
Trajectory Formation for Imitation with Nonlinear
Dynamical Systems

Auke Jan Ijspeert1,2, Jun Nakanishi1 and Stefan Schaal1,2

1Computational Learning and Motor Control Laboratory
University of Southern California, Los Angeles, CA 90089-2520, USA

2Kawato Dynamic Brain project, ATR, Kyoto 619-0288, Japan
Email: ijspeert@usc.edu, nakanisi@usc.edu, sschaal@usc.edu

Abstract
This article explores a new approach to learning by im-

itation and trajectory formation by representing move-
ments as mixtures of nonlinear differential equations with
well-defined attractor dynamics. An observed movement
is approximated by finding a best fit of the mixture model
to its data by a recursive least squares regression tech-
nique. In contrast to non-autonomous movement repre-
sentations like splines, the resultant movement plan re-
mains an autonomous set of nonlinear differential equa-
tions that forms a control policy which is robust to strong
external perturbations and that can be modified by ad-
ditional perceptual variables. This movement policy re-
mains the same for a given target, regardless of the initial
conditions, and can easily be re-used for new targets.
We evaluate the trajectory formation system (TFS) in

the context of a humanoid robot simulation that is part of
the Virtual Trainer (VT) project, which aims at supervis-
ing rehabilitation exercises in stroke-patients. A typical
rehabilitation exercise was collected with a Sarcos Sen-
suit, a device to record joint angular movement from hu-
man subjects, and approximated and reproduced with our
imitation techniques. Our results demonstrate that multi-
joint human movements can be encoded successfully, and
that this system allows robust modifications of the move-
ment policy through external variables.

1 Introduction
An important issue in humanoid robotics, and in learn-

ing by imitation in particular, is the question of how to
encode desired trajectories to be performed by the robot.
Various approaches have been suggested in the litera-
ture, ranging from memorizing the entire trajectory at the
sampling rate of the control servo [1], using spline-based
methods [2], using optimization criteria [3], or employing
lookup tables and neural networks that represent global
control policies [4]. In general, there seems to be consen-
sus that among the most important desirable properties of
movement encoding are: 1) the ease of representing and
learning a goal trajectory, 2) compactness of the represen-
tation, 3) robustness against perturbations and changes in
a dynamic environment, 4) ease of re-use for related tasks
and easy modification for new tasks, and 5) ease of cat-
egorization for movement recognition. When examining

standard approaches of movement planning and represen-
tation against this check list, it becomes obvious that no
approach exists that accomplishes all these goals. For in-
stance, memorized trajectories are easy to learn, but are
hard to re-use for new tasks and not robust towards signifi-
cant changes of the environment. Spline-based approaches
have a more compact representation, but otherwise share
most of the properties of memorized trajectories. Opti-
mization approaches are computationally expensive and
cannot re-plan rapidly when the environment changes,
and neural network based control policies are very hard
to learn for even moderately dimensional systems.
In this article, we explore an alternative to these ap-

proaches which can fulfill all the desired characteristics
above. The idea is to encode desired trajectories, or more
precisely complete control policies, in terms of a mix-
ture of pattern generators built from simple nonlinear au-
tonomous dynamical systems. In contrast to other ap-
proaches in the literature, the dynamical systems encode
desired trajectories, not motor commands, such that an
additional movement execution stage by means of a stan-
dard controller (e.g., inverse dynamics controller in our
work) is needed. This strategy, however, does not prevent
us from modifying the trajectory plans on-line through
external variables, as will be demonstrated later.
Our current work is restricted to discrete movements,

i.e., movement with a unique point attractor. Complex
movement can be represented by a sequence of such mix-
ture model movement primitives. The transition from one
movement segment to another could be state-triggered or
time-indexed, depending on the task to be accomplished
– this is similar to via-point approaches suggested by oth-
ers [2]. Given that the component dynamical systems are
globally stable, our suggested weighted superposition will
be globally stable, too.
We apply this trajectory formation system (TFS) to a

task involving the imitation of human movements by a hu-
manoid simulation. This experiment is part of a project
in rehabilitation robotics —the Virtual Trainer project —
which aims at using humanoid rigid body simulations and
humanoid robots for supervising rehabilitation exercises in
stroke-patients. This article presents how trajectories of
typical rehabilitation exercises recorded from human sub-
jects can be reproduced by the simulator using the tra-
jectory formation system, and that this kind of encoding

Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems
Maui, Hawaii, USA, Oct. 29 - Nov. 03, 2001

0-7803-6612-3/01/$10.00 2001 IEEE 752

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1
P

os
iti

on
s

(x
i)

[r
ad

]
τ
20

=2000[1/s] →

← τ
1
=15[1/s]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

2

2.5

3

3.5

t [s]

V
el

oc
iti

es
 (

dx
i/d

t)
 [r

ad
/s

]

← τ
20

=2000[1/s]

← τ
1
=15[1/s]

Figure 1: Set of primitives for one DOF. Top: trajectories,
Bottom: velocity profiles. The following parameters are used
throughout the paper: N = 20, γ = ε = 0.005, β = 4.0[1/s],
µ = 3.0[1/s], and τi = [15, 19.4, 25.1, . . . , 2000][1/s]. G was
here set to 1.0 and no perturbation was fed back into the sys-
tem, i.e. θR = θ.

fulfills all the desired characteristics enumerated above.
In the next sections, we first present our trajectory for-

mation system and its extensions to imitation in Section 2.
Then we briefly describe the Virtual Trainer project and
the requirements it places on the trajectory formation sys-
tem (Section 3.1), our humanoid simulation (Section 3.2),
and the method for recording human movements (Sec-
tion 3.3). Results of multi-joint fitting are finally pre-
sented in Section 3.4. Our approach is discussed as well
as compared with alternative methods in Section 4.

2 Dynamical systems for trajec-
tory formation

In earlier work, we have developed nonlinear dynam-
ical systems for discrete and rhythmic movements in a
humanoid robot[5, 6]. Trajectories for each degree of free-
dom were created by superimposing two dynamical sys-
tems, one for discrete (point-attracting) movement, the
other for rhythmic (limit-cycle) movement. The system
could produce robust trajectory planning (e.g. perturba-
tions did not prevent from reaching specific targets, and
did not disrupt smooth and stable movement execution)
by numerically integrating the differential equations of the
dynamical systems, and was successfully used to control
juggling and drumming tasks. The applicability of this
system, however, was limited to simple reaching movement
as only monotonic movement could be realized with sym-
metric bell-shaped velocity profiles. For instance, creating
a tennis fore-hand swing would not be feasible with this
encoding. In this paper, we generalize movement plan-
ning with dynamical systems by developing a trajectory
formation system based on mixtures of nonlinear dynam-
ical systems, which allow accurate reproduction of almost
arbitrary human movements.
Our approach presented in this paper is inspired by the

idea of basis function and mixture models in statistical
learning [7]. Instead of representing a function with one
complicated representation, it is often easier to accomplish
the same goal with a representation of superimposed sim-
ple component systems. Spline-based trajectory encodings
are essentially such mixture systems, except that they are
non-autonomous and do not form a stable control policy.
Thus, instead of splines, we would like to use autonomous
dynamical system as components with well-defined point
attractors. The weighted superposition of these compo-
nent system, or movement primitives, can form very com-
plex attractor landscapes on the way to the equilibrium
point. Complex movements that have intermediate starts
and stops need to be segmented at these “via points” such
that every segment is fitted separately by a mixture of
movement primitives.
As a first approach, we created the following family of

N primitives for encoding the trajectory of one DOF:

v̇i = τi ·
(

γ +
x2

i

G2 + ε

)
·

(−vi + β(G − xi) + µ(θR − θ)) (1)
ẋi = vi (2)

θ =
N∑
i

wixi (3)

θ̇ =
N∑
i

wivi with
N∑
i

wi = 1 (4)

where θ and θ̇ are the desired angular position and ve-
locity to be performed by the DOF, and G is the desired
displacement (or goal position). θR is the actual joint an-
gle realized by the DOF. The state variables xi and vi are
the positions and velocities of each individual primitive i.
Primitives are determined by four strictly positive param-
eters —two time constants τi and β, and a parameter γ
which determines the width of the velocity bell shape—
one positive gain parameter µ, and a small constant ε.
The contribution of each primitive to the movement is de-
termined by the weights wi.
By construction, the position xi of each primitive con-

verges to the goal with a bell-shaped velocity profile (Fig-
ure 1). Note that, as the weights wi are not restricted to
be positive, the θ(t) trajectories do not need to be mono-
tonic. Perturbations to the system which prevent the real
angle θR to be equal to the desired angle θ (e.g. due to
external forces applied to the DOF) are fed back into the
system by the µ(θR − θ) term in equation 2, effectively
slowing down or terminating the planning dynamics of the
mixture model.
In our experiments, the trajectory formation system

(TFS) will be based on a set of N = 20 primitives per
DOF in which the parameters β, γ and ε are fixed and
identical for all primitives, while τi varies according to
τi = τmin (τmax/τmin)

i−1
N−1 to ensure more or less equal

spacing between the maxima of the velocities (Figure 1) .
Despite its simplicity, the mixture of primitives pos-

sesses a variety of appealing properties:

753

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

P
os

iti
on

 (θ
)

[r
ad

]
target
fit
goal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

0

1

2

3

4

t [s]

V
el

oc
ity

 (
dθ

/d
t)

 [r
ad

/s
]

target
fit

Figure 2: Example of fitting a desired trajectory using recur-
sive least squares regression. Top: position trajectory, Bottom:
velocity trajectory.

1. the velocity profiles of each individual primitive is
smooth and has a strong resemblance to the bell-
shaped profiles observed in human movements – this
will be beneficial for smooth trajectory generation,

2. the mixture of primitives can be fitted to a desired tra-
jectory using an incremental least squares regression
on line assuming that the goal is known (see below),

3. individual primitives, as well as linear combinations
of them, are stable systems which all converge to a
unique point attractor corresponding to the goal when
only transient perturbations are applied to them (see
next section),

4. the complete system remains an autonomous dynami-
cal system, i.e., there is no explicitly time dependency,

5. a particular movement can be characterized by the
weight vector of the primitives—this has the poten-
tial to allow movement recognition based on these pa-
rameters.

2.1 Stability of the mixture model
This section presents a stability analysis of the proposed

dynamical primitives for the case θR = θ.
By setting ẋi = v̇i = 0 and solving the equations for xi

and vi, we find that each component of the mixture model
has a unique equilibrium point at (xi, vi) = (G, 0) 1. To
see that this equilibrium point is globally asymptotically
stable, we shift it to the origin by the change of variables
x̄i = xi − G.
Consider a Lyapunov function candidate

V (x̄i, v̄i) =
1
2
v̄2

i +
βτi

12(G2 + ε)
·

(
3x̄2

i + 8Gx̄i + 6γε+ 6G2(γ + 1)
)
x̄2

i (5)

Note that (5) is indeed positive definite for γ, ε > 0 since

3x̄2
i + 8Gx̄i + 6γε+ 6G2(γ + 1)

= 3(x̄i +
4
3
G)2 +

2
3
G2 + 6γε+ 6G2γ > 0.

1The equilibrium is shifted to x̃i = G + µ(θR − θ̃)/β and ṽi = 0
if a constant perturbation is applied to the DOF.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

P
os

iti
on

 (
θ)

 [r
ad

]

original
perturbed
goal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

1

2

3

t [s]

V
el

oc
ity

 (
dθ

/d
t)

 [r
ad

/s
]

original
perturbed

Figure 3: Recovery from a perturbation of the position (θR is
forced to be 0.0 from t=0.5s to t=0.7s, while it is set to θ the
rest of the time). Top: position trajectory, Bottom: velocity
trajectory.

Then, V̇ (x̄i, v̄i) is given by

V̇ (x̄i, v̄i) = −τi

(
γ +

(x̄i + G)2

G2 + ε

)
˙̄v2
i ≤ 0. (6)

Since
V̇ (x̄i, v̄i) = 0 ⇒ v̄i = 0 ⇒ x̄i = 0, (7)

the origin is asymptotically stable by applying LaSalle’s
invariance theorem. Moreover, since V (x̄i, v̄i) is radially
unbounded, the origin is globally asymptotically stable.
Thus, the equilibrium point of each primitive dynamics,
(xi, vi) = (G, 0), is globally asymptotically stable. Fur-
thermore, the mixture of these dynamical systems has a
globally asymptotically stable attractor point at (G, 0) as
long as the sum of all the weights is 1 for the case θR = θ.

2.2 Learning from demonstration
The mixture of primitives learns a desired trajectory

from the demonstration by adjusting the set of weights,
wi. We use recursive least squares [8] to adjust the weights
on line assuming that the goal G is known2.
Given a training point (ẋ, θ̇des), w is updated by

wt+1 = wt +Pt+1ẋėT (8)

where

Pt+1 =
1
λ

(
Pt − PtẋẋT Pt

λ + ẋT Ptẋ

)
, e = θdes − wtTx

and x = [x1, · · · , xN]T , w = [w1, · · · , wN]T . We
choose to use velocity data for learning since we empiri-
cally find that this leads to smoother trajectories.
Figure 2 shows an example of the result of learning of

the elbow joint angle during a reaching movement demon-
strated by a human. The fit is based on the 20 primitives
shown in Figure 1. These primitives were sufficient to pro-
vide a good fit of the trajectory, with very little residual
error.

2λ is a forgetting factor which is normally set to 1.0 for stationary
learning data (as is the case in this paper), but which might be set
to a smaller value for non-stationary cases (e.g. when the goal G is
not known in advance and has to be learned on line).

754

Figure 4: Left: Humanoid rigid body simulation. Right: Sen-
suit for recording joint-angle data.

The TFS with the fitted weights is robust towards large
scale perturbations. For instance, when the position θ
is forced out of its course by a transient perturbation,
the trajectory planning is modified but eventually returns
to the original (unperturbed) trajectory (Figure 3) and
the desired point attractor. This feature is very differ-
ent in comparison to non-autonomous trajectory planning,
where planning would simply continue during the pertur-
bation as if the perturbation did not exist.

3 Experimental evaluations
3.1 Humanoid robotics for rehabilitation
One of the motivations to develop the mixture of move-

ment primitives comes from our Virtual Trainer (VT)
project. The aim of this project is to supervise reha-
bilitation exercises in stroke-patients by (a) computerized
learning the exercises from demonstrations by a profes-
sional therapist, (b) demonstrating the exercise to the pa-
tient with a humanoid simulation, (c) video-based moni-
toring the patient when performing the exercise, and (d)
evaluating the patient’s performance, and suggesting and
demonstrating corrections with the simulation when nec-
essary. Thus, the key idea is to create an interactive Vir-
tual Trainer for movement exercising.
The essential ingredients of VT are a dynamic simula-

tion of a humanoid robot, a trajectory formation system
(TFS) with imitation abilities, and a motor system. The
dynamic articulated body simulation is used to demon-
strate the exercise to the patient, as well as to provide
visual feedback by replicating the movements performed
by the patient. The TFS is responsible for determining
the kinematics of the desired trajectory, while the motor
system is responsible for the correct production of the tra-
jectory by the dynamic simulation.
As part of the VT project, the requirements for the TFS

are the following. First, it must be able to fit the trajecto-
ries of the demonstrated movements with high precision.
This implies fitting all degrees of freedom (DOFs) (i.e.
not only end-points such as the hands), and all points of
the trajectories (not only the final positions). Second, it

must be robust against perturbations as some exercises
require interaction with external objects, e.g., tables or
tools. Finally, it must provide a good basis for compar-
ing movements. One important aspect of VT will be to
assess how well the patient performs an exercise, which
therefore requires a metric for measuring differences be-
tween movements. Each of the demands can be fulfilled
by the mixture of dynamic primitives. Obviously, all the
requirement of the VT are equally important for humanoid
robotics.

3.2 Humanoid simulation

We developed a rigid body dynamics simulation of a
humanoid robot with 41 degrees of freedom (DOFs) for
realizing the Virtual Trainer. The simulation is imple-
mented using our Simulation Laboratory package [9]. The
fact that the dynamics and not only the kinematics of the
rigid body are simulated is an important component of
VT. First, it ensures that movements are realistic and fea-
sible. Second, it allows movements to be adapted to dif-
ferent body configurations by matching the dimensions,
masses, and moments of inertia to those of the patient.
Third it allows the torques in the joints to be monitored;
limits can be set to avoid excessive torques, and can be
gradually increased depending on progress. Finally, many
rehabilitation exercises require interactions with objects
(table, floor, ball,...). These can be realistically simulated
in a dynamic simulation using standard contact models.
The dimensions and 41 DOFs of the robot approxi-

mately correspond to those of the human body (Figure 4).
The main simplifications are that the robot is composed of
only hinge-joints. Masses and moments of inertia of each
link of the simulation are computed by assuming each link
to be a cylinder and the mass to be uniformly distributed
with a density corresponding to that of water. The body is
fixed at the hip in the simulations for the experiments pre-
sented in this article (upper limb movements), i.e., balanc-
ing is not required. Control of the simulation is identical
to that of our humanoid robot [10], i.e., using a compute
torque controller at 420 Hz servo rate.

3.3 Recording of trajectories from human
subject

We recorded trajectories of specific movements typi-
cally used during rehabilitation exercises with stroke pa-
tients. For this article, we recorded movements from a
healthy person using a joint-angle recording system, the
Sarcos Sensuit (Figure 4 right). The Sensuit allows di-
rectly recording the joint angles of 35 DOFS of the human
body at 100Hz using hall effect sensors with 12 bit A/D
conversion.
The movements that we recorded are part of the Wolf

Motor test [11], which is an evaluation test of motor abil-
ities commonly used with stroke patients. The test in-
volves the measurement of times of execution of a set of
well defined movements, which are performed by the pa-
tient with both the intact arm (which is used as control)
and the disabled arm. This test is performed at different
intervals during the patient’s rehabilitation program such
as to provide a quantitative basis of progress.

755

0 2 4 6 8 10 12 14
-2

0

2

S
F

E
 [r

ad
]

0 2 4 6 8 10 12 14
-2

0

2

S
A

A
 [r

ad
]

0 2 4 6 8 10 12 14
-2

0

2

H
R

 [r
ad

]

0 2 4 6 8 10 12 14
-2

0

2

E
B

 [r
ad

]

Time [s]

Target
Fit

Target
Fit

Target
Fit

Target
Fit

Figure 5: Fitting of an arm movement involving 4
DOFs: shoulder flexion-extension (SFE), shoulder adduction-
abduction (SAA), humerus rotation (HR) and elbow rotation
(EB). The recorded and fitted angles of the DOFs are shown
(they are almost perfectly superposed). Vertical lines corre-
spond to the time segmentation between zero-velocity points
in the movement.

3.4 Fitting multi-joint movements
We used the proposed TFS to fit recordings of long

multi-joint arm movements. Initially, the entire movement
is segmented at zero velocity points. Each segment is then
fitted using the mixture of primitives.
Figure 5 shows the recorded and fitted trajectories of

a typical arm movement exercise of the Wolf Motor test.
The movement consists of placing an arm from a rest po-
sition on the lap up onto a high box placed laterally to the
seated subject. The exercise is here repeated three times.
The TFS produces a close fit of the trajectory. Note that
it can cope with the fact that most segments involve non
monotonic trajectories between the beginning of the seg-
ment and the end of the segment.
The recorded movement is precisely reproduced by the

humanoid simulation where the signals from the TFS are
used to drive the compute torque controller of the simula-
tion (Figure 6). Without external perturbation, there is a
perfect match between the real trajectory and the desired
trajectory. When a perturbation is applied which forces
the arm away from its desired trajectory (e.g. an external
force), the TFS temporarily modifies the desired trajec-
tory to take the perturbation into account. A modified
desired trajectory is thus created which eventually brings
the real trajectory back to the planned trajectory. Note
that, in this example, we feed the sequence of subgoals
and primitive weights with the original timing into the
TFS, which means that the duration of the whole move-
ment is kept. This here leads to a switch of the weights of
the primitives during the perturbation (at time t=6.6s),
which does not disturb the trajectory creation because of
the intrinsic stability of the system.

4 Discussion
We presented a trajectory formation system (TFS)

based on dynamical system for reproducing human arm

0 2 4 6 8 10 12 14

0.5

1

1.5

S
F

E
 [r

ad
] planned trajectory

adapted trajectory
real trajectory

0 2 4 6 8 10 12 14

−0.5

0

0.5

S
A

A
 [r

ad
]

0 2 4 6 8 10 12 14
−1.5

−1

−0.5

0

H
R

 [r
ad

]

0 2 4 6 8 10 12 14

0.8

1

1.2

Time [s]

E
B

 [r
ad

]

Figure 6: Reproducing the movement using the humanoid
simulation. A perturbation is applied to the arm between
time t=5.0s and t=7.5s through an external force on the wrist
(80[N], downward). When the perturbation is applied, the real
trajectories (continuous lines) are forced away from the origi-
nal planned trajectory (dotted lines), which, in turn, automat-
ically leads to the creation of an adapted desired trajectory
(the dashed lines).

movements. Two key characteristics of the TFS are 1) that
the trajectory is not indexed by time but rather develops
out of integrating autonomous nonlinear differential equa-
tions, and 2) that the TFS does not encode one single
specific desired trajectory but rather a whole attractor
landscape, i.e., a control policy, with a unique point at-
tractor, the goal state. It should be noted that our sug-
gested approach to trajectory formation is in strong con-
trast with methods which explicitly index the trajectory
by time such as spline fitting between via points. Explicit
time indexing makes is hard to modify a trajectory in re-
sponse to dynamically changing environments and strong
perturbations that are beyond the abilities of a PD servo.
Moreover, time-indexed trajectories are specific to initial
conditions and re-using of the trajectory for new move-
ment goals is complicated.
Our approach is inspired by the concepts of pattern gen-

erators [12] and force fields [13] found in biology. Related
work includes [14, 15, 16, 17]. The TFS presented here
is most closely related to the VITE model [14], but with
the extension that we use multiple movement primitives
to allow generating a larger class of movements, and that
our dynamical systems do not require artificial reseting
of the states of the dynamical systems after a movement.
The concept of combining multiple primitives in a mixture
model has parallels in statistical learning theory [7, 18].
Our TFS is an interesting candidate for satisfying the

desirata enumerated in the introduction:
1. Ease of representing and learning a goal trajectory.

The TFS can acquire desired trajectories by on-line recur-
sive linear least squares regression techniques assuming
that the goal is known. This property compares favorably
in terms of learning speed and convergence properties to-
wards other approaches of trajectory learning. Our only
requirement is that trajectories end with zero-velocity, i.e.,

756

that they represent discrete movement. In our work, a
set of 20 movement primitives was sufficient to represent
trajectories lasting between 1.0 and 3.0 seconds. More
primitives can be added for longer sequences, and/or for
representing finer details of movement.
2. Compactness. The encoding in a mixture of dynam-

ical systems is comparable in compactness with spline fit-
ting using via points as movements are encoded by few
parameters, namely the N weights wi and the goals G for
each trajectory.
3. Robustness against perturbations and dynamically

changing environments. As illustrated in this article, the
ability to smoothly recover from perturbations is a pri-
mary feature of the dynamical systems used in the TFS.
Furthermore, the TFS gives a good basis for dealing with
perturbations at a planning level instead of the execution
level. For instance, recovering from a perturbation re-
quires different actions depending on the purpose of the
imitation task. If the purpose is to respect the subgoals
of a movement despite the perturbation, the timing of the
subgoals can be modified such that the next subgoal is
fed into the system only when the current goal is reached
within a satisfactory limit. On the other hand, if the pur-
pose is to respect the timing at all costs, subgoals can be
fed in at their original timings, and the TFS will naturally
modify the desired trajectory during the perturbation, and
skip desired subgoals (without building up a potentially
huge torques in the robot’s motors, as could happen in a
PD controller).
4. Ease of modification. Desired trajectories can read-

ily be modified by manipulating the values and timings
of the subgoals, and by adding additional coupling terms.
For instance, if the aim of a movement is to reach a partic-
ular object with a particular velocity profile (e.g. a tennis
serve), the TFS can learn that particular velocity profile
and reuse it in multiple occasions by adapting the goal
to the current location of the object (if necessary, using
inverse kinematics for finding the desired end positions of
each DOF). Another possibility is to use potential field
approaches to add attracting or repelling terms into the
differential equations to navigate obstacles.
5. Ease of categorization. An important question in

learning movements by imitation is how to recognize sim-
ilar movements and which metrics to use to measure dif-
ferences between movements. In future work, we intend
to investigate metrics for comparing movements in the
N -dimensional space which contains the weights wi en-
coding a trajectory. Because it encodes velocity profiles,
that space has the potential to provide a better basis for
comparing movements than cartesian space or joint-angle
space.

Acknowledgements
This work was made possible by support from the US Na-
tional Science Foundation (Awards 9710312 and 0082995),
the ERATO Kawato Dynamic Brain Project funded by
the Japanese Science and Technology Cooperation, and
the ATR Human Information Processing Research Labo-
ratories.

References
[1] C.H. An, C.G. Atkeson, and J.M. Hollerbach. Model-based

control of a robot manipulator. MIT Press, 1988.

[2] H. Miyamoto, S. Schaal, F. Gandolfo, Y. Koike, R. Osu,
E. Nakano, Y.Wada, and M. Kawato. A kendama learning
robot based on bi-directional theory. Neural Networks,
9:1281–1302, 1996.

[3] M. Kawato. Trajectory formation in arm movements:
minimization principles and procedures. In H.N. Zelaznik,
editor, Advances in Motor Learning and Control, pages
225–259. Human Kinetics Publisher, Champaign Illinois,
1996.

[4] R. Sutton and A.G. Barto. Reinforcement learning: an
introduction. MIT Press, 1998.

[5] S. Schaal and D. Sternad. Programmable pattern gener-
ators. In International Conference on Computational In-
telligence in Neuroscience (ICCIN’98). Research Triangle
Pack NC, 1998.

[6] S. Schaal, S. Kotosaka, and D. Sternad. Nonlinear dy-
namical systems as movement primitives. In International
Conference on Humanoid Robotics. 2000. (CD-ROM).

[7] G. J. McLachlan and K. E. Basford. Mixture Models. Mar-
cel Dekker, 1988.

[8] S. Schaal and C. G. Atkeson. Constructive incremental
learning from only local information. Neural Computation,
10(8):2047–2084, 1998.

[9] S. Schaal. The SL simulation and real-time control soft-
ware package. Technical report, Dept. of Computer Sci-
ence, U. of Southern California, 2001. http://www-
slab.usc.edu/publications/.

[10] C. G. Atkeson, J. Hale, M. Kawato, S. Kotosaka, F. Pol-
lick, M. Riley, S. Schaal, S. Shibata, G. Tevatia, and
A. Ude. Using humanoid robots to study human be-
haviour. IEEE Intelligent Systems, 15:46–56, 2000.

[11] S.L. Wolf, D.E. Lecraw, L.A. Barton, and B.B Jann.
Forced use of hemiplegic upper extremities to reverse the
effect of learned nonuse among chronic stroke and head-
injured patients. Exp. Neurol., 104:125–132, 1989.

[12] F. Delcomyn. Neural basis for rhythmic behaviour in an-
imals. Science, 210:492–498, 1980.

[13] S.F. Giszter, F.A. Mussa-Ivaldi, and E. Bizzi. Convergent
force fields organized in the frog’s spinal cord. Journal of
Neuroscience, 13:467–491, 1993.

[14] D. Bullock and S. Grossberg. VITE and FLETE: neural
modules for trajectory formation and postural control. In
W.A. Hersberger, editor, Volitional control, pages 253–
297. Elsevier Science Publishers, 1989.

[15] D. Kleinfeld and H. Sompolinsky. Associative network
models for central pattern generators. In C. Koch and
I. Segev, editors, Methods in neural modeling, pages 195–
246. MIT Press, 1989.

[16] F.A. Mussa-Ivaldi. Nonlinear force fields: a distributed
system of control primitives for representing and learning
movements. In IEEE International Symposium on Com-
putational Intelligence in Robotics and Automation, pages
84–90. IEEE, Computer Society, Los Alamitos, 1997.

[17] P.Y. Li and R. Horowitz. Passive velocity field control of
mechanical manipulators. IEEE Transactions on Robotics
and Automation, 15(4):751–763, 1999.

[18] M.I. Jordan and R. Jacobs. Hierarchical mixtures of ex-
perts and the EM algorithm. Neural Computation, 6:181–
214, 1994.

757

