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Abstract

This paper investigates the evolutionary design
of efficient connectionist swimming controllers for
a simulated lamprey. Efficiency is defined as the
ratio of forward swimming speed to backward me-
chanical wave speed.

Using the lamprey model proposed by Eke-
berg (1993) and extending the work of Ijspeert
et al. (1999) on evolving lamprey swimming cen-
tral pattern generators (CPGs) through genetic
algorithms (GAs), we investigate the space of
possible neural configurations which satisfies the
property of high swimming efficiency. Techniques
are devised to measure efficiency at various swim-
ming speeds. The measurements are incorporated
into the fitness function of Ijspeert’s original GA
and efficient controllers are evolved. Interestingly,
the best evolved controller not only is capable of
swimming in a similar manner to the real lam-
prey, but also with the same efficiency (about
0.8). Moreover, it can exhibit a wide range of
controllable speeds and efficiencies.

1. Introduction

In recent years, there have been advances in under-
standing animal motor control due to better physio-
logical measurement techniques, higher density micro-
electrodes and faster computers for simulations of the
neural mechanisms which underlie behaviors. However,
due to the complexity of the nervous systems, we are still
far from being able to understand completely the neu-
ral control of higher vertebrates such as humans. The
lamprey has been chosen for study by several neurobi-
ologists because it is relatively easy to analyze: firstly,
because while it has a brainstem and spinal cord with
all the basic vertebrate features, the number of neurons
in each category is an order of magnitude fewer than in
other vertebrates, and secondly because its swimming
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gait is simple. Hence, findings on this prototype verte-
brate can provide a better understanding of vertebrate
motor control.

According to Sir James Lighthill, swimming speed and
efficiency are the two qualities that fish must maintain
in order to survive (Lighthill, 1970). If the swimming
efficiency is low, the fish can quickly use up energy de-
rived from food before they can find their next meal. The
ability to maintain high swimming efficiency is especially
important for lampreys because they do not eat during
the long journey up-river from the sea to the breeding
grounds (Williams, 1986). Blake (1983) suggested that
efficiency is a good criteria to use when comparing the
swimming performance of different fish. Its increase with
speed is important to the evolutionary ecology of fish.
Swimming efficiently is also important from a robotics
point of view. An inefficient robotic lamprey can use
up its battery power and sink in the ocean easily. Note
that in the robotic implementation, it is important to
maintain efficiency across a wide range of speeds.

Currently, there are several definitions of swimming
efficiency (Sfakiotakis et al., 1999). However, the ratio
of forward swimming speed (U) to backward mechani-
cal wave speed (V) has been commonly used (Williams,
1986; Sfakiotakis et al., 1999). Since biological data is
available for comparison, we are using the same defini-
tion to evolve controllers in this paper.

Over the past 15 years, neurobiologists have achieved
a better understanding of the lamprey locomotive net-
works. However, nobody yet fully understands how the
segmental oscillators inside the lamprey CPG are cou-
pled. We believe it is a good idea to consider a few
important properties related to the survival of the lam-
prey (such as swimming efficiency, robustness in speed
against changes in body scales and noise in neural con-
nections, etc.) and then use them as a guide towards the
discovery of features in its neural organization that are
related to such properties. Given that high swimming
efficiency is important to both the real and the artificial
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lamprey, in this paper we extend the idea from Ijspeert’s
(1998) work on evolutions of lamprey swimming CPGs
to evolve efficient swimming controllers for the model
lamprey.

Experimental results are encouraging. Most of the
evolved controllers are able to swim like the real fish and
with high efficiency. Their speed vs. efficiency curves
show that they can not only achieve a wide range of
speeds but also be able to maintain a fairly constant
efficiency (at least for speeds over 0.3 [m/s]).

Most importantly, the best evolved controller has
achieved an efficiency of about 0.8, which is close to
the one achieved by the real lamprey (Williams, 1986).
Thus, through the use of GA, we have found interseg-
mental couplings which allow the model lamprey to swim
at about the same efficiency as the real one. This result
not only could provide inspiration to biologists to gain
a better understanding of the intersegmental couplings
of the real lamprey but also could inspire the develop-
ment of more efficient swimming controllers for lamprey
in both computer simulations and robotic hardware.

2. Background

This section briefly describes the Ekeberg neural and
mechanical models. A more detailed description can be
found in (Ekeberg, 1993; Or, 2002).

2.1 Neural model

Based on physiological experiments, Ekeberg (1993)
hand-crafted a connectionist model for the lamprey
swimming CPG. The network is made of 100 copies of
interconnected segmental oscillators (Figure 1). Within
each segmental oscillator, there are 8 neurons each of
which is modeled using a leaky integrator with a satu-
rating transfer function. The output uw (€ [0,1]) is the
mean firing frequency of the population the unit neu-
ron represents. It is calculated using the following set of
formulas:

€.+ = i( Z uiw; — &) (1)
™ ew,

£ = i( > wiwi — o) (2)
™ v

= Zu-9) 3)

u = { (1] - exp{(@ - €+)F} & - E'Z 2 8;(4)

where w; represents the synaptic weights and ¥, and
¥ _ represent the groups of pre-synaptic excitatory and
inhibitory neurons respectively. &, and &_ are the de-
layed ‘reactions’ to excitatory and inhibitory inputs and
¥ represents the frequency adaptation observed in real

neurons. The values of the neural timing (rp, 74) and
gain/threshold (O, T, ) parameters and those for the
connection weights are set up in such a way as that the
simulation results from the model agree with physiolog-
ical observations. For details of the neuron parameters,
refer to (Ekeberg, 1993).

As the details of the intersegmental connections of the
real lamprey CPG are not yet known, Ekeberg simplified
the controller as follows. Except for the CIN neurons
which have longer projections in the caudal direction,
each neuron has symmetrical connections extending both
rostrally and caudally. Since the neurons at both ends
of the CPG receive fewer neural connections, synaptic
weights are adjusted to account for this by dividing them
by the number of segments a neuron receives input from.
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Figure 1: Configuration of the biological swimming con-
troller. The controller is composed of 100 interconnected seg-
mental oscillators (only four segments are shown here). Each
segment consists of eight neurons of four types: motoneu-
rons (MN), excitatory interneurons (EIN), lateral inhibitory
interneurons (LIN) and contralateral inhibitory interneurons
(CIN). A neuron unit represents a population of functionally
similar neurons in the real lamprey. Each of them receives
excitations from the lamprey brainstem. Connections with a
fork ending represent excitatory connections while those with
a dot ending represent inhibitory connections. In addition to
input signals from the brainstem (not shown here), the con-
troller receives feedback from the stretch sensitive edge cells
(EC). Note that the EC cells are not considered in this paper.

The complete swimming CPG functions as follows:
Global excitation from the brainstem stimulates all neu-
rons in the CPG; sufficient stimulation results in oscil-
lations in each individual segment at a frequency that
depends on the strength of this global excitation signal.
Extra excitation is supplied from the brainstem to the
five most rostral segments of the CPG. The effect of this,
interacting with intersegmental coupling, is to induce a
roughly equal relative phase lag between successive seg-



ments in the CPG, with the result that caudally traveling
waves of neural activity appear. The global excitation
controls the amplitude of the motoneurons as well as the
frequency of oscillation of the CPG. The extra excitation
alters the intersegmental phase lag largely independently
from the global excitation.

2.2 Mechanical model

Ekeberg (1993) further proposed a 2D mechanical lam-
prey model to study how the muscular activity induced
by the model CPG affects swimming. The model lam-
prey is made to approximate the size and shape of the
real one. It consists of 10 rigid body links with nine
joints of one degree of freedom (Figure 2). Each link is
assumed to be a cylinder with an elliptical cross-section.
The link is represented by its center of mass coordinate
(z:,y:) as well as the angle () between it and the x-axis.

On each side of the body, muscles connect each link
to its immediate neighbors. The muscles are modeled
as a combination of springs and dampers. The outputs
from the motoneurons control the spring constants of
the corresponding muscles. As the neural wave travels
along the body from head to tail, the successive contrac-
tion of muscles creates a mechanical wave. This in turn
generates inertial forces from the surrounding water that
propel the lamprey forward.

Joints

Rigid links

Figure 2: The mechanical lamprey model.

Each mechanical link has an elliptical cross section of
constant height (30 [mm]) and variable width. Its length
is 30 [mm]. The mass and moment of inertia of each
link are calculated by assuming that the density of the
lamprey is the same as that of water (Table 1).

link | w; [mm] m; [g] I; [g mm?] X1 [Ns2/m?] A [Ns2/m?2]
1 20.0 12.1 1414 0.45 0.3
2 20.0 14.1 1414 0.45 0.2
3 20.0 14.1 1414 0.45 0.1
4 20.0 14.1 1414 0.45 0.0
5 17.2 12.2 1137 0.45 0.0
6 15.0 10.6 944 0.45 0.0
7 11.7 8.3 691 0.45 0.0
8 8.3 5.9 465 0.45 0.0
9 5.0 3.5 271 0.45 0.0
10 1.7 1.2 20 0.45 0.0

Table 1: Parameters for the mechanical simulation. w;, m;
and I; are the width, mass and inertia of link i respectively.
A1 and A are the A factors used to calculate the water forces.

3. Methods
3.1 Genetic Algorithms

To evolve intersegmental couplings of 100 copies of
any chosen segmental oscillator, the same real number
GA with mutation and crossover operators described in
Tjspeert et al. (1999) is used here. Two sets of experi-
ments are conducted. The first set is based on evolving
controllers with big maximum achievable efficiency while
the second set is on evolving controllers with big mini-
mum efficiency (hereby referred as the bigmax and big-
min approach respectively). The reason for conducting
two sets of experiments is to investigate which approach
produces better results (i.e. more controllers swimming
at higher efficiency). In each set of experiments, the fol-
lowing four prototype controllers are used to seed the
otherwise random initial populations of each run.

1. The Biological Controller, hand-crafted by Ekeberg
(1993) based on physiological data.

2. Controller 2, evolved by Ijspeert et al. (1999) us-
ing Ekeberg’s segmental oscillator and intersegmental
couplings evolved by GA.

3. Controller 3, evolved by (Ijspeert et al., 1999), with
both intra- and intersegmental connections evolved
by GA.

4. Hybrid Robust Controller, which consists of the hy-
brid segmental oscillator! with the best evolved in-
tersegmental couplings, for that oscillator, from (Or,
2002).

To test whether seeding the initial population, with its
potential reduction of diversity, was necessary, we also
ran:

5. Hybrid Random, in which the initial population was
made up of individuals, using the Hybrid Segmen-
tal Oscillator, but with random intersegmental cou-
plings, i.e. as in case 4 above but without the pre-
evolved seed controller.

For each prototype controller, six evolutions (runs) are
performed. This makes a total of 30 runs for each set
of experiments. Note that the initial population of each
run (for cases 1 .. 4) contains a prototype controller
together with 39 other randomly generated individuals
while for case 5 all 40 are randomly generated.

1In Or (2002), we included two segmental oscillators (one which
can exhibit a large range of amplitude and the other which can os-
cillate at a large range of frequency) along with other randomly
generated individuals in the initial population to evolve the hybrid
of these two controllers, which we call the Hybrid Segmental Oscil-
lator. Its motoneuron outputs have a larger minimum amplitude
and a larger range of oscillation frequency than the motoneuron
outputs from the rest of the evolved oscillators. The best com-
plete controller obtained by evolving intersegmental couplings for
this segmental oscillator is called the Hybrid Robust Controller.



3.2 Encoding

A chromosome is used to encode the intersegmental
couplings among any given segmental oscillator and its
neighbors. The couplings are extensions from a neuron in
one segment to other post-synaptic neurons in the neigh-
boring segments. For each neuron within a segment, the
number of extensions in either the rostral or caudal di-
rection is an integer value between 0 and 12. The reason
for choosing this range is that it includes the maximum
number of extensions (10) in the biological model. The
extension is represented by a real-valued gene with range
[0, 1]. The gene value is linearly mapped to [0, 12] and
rounded to give the extension. Due to left-right symme-
try, a chromosome of length 64 can be used to encode
the intersegmental connections of the entire CPG.

3.8 Fitness calculation

We defined the fitness function which evolves efficient
swimming controllers as a product of five factors so that
they can be optimized at the same time. Each fitness fac-
tor varies linearly between 0.05 and 1.0 when the corre-
sponding variable varies between the “bad” and “good”
boundary. The five factors reward solutions with the
abilities to:

1. generate stable and regular oscillations in the 100
segments of the CPG (i.e. min_fit_oscil > 0.45),

2. change the wavelength of undulation by changing the
global excitation,

3. change the frequency of oscillation by changing the
extra excitation

4. modulate the swimming speed by varying either the
frequency of oscillation or the wavelength,

5. swim with high efficiency.

Note that the first two factors are exactly as the ones
defined in (Ijspeert, 1998). The third and fourth fac-
tors are slightly modified to adapt for the experiments
described in this paper.

An evaluation consists of neuromechanical simulations
with different control inputs in order to determine how
different key characteristics (such as frequency, speed
and efficiency, etc.) vary. Note that the difference be-
tween experiments one and two is that, in the latter case,
the fitness function is modified to search for the mini-
mum non-zero efficiency value instead of the maximum
efficiency.

3.4 Efficiency calculation

The efficiency and mechanical wave speed are defined as
follows:

=1 (5)
A
V=75 (6)

where U, V, X and T are the swimming speed [m/s],
backward mechanical wave speed [m/s], mechanical
wavelength [m] and the mechanical period [s] respec-
tively. The forward swimming speed is calculated by
fitting a circular arc to the positions and directions of
the model lamprey head at two time instants which have
the same relative phase in the swimming cycle.

Since both the neural and mechanical simulations are
not stable at the beginning, the lamprey can end up
swimming straight at any angle. The first step in com-
puting the mechanical wave parameters is to rotate the
original coordinate system so that the fish is swimming
parallel to the x-axis. Following the transformation, we
calculated the mechanical periods of body links 2 to 5.
(The mechanical period of each body link can be calcu-
lated by using the difference in time instances at which
two consecutive wave crests pass through the same link.)
If the periods of three or more of the mechanical links
are defined, the mechanical wavelength can be calculated
using the method described by Videler (1993). Note that
due to strange head and tail movements caused by the
reduction in neural connections at the ends of the swim-
ming CPG, the mechanical period of the second link, T3,
is used in Equation 6 to calculate the mechanical wave
speed. Equation 5 can then be used to compute the
swimming efficiency.

4. Results

We monitored the progress of the evolution weekly.
Some of the most fit individuals from these evolutions
were tested. When the fitness of these individuals
stopped increasing significantly, we stopped the evolu-
tions (after 2 months). The best individual of each run
is tested over a range of global and extra excitations
(under neuromechanical simulations) to determine the
ranges of amplitude, frequency, phase lag, speed and ef-
ficiency which it can achieve. The corresponding surfaces
are plotted for comparison.

Due to space limitations, the results for only 20 of the
60 evolved controllers are presented here. The criteria
for choosing these controllers is a balance between high
swimming efficiency and high fitness (recall that the fit-
ness function has more factors than efficiency). Based on
these criteria, two controllers from each prototype group
are chosen for comparison. Since there are five proto-
types and two sets of experiments, this makes a total of
20 controllers.



The results for the two set of experiments are pre-
sented in the following subsections. For details of the
neural configuration and performance surfaces of each
controller, refer to (Or, 2002).

4.1 Results of experiment 1: On evolving con-
trollers with big mazimum efficiency

The results for the 10 selected controllers based on the
bigmax approach are summarized in Table 2.

The table indicates that except for the run3 controller
and those evolved with the hybrid segmental oscillator
as the prototype (the bottom four controllers), the rest
of the evolved controllers can achieve a higher maximum
efficiency than the corresponding prototypes. Among
the 10 evolved controllers, the run5 controller has the
highest efficiency value of 0.86.

4.2 Results of experiment 2: On evolving con-
trollers with big minimum efficiency

The results for the 10 selected controllers based on the
bigmin approach are summarized in Table 3. The ta-
ble indicates that except for run7, run9 and runlO con-
trollers (again all evolved with the hybrid segmental os-
cillator as the prototype), the rest of the evolved con-
trollers are more efficient than their corresponding pro-
totypes. Among the 10 evolved controllers, the run8
controller has the highest efficiency value of 1.032!

5. Discussion of the methods

Rather than starting with random initial populations, we
included a prototype controller in each initial population
to guide the GAs to search for regions of possible solu-
tions (controllers that can at least swim) in the search
space. Although this approach can reduce the amount
of time needed to evolve efficient controllers, there is
the possibility that all the evolved controllers (under the
same prototype) end up similar to each other. Fortu-
nately, this did not pose a serious problem here. Most
of the evolved controllers (even evolved with the same
prototype) have different neural configurations and per-
formance surfaces. Thus, adding the prototypes helped
to accelerate the generation of interesting swimming con-
trollers without significantly biasing the diversity of the
evolved controllers. The biological controller, controller
2 and controller 3 prototypes all have fitness of zero un-
der the new fitness function. As a result, they could
not dominate the entire population. As for the hybrid
robust prototype controller, it has a fitness of 0.11 and
0.06 in experiments one and two respectively, which is

2Efficiency greater than one is impossible. This value is caused
by the breakdown of the wavelength calculation algorithm. Thus,
this value is later considered to be invalid (refer to Section 5. for
details).

relatively low. The mutation and crossover operators of
GAs could easily move the search to neighboring regions.
Evolutions based on the hybrid random prototype were
included just in case this approach failed. In general,
if there were plenty of time and computing resources, it
might be better to have an initial population with all
randomly made individuals. This allows more different
types of controllers to be evolved.

In experiment one, we evolved controllers based on
big maximum efficiency. The reason for this is that we
wanted to obtain controllers which are capable of swim-
ming at high efficiency. Since we only considered posi-
tive efficiency to be valid, evolving controllers under this
approach implicitly means evolving controllers with a
larger efficiency range.

In experiment two, we evolved controllers based on
big minimum efficiency. This approach implicitly forces
all the measured efficiencies of the controller to be good
because the GA is trying to pull up the worst efficiency
each controller can achieve. Hence, it can be harder for
the evolution system. However, the evolved controllers in
this experiment should produce better results than those
in experiment 1, and a comparison of the efficiency range
achieved by the controllers in Table 2 and Table 3 shows
that this is indeed correct. (Also, refer to Table 4 in the
discussion which follows.)

To determine pulse regularity, the condition
min_fit_oscil > 0.45 is used. The threshold value
of 0.45 was derived in Ijspeert et al. (1999) based on
experience. Generally speaking, this value is good
enough to distinguish neural waves which oscillate
regularly from those which do not. It seemed to be
suitable for the implementation here at the beginning.
However, at the end of the evolutions, we realized that
the GA had found a way to break this condition to
pull up the efficiency (see below). Fortunately, the
threshold problem appears only in two of the 60 evolved
controllers: rund (experiment 1) and run8 (experiment
2).

Finally, the methods used to calculate the mechan-
ical wavelength and efficiency have several limitations.
According to Videler (1993), the measurement of kine-
matic parameters such as mechanical wavelength can be
achieved accurately only as long as the mechanical wave
crests propagating along the body are well pronounced
and the amplitude is large even near the head. This
should not pose a problem because these characteristics
fit eel-like swimmers such as the lamprey. However, the
two controllers with efficiency over 0.8 sometimes swim
with a stiff body (due to pulse irregularity) in approxi-
mately the first half of the body. This is similar to the
sub-carangiform swimming mode described in (Sfakio-
takis et al., 1999). It looks like the main problem here
is that the wavelength is not constant along the body
(i.e. infinite wavelength in the rigid part of the body),



Fitness | Amplitude Frequency Phase lag Speed Efficiency
range range in [Hz] | range in [%] | range in [m/s] range
biological 0.00 0.0, 0.8 1.6, 5.5 -0.1, 1.7 -0.09, 0.45 0.05, 0.58
runl 0.11 02,08 16, 7.2 29,26 20.09, 0.51 0.05, 0.61
run2 0.10 0.0,0.8 13,57 1.4, 32 20.03, 0.53 0.05, 0.64
controller 2 0.00 0.0, 0.8 1.7, 6.0 3.1, 32 0.09, 0.49 0.02, 0.60
run3 0.13 0.0, 0.8 1.4,7.5 -2.6, 2.8 -0.09, 0.52 0.05, 0.59
rund 0.11 0.0,08 16, 5.7 232,34 20.03, 0.50 0.01, 0.63
controller 3 0.00 0.0, 0.6 13,55 0.2, 1.0 0.08, 0.43 0.06, 0.58
rund 0.10 0.0, 0.6 1.4,6.4 -2.3, 8.6 -0.07, 0.49 0.02, 0.86
run6 0.06 0.0, 0.6 15,59 0.0,1.8 0.08, 0.44 0.03, 0.64
[hybrid robust || 0.1 | [0.0,0.8] | [1.8,7.1] | [0.0,3.1] | [-0.02,0.49] [ [0.08,0.69] |

Tun? 0.15 0.0, 0.8 14, 7.1 [0.0, 2.8] 0.03, 0.48 0.18, 0.68
rung 0.11 0.0,08 12,71 [0.0, 3.3] 0.02, 0.48 0.30, 0.61
hybrid random
run9 0.05 0.0, 0.8 1.5,7.6 -1.3, 2.9 -0.05, 0.48 0.07, 0.65
runlQ 0.09 0.0, 0.7 1.5, 7.0 -0.4, 2.2 -0.02, 0.38 0.07, 0.62

Table 2: Summary of results for the evolved efficient controllers in experiment one. The table lists the performance of the

best individual from each evolution. The evolution is based on the bigmax approach. Note that the hybrid random prototype

generates irregular neural waves due to random couplings. As a result, all the parameters are undefined.

Fitness | Amplitude Frequency Phase lag Speed Efficiency
range range in [Hz] | range in [%] | range in [m/s] range
biological 0.00 0.0, 0.8 1.6, 5.5 [-0.1, 1.7] -0.09, 0.45 0.05, 0.58
rani 0.11 0.0,038 16,586 [0.0, 6.4] 20.05, 0.48 0.05, 0.68
run2 0.06 032,08 16,55 [0.7, 1.8] 0.16, 0.47 0.05, 0.68
controller 2 0.00 0.0, 0.8 1.7, 6.0 -3.1, 3.2 -0.09, 0.49 0.02, 0.60
run3 0.09 0.0, 0.8 1.6, 5.5 -0.3, 2.1 -0.15, 0.51 0.06, 0.76
rund 0.08 0.0,038 16,55 17,31 -0.03, 0.48 0.03, 0.70
controller 3 0.00 0.0, 0.6 1.3,5.5 0.2, 1.9 ~0.08, 0.43 0.06, 0.58
rund 0.06 0.1, 0.6 1.3,7.9 -3.1, 3.3 -0.05, 0.48 0.03, 0.59
runb6 0.06 0.0, 0.6 13,69 [0.0, 2.4] 0.08, 0.48 0.03, 0.58
[ hybrid robust || 0.06 | [0.0,0.8] | [1.8,7.1] | [0.0,3.1] [ [0.02,0.49] [ [0.08, 0.69] |

run? 0.09 0.0,038 1.2, 7.0 [0.1, 3.5] -0.02, 0.49 0.02, 0.61
run8 0.09 0.0, 0.8 1.5,7.1 [0.0, 3.6] -0.05, 0.46 0.12, 1.03
hybrid random
run9 0.10 0.0,038 1.3, 7.0 [1.1,5.3] 20.07, 0.46 0.23, 0.68
runi0 0.20 0.0, 0.7 2.0, 7.1 [0.0, 3.1] 20.02, 0.48 0.05, 0.63

Table 3: Summary of results for the evolved efficient controllers in experiment two. The table lists the performance of the

best individual from each evolution. The evolution is based on the bigmin approach. Note that the hybrid random prototype

generates irregular neural waves due to random couplings. As a result, all the parameters are undefined.

as it should be during anguiliform swimming. Under this
situation, the measurement algorithm breaks down, un-
derestimating the mechanical wavelength, and efficiency
over 1 was obtained.

6. Discussion of results

Using the fitness function presented in this paper, effi-
cient swimming controllers have been evolved success-
fully. Most of them are more efficient than their cor-
responding prototypes. The neural configurations of the
best individuals from the 20 evolutions are different even
with the presence of the same prototype in the initial
population. There is not much similarity in the way the
segments are coupled.

Generally speaking, controllers based on the bigmin

approach can achieve higher efficiency than those based
on the bigmax approach. (This is true even when all 60
evolutions are taken into consideration.) Table 4 shows
that all the evolved controllers have a maximum effi-
ciency > 0.58. Under the bigmax approach, three of
the controllers have efficiency > 0.65, the best of which
has efficiency above 0.7. When the bigmin approach is
used, six of the evolved controllers have efficiency > 0.65,
three of which have efficiency above 0.7. As the evolu-
tions under the bigmin approach can produce more good
solutions at the same time as those under the bigmax
approach (they all started and terminated at the same
time), it is better to evolve efficient controllers based on
the bigmin approach.



[ Approach [[ e>0.58 [ e>0.60 [ e>0.65 | e>0.7 |

Bigmax 10 9 3 1
Bigmin 10 8 6 3

Table 4: Comparison of performance of the bigmax and big-
min approaches in terms of the efficiencies of the controllers.
Since there is a cheating controller in each experiment (see
below), subtract one from each table element if they are con-
sidered to be invalid due to the breakdown of the mechanical
wavelength calculation algorithm.

6.1 Discusston of the evolved controllers

In order to understand how the evolved controllers
achieve high swimming efficiency, we have chosen the
best five? for further investigation. We looked at the
characteristics of their neural waves as well as the corre-
sponding swimming patterns. Based on these investiga-
tions, the controllers can be classified into two groups.
The first group includes the run5 and run8 controllers
(from bigmax and bigmin respectively) while the second
group involves the run2, run3 and run9 controllers (all
from bigmin). Controllers from the former group are
called the “cheating controllers” as some of their neural
waves contain irregular oscillations.

Most efficient (e = 1.03) controller
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Figure 3: Irregular neural waves generated by the bigmin
run8 controller. Solid lines represent outputs from the left
motoneurons while dashed lines represent the outputs from

the right motoneurons.

Figure 3 gives an example of the motoneuron out-
put from a controller (bigmin run8) of this group. Its
min_fit_oscil value is 0.452 (0.485 for the bigmax runb
controller). The irregular neural waves cause the me-

3Based on a balance between high efficiency and smooth per-
formance surfaces.

chanical wave calculation algorithm to break down and
return very short mechanical wavelengths (less than 0.1
m). This results in very high efficiency values. From
computer animations, we have found that a lamprey em-
bedded with either of these two controllers swims alter-
nately between sub-carangiform and anguilliform swim-
ming modes. As for the three controllers in the second
group, the outputs from the motoneurons are regular.
Figure 4 shows the neural wave of a typical controller
(run3) from this group.

Third most efficient (e = 0.76) controller
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Figure 4: Neural wave of the bigmin run3 controller. Solid
lines represent outputs from the left motoneurons while
dashed lines represent the outputs from the right motoneu-
rons

The average amplitude and oscillation frequency of
the three controllers from the second group are about
0.57 and 3.6 [Hz] respectively while the average swim-
ming speed is about 0.34 [m/s] (refer to Table 5). These
values are relatively low when compared with those of
controllers evolved without taking efficiency into consid-
eration, as reported in (Ijspeert, 1998)%.

As we require a controller which can both generate
regular control signals and swim with high efficiency, the
run3 controller evolved under the bigmin approach is
considered to be the most efficient one. The connection
weight matrix for this controller is shown in Table 6 while
its performance surfaces are shown in Figure 5. Note
that the maximum efficiency achieved by this controller
is 0.76, which is close to 0.8 achieved by the real lamprey
(Williams, 1986).

Although the efficiency is very high, the corresponding
maximum swimming speed is about 0.32 [m/s], which is
lower than typical maximum speeds of about 0.4 [m/s].

4The average frequency and maximum speed for the evolved
controllers reported in (Ijspeert, 1998; Ijspeert et al., 1999) are 8.2
[Hz] and 0.54 [m/s] respectively.



[ Rank [[ (global, extra) [ Amp [ Freq [Hz] | Phase lag [%] | Mec A [m] | Speed [m/s] | Wave speed [m/s] | Efficiency |

1 (1.0, 40%) 0.76 5.56 1.22 0.04 0.34 0.33 1.03
2 (0.6, 140%) 0.45 3.60 1.69 0.02 0.27 0.31 0.86
3 (0.4, 100%) 0.54 3.52 1.60 0.12 0.32 0.42 0.76
4 (0.5, 150%) 0.60 4.03 1.29 0.13 0.37 0.55 0.68
5 (0.6, 30%) 0.58 3.23 1.61 0.15 0.34 0.49 0.68
Sin 0.54 3.52 1.60 0.16 0.34 0.58 0.59

Table 5: Comparison of neural and mechanical parameters for the five controllers with largest maximum efficiency. The

controllers are run8, run5, run3, run2 and run9 (listed in order from top to bottom). Except for the run5 controller, these
are evolved based on the bigmin approach. The last line shows the performance of a sinusoidal controller with amplitude,
frequency and phase lag matching the rank 3 controller. See text for discussion.

MNI EINT TINT CINT CINT LINT EINr MNr__ BS
MNT - 1049 . T 2004 4] - 5.0
EINI - 0433 - - -2.073,5] - - - 20
LINI - 13.0 [4, 2] - - -10]11, 5] - - 5.0
CINI - 3.0[11,1] -1.0[4,7] - -201[5,7 - - - 70
CINr - I 2005,7 SO10[4,7  3.0([11,1] - 7.0
LINr - - - -1.0[11, 5] - S 13.0 [4, 2] - 50
EINr - - - =205, 5] - - 043,3 - 20
MNr - - - 2.0 [4, 4] - - 1.0 [4,9] - 5.0

Table 6: Connection weight matrix for the efficient swimming (bigmin run3) controller. Excitatory and inhibitory connections

are represented by positive and negative weights respectively. Left and right neurons are indicated by [ and r. BS stands for

brainstem. The extensions from a neuron to those in neighboring segments are given in brackets. The first number indicates

the number of extensions in the rostral direction while the second number indicates extensions in the caudal direction.

This means efficient energy utilization at the cost of
speed, as observed in the real lamprey (Williams, 1986).

6.2 Comparison of the best evolved controller
with a matched sinusoidal controller

A comparison of the best evolved controller with a
matched sinusoidal controller can provide justification
of using a neural controller evolved by GA, rather than
a simpler analytic controller, to control an artificial lam-
prey. Table 5 lists the neural parameters and swimming
performance of the five controllers with highest efficiency
and one matched sinusoidal controller. By matching, we
mean a sinusoidal controller whose amplitude, frequency
and phase lag are tuned to match the corresponding pa-
rameters for the controller under consideration (in this
case, the rank 3 one). The table shows that the rela-
tively high efficiency achieved by the first two controllers
is caused by the breakdown of the wavelength calculation
algorithm. (Based on experience, wavelength much less
than 0.1 m indicates that the motoneuron outputs are
irregular. This in turns corresponds to the breakdown of
the wavelength calculation algorithm which often return
a high efficiency value.) As the efficiency of these two
controllers is invalid, the sinusoidal controller is com-
pared with the run3 controller which is listed third (but
considered to be the best evolved controller) in the table.

The comparison shows that although the analytic sinu-
soidal controller is able to achieve a slightly higher speed
(0.34 [m/s] vs. 0.32 [m/s]), its efficiency is much lower

than the run3 controller (0.59 compared with 0.76). Fig-
ure 6 shows the joint drive generated by the run3 con-
troller with superimposed joint drive generated by the
matched sinusoidal controller.

While the sinusoidal controller and the neural con-
troller are matched in terms of amplitude, frequency and
phase lag, they are not matched in terms of pulse shape.
The pulse duration of the run3 controller is longer than
that of the sinusoidal controller. Since the swimming
speed is inversely proportional to burst duration (Grill-
ner and Kashin, 1976; Wallén and Willams, 1984) (later
demonstrated for the Ekeberg mechanical model — un-
published results), this agrees with the result that the
swimming speed of the run3 controller is lower than that
of the matched sinusoidal controller. Given that the si-
nusoidal controller can achieve a higher swimming speed,
its lower efficiency is caused by the larger wavelength of
the induced mechanical wave (0.16 [m] vs. 0.12 [m]).

The reason why a lamprey driven by the run3 con-
troller can have a shorter wavelength is due to the pulse
shape. A comparison of the signals that control the
first joint of the mechanical lamprey body shows that
symmetrical pulses are generated by the sinusoidal con-
troller. On the other hand, the pulses generated by the
run3 controller are not symmetrical (Figure 6). Recall
that the mechanical wavelength calculation algorithm re-
quires the time instances at which a mechanical wave
crest passes through different parts of the body. As the
pulse shape can affect the amount of bending at each
body link, the mechanical wavelengths of the two con-
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Figure 6: Averaged MNI activity (joint drive) from run3
controller with superimposed averaged MNI activity from a
matched sinusoidal controller. The excitation combination
used is (0.4, 100%). The amplitude is 0.54 while the fre-
quency is 3.52 Hz. Phase lag is 1.60%. Dashed lines repre-
sent outputs from the run3 controller. Solid lines represent
outputs from the matched sinusoidal controller

trollers can be different. It may be that the rather flat
and asymmetrical pulse shape of the run3 controller al-
lows it to achieve a shorter mechanical wavelength. Such
controller is relatively difficult to hand-craft analytically.
Note that another difference between the two controllers
is that the wavelength in the neural controller varies
slightly along the body, while it is perfectly constant
in the sinusoidal controller.

6.3 Inherited property: Robustness in swim-
ming efficiency against variations in speed

This section addresses the robustness in swimming ef-
ficiency against variation in speed. We want a robotic
lamprey which can both achieve a wide range of swim-
ming speed and be able to maintain high efficiency.

In order to determine the relationship between the
swimming speed and efficiency of the evolved controllers,
we have plotted the efficiency vs. speed curves of these
controllers for speed ranges from 0.05 to 0.6 [m/s] in
steps of 0.05 (refer to Figure 5 for the plot belonging
to the bigmin run3 controller. For the plots of other
controllers, refer to (Or, 2002).). Note that the scatter
plots are used as the same speed can correspond to more
than one efficiency value. For the different controllers,
the results suggest that the relation between speed and
efficiency can be classified into two types, namely:

e efficiency increases with speed



e efficiency increases with speed initially and then stays
fairly constant (for speed over 0.3 [m/s])

Such relationships are favorable to both the real and
robotic lampreys as mentioned in the introduction sec-
tion.

7. Conclusion

In this paper, we successfully used GA to evolve efficient
swimming controllers. Most of the evolved controllers
exhibit a wide range of controllable speeds and efficien-
cies. Moreover, some of them are robust in swimming
efficiency against speed. Under the same wave charac-
teristics (amplitude, frequency and phase lag), the best
evolved controller is able to drive the model lamprey
more efficiently than the corresponding analytic sinu-
soidal controller. The difference appears to be due to
subtle differences in the shapes of the signals between
the sinusoidal controllers and the neural controllers. The
evolved neural controllers can thus potentially be used to
efficiently control a robotic lamprey such as the one de-
veloped by (Mclsaac and Ostrowski, 1999). Based on ex-
perimental results, evolutions using the bigmin approach
produce more controllers with higher swimming effi-
ciency than those based on the bigmax approach. Most
importantly, the GA has found a controller which can
achieve the same efficiency as that observed in the real
lamprey. Future work involves comparing the evolved
neural organization with that of the real lamprey. The
results will tell how close they are to each other.

8. Acknowledgments

Jimmy Or is supported by the British ORS Awards,
the Canadian Natural Science and Engineering Research
Council and the Canadian Space Agency. Facilities for

this research were provided by the University of Edin-
burgh.

References

Blake, R. (1983). Fish locomotion. Cambridge University
Press.

Ekeberg, O. (1993). A combined neuronal and mechan-
ical model of fish swimming. Biological Cybernetics,
69:363-374.

Grillner, S. and Kashin, S. (1976). On the generation
and performance of swimming in fish. In Cohen, A. H.,
Rossignol, S., and Grillner, S., (Eds.), Neural control
of locomotion. Plenum Press.

Ijspeert, A. J. (1998). Design of artificial neural
oscillatory circuits for the control of lamprey- and
salamander-like locomotion using evolutionary algo-
rithms. PhD thesis, University of Edinburgh.

Ijspeert, A. J., Hallam, J., and Willshaw, D. (1999).
Evolving swimming controllers for a simulated lam-
prey with inspiration from neurobiology. Adaptive Be-
havior, 7(2):151-172.

Lighthill, M. J. (1970). Aquatic animal propulsion of
high hydrodynamic efficiency. Journal of Fluid Me-
chanics, 44:263-301.

MclIsaac, K. A. and Ostrowski, J. P. (1999). A geo-
metric approach to anguilliform locomotion: simula-
tion and experiments with an underwater eel robot.
In Proceedings of IEEE International Conference on
Robotics and Automation, volume 1, pages 2843-2848.
IEEE Press.

Or, J. (2002). An investigation of artificially-evolved ro-
bust and efficient connectionist swimming controllers

for a simulated lamprey. PhD thesis, University of
Edinburgh. Unpublished PhD thesis being examined.

Sfakiotakis, M., Lane, D., and Davis, J. (1999). Review
of fish swimming modes for aquatic locomotions. IEEE
Journal of Oceanic Engineering, 24(2):237-252.

Videler, J. J. (1993). Fish swimming. Chapman and
Hall.

Wallén, P. and Willams, T. (1984). Fictive locomotion in
the lamprey spinal cord in vitro compared with swim-
ming in the intact and spinal animal. Journal of Phys-
tology, 347:225-239.

Williams, T. L. (1986). Mechnical and neural patterns
underlying swimming by lateral undulations: Review
of studies on fish, amphibia and lamprey. In Grill-
ner, S., Stein, P. S. G., Stuart, D., Forssberg, H., and
Herman, R., (Eds.), Neurobiology of vertebrate loco-
motion, pages 141-155. Macmillan.



