Operating System Support for Interface Virtualisation
of Reconfigurable Coprocessors

Miljan Vuleti¢, Ludovic Righetti, Laura Pozzi, and Paolo lenne
Swiss Federal Institute of Technology Lausanne
Processor Architecture Laboratory
IN-F Ecublens, 1015 Lausanne, Switzerland

Miljan.Vuletic@epfl.ch, Ludovic.Righetti@epfl.ch,
Laura.Pozzi@epfl.ch, Paolo.lenne@epfl.ch

ABSTRACT

Reconfigurable Systems-on-Chip (SoC) on the market con-
sists of full-fledged processors and large Field-Programmable
Gate-Arrays (FPGAs). The latter can be used to implement
the system glue logic, various peripherals, and application-
specific coprocessors. Using FPGAs for application-specific
coprocessors has certain speed up potentials, but it is less
frequent in practice because of the complexity of interfac-
ing the software application with the coprocessor. Another
obstacle is the lack of portability across different systems.
In this work, we present a virtualisation layer consisting of
an operating-system extension and a hardware component.
It lowers the complexity of interfacing and provides porta-
bility potentials. The virtualisation layer shifts the burden
of moving data between processor and coprocessor from the
programmer to the operating system. The operating sys-
tem relies on a specially designed hardware that interfaces
a coprocessor to the rest of the system. In this way, both
the coprocessor hardware and the software are made com-
pletely independent of the physical details of the system,
and thus perfectly portable. A reconfigurable SoC running
Linux is used to prove the viability of the concept. In order
to test the approach, two applications are ported to the sys-
tem with their critical functions mapped to the coprocessor
hardware. We show that a significant speed up is obtained
compared to the software versions, while limited penalty is
paid for virtualisation.

1. INTRODUCTION

Reconfigurable arrays might increase their relevance in fu-
ture deep sub-micron technologies. This is due to increasing
mask costs and the consequent need of designing individual
Application-Specific Integrated Circuits (ASICs) as adapta-
tions of generic platforms. However, in the foreseeable fu-
ture, FPGAs will not be able to show speed or area efficiency
comparable to general processors implemented in ASICs.
The bulk of computation in future high-performance SoCs
will have to be performed by blending the two paradigms—
standard processors augmented with reconfigurable applica-
tion-specific parts [6, 7, 15]. Major vendors of reconfigurable
devices now offer systems consisting of processor cores sur-
rounded by peripherals, on-chip memories, and large amounts
of reconfigurable logic [1, 17] which may include special fea-
tures such as embedded memories and arithmetic blocks
suited for signal processing (e.g., Stratix family [1]).

While partitioning applications between pure software and
hardware-accelerated tasks for such devices, designers need
to interface the application-specific coprocessor with the rest
of the system, taking into account the peculiarities of the
interface between the processor and the FPGA—bus hierar-
chies and protocols, shared and/or multi-ported memories,
I/O ports, etc. For instance, programmers need to take
explicitly into account the availability and size of shared
memory between processor and FPGA; if such memory is
smaller than the datasets to be exchanged, the datasets need
to be partitioned and a schedule for loading them onto the
shared memory developed. In some cases this can be burden-
some but conceptually easy—e.g., in streaming applications
it would require loading a fragment of the input stream on
the shared memory, calling the coprocessor, copying back
the new fragment of output stream, and repeating the pro-
cess until finished. Other cases with more unpredictable
accesses are much more difficult to manage. On top of the
design complexity, changing a host platform would require
redesigning to a significant degree both the software and
hardware parts to fit the new device interface mechanism.

Our contribution reduces the complexity of the program-
ming and hardware design paradigms and improves the porta-
bility of applications for reconfigurable-computing platforms:
it shows how a shallow platform-specific hardware layer and
some cooperation from the Operating System (OS) can re-
duce the burden of the programmers and designers and make
user applications and coprocessors fully platform indepen-
dent with a limited performance penalty.

This paper is organised as follows: We specify in more
detail our goals in Section 2 and introduce our basic idea.
In Section 3 we show how such idea can be implemented
in practice. The experimental setup used to demonstrate
our system and the corresponding results are presented in
Section 4. In Section 5 we discuss similarities and comple-
mentarities of our work with other memory, interface, and
reconfigurable-hardware virtualisation issues. Finally, con-
clusions are drawn in Section 6.

2. GOALS

The programmer of a computing platform equipped with
an OS is abstracted from the characteristics of the mem-
ory system [8]: he/she generates memory accesses ignoring
whether the required main memory physically exists. The
addresses known to the programmer are therefore wirtual
and they describe an extremely large memory system with



https://core.ac.uk/display/147905821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VIRTUAL
MEMORY
(infinite)

PHYSICAL

MEMORY [€ el

OS (Virtual Memory Manager)

Figure 1: Virtual memory system.

no relation to the real one. As shown in Figure 1, the Virtual
Memory Manager (VMM) of the OS supports the program-
mer’s illusion and it is assisted in hardware by the Memory
Management Unit (MMU). The ability to support this illu-
sion of a large homogeneous memory has two fundamental
advantages: (a) the simplicity of the programming paradigm
and (b) the portability of the code across systems support-
ing the same OS. The disadvantage is that the automatic
allocation of pages by the operating system is, in general,
suboptimal. In principle an experienced programmer could
obtain better results by managing directly the memory hier-
archy, but in most cases people accept a small performance
loss for the above mentioned advantages.

Our goal is to extend these advantages to the interface
between the processor and a coprocessor, for instance imple-
mented in FPGA on a reconfigurable SoC. Without loss of
generality, we will concentrate on an interface built around
a dual-port memory accessible by both the reconfigurable
lattice and the processor. Our goal is to have an application
in a high-level language (e.g., C or C++) and the corre-
sponding coprocessor(s) in a hardware description language
(e.g., VHDL or Verilog) completely independent of the tar-
get hardware. An appropriately augmented OS, a compiler,
and a synthesiser must be sufficient to port the accelerated
application across different systems.

2.1 Virtual Interface Management

Analogously to virtual memory management, the program-
mer of a reconfigurable computer should design data ex-
changes between the processor (i.e., the application soft-
ware) and the coprocessor (i.e., the reconfigurable hardware)
without any knowledge of the physical system. A typical
approach would assume the use of a dual-port or a shared
memory, but the programmer should ignore its size and lo-
cation in the system memory map. Similarly, the coproces-
sor designer should be exposed to the same abstraction and
generate abstract addresses rather than generating specific
physical addresses for particular memory banks available on
a given platform. Data items such as vectors, for exam-
ple, should be addressed with respect to their natural size,
independently of platform limitations.

As in the case of VMM, two elements should be added to
the basic system: (1) A hardware device that performs the
translation between the addresses of abstract object/elements
and the corresponding physical addresses. We call this hard-
ware Interface Management Unit (IMU) and it has a strong
similarity to a classic MMU. (2) A support in the OS that al-
locates dynamically interface objects and ensures that they
are available to the coprocessor when required. Asthe VMM
does, a Virtual Interface Manager (VIM) handles the trans-
lation unit and the content of the interface memory. The
IMU sends an interrupt to the OS when the VIM needs to
provide data to the coprocessor through the interface. Fig-

VIRTUAL
DP RAM
(infinite)

PHYSICAL Processor
DP RAM and Memory

OS (Virtual Interface Manager)

Figure 2: Virtualised interface.

/* Software version */
add_vectors(A, B, C, SIZE);

/* Typical coprocessor version */

data.chunk = DP_SIZE / 3; datapt = 0;

while (datapt < SIZE) {
copy (A + data_pt, DP_BASE, data_chunk);
copy (B + data_pt, DP_BASE + data_chunk, data_chunk);
add_vectors_coprocessor();
copy (DP_BASE + 2+data_chunk, C + data_pt, data_chunk);
data_pt += data_chunk;

/* VIM-based coprocessor version */
map-data (A, B, C);
add_vectors_coprocessor(SIZE);

Figure 3: Motivating example

ure 2 shows a practical instance of interface virtualisation
where the coprocessor reads data from a dual-port memory
(DP RAM, accessible by the main processor t00).

2.2 Motivating Example

Figure 3 shows simplified pseudo-code excerpts of a triv-
ial application that invokes either a software function or a
hardware coprocessor to add two vectors (A and B) and
store the result into the third one (C). The application is
ported to three different systems: (1) pure software, (2) typ-
ical coprocessor, and (3) VIM-based coprocessor system. In
the case of the typical coprocessor version, it can be seen
that the programmer needs to take care about unnecessary
platform-related details (a similar task burdens the hard-
ware designer). On the contrary, the VIM-based version
completely resembles the pure software version and provides
a clean and transparent interface to the coprocessor.

3. COMPONENTS FOR INTERFACE VIR-
TUALISATION

We discuss here the three components required for inter-
face virtualisation: (1) the standard services used to invoke
the coprocessor, (2) the hardware for interfacing a coproces-
sor to the processor, and (3) the manager of such interface.
The first and the last items are software extensions to the
OS, while the second is a hardware component.

3.1 OS Coprocessor Invocation Services

Three system calls are provided to software designers.
First, FPGA_LOAD loads a coprocessor definition in the re-
configurable hardware and ensures the exclusive use of the
resource. The argument of the call is a pointer to the con-
figuration bit-stream. Second, FPGA_MAP_OBJECT allocates
the data used by the coprocessor. The arguments of the call
are: (a) the object identifier (a number agreed by the hard-



FPGA "Stripe"
portable platform-specific
IMU
CP_OBJ DP_ADDR
CP_ADDR N o]
= DP_DIN 2
CP DIN DP_DOUT g
CP_DOUT TLB DP_EN Qe_
Coprocessor DP_WR T
=
&
CP_CONTROL a
CR INT_PLD o
CLK
RESET

Figure 4: Communication between coprocessor and
IMU.

ware and software designers), (b) a pointer to the data, (c)
the data size, and optionally (d) some flags used for optimi-
sation purposes. Finally, FPGA_EXECUTE performs the map-
ping, passes scalar parameters, initialises the IMU, launches
the coprocessor, and puts the calling process in an interrupt-
ible sleep mode.

FPGA_LOAD and FPGA_EXECUTE are part of any processor
or coprocessor handshaking system and exist, in one form
or another, in any SoC of this sort. FPGA_MAP_OBJECT is
specific to our scheme and informs the OS of the data for
which it will have to provide dynamic allocation. In a sense,
they are equivalent to software parameter passing by refer-
ence. In this way, an arrangement between a software and
hardware designer is actually made with a call to this ser-
vice: The software designer declares the data to be processed
by the coprocessor; the hardware designer implements a
coprocessor having in mind the programmer-declared data
(i.e., mapped objects). The coprocessor can processes the
mapped data with no concerns about their location in mem-
ory.

3.2 Hardware Interface

All coprocessor memory accesses pass through the IMU,
which is the coprocessor interface to the system. If possible,
virtual addresses demanded by the coprocessor are trans-
lated by the IMU to real addresses of a reserved memory
region (e.g., a dual-port memory excluded from the virtual
memory mapping). Otherwise, an interrupt is generated and
the OS event handling is requested. Although it is excluded
from the virtual memory mapping, the reserved memory re-
gion is managed by the OS and divided into pages.

Figure 4 shows how the virtual addresses generated by
a standardised coprocessor are translated by the IMU. The
IMU in the figure is for the real system we have built and
which is described in Section 4. The interface between the
coprocessor and the IMU is quite simple: It consists of ad-
dress lines (CP_OBJ and CP_ADDR), data lines (CP_DIN and
CP_DOUT), and control lines (CP_CONTROL). Towards the rest
of the system there are platform-specific signals (the dual-
port RAM access lines DP_ADDR, DP_DIN, DP_DOUT, DP_EN,
DP_WR, in the case shown in Figure 4), and these would dif-
fer across different platforms. Inside the IMU, note the three

registers accessible by the main processor (AR, SR, and CR)
and the Translation Lookaside Buffer (TLB) which empha-
sises the similarity of the IMU with a conventional MMU [8].
Apart from typical status and control registers (SR and CR),
there is an address register (AR) that holds the address of the
coprocessor memory access performed most recently. By ex-
amining this register, the OS can determine which memory
access possibly caused an access fault. Based on this infor-
mation the appropriate interface management action can be
taken.

The key part of the IMU is actually the TLB that per-
forms address translation for coprocessor accesses. Its design
is platform-specific as it reflects the organisation of the mem-
ory region accessible by the coprocessor. As in typical VMM
systems, an upper part (most significant bits) of the copro-
cessor address is matched to the patterns in the translation
table. If a match is found, the physical address is formed
out of the translation information and the lower part (less
significant bits) of the coprocessor address. If no match is
found, the coprocessor operation is stalled and the OS man-
agement is requested. The TLB also contains invalidity and
dirtiness information, like in typical VMM systems [8].

Control signals between the coprocessor and the IMU are
the following: (1) CP_START, the coprocessor start signal,
issued by the IMU once a user initiates the execution; (2)
CP_ACCESS, the coprocessor access signal, indicates that there
is an access performed by the coprocessor; (3) CP_WR, the co-
processor write signal, indicates that the access is a write;
(4) CP_TLBHIT, the translation hit signal, indicates that an
address translation is successful—in order to proceed a mem-
ory access, the coprocessor should first wait for this signal
to appear; (5) CP_FIN, the coprocessor completion signal,
indicates to the IMU that the coprocessor has finished its
operation.

Besides accessing the memory, the IMU provides a generic
way to pass parameters to the coprocessor. Once its oper-
ation is started, the coprocessor looks for parameters in a
memory page designated to parameter passing. When the
parameters are read, the coprocessor finishes initialisation
and continues with normal operation. At the same time it
invalidates the parameter-passing page, in this way making
it available for data mapping purposes.

Note that the interest here is not much in the implemen-
tation of a wrapper between two memory access protocols,
one standardised and platform-independent and the other
platform and memory specific—this is a well-studied topic
in system-level design, as discussed in Section 5. The orig-
inality of our approach lays in the dynamic allocation of
interfacing resources (i.e., shared or dual-port memory) be-
tween processor and coprocessor, which makes it possible
for the application programmer to ignore the physical ex-
tent of the resource. Such result can most transparently be
achieved through the involvement of the OS as discussed
below.

3.3 Interface Management

The memory is logically organised in pages, as in typical
memory systems. Datasets accessed by the coprocessor are
mapped to these pages. The OS keeps track of the pages
each dataset currently occupies. Not necessarily all of the
datasets used by the coprocessor reside in the memory at
the same time. At some point in time, the memory access
patterns of the coprocessor are those that determine the



cycle 1:

CP.OBJ <= 0 ; -- object A[]

CP_ADDR <= reg-i; CP_ACCESS <= ’1’; CP.WR <= ’0’;
cycle 2:

reg-a <= CP.DIN;

CP.OBJ <= 1; -- object B[]

CP_ADDR <= reg-i; CP_ACCESS <= ’1’; CPWR <= ’0’;

cycle 3:
regb := CPDIN;
reg.c := reg.a + regb;

CP.OBJ <= 2; -- object C[]
CP_ADDR <= reg-i; CPDOUT <= regc; CP_ACCESS <= ’1’;
CPWR <= ’1’;

reg.i <= regi + 1;

Figure 5: Code snippet of an elementary coproces-
sor using the virtualisation interface. No address
calculation is necessary, nor it is necessary to know
the available memory size.

occupation of the available pages.

The interface manager responds to the requests coming
from the IMU. The OS determines the cause of the interrupt
by examining the state of the IMU. There are two possible
requests:

Page Fault. If the IMU signals a page fault, it means
that the coprocessor attempted an access of a dataset part
not currently in the dual-port memory. The OS rearranges
the current mapping to the dual-port memory in order to
resolve it. It may happen that all pages are in use and in
this case a page is selected for eviction. If the page is dirty
its contents are copied back to the user-space memory and
the page is newly allocated for the missing data; the missing
dataset part is therefore made available and the translation
hardware reflects the changes. Afterward, the OS allows the
IMU to restart the translation and lets the coprocessor exit
from the stalled state.

End of Operation. Once the coprocessor finishes regu-
larly its task, through the IMU it signalises the end of oper-
ation to the main processor. The interface manager copies
back to user space all the dirty data currently residing in
the dual-port memory. The coprocessor should be ready
and waiting for new execution, if another FPGA_EXECUTE call
appears.

When no page is available for allocation, several replace-
ment policies are possible (e.g., first-in first-out, least re-
cently used, random). Also, speculative actions as prefetch-
ing could be used in order to avoid translation misses. To
allow fine tuning of actions performed by the interface man-
ager, the use of optimisation hints passed as parameters to
the OS services is envisioned. Although the interface man-
agement task is similar to a classic VMM, the application
of such techniques to the allocation of interface resources is
novel and brings new advantages.

3.4 Example

The coprocessor code shown in Figure 5, written in VHDL-
like syntax, computes the addition of two arrays: C[i] =
Ali] + BJi]. For simplicity, the figure omits the implementa-
tion details of the finite state machine that switches between
the three cycles and no pipelining is assumed.

It is important to note that no physical address appears
in the code. A vector identifier (0, 1, and 2, in this example)

int A[]; int B[J]; int C[];

FPGA_LOAD (ADD_bitstream) ;

FPGA_MAP_OBJECT (0, A, SIZE, IN);
FPGA_MAP_OBJECT (1, B, SIZE, IN);
FPGA_MAP_OBJECT (2, C, SIZE, OUT);

FPGA_EXECUTE (SIZE) ;

Figure 6: Example of application C code. The se-
mantics is similar to a function call with parameters
passed by reference. There is no dependence on the
available memory size.

and the corresponding index (reg-i in this example) consti-
tute a virtual address and are sent to the interface. The
VIM automatically translates this information into physical
addresses, if possible, or invokes the OS, if the data are un-
available. This feature of the coprocessor code has several
important consequences. First, no effort needs to be made
by the coprocessor designer in order to perform physical
address calculation—a tiresome task. More important, the
software needs not to be changed if the datasets to be ex-
changed exceed the memory available on the interface: the
coprocessor can address arbitrarily large data. Finally, both
the HDL and C code are now portable. The code is transpar-
ent not only to the address modality of the RAM (e.g. access
rules, synchronicity /asynchronicity)—as in many wrapper-
based abstract interfaces such as [5]—but also to the overall
memory size and allocation policy.

Figure 6 shows how the C file which originally computed
C[i] = A[i] + B[i] needs to be modified in order to add
calls to the FPGA, as described in Section 3.1. Essentially,
FPGA_EXECUTE replaces a call add_vectors(A, B, C, SIZE)
where nonscalar parameters are passed by reference (see Fig-
ure 3).

4. EXPERIMENTAL SETUP AND DEMON-
STRATION

A VIM system is implemented using a board based on
the Altera Excalibur EPXA1 device [1]. The EPXA1 device
consists of a fixed part, called ARM-stripe, and of typical
reconfigurable logic, called PLD. The ARM-stripe includes
an ARM processor running at 133MHz, integrated periph-
erals, and on-chip memories. The board is equipped with
64MB of SDRAM and 4MB of FLASH, and runs the Linux
OS.

The IMU is designed in VHDL to be synthesised together
with a coprocessor. The TLB, the most critical part of the
IMU, is implemented using content addressable and RAM
memories available in the PLD part of the EPXA1 device.
Due to the limitations of the technology, the translation is
performed in multiple cycles. Note that, although we had to
implement the IMU in FPGA for these experiments, IMUs
could and should, in principle, become standard components
implemented on the ASIC platform in the same way MMUs
are today. Currently, if we assume no translation faults,
four cycles are needed from the moment when the copro-
cessor generates an access to the moment when the data is
read or written. The performance drop caused by multi-
ple translation cycles could be overcome by pipelining. The



Nipligigiglins
o I il
- _
.. I

Figure 7: The coprocessor read access. Data is
ready on the fourth rising edge of the clock.

timing diagram for the current implementation is shown in
Figure 7.

Through the IMU, the coprocessor is interfaced with the
dual-port RAM memory, an on-chip memory accessible by
both PLD (directly) and the main processor (through an
AMBA Advanced High-performance Bus—AHB). It is logi-
cally organised in eight 2KB pages (the total size is therefore
of 16KB). In principle, there is no particular need for a dual-
port memory, since the main processor and the coprocessor
never access it at the same time. On the other hand, it
has been chosen because of direct and easy interfacing with
PLD.

The VIM is implemented as a Linux kernel module tuned
to the hardware characteristics of the particular system. Us-
ing the module on the system with different size of the dual-
port memory (e.g., the Altera devices EPXA4 and EPXA10)
would require only recompiling the module. The user appli-
cation would immediately benefit without need to recompile.

4.1 Measurements

The viability of our approach was proven on two designs: a
common multimedia benchmark, adpcmdecode (running at
40MHz), and a cryptographic application, IDEA (running
at 6MHz). For both, the critical parts were implemented in
VHDL as standard coprocessors using the virtual interface
provided by the IMU. The original C code was manually
modified to make use of the OS services provided by the
VIM and described in Section 3.

Figure 8 shows execution times for pure software and
VIM-based versions of adpcmdecode for different input data
sizes. The adpcmdecode coprocessor and the IMU are run-
ning at the frequency of 40MHz. Pure software and VIM-
based versions are both running on top of the OS. The
adpcmdecode produces 4 times the input data size. In this
way, for an input data size of 2 KB, which fits a single page,
the output data size is 4 pages. In this case, all data can fit
the dual-port RAM and the application execution completes
without causing page faults. For all other input sizes, page
faults occur.

Figure 9 shows execution times for pure software, typi-
cal coprocessor (with no OS), and VIM-based versions of
the IDEA cryptography application. A complex coproces-
sor core running at 6MHz with 3 pipeline stages is designed
for IDEA. The IMU and IDEA’s memory subsystem are
running at 24MHz and the synchronisation with the IDEA

adpcmdecode

18

16
’g 14 Pure_ SW
E version:
Q
g M s
_5 10 Coprocessor
5 versions:
[S]
< SW (IMU
% (IMV)

SW (DP)
HW

N A O ©

2KB 4KB 8KB
input data size

Figure 8: Measurements on adpcmdecode kernel. A
software implementation, and hardware VIM-based
implementation (the coprocessor and the IMU).

core is provided by a stall mechanism. The IDEA coproces-
sor achieves considerable speedup comparing to the software
case. Exploiting IDEA’s parallelism in hardware was limited
by the limited PLD resources of the device used. With larger
PLD, additional speedup could be obtained.

For the VIM-based version, three components of the ex-
ecution time are measured: (1) hardware execution time
(time spent in the coprocessor and in the IMU, required for
computation, memory accesses, and virtual memory trans-
lations), (2) software execution time for the dual-port RAM
management (time spent in the OS transferring data from/to
user-space memory ), and (3) software execution time for the
IMU management (time spent in the OS checking which
address has generated the fault and updating the transla-
tion table). It should be noticed that for the typical hard-
ware and the VIM-based versions, the speedup is compara-
ble when no translation misses require intervention of the
OS. In the case of the VIM-based versions, as the data set
size grows up and misses appear (from 4KB onwards, for
both applications), more time is spent in the OS but the
speedup is only moderately affected.

It is important to stress that all of the experiments are
performed by simply changing the input data size, without
need of modifying neither the application code, nor the co-
processor design. In particular, no modifications are needed
even for datasets which cannot be stored at once in the physi-
cally available DP-RAM. Programming is made easier (both
in C and VHDL) because no explicit reference to the dual-
port memory is required.

A few conclusions can be drawn from Figure 8 and Fig-
ure 9. First, the presence of our virtualisation layer, while
adding portability benefits, still provides significant advan-
tage over the pure software version (even if the difference
of running frequencies for the ARM processor and the PLD
is not negligible). Second, the introduced overhead can be
considered acceptable: the software execution time for IMU
management can be seen in the figure and it is up to 2.5% of
the total execution time. The hardware execution time in-
cludes address translation, whose overhead is unfortunately
not always negligible (in the IDEA case around 20%); we



IDEA
26ms 53ms

execution time (mMs)
coprocessor with IMU

<—— normal coprocessor

8KB

105ms

Pure SW
version:
W -
Coprocessor

> > L

g g versions:

£ £

° ° SW (IMU)

Q Qo

© © SW (DP)

g g

3 @ HW

[2] 12}

he) ©

(0] [0}

[0} [0}

o (8]

x x

(] [}

16KB K

input data size

19ms
11x

Figure 9: Measurements on IDEA kernel. A pure software implementation, a normal coprocessor without our
virtual interface, and a VIM-based coprocessor with the IMU.

are now working on a pipelined implementation of the IMU
which is expected to mask almost completely the transla-
tion overhead. Also, one should consider that eventually
the IMU should be implemented in VLSI technology exactly
as the MMU which is already present on the chip we use.
The largest fraction of overhead is actually due to manag-
ing the dual-port memory. Note that part of this overhead
component consists of compulsory page misses and would
be unavoidable even if no virtualisation was applied.

The significant overhead in the dual-port RAM manage-
ment between a normal coprocessor and a VIM-based is
largely caused by our simple implementation of the VIM
which makes two transfers each time a page is loaded or
unloaded from the dual-port memory. We are currently re-
moving this limitation. Real page misses can be improved
by smarter memory allocation and prefetching techniques—
the latter allowing overlapping of processor and coprocessor
execution.

Of course, if the same experiments were to be performed
on a different hardware platform this would require porting
the IMU hardware and the VIM software, but would not
require any changes the coprocessor HDL description nor to
the application C' code.

5. RELATED WORK

Memory abstraction and communication interfaces def-
inition are active field of research, motivated by IP-reuse
and component-based system design. Many standardisation
efforts are made in order to facilitate IP interconnection—
e.g., standardised buses [2]. Another industry standard [12]
provides a bus abstraction which makes the details of the
underlying interface transparent to the designer. Some au-
thors show ways of automatically generating memory wrap-
pers and interfacing IP designs [5]. In [10], an interfacing
layer is presented to automate the connection of IP designs
to a wide variety of interface architectures. The main origi-

nality of our idea, with respect to these works, is not in the
standardisation and abstraction of the memory interface de-
tails (signals, protocols, etc.) between generic producers and
consumers, but in the dynamic allocation of the interfacing
memory, buffer, or communication ports between a proces-
sor and a coprocessor—that is in the implication of the OS
in the process.

Similarly, extensive literature exists on the design and al-
location of application-specific memory systems, typically
for ASIC design (for instance, [3, 14]). Mostly, these are
compiler-based static techniques consisting in software trans-
formations to exploit better a given memory hierarchy, and
in design methodologies for customising the ASIC memory
hierarchy itself for specific applications. The former tech-
niques in particular can be used proficiently to enhance the
design of coprocessor such as those addressed here, but are
rather independent from the actual interface details we han-
dle. On the other hand, a few works have a dynamic flavour
and could therefore be used to improve the interface mem-
ory allocator—they are fully complementary to the present
techniques [11]. In the area of memory systems for recon-
figurable systems, works such as [9] study the generation
of optimal access patterns for coprocessors within SoC ar-
chitectures; the focus is not in portability and abstraction
from architectural details, as in this paper. We use simple
access patterns for validation, but any access pattern could
be used in conjunction with an IMU and their address gen-
eration techniques are complementary to our work.

Closer to our concerns is a different form of hardware vir-
tualisation which has received some attention recently. With
motivations similar to ours, researchers have considered the
OS support required for managing the reconfigurable lattice
across tasks [16]—that is, to screen the user from the prob-
lems introduced by the finite amount of available reconfig-
urable logic. Similarly, reconfigurable hardware virtualisa-
tion is addressed in [4], where an architecture is introduced



allowing the OS to share dynamically the reconfigurable
logic between applications. The resource is virtualised and
special hardware support has been developed in order to
support the mapping between the virtual and the physical
resource. The type of virtualisation we introduce addresses
the processor/lattice interface logic rather than the recon-
figurable lattice itself; the two problems are therefore or-
thogonal and complementary—future system may have to
implement solutions for both. Finally, in [13], an OS for re-
configurable platforms is proposed that suggests a task com-
munication scheme based on message passing. It exposes the
communication to the programmer and thus it differs from
our approach.

6. CONCLUSIONS

In this paper we add a Virtual Interface Manager to a
reconfigurable computing platform. The purpose is twofold:
achieve a much more straightforward programming paradigm
and ease the portability of applications.

The idea is not to improve the performance of the re-
configurable system; rather, as in most related computer
architecture ideas such as virtual memory management, the
goal is to pay a minimal performance tag for the ease of
programming and portability advantages. To quantify the
overall benefits, we have tested the approach on a real sys-
tem equipped with a full-fledged operating system; we ran a
simple multimedia application and a complex cryptographic
algorithm, both enhanced with application-specific copro-
cessors of different complexity. The overhead incurred due
to the presence of the virtualisation interface is generally
limited and we are working toward further reducing it. In
both cases the coprocessors achieve a significant speed-up
compared to software-only execution, with minimal changes
in the application code.

We believe that this first step is a key issue for the fu-
ture of reconfigurable computing. It helps bringing recon-
figurable hardware up to the programming paradigm of gen-
eral computing—a goal which can be most easily achieved by
involving the OS. After lowering the overhead of the transla-
tion process, research should address the development of ef-
ficient allocation algorithms in the OS. The goal is to expose
almost completely the inherent speed-up achievable by spe-
cialised hardware execution without the inherent complexity
of dealing with the details of the physical components.

7. ACKNOWLEDGEMENTS

The authors acknowledge the immeasurable help and sup-
port provided by Cédric Gaudin and Jean-Luc Beuchat.

8. REFERENCES

[1] Altera Corporation. Altera Ezcalibur Devices, 2003.
http://www.altera.com/literature/.

[2] ARM. AMBA Specification, 1999.
http://www.arm.com/.

[3] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa,
L. Nachtergaele, and A. Vandecapelle. Custom
Memory Management Methodology. Kluwer Academic,
Boston, Mass., 1998.

[4] M. Dales. Managing a reconfigurable processor in a
general purpose workstation environment. In

Proceedings of the Design, Automation and Test in
Europe Conference and Ezhibition, Munich, Mar. 2003.

5]

(10]

(11]

(13]

F. Gharsalli, S. Meftali, F. Rousseau, and A. A.
Jerraya. Automatic generation of embedded memory
wrapper for multiprocessor SoC. In Proceedings of the
39th Design Automation Conference, New Orleans,
La., June 2002.

S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao.
The Chimaera reconfigurable functional unit. In
Proceedings of the 5th IEEE Symposium on
Field-Programmable Custom Computing Machines,
pages 87-96, Napa Valley, Calif., Apr. 1997.

J. R. Hauser and J. Wawrzynek. Garp: A MIPS
processor with a reconfigurable coprocessor. In
Proceedings of the 5th IEEE Symposium on
Field-Programmable Custom Computing Machines,
pages 1221, Napa Valley, Calif., Apr. 1997.

J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, San Mateo, Calif., third edition, 2002.

M. Herz, R. Hartenstein, M. Miranda, E. Brockmeyer,
and F. Catthoor. Memory addressing organisation for
stream-based reconfigurable computing. In Proceedings
of the 9th IEEE International Conference on
Electronics, Circuits and Systems, Dubrovnik,
Croatia, Sept. 2002.

T.-L. Lee and N. W. Bergmann. An interface
methodology for retargetable FPGA peripherals. In
Proceedings of the 3rd International Conference on
Engineering of Reconfigurable Systems and Algorithms
(ERSA), Las Vegas, Nev., June 2003.

M. Leeman, D. Atienza, C. Ykman, F. Catthoor,

J. M. Mendias, and G. Deconcinck. Methodology for
refinement and optimization of dynamic memory
management for embedded systems in multimedia
applications. In IEEE Workshop on Signal Processing
Systems, Seoul, Korea, Aug. 2003.

C. K. Lennard, P. Schaumont, G. De Jong,

A. Haverinen, and P. Hardee. Standards for
system-level design: Practical reality or solution in
search of a question? In Proceedings of the Design,
Automation and Test in Europe Conference and
Ezhibition, pages 576-583, Paris, Mar. 2000.

V. Nollet, P. Coene, D. Verkest, S. Vernalde, and

R. Lauwereins. Designing an operating system for a
heterogeneous reconfigurable SoC. In Reconfigurable
Architectures Workshop (RAW), Proceedings of the
International Parallel and Distributed Processing
Symposium, Paris, June 2003.

P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues
in Embedded Systems-on-Chip. Kluwer Academic,
Boston, Mass., 1999.

R. Razdan and M. D. Smith. A high-performance
microarchitecture with hardware-programmable
functional units. In Proceedings of the 27th
International Symposium on Microarchitecture, pages
172-80, San Jose, Calif., Nov. 1994.

H. Walder and M. Platzner. Online scheduling for
block-partitioned reconfigurable devices. In
Proceedings of the Design, Automation and Test in
FEurope Conference and Exhibition, Munich, Mar. 2003.
Xilinx Inc. Xilinx Virtex Proll Devices, 2003.
http://www.xilinx.com/.



