Movement Imitation with Nonlinear Dynamical Systems
in Humanoid Robots

Auke Jan Ijspeert & Jun Nakanishi & Stefan Schaal
Computational Learning and Motor Control Laboratory
University of Southern California, Los Angeles, CA 90089-2520, USA
ATR Human Information Systems Laboratories, Kyoto 619-0288, Japan
Email: ijspeert@usc.edu, nakanisi@rubens.usc.edu, sschaal@usc.edu

Abstract

This article presents a new approach to movement plan-
ning, on-line trajectory modification, and imitation learn-
ing by representing movement plans based on a set of
nonlinear differential equations with well-defined attrac-
tor dynamics. In contrast to non-autonomous movement
representations like splines, the resultant movement plan
remains an autonomous set of nonlinear differential equa-
tions that forms a control policy (CP) which is robust to
strong external perturbations and that can be modified
on-line by additional perceptual variables. The attractor
landscape of the control policy can be learned rapidly with
a locally weighted regression technique with guaranteed
convergence of the learning algorithm and convergence to
the movement target. This property makes the system
suitable for movement imitation and also for classifying
demonstrated movement according to the parameters of
the learning system.

We evaluate the system with a humanoid robot simu-
lation and an actual humanoid robot. Experiments are
presented for the imitation of three types of movements:
reaching movements with one arm, drawing movements of
2-D patterns, and tennis swings. Our results demonstrate
(a) that multi-joint human movements can be encoded
successfully by the CPs, (b) that a learned movement
policy can readily be reused to produce robust trajecto-
ries towards different targets, (c¢) that a policy fitted for
one particular target provides a good predictor of human
reaching movements towards neighboring targets, and (d)
that the parameter space which encodes a policy is suit-
able for measuring to which extent two trajectories are
qualitatively similar.

1 Introduction

This article is a continuation to our quest for robust move-
ment encoding systems to be used with real and simulated
humanoid robots. In [1, 2], we identified five desirable
properties that such systems should present: 1) the ease
of representing and learning a desired trajectory, 2) com-
pactness of the representation, 3) robustness against per-
turbations and changes in a dynamic environment, 4) ease
of re-use for related tasks and easy modification for new
tasks, and 5) ease of categorization for movement recog-

= mtion.

Our approach to fullfil these properties is to encode de-
sired trajectories, or more precisely complete control poli-
cies (CPs), in terms of an adjustable pattern generator
built from simple nonlinear autonomous dynamical sys-
tems. The desired trajectory becomes encoded into the
attractor landscape of the dynamical system as a trajec-
tory from an initial state to an end state, in a way which
does not require time-indexing and which is robust against
perturbations. Locally weighted regression is used to learn
the trajectory in a single shot. In contrast to other ap-
proaches in the literature (see a review in [1]), the dynam-
ical systems encode desired trajectories, not motor com-
mands, such that an additional movement execution stage
by means of a standard tracking controller (e.g., inverse
dynamics controller in our work) is needed. This strategy,
however, does not prevent us from modifying the trajec-
tory plans on-line through external variables, as will be
demonstrated later.

We apply the CPs to a task involving the imitation of
human movements by a humanoid simulation and a hu-
manoid robot. This experiment is part of a project in
rehabilitation robotics —the Virtual Trainer project —
which aims at using humanoid rigid body simulations and
humanoid robots for supervising rehabilitation exercises
in stroke-patients. This article presents three experiments
demonstrating how trajectories recorded from human sub-
jects can be reproduced using the CPs. The purpose of
the experiments is three-fold. First, we quantify how well
these different trajectories can be fitted with our CPs. Sec-
ond, we estimate to which extent a CP, which is fitted to
a particular reaching movement, is a good predictor of
the movements performed by the human subject towards
neighboring targets. And third, we compare the parame-
ters of the dynamical system fitted to different trajectories
in order to evaluate how similar the trajectories are in pa-
rameter space. This last point aims at demonstrating that
the CPs are not only useful for encoding trajectories, but
also for classifying them.

2 Dynamical Systems As Control
Policies
For the purpose of learning how to imitate human-like

movement, we choose to represent movement in kinematic
coordinates, e.g., joint angles of a robot or Cartesian coor-
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Figure 1: Time evolution of the dynamical systems, with

N=25, a.=8 [1/s], au=8 [1/s], B.=2 [1/s], and B,=2 [1/s].
The ¢; are spread out between ¢1=0.0 and cny=0.99 such as to
be equally spaced in time. The same parameters will be used
throughout the article. In this particular example, g=1 and
the parameters w; were set by hand to arbitrary (positive and
negative) values.

dinates of an endeffector —indeed only kinematic variables
are observable in imitation learning. Thus, CPs represent
kinematic movement plans, i.e., a change of position as
a function of state, and we assume that an appropriate
controller exist to convert the kinematic policy into motor
commands. A control policy is defined by the following
(z,y) dynamics which specify the attractor landscape of
the policy for a trajectory y towards a goal g:

az(ﬁz(g - y) - Z)
Zij\il ‘I/iwiv
Zi]\il v

This is essentially a simple second-order system with the
exception that its velocity is modified by a nonlinear term
(the second term in equation 2) which depends on internal
states. These two internal states, (v, z) have the following
second-order linear dynamics

(1)
(2)

z

iz+

0 = ay(Bu(g =) —v) (3)
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The system is further determined by the positive con-
stants a,,, a, Oy, and 3., and by a set of N Gaussian ker-
nel functions ¥,

1.
\I/,L' = exp (—F(I - Ci)2)

where & = (x — x9)/(g9 — xp) and z¢ is the value of x at
the beginning of the trajectory. The value z is set each
time a new goal is fed into the system, and we assume that
g # %o, i.e. that the total displacement between the be-
ginning and the end of a movement is never exactly zero.
The attractor landscape of the policy can be adjusted by
learning the parameters w; using locally weighted regres-
sion [3], see Section 3. Note that this dynamical system
has a unique equilibrium point at (z,y,v,z) = (0,4,0, g).
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Figure 2: Time evolution of the dynamical systems under a
perturbation. The actual position 7 is frozen between 0.5 and
1.0s. For this example, apy = 20 and oy, = 200 are used in
(6) and (7) respectively.

The system is spatially invariant in the sense that a scaling
of the goal g does not affect the topology of the attractor
landscape. In other words, the position and velocity of a
movement will be scaled by a factor ¢, if a new goal cg is
given to the system. This property will be used for goal
modulation in the experiment presented in Section 4.2.

Figure 1 demonstrates an exemplary time evolution of
the equations. We identify the state y as the desired po-
sition that the policy outputs to the controller, and ¥ as
the desired velocity. The internal states (v,z) are used
as follows: z implements a timing signal that is used to
localize the Gaussians (5), and v is a scaling signal which
ensures that the non-linearity introduced by the Gaus-
sians in Eq. 2 remains transient (v starts and returns to
zero at the beginning and end of the discrete movement).
v therefore guarantees the unique point attractor of (z,y)
at (0,g). As is indicated by the reversal of movement di-
rection in Figure 1, the internal states and the Gaussians
allow generating much more complex policies than a pol-
icy that has no internal state. As will be demonstrated
later, the choice of representing a timing signal in form
of autonomous differential equations will allow us to be
robust towards external perturbations of the movement—
essentially, we can slow down, halt, or even reverse “time”
by means of coupling terms in the (v,z) dynamics (see
Section 2.2).

2.1 Stability

Stability can be analyzed separately for the (z,v) and
the (y,z) dynamics. It is clear that the (z,v) dynam-
ics is globally asymtotically stable with the choice of
positive constants. Formally, by following the input-to-
state stability analysis in [4], we can conservatively con-
clude that the equilibrium state of the entire system is
asymptotically stable. Intuitively, when ¢ — oo, we have
5= a.(B.(g—y)—2) and j = z since YN W /DY, 0,
is bounded and v — 0 as t — oo, Thus, it can be seen that
(z,y) — (0,9) as t — oo. We are currently analyzing the
domain of attraction.



2.2 Robustness against Perturbations
during Movement Execution

In the current form, the CP would create a desired move-
ment irrespective of the ability of the controller to track
the desired movement. When considering applications of
our approach to physical systems, e.g., robots and hu-
manoids, interactions with the environment may require
an on-line modification of the policy. As an example, we
show how a simple feedback coupling term can implement
a stop in the time evolution of the policy.

Let g denote the actual position of the movement sys-
tem. We introduce the error between the planned trajec-
tory y and ¢ to the differential equations (2) and (4) in
order to modify the planned trajectory according to ex-
ternal perturbations:

?\i W,w; ~
Y = oy (@7“4‘2) + apy(§ —y) (6)
i=o(l+ap@-y?) " (7)

Figure 2 illustrates the effect of a perturbation where
the actual position is artificially fixed during a short pe-
riod of time. During the perturbation, the time evolu-
tion of the states of the policy is gradually halted. The
desired position y is modified to remain close to the ac-
tual position g, and, as soon as the perturbation stops,
rapidily resumes performing the (time-delayed) planned
trajectory. Note that other ways to cope with perturba-
tions can be designed. Such on-line modifications are one
of the most interesting properties of using autonomous
differential equations for control policies.

3 Learning From Imitation And
Classification

Assume we extracted a desired trajectory ygemo from the
demonstration of a teacher. Adjusting the CP to embed
this trajectory in the attractor landscape is a nonlinear
function approximation problem. The demonstrated tra-
jectory is shifted to a zero start position, and the time
constants of the dynamical system are scaled such that
the time dynamics (v, z) reaches (0,g) at approximately
the same time as the goal state is reached in the target
trajectory. Given that the goal state is known, it is guar-
anteed that the policy will converge to the goal; only the
time course to the goals needs to be adjusted.

At every moment of time, we have v as input to the
learning system, and uges = Ydemo — 2 as desired out-
put (cf Eq. 2). Locally weighted regression corresponds
to finding the parameter w; which minimizes the locally
weighted error criterion J; = >, Uf(ul,_ — ul)?, for each
local model u} = w;v" (i.e. for each kernel function W}),
where t is an index corresponding to discrete time steps.!
Assuming that the goal g is known, this minimum can
be computed recursively using locally weighted recursive
least squares [3]. Note that locally weighted regression is

n our experiments, the time step size corresponds to the integra-
tion step (1ms). The recorded movements are linearly intrapolated
to the same step size.

Figure 3: Left: Sensuit for recording joint-angle data. Right:
Rigid body simulation.

different from learning with radial basis function networks.
One of the significant differences is that in locally weighted
learning the parameter w; for each local model is learned
totally independently of all other local models while in
learning with RBFs the parameters are learned coopera-
tively. From a statistical point of view, unlike RBF sys-
tems, locally weighted learning methods are robust against
overfitting.

4 Experimental evaluations

4.1 Humanoid robotics for rehabilitation

One of the motivations to develop the CPs comes from our
Virtual Trainer (VT) project. The aim of this project is to
supervise rehabilitation exercises in stroke-patients by (a)
computerized learning of the exercises from demonstra-
tions by a professional therapist, (b), demonstrating the
exercise to the patient with a humanoid simulation, (c)
video-based monitoring the patient when performing the
exercise, and (d) evaluating the patient’s performance, and
suggesting and demonstrating corrections with the simu-
lation when necessary.

The essential ingredients of VT are (a) a humanoid
robot (either simulated, see Figure 3 right, or real Fig-
ure 9), (b) the CPs for imitation, and (c) a movement ex-
ecution system. The robot is used to demonstrate the ex-
ercise to the patient, as well as to provide visual feedback
by replicating the movements performed by the patient.
The CPs are responsible for determining the kinematics
of the desired trajectory, while the movement execution
system (an inverse dynamics algorithm) is responsible for
the correct production of the trajectory by the dynamic
simulation.

As part of the VT project, the requirements for the CPs
are the following. First, they must be able to fit the trajec-
tories of the demonstrated movements with high precision.
This implies fitting all degrees of freedom (DOFs) (i.e. not
only end-points such as the hands), and all points of the
trajectories (not only the final positions). Second, they
must be robust against perturbations as some exercises
require interaction with external objects, e.g., tables or
tools. Finally, they must provide a good basis for com-
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Figure 4: Grid containing the 25 reaching targets with 5 typ-
ical reaching trajectories. Each trajectory is represented by
the joint angles of four degrees of freedom drawn from top to
bottom: shoulder flexion-extension (SFE), shoulder adduction-
abduction (SAA), humerus rotation (HR), and elbow flexion-
extension (EB). The five points surrounded by a square were
used as test sets for the experiment described in Section 4.2.2.

paring movements. One important aspect of VT will be
to assess how well the patient performs an exercise, which
therefore requires a metric for measuring differences be-
tween movements.

4.2 Experiment 1: imitation of reaching
movements

The first experiment aimed at systematically testing (1)
the fitting of human arm movements, and (2) the modu-
lation of trajectories towards new goals. We recorded tra-
jectories performed by a human subject using a joint-angle
recording system, the Sarcos Sensuit (Figure 3 right). The
Sensuit directly records the joint angles of 35 DOFS of the
human body at 100Hz using hall effect sensors with 12 bit
A /D conversion.

We recorded reaching trajectories towards 25 points lo-
cated on a vertical plane placed 65cm in front of the sub-
ject. The points were spaced by 20cm on a 80 by 80cm grid
(Figure 4). The middle point was centered on the shoul-
der, i.e. it corresponded to the (perpendicular) projection
of the shoulder onto the plane. The reaching trajecto-
ries to each target were repeated three times. Figure 4
shows five typical reaching trajectories in joint space. As
could logically be expected, the trajectories present quali-
tative differences between movements to the left and right,
with the shoulder adduction-abduction (SAA) angle in-
creasing and decreasing respectively. The differences in
shoulder flexion-extension (SFE) angles and elbow flexion-
extension (EB) are essentially quantitative rather than
qualitative.
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Figure 5: Fitting of a reaching movement towards a target

located at <0,0>cm. The recorded and fitted angles of the
DOFs are drawn in dotted and continuous lines, respectively.

4.2.1 Fitting each reaching movement

A reaching movement is fitted by the CPs as four inde-
pendent trajectories, one for each degree of freedom (SFE,
SAA, HR and EB). Each of these trajectories is fitted with
a system of 25 kernel functions. We fitted the total of 75
reaching movements performed. Figure 5 compares the
recorded and fitted trajectories for one particular example.
It can be observed that 25 kernel functions are sufficient
to fit the human data with little residual error.

4.2.2 Modulation of the goal of the reaching
movement

We tested how well the CP fitted to one particular tra-
jectory could be used as a predictor of the trajectories
performed by the human subject towards neighboring tar-
gets. Five control policies —those fitted to the five targets
surrounded by a a square in Figure 4— were tested.

The test is performed as follows. Once a CP is fitted
to one particular reaching movement, its parameters are
fixed and only the goals g, i.e. the four angles (one per
DOF) to which the CP will converge, are modulated. The
different goals that we feed into the CP were extracted
from the final postures of the human subject when reach-
ing towards different target points. This strategy therefore
allows us to directly compare the angular trajectories pre-
dicted by the CPs with those performed by the subject.
The accuracy of the prediction is measured by comput-
ing the square error between the recorded and predicted
velocities normalized by the difference between the max-
imum and minimum velocities of the recorded movement

re
rec 7,UP

Z?:O(max(zﬁcc)f&in(vmc))2’ summed for the four degrees
t t

of freedom, and averaged over the three instantiations of
each recorded movement (7 is the number of time steps).

Figure 6 shows the resulting square error measurements
between predictions and recorded movements for the five
chosen CPs. Two observations can be made. First, a
CP tends to be a better predictor of recorded movements
which were made towards a target close to the target for
which it was fitted. This is logical, as it simply means
that human reaching movements towards close by goals
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Figure 6: Error between predictions of the CPs and recorded
movements. The targets of the recorded movements which were
used for fitting each of the five CPs are shown with circles. The
widths of the squares are proportional to the squared error
measurements as described in the text.

tend to follow similar trajectories.? Second, a CP is a sig-
nificantly better predictor of recorded movements which
are made towards targets located above or below the orig-
inal target, compared to targets located left or right to
that target. This is in agreement with our observation
that human trajectories in our recordings present qualita-
tive differences between left and right —which therefore
require different CPs— and only quantitative differences
between top and bottom —which can be represented by a
single CP with different goals.

Note that the purpose of our CPs is not to explain hu-
man motor control, and there is no reason to expect that
a single CP could predict all these human reaching move-
ments. As mentioned above, the movements exhibit qual-
itative differences in joint space. One would need some
cartesian space criterion (e.g straight line of the end point
of the arm) and some optimization criterion (e.g. min-
imum torque change) to explain human motor control.
Our purpose is rather to develop a system to be used in
humanoid robotics which can accurately encode specific
trajectories, replay them robustly, and modulate them to
different goals easily. Here we observe that, for the spe-
cific trajectories that we recorded from human subjects, a
CP fitted towards a particular target has the additional
property of being a good predictor for human movements
to neighbor targets.

Experiments implementing the trajectories in a real
robot can be found in [2]. The movements per-

2Because of the variability of human movements, the prediction
error for the recorded trajectories towards the same targets as those
used for the fitting are not zero, as the two other instantiations might
vary slightly from the trajectory used for the fitting.

Figure 7: Examples of two-dimensional trajectories fitted by
the CPs. The demonstrated and fitted trajectories are shown
with dotted and continuous lines, respectively.
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Figure 8: Correlation between the weight vectors of the 20
characters (5 of each letter) fitted by the system. The gray scale
is proportional to the correlation, with black corresponding to a
correlation of +1 (max. correlation) and white to a correlation
of 0 or smaller.

formed by the robot appear strinkingly human-like.
Movies of the recorded trajectories and those per-
formed by the robot can be found at http://www-
clme.usc.edu/~ijspeert /humanoid.html.

4.3 Experiment 2: Comparison of trajec-
tories in parameter space

An interesting aspect of the CPs is that trajectories with
similar velocity profiles tend to have similar w; parame-
ters, and the CPs can therefore be used to classify move-
ments. To illustrate this, we carried out a simple task of
fitting two-dimensional trajectories performed by a human
user when drawing two-dimensional single-stroke patterns.
Four characters — I, C, R and A — from the Gralffiti al-
phabet used in hand-held computers were chosen. These
characters are drawn in a single stroke, and are fed as two
trajectories x(t) and y(¢) to be fitted by our system. Five
examples of each character were presented. Using two sets
of 25 parameters w; (one per dimension), each character
was fitted in a single iteration with very little residual er-
ror (Figure 7).

Given the temporal and spatial invariance of our policy
representation, trajectories that are topologically similar
tend to be fit by similar parameters w;. In particular,

T
computing the correlation Iv‘::'a‘ m’b‘ between the parameter



Figure 9: Humanoid robot learning a forehand swing from a
human demonstration.

vectors w, and wy of character a and b can be used to clas-
sify movements with similar velocity profiles (Figure 8). In
this case, for instance, each of the 20 examples, the correla-
tion is systematically higher with the four other examples
of the same character. These similarities in weight space
can therefore serve as basis for recognizing demonstrated
movements by fitting them and comparing the fitted pa-
rameters w; with those of previously learned policies in
memory. In this example, a simple one-nearest-neighbor
classifier in weight space would serve the purpose.

4.4 Experiment 3: Learning tennis swings
with a humanoid robot

In a last set of experiments, we implemented the system
in a humanoid robot with 30 DOFs [5]. The robot is a
1.9-meter tall hydraulic anthropomorphic robot with legs,
arms, a jointed torso, and a head. The robot is fixed at
the hip, such that it does not require balancing.

The task for the robot was to learn forehand and back-
hand swings towards a ball demonstrated by a human
wearing the joint-angle recording system. The fitted tra-
jectories were fed into an inverse dynamics controller for
accurate reproduction by the robot (Figure 9).

Afterwards, the robot was able to repeat the swing
motion to different cartesian targets. Using a system of
two-cameras, the position of the ball was given to an in-
verse kinematic algorithm which computes targets in joint
space. Similarly to the results of experiment 1, the modi-

fied trajectories reached the new ball positions with swing
motions very similar to those used for the demonstration.
Movies of the experiments can be viewed at http://www-
clme.usc.edu/~ijspeert/humanoid.html.

5 Discussion

We presented a new system for encoding trajectories with
control policies (CPs) based on a set of nonlinear dy-
namical systems. Two key characteristics of the CPs are
(1) that movement trajectories are not indexed by time
but rather develop out of integrating autonomous nonlin-
ear differential equations, and (2) that the CPs do not
encode one single specific desired trajectory but rather a
whole attractor landscape in which the desired trajectory
is produced during the evolution from the initial states to
a unique point attractor, the goal state. This provides the
CPs the ability to smoothly recover from perturbations,
which is one of the desired properties enumerated in the
introduction.

The other desired properties are equally well fulfilled
with our system. In particular, the CPs allow fast learning
of a trajectory with a relatively low number of parameters.
The number of kernel functions (hence of parameters) can
be adjusted depending on the desired accuracy of the fit,
with more functions allowing the representation of finer
details of movement (see [3] for an algorithm to do this
automatically). The ease of modification is also ensured by
having the goal state of the movement explicitly encoded
into the system. The spatial invariance property is used
to modulate the trajectory towards the new goal, while
keeping the same velocity profile.

We are currently working on extending this work in
two directions. First, we are investigating different types
of metrics in parameter space for comparing qualitative
and/or quantitative features of movements. Second, we
are exploring ways to extend the system to encode oscil-
latory movements in addition to discrete movements.
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