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Abstract. Modular robots are well suited to implement key features of autonomous 
machines such as versatility, adaptability and reliability. Our vision is to tackle this 
task following the three major axes (phylogeny, ontogeny and epigenesis) that un-
derlie the emergence of autonomous and self-organizing organisms in nature. 

This paper presents Adam, our modular robot simulation and evolution tool. 
Adam successfully implements the first step of our project, inspired by the phyloge-
netic axis. We co-evolve configuration and control of locomoting homogenous 
modular robots by means of genetic programming. A tree-based genotype is used, 
encoding the control as well as the configuration of the modules. The modular ro-
bots are evaluated in a simulator that accurately models rigid body dynamics. Fur-
thermore, we propose a grammar for an intuitive script that allows building modular 
robots ‘by hand’ or inspecting and manipulating evolved individuals. 

 
 

1. Introduction 
 

This paper presents Adam, a modular robot simulation and evolution tool. Our goal is a 
realistic simulation of autonomous modular robots by implementing the three axes of the 
POE model: Phylogeny (evolution), ontogeny (development) and epigenesis (learning). The 
project has only recently started consequently, we can only present preliminary results that 
touch exclusively the phylogenetic axis. We would like to stress that Adam is a modular 
robotics and not an artificial life project. Even though we are not currently working on a 
hardware prototype, we want our results to be theoretically transferable to reality. Therefore 
we aim at a realistic simulation using modules with flat connection surfaces similar to exist-
ing hardware and we evolve the configuration of the robot using this predefined module 
type. 

 
 

1.1 Modular Robotics 
 

Modular robots offer many interesting qualities of autonomous systems such as versatility, 
adaptability and reliability. With the number of modules used, the number of possible con-
figurations grows exponentially and the number of degrees of freedom linearly, making 
modular robots extremely versatile. Modular self-reconfiguring robots can even adapt 
autonomously to new environments and tasks.  

Reliability stems from redundancy. Modular robots that are controlled in a distributed 
manner are robust because failure of some modules only degrades the overall function. Fur-
thermore self-repair mechanisms can be implemented by ejecting damaged modules and 
replacing them with spare ones or by self-reconfiguring the robot around them. 
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Another advantage of modular robots that is often pointed out in the literature is low 
cost. Mass production could lower the price of single modules but they will also be needed 
in great numbers to form a single robot. On the other hand, versatility and reliability are 
qualities of great commercial interest because the same robotic system could be used for 
diverse and changing tasks with low maintenance costs.  

  
 

1.2 The POE Model 
 

The POE model, introduced by Sipper et al. [1, 2], is an attempt to classify bio-inspired 
methodologies in design of computing machines. Considering life on earth, there are essen-
tially three biological models of self-organization that explain the emergence of complex, 
autonomous organisms with such desirable qualities as growth, adaptability, fault tolerance, 
regeneration and reproduction: Phylogeny (P), Ontogeny (O) and Epigenesis (E).  

Bio-inspired engineering methods can be classified along these three axes. We agree 
with Sipper et al. that novel bio-inspired systems can be obtained by combining two or ide-
ally all three POE axes. An example of such a system would be an evolving (phylogeny) 
and self-replicating (ontogeny) modular robot with a neural network controller implement-
ing reinforcement learning (epigenesis). 

 
 

2. Related Work 
 

We argue that modular robotics (also sometimes called cellular robotics [26]) is a perfect 
framework to build one day a truly autonomous machine by applying bio-inspired method-
ologies. As mentioned before, the Adam project has only just started. Our work so far con-
cerns co-evolution of configuration and control and is situated exclusively on the 
phylogenetic axis. In this chapter, we focus on this field but we also present other related 
work that lets us hope, that it is indeed possible to build one day a POEtic modular robot. 

Numerous research groups are working on modular robot hardware systems. Chain 
robots, for example M-TRAN [3], Polybot [4] or CONRO [5], are formed from chains of 
modules and have demonstrated re-configuration for various types of locomotion. On the 
other hand, lattice modular robotic systems like Telecube [6], Crystalline [7], I-Cubes [8], 
Fractum [9] or ATRON [10] locomote and reconfigure by moving modules to neighboring 
positions on a lattice. Swarmbots [11] uses small robots that can move autonomously and 
dock to form larger structures. Intelligence should emerge through interaction, like in 
swarms of social insects.  

The complexity of designing the structure and programming the controller of the ro-
bot grows exponentially with the number of modules. Co-evolutionary algorithms have 
proved to successfully evolve morphology and controllers simultaneously to suit a particu-
lar task. Sims co-evolved body and brain for locomoting and competing block creatures 
already in 1994 [12]. The genotype, describing morphology as well as the neural system 
that controls the movements, is structured as a directed graph of nodes and connections, 
allowing repeating or recursive components. Ventrella evolved walking stick creatures [13]. 
Framsticks, a three-dimensional life simulation project, offers various genotypes and fitness 
functions to co-evolve morphology and control of virtual stick creatures [14]. Hornby and 
Pollack compared direct and generative representations for body-brain co-evolution and 
found that the latter ones achieve better performance [15]. Using L-systems as generative 
encoding, they evolved neural controlled robots that are more complex and use more parts 
than those in previous work. Bongard and Pfeifers creatures can be situated on the PO plane 
[16]. They evolve gene expression rules and simulate an ontogenetic process based on suc-



cessive divisions of body segments, involving both, the morphology and the neural control-
ler. 

The research cited above has in common, that the evolved robots or creatures are 
purely virtual. The mainly stick-like body-segments are themselves subject to evolution and 
do not correspond to actual hardware modules. In GOLEM, evolved stick creatures are 
brought to life with 3D printing technology [17]. The disadvantage of this approach is that 
the body segments need to be produced especially for every robot.  

The philosophy of Adam is to use only one predefined module type, ideally modeling 
existing hardware. While the projects mentioned above also evolve the morphology of the 
body segments, we only evolve the configuration of the homogenous modular robot. With 
regard to the evolutionary algorithm this means a trade-off between a smaller phenotype 
space and more speed. Similar work has been done with LEGO robots [e.g. 18], but since 
many different module types were used, these robots are not well suited to implement key 
features of modular robots like self-reconfiguration or self-repair.  

A distributed controller programming [19] and an evolutionary motion synthesis [20] 
method were proposed for the modular self-reconfigurable robot M-TRAN [3]. The simula-
tion and the type of modules used are very similar to our work but while the first method 
doesn’t apply evolutionary algorithms, the latter one only evolves the control for specific 
initial configurations that are not subject to evolution.  

Symbiotic co-evolution between populations of initial configurations and controllers 
was realized with a simulation of ATRON [10]. However, due to the high complexity of the 
controllers of this lattice modular robot, only reaching and not locomoting behavior could 
be observed. 

We conclude that, to our knowledge, Adam is the first project that co-evolves con-
figuration and control of homogenous chain type modular robots, using modules with flat 
connection surfaces rather than stick-like body segments. 

Interesting research situated on the ontogenetic and epigenetic axis encourages us for 
our future work. Projects involving self-replicating, self-assembling and self-repairing 
modular robots can be found in [21, 22, 23]. An example of the combination of evolution 
and learning to achieve complex and adaptive behaviors is [24]. 
 
 
3. Adam 
  
As we mentioned in the previous chapter, the main difference between Adam and other 
projects that co-evolve modular robots is that we only evolve the configuration and not the 
morphology of the modules. Even though we do not have currently a hardware prototype, 
Adam robots should theoretically be buildable with corresponding modules. Adam uses 
hinge modules, consisting of two cubes, fixed together with a hinge joint. Other elements 
can be attached at each one of the ten free faces. The hinge can be rigid, elastic or powered 
by a motor.  

Similar module types have successfully been built and tested by leading modular ro-
botics research projects [3, 4, 5]. These modules, unlike the stick-like body segments used 
in co-evolutionary simulations cited in the previous chapter, contain a joint, other modules 
being attached at flat connection surfaces. On the other hand, the stick-like modules used in 
previous research are usually rigid, joints being formed through connections with other 
segments. This approach does not correspond with the hardware built so far in modular 
robotics. 

The simulation environment is implemented with Russell Smiths Open Dynamics 
Engine (ODE [29]). It accurately models rigid body dynamics (kinematics, gravity, friction, 
collisions etc) in a world that consists for the moment of an infinite plane. 



3.1 Control 
 

Currently, Adam robots are controlled in a simple manner, with harmonic oscillators for 
generating trajectories, and PD controllers for producing the torques to follow these trajec-
tories. For a given element i, the desired angle θi trajectory is defined by the amplitude Ai, 
frequency fi and phase ϕi of a sinus oscillation (Eq 1). The PD controller applies a torque Ti 
to get a rotation of the hinge that depends on the desired angle θi, the actual angle θa and 
the angular rate ωa (the derivative of the actual angle, Eq 2). α and β are positive constants 
that correspond to the gains of the PD controller. 
 

θi = Ai  sin(2π fi t + ϕi)  (1) 
Ti = α(θi - θa) - βωa   (2) 

 
In this article, controllers will be defined by using a genetic algorithm to set the parameters 
Ai, fi and ϕi for each element in a robot. This approach allows us to quickly explore differ-
ent locomotion strategies in a relatively small search space. In the future, more complex 
nonlinear oscillators with coupling terms from proprioceptive sensors (e.g. joint-angle sen-
sors, and torque sensors) will be used in order to develop controllers that can better deal 
with external perturbations. 
 
 
3.2 The Adam Script 
 
The user can define Adam robots with a simple script. Furthermore, this allows evolved 
robots to be saved in plain text format. They can then be inspected and edited by the user 
with the text editor of his choice.  

The hinge module has ten faces where it is possible to attach other segments. These 
positions are defined within the local coordinate system of the hinge and are labeled as P0 
to P9. To attach a new module Hb to a hinge Ha that is already part of the unfinished struc-
ture, three parameters need to be specified. 1) The face of Ha where Hb should be attached; 
2) The face of Hb that should be used; 3) The orientation that Hb must be fixed with, be-
cause there are four different ways to fix the two hinges with two specific faces. Examples 
of some elementary script expressions are illustrated in figure 1.  

The Adam script is similar to Framsticks recur genotype [6] using bracketing to in-
terpret the string as a tree, but it is much easier to read because it’s designed for the user, 
and not for the genetic algorithm. The main differences are, that we separate the structure 
part (defining the configuration) from the one defining the control and that it is possible to 
declare body parts that can then be attached several times at various positions. Refer to fig-
ure 2 for an example of a complete script. A more detailed description of the whole script 
can be found on the Adam web page at: http://birg.epfl.ch/page32031.html  

 
 

       

 Ha Hb Ha P5 (Hb) Ha P1 Hb Ha E Hb 
 
Figure 1: Some elementary script expressions. Hb has been assigned an initial angle of 30 degrees. 



3.3 Co-evolution of Configuration and Control 
 
The genetic encoding structures the phenotype space by defining which phenotypes are 
close genetically, i.e. separated by only few mutations. The fitness function induces another 
topology with respect to fitness values. Good encodings have a higher correlation between 
these two topologies [14, 25]. The Adam genotype is a tree, each node representing a mod-
ule. Refer to figure 2. Obviously, such direct encodings strongly correlate the previously 
mentioned topologies because the genotype and the phenotype are closely related (actually, 
the robots genotype is equal with its internal representation in the simulation and evolution 
environment). Unfortunately, modular robots that contain cycles cannot be represented cur-
rently. Our tree-based genotype is very close to Sims generative encoding [12], with the 
difference that it is not yet possible to reuse components recursively in Adam. 

Genetic operators include mutation and crossover. The mutation operator acts on pa-
rameters as well as on the structure of the robot. If mutation occurs on a numerical parame-
ter, a random value from a normal distribution is added. The position and orientation that a 
module is fixed with are also subject to mutation. Furthermore, there’s the chance of delet-
ing limbs or attaching new, randomly initialized modules to free faces of the robot. Thanks 
to the tree structure of the genotype, the implementation of crossover is straightforward. A 
child is formed by copying the mother and replacing one of its sub trees with a sub tree of 
the father’s. Obviously, crossover and mutation can generate invalid robots with intersect-
ing modules. If this happens, the concerned robot is deleted and replaced with a new, ran-
domly initialized individual. This is done in the hope of increasing diversity in the gene 
pool. At the beginning of the GA the population is initialized with randomly created robots. 
For selection and replacement we propose a rank-proportional roulette wheel method. 
When choosing a parent to produce offspring, the probability ps(i) for an individual i to be 
selected is inverse proportional to its rank r(i) (the best robot has rank 0, Eq 1). An individ-
ual j has a probability of pr(i) to be replaced by the offspring (Eq 2). N is the population 
size. 

 
ps(i) = (N - r(i)) / ∑(r(i) + 1)   (1) 
pr(i) = r(i) / ∑r(i)     (2) 
 

Locomotion has been evolved with a very simple but effective fitness function. The fitness 
of a robot is defined as its distance from the starting position after a constant time of simu-
lation. Therefore, the best strategy is to move in a straight line. Experience has shown that 
the time of simulation is crucial to achieve good results. If it is too long, the GA gets very 
slow but if it is too short, we only reward a fast jump at the beginning of simulation. 
 
   
STRUCTURE 
head 
P6 (W arm0 W arm1) 
P8 (W arm2 W arm3) 
tail0 tail1 
 
PARAMETERS 
arm0.initAngle(30) 
arm2.initAngle(30) 

 

Figure 2: The script (on the left) and the corresponding genotype (in the middle).  
Modules are represented by nodes that encapsulate the parameters.  

The built structure in the simulation is on the right. 



4. Results 
 

To measure the quality of evolved individuals, we compared them with a caterpillar and a 
quadruped robot (figure 3) that we created with the script. To our surprise, evolved robots 
were not only fitter but also much more creative than our designs. For example, the sideway 
roller of figure 5 virtually tangles itself up into a knot and produces a fast rolling motion by 
stretching itself. The two-legged walker has short legs and limbs on the side that keep him 
from falling over. Other strategies included for example jumping, ratcheting and caterpillar 
like locomotion. 

Simple but efficient solutions, like the first example of figure 4 were often found 
within the first 10 iterations of the GA. In general, highly specialized robots emerged after 
less than 300 iterations, but they proved to be very difficult to improve on. For example, the 
sideway roller of figure 5 was found already at iteration 282 but no fitter individual could 
be evolved afterwards. 

 
 

5. Conclusions and Future Work 
 

The Adam project has only just started but it has already proved to be a promising envi-
ronment to experiment with modular robots. To the best of our knowledge, Adam is the 
first project that explicitly co-evolves configuration of homogenous chain-type robots.  
 
 

       
 

Figure 3: A simple quadruped robot that was built with the script. Modules with a rigid joint  
are represented in black, powered hinges in grey and elastic ones in white. 

 
 

       

       
 Simple jumper Jumping worm Sideway roller Two-legged walker 
 

Figure 4: Locomotion strategies of evolved robots. Modules with a rigid joint are black  
and powered hinges are grey. Movies are available on the Adam web page at: 

http://birg.epfl.ch/page32031.html 

http://birg.epfl.ch/page32031.html


By using modules that contain a joint and have flat connection surfaces rather than stick-
like body segments that are connected through the joints, we take a step away from artifi-
cial life and one towards modular robotics. Our results so far indicate that modular chain 
robots are well suited for co-evolution of configuration and control.  The main advantage of 
using only one pre-defined module type is, that evolved robots could easily be built with 
corresponding hardware modules.  

The Adam script has proved to be a useful tool to build modular robots and to inspect 
evolved individuals. Scripts are easy to write and analyze. The oscillator controller is a per-
fect choice within this context because there are few parameters and they are easy to inter-
pret. 

In chapter 2 we presented an overview of research involving co-evolution of mor-
phology and control. We confirm the results and observations of these projects. By co-
evolving morphology and control, efficient and creative solutions are discovered. Evolved 
creatures display a wide range of locomotion strategies, often similar to those of living or-
ganisms in nature. Furthermore, successful individuals tend to be symmetric and redundant 
(e.g. sideway roller of figure 4), even though this is not directly promoted in the code. 
While symmetry obviously facilitates moving in a straight line, redundancy might reduce 
the number of fatal mutations. 

However, the Adam project has only just started and its limitations are clearly appar-
ent. Self-reconfiguration is not yet supported and the tree-based genotype does not allow 
the robots to have cycles and doesn’t support modularity. Inspired by [15], we are currently 
working on a generative genotype using L-systems to evolve more complex and structured 
robots. 

We also intend to use Adam to explore issues in locomotion control, in particular by 
taking inspiration of the concept of central pattern generators (CPGs), i.e. neural networks 
capable of producing complex patterns of oscillatory outputs without oscillatory inputs, 
found in vertebrate animals. As illustrated in [27, 28], CPGs can be designed as distributed 
systems of coupled neural or nonlinear oscillators, and produce very robust locomotion 
with speed, direction, and even types of gaits that can quickly be modified depending on 
the environmental conditions. Designing a good CPG-based controller amounts to defining 
the right couplings between the different oscillators and between the oscillators and the 
mechanical elements (e.g. in order to incorporate sensory feedback). Using the POE 
framework, we will explore how these couplings can be optimized in a self-organizing 
manner.  
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