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ABSTRACT

In this work, statistical based motion estimation is applied
to the problem of motion estimation for video coding. We
show that the motion equations of a rigid body can be for-
mulated as a non linear dynamic system whose state is rep-
resented by the motion parameters and by the scaled depths
of the object feature points. An extended Kalman filter is
used to estimate the global motion, from which successive
frames can be predicted in a motion compensated video
coding system. The structure imposed by the model im-
plies that the reconstructed motion is very natural in com-
parison to more common block-based schemes. Moreover,
the parametrization of the model allows for a very efficient
coding of motion information.

1. INTRODUCTION

Typical video sequences consist of few moving rigid objects
and a static background. In particular, video-conference
scenes have an almost fixed scene content, consisting of the
head-and-shoulder of the speaker and of the background.
The movement of the speaker mainly consists of the global
movement of the shoulder and head, which can be approxi-
mated as rigid objects, and of the local motion due to facial
expression changes and speech.

Statistical based motion estimation has been widely used
in computer vision [1] and more recently in video coding
[2]. In this work, a modification of the scheme of [1] is
applied to the problem of motion estimation for video cod-
ing. The estimated motion parameters for each object in
the scene, modeled as the projections of a 3D rigid body,
can be used to reconstruct the image sequence at the de-
coder. The constraints imposed by the model gunarantee
that the reconstructed motion is very natural compared to
simpler and more common block-based schemes. Moreover,
the simple parametrization of the model allows for a very
efficient coding of motion information.

2. PROBLEM FORMULATION

We suppose that the cartesian reference system is centered
at the pupil of the observer, the Z axis points forward and
coincides with the optical axis, while X and Y are parallel to
the image plane and form with Z a right handed reference.
Let Xi(t) = [Xi(2), Yi(), Zi(¢)]" denote the coordinates of
the generic point ¢ of a rigid body at time ¢.
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The velocity of any point ¢ of the rigid body can be
represented by the sum of a translation velocity Xo(t) and
of a rotation velocity, namely

Xi(1) = (1) A X (1) + Xo(1) (1)

where Q(t) = [Qx(t), Qv (t), 22z(¢)]7 is the vector of the an-
gular velocities. Thus, 6 parameters are sufficient to char-
acterize the motion. We can rewrite equation (1) in matrix
form as

Xi(t) = Q)X:(t) + Xo (), (2
where
. 0 —Qz(t)  Qy(?)
Q)= Qz() 0 —Qx(t) (3)
—Qy(t) Qx(t) 0

is a skew symmetric matrix.
The continuous time equation (2) can be solved to de-
rive a discrete time equation for X;(t), namely

Xi(t+ 1) = ROHXi(t) + T(). (4)

If () is constant between ¢ and ¢+ 1, as we will assume
in the following, we have in particular

R(t) = eﬁ(t),

T(t) = [Tx (1), Tr (1), Tz ()]" = /Hleﬁ(t)(’““”XO(T) dr.
(%)

Suppose we are given the perspective projections of N
points, or features, of the rigid body in a set of consecutive
frames. We will show that we can use these projections
to estimate the state of a discrete time non linear system
which describes the 3-D motion of the object and its shape.
Moreover we can use such estimate to predict the feature
positions at time ¢ + 1 from the positions at time t.

Let x;(t) denote the vector of the i-th feature coordi-
nates on the image plane at time ¢. The coordinates on
the image plane are related to the 3-D coordinates by per-
spective projection, i.e., assuming a focal length equal to

1,
| X(8)/2:(1)
x(t) = ) = mwmn} (6)

We define by Z(t) = 31, Zi(t)/N the average depth and
by si(t) = Zi(t)/Z(t) the scaled depth. From equation (4),



we derive the following equation for the Z component

Zi(t +1) = Rg(t)X,'(t) + Tz (t)~ ) (7)
= (Ra()s:(t)xi(t) +T2(1)) 2 (1)
where T(t) = T(t)/Z(t) is the scaled translation and Rs(t)

denotes the third row of R(¢). From equations (4) and (7)
we obtain

R(t)s:(t)x:(t) + T(1)
Ra(t)s:(t)xi(t) + Tz (1)

xi(t+1) = (8)
which gives the feature frame coordinates at time ¢+ 1 as
a function of the coordinates at time ¢, the motion param-
eters R(¢), T(t) and the scaled depth s;(t). Note that the
set of scaled depths s;(t) gives information about the 3-D
shape of the object. We found that the inclusion of s;(t)
in the motion model is essential for the robustness of the
estimates.

We can interpret equation (8) as an implicit relation be-
tween the coordinates x;(¢) and the state R(¢), T(t), s:(t),
i = 1,...,N of a non-linear system governing the motion
of the rigid body. Our objective is to estimate the sys-
tem state, i.e., the object motion parameters and the scaled
depths of the features, from the feature projections x;(t).
In the following, we derive the state update equations for
the system.

Using (4) and (5), one can derive an expression for R(?)
as a function of £2(¢) (Rodrigues’ formula [3]). For this rea-
son, we will use €2(t) instead of R(?) in the state equations
and assume for its dynamics a random walk model

Q(t +1) = (t) + na(?), (9)

where nn(t) is a zero mean white noise. The update equa-
tion for the scaled tramslation T(t) can be derived by as-
suming a random walk model also for T(¢) and by averaging

equation (7) for ¢ = 1,..., N. We obtain
. LT+ T(t) .
T(t+1)= Z6+D) -~ Re(0x(t) 1 T2(0) +nx(t), (10)
where %(t) = & Z si()xi(t).

From equation (7) we derive the update equation for
si(t)
2] Bttty +150)
Z(t+1) Ro. ()%(t) + T2 (t)

si(t+1) = (11)

Moreover we have the constraint

N N
—]%Zsi( Z : . (12)

In summary, the system equations are
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Q(t+1) = Q)+ na(t)
3 _ Tgt)
oy - REOTOaLT
. t)s{(8)x;(t t
silt+1) = SO vRG - Tt (13)
Zz 1 S’(t) = N ~
z(t + 1) —_ R(t)“—‘i(t)xi(t)""r(t) +n, (t)

Ra.()s:(0)xi(t)+T5(t)

where n,,(t) and n.(t) are model noises that may take into
account slow deformations of the object.
t)T 51(?;2

Defining the system state by £(t) = [Q(¢)7,
.., sn(t)]T and observations by y(t) = [x1(t)7,

Sxn(t+1)T)T + w(t), where w(t) is the ob—

servation noise, we may rewrite (13) as

xl(t 1) ’
] g t )Y t n(t

o

{ €(t+1)
R(E(t), y (1) — w(t))

where 1i(t) is a function of the noises in (13) and of w(¢).

3. MOTION ESTIMATION

System (14) is non linear and implicit, therefore we can
estimate and predict its state by means of the Implicit Ex-
tended Kalman Filter (IEKF) [4].

We will denote with £(¢|t) the estimate of the state at
time ¢ from the measurements {y(r) : 7 < ¢} and with
é(t + 1|t) the prediction of the state at time t + 1 from the
measurements {y(r): r < t}. Then, if one defines
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the equations of the IEKF become
e Prediction Step

E(t+1]2) = f(E(e})) (16)

P(t+1]t) = FP{|)FT + Qa (17)

¢ Update Step

E(t+1]t+1) = £(t+1]t) + L(t-+1)h(E(t+1[), y(t+1)) (18)
L(t+ 1) = —P(t+ 1]))CT(CP(t + 1])C" + R)™" (19)
R =DR,D” (20)

P+ 1t+1) =1y ~LE+1)C)P( +1t)
(In — Lt +1)C)T + L+ DRLE+ 1T (21)

where P(t|t) = E[(£(2)—£(t]t)) (¢ (t)—£(¢]t))T] is the estima-
tion error variance, P(t+1[t) = E[(£(t4+1)—&(t+1|t)}(&(t+
1) —€(t +1]t))7] is the prediction error variance, Ry, is the
covariance matrix of w(t) and Qs is the covariance matrix
of fi(t).

The estimation £(t|t) can be used to predict the fea-
ture positions at time ¢t 4+ 1 from their positions at time
t by means of equation (8). Moreover, from equation (8),
we can predict the position of points that are not features
by assigning to the generic point x(¢) a scaled depth s(t)
obtained by averaging the estimates of the scaled depths
3(t]t). For example, we can use the weighted sum

SN wisi(t)
Ez 1 Wi

where the weight w; takes into account the distance between
the point x(t) and the feature coordinate x;.

s(t) = (22)



4. EXPERIMENTAL RESULTS

In this section we will present some simulation results, rel-
ative to both synthetic and real image sequences.

In the first experiment, a synthetic sequence of features
was used. We considered a set of 33 points (obtained us-
ing a uniform random generator) placed inside a cube of
side 1m with centroid positioned 1.5m ahead of the viewer.
We suppose to observe the scene using a camera with a vi-
sual field of 52° and CIF resolution (288 x 352 pixels). The
cloud of points has been projected on the image plane and
corrupted by Gaussian noise with a standard deviation o
satisfying 30 = 1 pixel. The cloud undergoes a rotational
motion around its center of mass. In the camera coordinate
system, this corresponds to a rotation around the horizontal
axis with angular velocity Qx = 3°/frame, and a transla-
tion with velocity 1.5(1 — cos Qx )m/frame along the Z axis
and 1.5sin 2 xm/frame along the Y axis. After 50 frames
the cloud inverts its direction of rotation. The Kalman fil-
ter described in the previous section was used to estimate
the motion. We used an initial null estimate for T and £
and the initial estimates of the scaled depths was set to 1.
Fig. 1 shows the estimates of the velocities as a function
of the frame number. The ground truth is plotted in dot-
ted line. We can see that the filter takes about 20 frames
to converge. After that, it follows the cloud even after the
abrupt inversion of motion at frame 50. We found that
the use of s;(t) as state variables is essential to make the
tracking procedure effective and robust.
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Figure 1: Estimates of the motion parameter for the syn-
thetic sequence.

To test the estimator with a real video sequence, we
need to choose the feature points in the first frame and track
them in the following frames. To this purpose we used a
multiresolution version of Lucas-Kanade’s algorithm [5, 6].
This procedure consists in approximating the luminance at
time ¢ around the point at position x with a differentiable
function I(x,t). In addition, one supposes that the lumi-
nance variations are due only to tramslations. Therefore,
denoting with d the displacement of x from time ¢ to ¢t +1,
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one can write

Ix, ) =I(x—d,t+1) >~ I(x,t+1)—g’d (23)
where g = gradl. Solving (23) with respect to d and mini-
mizing the mean squared error on a window W, one finds

Gd=e (24)

where
G = /W glgdx e= /W(I(x, t) —I(x,t+ 1))gdx. (25)

System (24) allows one to find the displacement of a
feature and, if the eigenvalues of the matrix G are nonzero,
it has a unique solution. In practice, due to the presence
of noise, the eigenvalues must be greater than a threshold.
This suggests to consider only those feature points that cor-
respond to local maxima of the minimum eigenvalue of G.

This procedure was applied to frames 10 to 58 (with
step 4) of the video sequence “Miss America”. The im-
age sequence is segmented, as suggested for MPEG 4 [7].
The features obtained using Lucas Kanade’s algorithm were
classified into three groups corresponding to the regions of
the hair, the face and the shoulders (see Fig. 2). For each
region the proposed filter was used to estimate the motion
and the shape. Frame at time ¢ 4+.1 was predicted from
frame at time ¢ using the estimated parameters. For this
purpose we used equation (8) to predict the pixel positions
in frame at time t+1 from their positions in frame at time ¢.
We assigned a scaled depth to all the other image pixels us-
ing equation (22) with weights w; = (|t — z;| + |y — %) >
where (z,y) are the generic pixel coordinates and (=i, i)
are the coordinates of feature ¢. In particular, to each pixel
x(t) we applied equation (8) using the corresponding mo-
tion parameters and estimated scaled depth. This permits
to predict the pixel coordinates X(¢+ 1) at time ¢t + 1. The
luminance value of pixel x(¢+ 1) at time ¢ + 1 is set to the
same luminance value of %(¢) at time t. We assumed no
motion in the background and the corresponding pixels are
simply replicated from time ¢ to ¢ + 1.

We report the results relative to the prediction of frame
58 from frame 54 using the proposed algorithm and, for
comparison purposes, a block matching procedure. Block
matching was performed using 16 x 16 blocks, motion vec-
tors in the range —15 +15 and half pixel refinement. We
also consider the case of using frame 54 as an estimate of
frame 58, with no motion compensation.

In the first row of Table 1 the mean squared error (MSE)
between frame 58 and its prediction is given for the three
cases. We can see that the MSE of the proposed solution is
slightly greater than the MSE obtained with block match-
ing. On the other hand, we can compare the number of bits
necessary to code the motion vectors in the block matching
algorithm with the number of bits required to code the mo-
tion and shape parameters of the estimation filter. In the
second row of Table 1 the uncompressed number of bits is
reported for both cases. Block matching requires 12 bits per
vector while, in the proposed algorithm, we need to code the
estimated state for each filter. This requires six floats for
the motion parameters and one float for each scaled depth.
In Table 1, we assume to use 16 bits per float. Appropriate



Figure 2: The three regions used for the test on the
Kanade’s algorithm (crosses).

Figure 3: Original frame #58 of “Miss America.”

|

l Proposed method I Block matching I No comp.

MSE 13.2 10.4 73.6

bits 1376 4752 0

Table 1: Results for different prediction methods.

coding can be used to reduce the required number of bits.
Fig. 3 shows the original frame #58 of “Miss America,”
while Fig. 4 shows the predicted frame using our method.
In the presence of relevant local motion around the lips
and the eyes, the prediction obtained using the proposed
method can give less satisfactory results, as expected. For
instance, the prediction of frame 50 from frame 46 gives an
MSE=32.6 with our method and an MSE=22.1 with block
matching.
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sequence “Miss America”, with the features computed by the Lucas

Figure 4: Predicted frame #58 of “Miss America.”
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