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Laboratoire d’Automatique, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

I
n fluidized-bed gas-phase polymerization reactors, several grades of polyethylene are
produced in the same equipment by changing the operating conditions. Transitions
between the different grades are rather slow and result in the production of a considerable

amount of off-specification polymer. Grade transition improvement is viewed here as a
dynamic optimization problem, for which numerous approaches exist. Numerical optimiza-
tion based on a nominal process model is typically insufficient due to the presence of uncer-
tainty in the form of model mismatch and process disturbances. This paper proposes to
implement optimal grade transition using a measurement-based approach instead. It is
based on tracking the necessary conditions of optimality (NCO tracking) using a decentralized
control scheme. For this, the nominal input profiles are dissected into arcs and switching times
that are assigned to the various parts of the NCO. These input elements are then adapted using
appropriate measurements. NCO tracking is used to determine optimal grade transition in
polyethylene reactors. The problem of minimizing the transition time from a steady state
of low melt index to that of high melt index is studied, with the feeds of hydrogen and
inert and the output flow rate considered as manipulated variables. In the optimal solution,
all arcs are determined by path constraints, and all switching times are determined by
path and terminal constraints, which significantly eases the adaptation. The on-line and
run-to-run adaptation of these parameters is illustrated in simulation.

Keywords: dynamic optimization; measurement-based optimization; on-line optimization;
run-to-run optimization; polyolefin production; grade transition.

INTRODUCTION

Polyethylene is widely used today in a multitude of
products and is produced continuously in gas-phase flui-
dized-bed reactors. The variety of polyethylene products
call for the production of various polymer grades, which
can be accomplished by changing the operating con-
ditions of the reactor. Often, a considerable amount of
off-specification polymer is produced during grade tran-
sitions (Debling et al., 1994). The goal of this work is to
analyse and characterize the grade transition problem
from the point of view of minimizing the transition time
(note that the minimization of the amount of off-spec
polymer is very similar).
The grade transition problem has been studied

extensively. Debling et al. (1994) tested different grade
transition operations using the simulation package
POLYRED. McAuley and MacGregor (1992) and Wang
et al. (2000) calculated optimal grade transition strategies
in a gas-phase fluidized-bed reactor by applying the control

vector parameterization (CVP) method to approximate each
manipulated variable profile by a series of ramps. Takeda
and Ray (1999) also used the CVP method to find optimal
grade transitions for a slurry-phase loop reactor. However,
in all of the aforementioned works, the cost function is the
integral squared error from a pre-defined transition trajec-
tory and not an economic objective. In this work, the opti-
mal grade transition will be considered as a minimal time
problem. Another objective is also the interpretation of
the various intervals that constitute the optimal solution
and relate them to the compromises (in this case none)
and the constraints of the optimization problem.

This paper considers the optimization of grade transition
via the tracking of the necessary conditions of optimality
(NCO tracking). This is accomplished using measure-
ments to directly update the inputs either on-line or on a
run-to-run basis. The paper is organized as follows. The
next section briefly reviews dynamic optimization and the
NCO-tracking scheme. The Process Description section
describes the polymerization process and defines the two
grades and their corresponding steady-state operating
points. The optimal grade transition problem is solved via
NCO tracking in the Optimization of Grade Transition
section, while conclusions are drawn in the final section.Te
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OPTIMIZATION VIA NCO TRACKING

Dynamic Optimization Problem

The terminal-cost, finite-time dynamic optimization
problem can be formulated mathematically as follows
(Bryson and Ho, 1975):

min
u(t), tf

f(x(tf ), tf ) (1)

s.t. _x ¼ F(x, u), x(0) ¼ x0 (2)

S(x, u) � 0, T(x(tf )) � 0 (3)

where f is a smooth scalar function representing the term-
inal cost, x the n-dimensional vector of states with the
known initial conditions x0, u the m-dimensional vector
of inputs, S the z-dimensional vector of path constraints,
T the t-dimensional vector of terminal constraints, F a
smooth vector function, and tf the final time that is finite
but can be either fixed or free [the more general case of a
free final time is considered in equation (1)].
Using Pontryagin’s Minimum Principle, the problem

of minimizing the scalar cost functional f in equations
(1)–(3) can be reformulated as that of minimizing the
Hamiltonian function H(t) as follows (Bryson and Ho,
1975):

min
u(t), tf

H(t) ¼ lT F(x, u)þ mTS(x, u) (4)

s.t. _x ¼ F(x, u), x(0) ¼ x0 (5)

_l
T
¼ �

@H

@x
, lT (tf ) ¼

@ �f

@x

�����
tf

(6)

mT S ¼ 0, nT T ¼ 0 (7)

where �f ¼ fþ nT T is the augmented terminal cost, l(t)=0
is the n-dimensional vector of adjoint variables, m(t) � 0
the z-dimensional vector of Lagrange multipliers for the
path constraints, and n � 0 the t-dimensional vector of
Lagrange multipliers for the terminal constraints.
Since the solution of a dynamic optimization problem

is typically discontinuous and consists of various intervals,
the NCO include several parts that correspond to meeting
the active constraints and zeroing certain sensitivities, both
during the run and at final time (Bryson and Ho, 1975).
The constrained part is given by equation (7). The sensitivity
part of the NCO is Hu ¼ @H=@u ¼ 0, which implies:

@H(t)

@u
¼ lT @F

@u
þ mT @S

@u
¼ 0 (8)

For a free-terminal-time problem, an additional condition,
referred to as the transversality condition, needs to be
satisfied:

@F

@tf
¼

@ �f

@t

�����
tf

þ H(tf ) ¼ 0 (9)

where F ¼ �fþ
Ð tf
0

H(t) dt ¼ fþ nTT þ
Ð tf
0
½lT (t)F þ

mT (t)S� dt is an augmented cost that includes both path and
terminal components.

The NCO equations (7)–(9) can be rewritten in the
partitioned form of Table 1 by separating:

. the conditions linked to the active constraints from those
related to sensitivities (first and second rows in Table 1);

. the conditions linked to path objectives from those
related to terminal objectives (first and second columns
in Table 1).

Some of these conditions can be enforced on-line, while
the others need several successive runs to be met.

NCO Tracking Using a Solution Model

NCO tracking adjusts the manipulated variables by
means of a decentralized control system in order to track
the NCO in face of uncertainty. This way, optimal oper-
ation is implemented via feedback without the need for
solving a dynamic optimization problem in real time. The
real challenge lies in the fact that four different objectives
[equations (7)–(9)] are involved in achieving optimality.
These path and terminal objectives are linked to active
contraints (7) and to sensitivities (8) and (9). Hence, it
becomes important to appropriately parameterize the
inputs using time functions and scalars and assign them
to the different objectives. This assignment, which corre-
sponds to choosing the solution model, is a way of looking
at the NCO through the inputs. The generation of a solution
model includes two main steps: (1) input dissection and
determination of the fixed and free parts of the inputs
based on the effect of uncertainty, and (2) linking the
input free parts to the NCO.

Input dissection
The generation of a solution model typically starts

with numerical optimization of a nominal process model.
The resulting optimal solution is analyzed for several
uncertainty realizations. In some of the intervals, e.g., in
intervals where the inputs are at their bounds, the inputs
are independent of the prevailing uncertainty and thus
can be applied open loop. The corresponding input
elements of the solution model are considered as fixed.
In other intervals, the inputs are affected by uncertainty
and need to be adjusted for optimality. All the input
elements affected by uncertainty constitute the decision
variables of the optimization problem. These consist of
time functions or arcs, h(t), and switching times. In
addition, certain arcs can be parameterized, thereby turning
an infinite-dimensional decision variable into a few scalar
decision variables. The parameter vector that includes the
switching times and these additional parameters will be
denoted generically as p. Hence, the inputs can be written
as u(t) ¼ U(h(t), p).

Table 1. Separation of the NCO into four distinct
parts.

Path
objectives

Terminal
objectives

Constraints mTS ¼ 0 nT T ¼ 0
Sensitivities Hu ¼ 0 Ftf

¼ 0
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Linking decision variables to NCO
The next step consists of providing a link between the

decision variables and the NCO. The active state con-
straints determine certain time functions and the active
terminal constraints certain scalar parameters. The remain-
ing decision variables are used to meet all path and terminal
sensitivities. Through this assignment, a distinctive label
can be tagged on the various input elements as follows:

. The PC variables hPC (t) and pPC vary with uncertainty
and can be adjusted by making the corresponding path
constraints active.

. The TC variables hTC(t) and pTC vary with uncertainty
and can be adjusted by making the corresponding term-
inal constraints active.

. The PS variables hPS(t) vary with uncertainty and need
path sensitivity measurement/estimation for adaptation.

. The TS variablespTS vary with uncertainty and need term-
inal sensitivity measurement/estimation for adaptation.

An important assumption for this ‘labeling scheme’ is that
the set of active constraints is correctly determined and
does not vary with uncertainty. Fortunately, this restrictive
assumption can often be relaxed by considering a super-
structure for the constraints as will be discussed later.
The update of the PC and TC variables are based on path
and terminal constraint measurements, respectively. The
update equations for the PS and TS variables are based
on sensitivity evaluation involving measurements as well.
The reader is referred to Srinivasan and Bonvin (2004)
for details.

PROCESS DESCRIPTION

In this study, the polymerization of ethylene in a
fluidized-bed reactor with a heterogeneous Ziegler-Natta
catalyst is considered (Choi and Ray, 1985; Kiparissides,
1996). A schematic diagram of the reactor system is
shown in Figure 1. Ethylene, hydrogen, inert (nitrogen)
and catalyst are fed continuously to the reactor. The gas
phase consisting of ethylene, hydrogen and nitrogen

provides the fluidization of the polymer bed and transports
heat out of the reactor through a recycling system. A com-
pressor pumps the recycle gases through a heat exchanger
and back to the bottom of the reactor. Fresh feed is
added to the recycle stream before entering the reactor.
Since the single pass conversion of ethylene in the reactor
is usually low (1–4%), the recycle stream is much larger
than the inflow of fresh feed. Excessive pressure and impu-
rities are removed from the system in a bleed stream at the
top of the reactor. Fluidized polymer product is removed
from the base of the reactor through a discharge valve.
The rate at which the product is removed is adjusted by a
bed-level controller that keeps the bed level, i.e., the
polymer mass in the reactor, at the desired set point.
A simplified first-principles model based on the work of
McAuley et al. (1995) and McAuley and MacGregor
(1991) is detailed in Gisnas et al., 2003.

During steady-state production of polyethylene, the oper-
ating conditions are chosen so as to maximize the outflow
rate of polymer of desired grade, while meeting operational
and safety requirements. The optimal operating conditions
for the two grades A and B have been determined in
Gisnas et al. (2003) by solving a static optimization pro-
blem. These conditions are presented in Table 2 along with
the upper and lower bounds used in the optimization.
Though, in principle, Vp can be manipulated between 0
and 1, it is preferred in industry to have a non-zero bleed
at steady state to be able to handle impurities. Hence,
Vp,min ¼ 0.5 is used here. Clearly, increasing FM increases
the production of polyethylene, and thus FM is maximum.
The pressure is at its lower bound in order to minimize the
waste of monomer through the bleed, which fixes FI. FY is
maximum to increase productivity, FH is determined from
the melt index requirement, Op is set to keep the polymer
mass at its reference value, and the bleed valve position Vp

is minimum. Thus, for steady-state optimal operation, the
six input variables are determined by six active constraints.

OPTIMIZATION OF GRADE TRANSITION

Formulation of the Optimization Problem

The objective is to minimize the transition time ttrans to go
from grade a to grade b. Among the six inputs, only FH and
Op are considered as decision variables, while the others are

Table 2. Optimal operating conditions and active constraints for grades A
and B, as well as upper and lower bounds used in steady-state optimization
(MIc is the cumulative melt index, Bw the polymer mass in the reactor bed,
P the pressure of the gas phase, FH, FI, FM and FY the fresh feeds of
hydrogen, inert (nitrogen), monomer (ethylene) and catalyst, respectively,
Vp the bleed valve position, and Op the outflow rate of polymer product
from the reactor).

Lower
bound A B

Upper
bound

Active
constraint

MIc,ref (g/10 min) 0.009 0.09
Bw,ref (10

3 kg) 70 70
P (atm) 20 20 20 25
FH (kg h21) 0 1.1 15 70 MIc,ref
FI (kg h

21) 0 495 281 500 FI,min

FM (103 kg h21) 0 30 30 30 FM,max

FY (1023 kmol h21) 0 10 10 10 FY,max

Vp 0.5 0.5 0.5 1 Vp,min

Op (10
3 kg h21) 21 29.86 29.84 39 Bw,ref

Figure 1. Gas-phase fluidized-bed polyethylene reactor.
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kept at active bounds (see quantities in bold in Table 2): The
bounds for FM, FY and Vp correspond to values for optimal
steady-state operation and that for FI serves to keep the
pressure as low as possible during transition. However, in
contrast to steady-state operation, the polymer mass Bw is
allowed to vary between 50 and 84 (103 kg).
The dynamic optimization problem can be stated math-

ematically as follows:

min
FH(t),Op(t),ttrans

J ¼ ttrans

s.t. dynamic system

FH;min � FH(t) � FH;max

Op;min � Op(t) � Op;max

Bw;min � Bw(t) � Bw;max

MIc(ttrans) ¼ MIc,ref

MIi(ttrans) ¼ MIc,ref

Bw(ttrans) ¼ Bw,ref

(10)

where MIi is the instantaneous melt index:

MIi ¼ kT k1 þ k2
½H2�

½M�

� �3:5

(11)

with kT the chain transfer rate constant, k1 and k2 melt index
constants, and [H2] and [M] the concentrations of hydrogen
and monomer (ethylene), respectively.

Optimal Nominal Solution

Optimization problem (10) is solved numerically using
the optimization toolbox of MATLAB. The optimal sol-
ution presented in Figure 2 can be interpreted as follows:

. FH is maximum initially in order to increase MIi
as quickly as possible through an increase of [H2]
[equation (11)]. FH is later switched to its lower
bound so as to meet the terminal constraint MIi
(ttrans) ¼ MIc,ref.

. Op is minimum initially to help increase MIi, which can
be accomplished through a decrease of [M] [equation
(11)]. For this, more catalyst is needed, i.e., Y is
increased. This is achieved by removing less catalyst

with the product, i.e., by closing the outlet valve, Op ¼
Op,min. However, closing the outlet valve increases the
polymer mass. When Bw reaches its upper bound, Op is
adjusted to keep this constraint active, which gives the
second arc hOp

(t). Finally, Op is maximum in order
to decrease the polymer mass and meet the terminal
constraint Bw(ttrans) ¼ Bw,ref.

Solution Model

. Input dissection
(1) Structure detection: The nominal solution presented

in Figure 2 consists of input arcs determined by
either input bounds (FH,max, FH,min, Op,min and
Op,max) or state constraint (Bw,max), but it does not
contain sensitivity-seeking arcs.

(2) Determination of fixed and free input parts: The
fixed parts consists of the inputs at their bounds
(FH,max, FH,min, Op,min and Op,max), while the free
parts are the state-constrained arc hOp

(t) and the
switching times pFH

, pOp,1
, and pOp,2

.

(3) Parameterization of the decision variables: Since
there is no sensitivity-seeking arc to be parameter-
ized, the parameter vector p contain only the switch-
ing times pFH

, pOp,1
, pOp,2

and the transition time ttrans.
. Links to NCO

(1) Links to state constraints: The arc hOp
(t) is linked to

the state constraint Bw (t) ¼ Bw,max. The parameter
pOp,1

is determined implicitly by Bw(t) reaching its
upper bound.

(2) Links to terminal constraints: The remaining para-
meters pFH

, pOp,2
and ttrans are linked to the terminal

constraints MIi(ttrans) ¼ MIc,ref, Bw(ttrans) ¼ Bw,ref and
MIc(ttrans) ¼ MIc,ref, respectively.

(3) Links to path and terminal sensitivities: There
are neither path nor terminal sensitivities in this
problem since all parameters and arcs have already
been assigned to state and terminal constraints.

Having dissected the inputs and linked the free parts to
the NCO, the solution model can be written formally as
follows:

FH(t) ¼
FH,max for 0 � t , pFH

FH,min for pFH � t � ttrans

�

Op(t) ¼

Op,min for 0 � t , pOp,1

KhOp
(Bw,max � Bw(t)) for pOp,1

� t , pOp,2

Op,max for pOp,2
� t � ttrans

8><
>:

pOp,1
¼ t with Bw(t) ¼ Bw,max and

Bw(t ) , Bw,max

pFH ¼ RpFH
(MIc,ref � MIi(ttrans))

pOp,2
¼ RpOp,2

(Bw,ref � Bw(ttrans))

ttrans ¼ Rttrans (MIc,ref � MIc(ttrans))

(12)

where K and R are on-line and run-to-run controllers,
respectively, and t_ represents a time just prior to t.

Figure 2. Optimal profiles for the transition A ! B (MIi continuous, MIc
dashed).
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Adaptation of the Solution Model

The adaptation of the free variables can be implemented
with a decentralized control scheme, as illustrated in Figure 3.
The adaptation of the constraint-seeking hOp

(t) is imple-
mented on-line using a PI controller, while the adaptation of
the switching times pFH

, pOp,2
and ttrans is performed on a

run-to-run basis using discrete integral controllers.

Simulated NCO-Tracking Results

It is assumed that uncertainty is present in the plant in the
form of time-varying kinetic coefficients, which may corre-
spond to a variation of catalyst efficiency with time. This
information on parametric variations is, of course, not
revealed to the measurement-based optimization algori-
thms. If this information were available, the minimal tran-
sition time would be J� ¼ 7.36 h.
The NCO-tracking results of Table 3 call for several

remarks:

(1) Direct application of the nominal optimal inputs is
infeasible as it violates the path constraint Bw(t) �

Bw,max as well as terminal constraints.
(2) The run-to-run nature of the control scheme given in

Figure 3 results in the first two runs to be infeasible
with respect to the terminal constraints. However,
this could be corrected using PID controllers to drive
the process from the state at ttrans to the feasible
region, assuming MIi and MIc are measured on-line.
Thus, in the case of infeasible solutions due to violation
of terminal constraints, the cost J also includes the time
needed to become feasible.

(3) Convergence is achieved within three runs. Further-
more, there is already considerable cost improvement
after two runs.

(4) The run-to-run scheme is here of multivariable nature:
the three decision variables �p ¼ ½pFH , pOp,2

, ttrans�
T are

used to meet the three terminal constraints MIi(ttrans) ¼
MIc,ref, Bw(ttrans) ¼ Bw,ref and MIc(ttrans) ¼ M Ic,ref. The
pairing was done intuitively as indicated in the solu-
tion model (12). A decoupling scheme based on the
sensitivity matrix @Tj=@ �p could be implemented to
speed up convergence (not needed here in this noise-
free case).

(5) In industrial practice, though grade changes are made
frequently, the same grade change is not necessarily
repeated. This makes the run-to-run aspect less appeal-
ing. Thus, it is of high interest to meet the most import-
ant (from a cost point of view) terminal constraints
on-line as proposed in Srinivasan and Bonvin (2004).

(6) The advantage of this optimization approach is that
only measurement of bed level is required on-line.

CONCLUSIONS

Using a tendency model for a gas-phase fluidized-bed
reactor, it was possible to show that the optimal grade
transition problem is completely determined by path and
terminal constraints. The resulting solution model links
the free (adjustable) elements of the manipulated variables
to appropriate measurements. This way, it has been pos-
sible to adjust the inputs so that they are nearly optimal
for a simulated uncertain reality. This calls for important
observations with regard to the applicability of NCO track-
ing to experimental processes:

. Optimality is seen in the context of approximation. The
objective is to approach optimality for a complex and
poorly-modelled reality. The true optimal solution is
unknown. At best, that obtained from some approximate
model could be determined. The approach taken here is
to assume that the shape of the optimal inputs (i.e., the
main arcs related to active constraints and compromises
in the optimization problem) obtained from the simpli-
fied nominal model is sufficient to approximate the true
optimal inputs. Then, process measurements are used
to adjust the inputs towards optimality.

. The approach relies on the measurement or estimation
of constrained quantities and sensitivities. Hence, if
these quantities are not directly available through
measurements, it is necessary to estimate them. Note,
however, that the state estimation problem does not
necessarily need to reconstruct the full state vector,
but only those quantities that are involved in the
NCO. Furthermore, it is often possible to formulate
alternative solution models that are considerably easier
to implement (Srinivasan and Bonvin, 2004).

Table 3. Values of the constrained quantities, transition time and cost J as functions of the numbers of runs; no
measurement noise is considered (the quantities in bold indicate a constraint violation; the costs need to be compared
to the ideal value J� ¼ 7.36 h).

Number of
runs

MIc(ttrans) (g 10 min)
MIc,ref ¼ 0.090

MIi(ttrans) (g 10 min)
MIc,ref ¼ 0.090

Bw(ttrans) (10
3 kg)

Bw,ref ¼ 70.0
ttrans
(h)

J
(h)

1 0.097 0.098 69.9 7.45 10.39
2 0.093 0.094 70.6 7.39 8.88
3 0.090 0.090 70.0 7.36 7.36
10 0.090 0.090 70.0 7.36 7.36

Figure 3. Control scheme for the adaptation of the solution model.

Trans IChemE, Part A, Chemical Engineering Research and Design, 2005, 83(A8): 1–6

OPTIMAL GRADE TRANSITION FOR POLYETHYLENE REACTORS VIA NCO TRACKING 5



. The investigation was performed here in simulation,
whereby the solution model obtained from a nominal
model was used to reach optimality for a different (so-
called perturbed) model. In practice, the perturbed
model is the real process itself, which means that a
simplified nominal model that is able to characterize
the shape of the optimal solution will lead to near optim-
ality for the real process. This seems to be of
considerable industrial interest. We have started to
implement the NCO-tracking scheme on several
experimental set-ups and also on larger industrial pro-
cesses. Acceptance has exceeded our expectations.
The main remarks deal with (1) its ability to improve
process operation, while keeping it really simple, and
(2) the fact that it helps formalize the qualitative
knowledge that the operators or engineers have but
cannot implement in a systematic way.
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