skills for transmittinga vocabulary
among heterogeneous agents. In the first set of stud-
ies, we showed that the scenario scales up successfully
for transmitting the vocabulary among a group of
robots.  Further, the importance of the imitative strat-
egy for a successful transmission of the vocabul ary
was pointed out, as it was shown that agents lacking
this capability would be slower at learning or would
simply fail.  The capacity of imitating the other is par-
ticularly important when the word to be learned con-
cerns the agent’s proprioceptions, e.g. orientation, as
it allows the two agents to share similar internal per-
ceptions, e.g. pointing in the same direction. An
experiment was implemented to show an example of
a situation in which it is advantageous and useful for

the agents to communicate. Symbolic communica-
tion is used by a group of robots for transmitting to
each other the coordinates of objects locations.  This
speeds up the robots’ learning of these locations, as
compared to the robots learning the locations only
when finding one by chance during the robots’ ran-
dom walk. The rest of this section discusses the con-
tribution of these studies and their results on our
understanding of the symbol grounding problem as
faced by embodied situated robotic agents.

We built our approach on the assumption that
grounding of communication creates constraints not
only on the cognitive capabilities of the agent but also
and especially on its behavioural capacities. In the
introduction, we distinguished between behavioural
and cognitive capabilities, where the former do not
result only from the outcome of the agent’s cognitive
processes, but from the interaction of these processes’
outputs, i.e. the agent’s actions, with the dynamics of
the agent’s environment. In [12] we discuss the cou-
pling of internal and external dynamics (i.e. behav-
ioural and cognitive processes) and their roles in social
understanding. Agents with poor cognitive capabili-
ties cannot be expected to exhibit overwhelming
behavioural complexity, and vice versa. A balanced
design of cognitive and behavioural capabilities of the
agent on the one hand, and environmental complexi-
ty on the other hand, is hard to implement but seems
to be most promising.  This is increasingly important
in the case of social agents, where the environment is
not static and fully predictable but consists of other
agents.

With respect to cognitive capacities we defined key
features for the learning capacities, such as a selective
mechanism for the discretisation of sensor perception
and a short-term memory of perceptual events and
associative capacities. We implemented these in our
experiments by using the DRAMA architecture. In
the introduction, we pointed out the importance of a
basic behavioural social relationship between the two
communicative agents to act as an attentional mecha-
nisms for eliminating irrelevant information which
can not always be discarded by means of combinator-
ial analysis only. We thus provided our agents with a
basic ability of mutual following which creates a spa-
tial and temporal binding between the two agents
necessary for their sharing of a similar set of percep-
tions. However, although we used a simple protocol,
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namely mutual phototaxis, for achieving this basic
‘social’ interaction, this proved to be a powerful ‘exter-
nal’ (behavioural instead of cognitive) attentional
mechanism.

Similar experiments on grounding radio signals in
robots’ sensor capabilities were carried out previously
by Yanco & Stein [57] and Steels & Vogt [50] who
used respectively reinforcement learning and evolu-
tionary techniques. We showed in [7] that our model
is more efficient and faster than the above models to
learn a vocabulary of the same size and type.
Moreover, our model (the associative memory and the
following scenario) has the advantage, as compared to
these methods, to be less restricted in the sensor stim-
uli the robots could talk about. In Yanco & Stein’s
work [57], the vocabulary consisted only of the
robot’s actions because the learning algorithm was
based on an action-selection mechanism. In Steels &
Vogt [50], the vocabulary concerned only the robots’
external perceptions as these were the only percep-
tions they could share. By contrast, the mutual fol-
lowing strategy we use in our work allows the two
agents to share a common context, namely sharing
external (facing the same direction) and internal per-
ceptions (performing the same movement, travelling
the same distance and on the same ground). When
aligning itself behind the teacher the learner agent
naturally points in the direction the teacher ‘looks’ at.
While we avoid the problem of the mirror effect12

occurring in pointing, we however introduce another
problem lying in the fact that the learner cannot see
over the teacher’s body. In our experiments this is
partly solved by the two agents moving and the learn-
er eventually reaching the teacher’s previous position.
This obstruction problem also occurs in Steels &
Vogt’s pointing model [50], as in their experiments
the two robots spoke also about objects on their sides
which one of the agent could not see. In addition,
because the learning mechanism we use is based on
mutual associations between inputs from any sensor
or actuator systems of the agent, the vocabulary can
concern any (proprio and extero) perceptions of the
agent. We reported here on experiments where the
agents talked about external perceptions of objects
and internal perceptions of orientation. In previous
work, we reported on experiments where the learner
agent was taught a vocabulary concerning its inclina-
tion [6] and its actions [8].

However, a disadvantage of our following strategy
over a more precise pointing mechanism, is that we
are restricted to speaking only about static events or
events that last long enough for the learner to eventu-
ally see them.  In particular, a ‘finger’ pointing mech-
anism which is more accurate than our ‘body’ point-
ing mechanism, would be more appropriate in an
environment where features cannot be spatially sepa-
rated (as in the eyes and face example which we
described in the introduction). Another disadvantage
of our mutual following strategy is that it restricts the
number and type of movements that can be taught to
only those of motion. This limitation could however
be overcome by using a more complex imitative strat-
egy, as for instance the imitative scenario developed in
[17] or in [30]. Then, it should be possible to teach
concepts relative to movements of many more body
actuators and also of more complex sequences of
movements (compare with experiments in [3]).

We mentioned in the introduction that previous
studies on the development and evolution of commu-
nication differ from our work mainly by the absence
or the simplification of the physical description of the
agents and their environment. However, although
these studies used disembodied a-behavioural13

agents, their results have sometimes been interpreted
in terms of the agents’ behavioural skills. E.g.,
Oliphant & Batali [43] show that imitation is not a
factor enhancing the evolution of communication.
This result seems to contradict ours as, in our simula-
tions, the capacity of following and so imitating
another robot’s movement is advantageous. The prob-
lem lies in our different definition of imitation or imi-
tative behaviour. The agents’ imitative capability in
Oliphant & Batali’s work is not a behavioural skill
which would involve at minimum 1) a definition of
the agent’s actuators, 2) a mechanism responsible for
the agent’s observation of the second agent’s actions,
and 3) a mapping mechanism which interprets the
observed actions into the agent’s own set of actions
[14, 17, 38].  The same critic applies to Smajuk &
Zanutto’s [49] neural model of conditional learning
in which imitation is only feeding the observer agent’s
network with data given by the observed agent’s net-
work, without use of any transfer mechanism. In
Oliphant & Batali’s work imitation is for an agent to
match its statistical function of word-meaning associ-
ations, a purely cognitive functionality, with the one
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of a second agent; in other words, one agent learns the
language by strictly reproducing each word-pair asso-
ciation as produced by the other agent. The authors
conclude that this ‘imitative’ learning procedure is not
advantageous for the development of communication
as it only allows for copying a currently existing com-
municative system and does not allow for its modifi-
cation and further improvement. These authors’ work
and their results relative to the influence of imitative
behaviour on the development of communication is
thus not comparable to ours as we are not approach-
ing the problem from the same angle.  In our model
imitative behaviour is not the learning mechanism per
se but acts alongside associative learning to constrain
association of relevant data.    

We follow a behaviour-oriented (rather than a
pure cognitivist) approach to the problem of ground-
ing communication as we investigate the influence of
social and behavioural aspects onto the development
of communication. Our approach differs from previ-
ous studies on the influence of sociality onto the
development of communication (e.g. [18, 44, 45,
56]), as we give a complete spatial and temporal
description of our agents’ behaviour. This allowed us
to point out the influence on the success of the learn-
ing of environmental factors (see [5]), such as the
teaching of objects’ featural description and relative
dispersion in the environment in relation to two
parameters of the learning architecture (short-term
memory duration and long-term memory capacity).
In addition, we showed the importance of having a
spatial and temporal synchronisation between the two
communicative agents to allow sharing of a common
perceptual context (the experiments reported here and
earlier in [5]). The role of context is a key issue in
sociality and social understanding. In particular, stud-
ies of (first or second) language acquisition demon-
strated the importance of social and verbal context for
inferring the correct ‘meaning’ of spoken words or
gestural signals ([21]). Our approach to the symbol
grounding problem confirmed these ideas and
showed that a simple movement imitation strategy is
an interesting scenario for the transmission of a lan-
guage as it is an easy means of getting the agents to
share a common context of perceptions. Nevertheless,
however similar the two agents’ perceptions could be,
they can never be exactly the same and therefore the
agent’s learning capacities should be sufficiently com-

plex to compensate for these differences. Not only
should the agent be able to associate temporally
delayed patterns, but this under a great amount of
noisy and spurious data, two performance criteria
which have been shown to be satisfied by the learning
architecture (see [7]).    

This brings us to stress the following points.
Whether used for grooming [18] or for transmitting
information, communication is an interactive process
between the two communicative agents and as such it
is a social interaction.  Communication does not exist
without the physical means of its production and
reception. Whatever the level of interpretation chosen
for the communicative signals, it is about the physical
perception the communicative agents have of their
world.  As Steven Harnad’s puts it [23]: “even at such
abstract cognitive heights, [referring to] the highest
level of abstraction of natural language when our
interactions with objects are based only on the inter-
actions between names and descriptions, [...] embod-
iment is never escaped, for the power of names and
propositions is completely parasitic on the meanings
of those names, and those must all eventually be
grounded in the sensorimotor interactions with the
kinds of objects they designate, and the sensorimotor
invariants on the basis of which the names are
assigned”. This requires very complex cognitive
processes of segmentation of sensor information,
sequence processing and spatial and temporal map-
ping. A model of the evolution of communication in
terms of the agents’ cognitive capabilities should then
encapsulate a description of all the required cognitive
functions. Similarly, if we consider the progression of
brain evolution (e.g. comparing fish to apes and
humans), the ‘brain’ of an individual animal has
always evolved as a whole, as a complete organ;
although different areas have differentiated and spe-
cialised e.g. when comparing ‘primitive’ with
‘advanced’ vertebrates (compare reptiles and mam-
mals), different parts of the body plan of a species and
therefore different parts of the nervous system have
not evolved independently from each other and from
the rest of the body. However, the computational
models of the evolution of communication have usu-
ally ignored most of the so called ‘low-level’ cognitive
functions, such as sensory perception, episodic mem-
ory, and focus of attention.

Note, finally, that the evolution of an animal’s cog-
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nition cannot be separated from the agent’s behaviour,
as these cognitive processes have been shaped by the
constraints created by the agent’s interactions with its
environment.  The body of an animal is a functional-
ly and physiologically well integrated system.  Thus,
perception, action, communication and cognition are
intrinsically interrelated in an embodied system.  Our
perception of the world is linked to our way of inter-
preting the world and talking about events in and
actions upon this world.  Such a system, or behavioral
account of cognitive processes, is closely related to the
enactivist position [35, 54], which describes a living
system in terms of the structural coupling of its cellu-
lar and molecular compon- ents (autopoiesis) and of
its interaction with its environmental medium: “the
behaviour of a living system is not something that the
living system does, not something that the medium
specifies of its own, the behaviour arises and takes
place in the relation living system/medium” [35].
Similar positions are discussed in the area of embod-
ied artificial intelligence (EAI), see [47] for a discus-
sion of implications of embodiment for cognitive the-
ories. As Erich Prem points out, cognitive science and
linguistic research has strongly focused on formal
aspects and neglected e.g. the notion of time, situat-
edness and interaction dynamics in animal cognition.
‘Getting the interaction dynamics right’ is according
to Prem a key principle of EAI research. This state-
ment and the position to which it relates is supported
by our experimental results on robot communication
grounded in social inter- action dynamics. This brings
us, then, to suggest that a behaviour-oriented
approach [12], as e.g. an enactivist position, might be
more appropriate than a pure cognitivist one for
describing the cognitive processes involved in address-
ing the symbol grounding problem. 

7   CONCLUSION AND
FUTURE PERSPECTIVES

We proposed a teaching scenario based on movement
imitation for transmitting a vocabulary among a
group of agents and implemented it in simulated
experiments. Results showed that social beha- viour
benefit the agents in two circumstances; 1) agents
capable of following one another and so imitating
each other’s movements develop faster and better a
common understanding of the lan- guage; 2) the

agents benefit from the so developed capability of
communicating with one another via a common
vocabulary as it speeds up the transmission of infor-
mation.

An important point to note is that the system we
described in this paper, namely the learning architec-
ture and the following strategy, is not restricted to the
particular implementation we presen- ted here. For
instance, the capacity of the connectionist architec-
ture (DRAMA) allows learning of a vocabulary of big-
ger size (of order 2 of the memory size) and learning
of words combinations (viewed as pattern sequences)
[7]. In [3] we report on the implementation of
DRAMA in experi- ments in which a small humanoid
robot was taught regular combinations of words
which formed ‘proto’ sentences to describe patterns of
actuator sequences and of sensor perceptions. Note
also that the architecture is not restricted to be used
only with simple mobile robots, as it does not encap-
sulate constraints on the sensor-actuator mode and
could therefore be implemented in robots provided
with finer sensor capabilities and actuators with more
degrees of freedom. The grounding of symbols using
an imitative strategy, as described in the paper, could,
for instance, be extended to ‘label’ behaviours defined
as a sequence of sensor-actuator states [33]. Recent
work has developed robotic platforms which can per-
form such complex set of actions, e.g [11, 20, 32].    

Current work by Aude Billard at the Laboratory of
MicroInformatics (LAMI) at the Swiss Institute of
Technology at Lausanne (EPFL) investigates further
some aspects of the simulation studies reported here.
Experiments are carried out in which a group of
robots learn a vocabulary and the objects’ location
(similarly to the first and second set of studies report-
ed here), but in a continuous fashion rather than in
two separated phases.  The robots interact in a bio-
logically inspired environment, where robots and
objects appear and disappear (‘are born’ and ‘die’) con-
tinuously. The study evaluates the influence of param-
eters, such as the range of communication and the
rate of death and birth of robots and objects on the
robots’ learning performance. Further, the simulation
will be implemented in a real set-up of ten Khepera
[39] robots.

Our work showed the importance of behavioural
capacities alongside cognitive ones for address- ing the
symbol grounding problem.  Behavioural mecha-
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nisms which act as external attentional processes are
required alongside general cognitive abilities of asso-
ciativity. We proposed a connec- tionist architecture
in which the behavioural and cognitive processes are
produced by the same general ability of spatio-tempo-
ral associativity. We used a simple movement imitative
strategy to create a spatial and temporal synchronisa-
tion between the communicative agents, which pro-
vides the required attentional mechanisms. These
studies and their results lead us to suggest that a
behaviour-oriented approach might be more appro-
priate than a pure cognitivist one which is dom- inat-
ing in linguistics and cognitive science studies on the
cognitive processes involved in grounding communi-
cation.

NOTES

1Communication refers here to symbolic communica-
tion, characterised by the transmission of symbolic
signals or symbols, that is arbitrary physical signals
whose meaning follows from social convention
among the communicative agents.

2The expression symbol grounding problem was first
introduced by [22] to refer to the question of how
the symbols or the representations of the world
acquire their meaning for a computational agent.

3The agent’s representation of the world consists of
the categorisation of its perceptions, which is done
through updating the connections of its neural net-
work (its controller), see section 3.

4Following behaviour is an implicit means of imita-
tion, as when the first robot follows the second
robot, it replicates the second robot’s movements
(moving, stopping, turning) in the plane.

5Our choice for using a connectionist architecture
was driven by consideration relative to its imple-
mentation, see explanations given in [7]. This type
of architecture was advantageous as compared to
other learning technique, because it could provide
fast computation and the ability for spatio-temporal
association and learning of time series, as required
by the task. Note that there is no biological plausi-
bility in the model and in its implementation.

6Note that the general meaning of each signal whether
describing the colour type or location is the same in
all bee society, only the actual sensor value associat-
ed to it varies.

7In the experiments presented here, we did not
analyse the time parameters, which are mainly use-
ful for the recording of sequences, see [7]

8The choice of using nine robots and nine coloured
patches is purely arbitrary. The point is to demon-
strate transmission of communication among a
group of agents, i.e. composed of at minimum three
agents. These numbers correspond in fact to the
maximal number of elements for which simulation
could be carried out in a reasonable amount of
time, each complete set of simulations (10 runs)
requiring a week of CPU time.

9Code is written in C and is processed serially. The C
programs for the simulations were run on Ultra 1
Model 140s SPARCstations and the graphics repre-
sentation was made using the MATLAB environ-
ment.

10The aim of the simulation studies was to further
investigate the validity of the following teaching
scenario, which had been first implemented in a
physical set-up. It was therefore important to make
the simulation as close as possible to the physical
experiments. A simulated environment had to be
used as it was not possible to have a real set-up of
nine mobile robots.

11This noise consists of adding or subtracting a ran-
dom number to the distance travelled in one wheel
rotation.

12In Steels & Vogt’s experiments, the teacher robot
points ‘verbally’ by indicating the quadrant in
which to look at relatively to itself; however, there is
a left right symmetry between the two agents in
their definition of quadrants for all objects lying
between them; this effect was, however, not consid-
ered by the authors and might explain why the
agents could never agree on more than a third of the
vocabulary (only a third of the same ‘quadrant’
space can be seen by both agents.)
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13We refer here to the discussion of the introduction
section where we pointed out that in these studies,
the agents have no body, no sensors or actuators;
they generally occupy not more than a single point
in space; they have usually no other actions than
that of sending and receiving a signal, the result of
their action being atemporal.
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