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Abstract: Real-time modeling of complex nonlinear
dynamic processes has become increasingly impor-
tant in various areas of robotics and human aug-
mentation. To address such problems, we have been
developing special statistical learning methods that
meet the demands of on-line learning, in particular
the need for low computational complexity, rapid
learning, and scalability to high-dimensional spaces.
In this paper, we introduce a novel algorithm that
possesses all the necessary properties by combining
methods from probabilistic and nonparametric
learning. We demonstrate the applicability of our
methods for three different applications in humanoid
robotics, i.e., the on-line learning of a full-body in-
verse dynamics model, an inverse kinematics model,
and imitation learning. The latter application will
also introduce a novel method to shape attractor
landscapes of dynamical system by means of statis-
tical learning.

1 Introduction
An increasing number of problems in robotics
and human augmentation involve real-time
modeling of complex high-dimensional proc-
esses. Typical examples include the on-line
modeling of dynamic objects observed by vis-
ual surveillance for improved tracking and rec-
ognition, user modeling for advanced com-
puter interfaces, learning of value functions for
reinforcement learning, and learning of control
policies and internal models for adaptive con-
trol of complex dynamical systems, for in-
stance, as needed for humanoid robots and
autonomous airplane control. When approach-
ing such learning problems, there are many al-
ternative learning methods that can be chosen,
either from the neural network, the statistical,
or the machine learning literature. However,
the current focus in learning research lies more
on algorithms for the off-line analysis of finite
data sets, without too severe constraints on the

computational complexity of the algorithms.
Examples of such algorithms include the re-
vival of Bayesian inference ([1], [2]) and the
new algorithms developed in the framework of
structural risk minimization ([3], [4]). Mostly,
these methods target problems in classification
and diagnostics, although several extensions to
regression problems exist (e.g., [5]).

In on-line modeling, however, special con-
straints need to be taken into account. Most
learning problems require regression networks,
for instance, as in the learning of internal mod-
els, coordinate transformations, control poli-
cies, or evaluation functions. Data in on-line
modeling is usually not limited to a finite data
set—sensors keep on producing new data that
should be included in the learning system im-
mediately. Thus, computationally inexpensive
training methods are important in this domain,
and incremental learning is mandatory. Among
the most significant additional problems of on-
line learning is that the distributions of the
learning data may change continuously. Input
distributions change due to the fact that the
same dynamic process may work around dif-
ferent setpoints at different times, thus creating
different kinds of training data. Moreover, the
input-output relationship of the data—the con-
ditional distribution—may change if the dy-
namic process is nonstationary or learning in-
volves nonstationary training data as in rein-
forcement learning or error-based adaptive
control. Such changing distributions easily lead
to catastrophic interference in many neural
network paradigms, i.e., the unlearning of use-
ful information when training on new data
([6]). As a last element, learning tasks described
above can be rather high dimensional in the
number of input dimensions, thus amplifying
the need for efficient learning algorithms. The
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current trend in learning research is largely or-
thogonal to the problems of on-line modeling.

Figure 1: 30 Degree-of-freedom humanoid robot in our
laboratory.

Over the past years, we have been develop-
ing statistical learning methods that are par-
ticularly well suited for on-line learning in ro-
botics and human augmentation. These tech-
niques are generally classified as locally
weighted learning (LWL) ([7], [8]) as they em-
phasize statistical inference solely based on a
carefully selected set of spatial neighbors
around a point of interest. In the most recent
advancements, we succeeded in combining lo-
cally weighted learning ([9], [10], [11],) with
probabilistic learning to achieve a novel form
of on-line learning with piecewise linear mod-
els that excels in its computational simplicity
and statistical soundness. In this paper, we will
first outline our learning system, and subse-
quently demonstrate its applicability to several
different domains, including the on-line acqui-
sition of an inverse dynamics model, an inverse
kinematics transformation, and learning
movement imitation, all conducted on our
30DOFs humanoid robot (Figure 1). The appli-
cation to movement imitation will also intro-
duce a novel approach to directly shape attrac-
tor landscape of nonlinear dynamical systems
by means of statistical learning.

2 Probabilistic LWL
In our learning algorithms we assume that the
data generating model for our regression prob-

lems has the standard form y f= ( ) +x ε , where
x ∈ℜd  is a d-dimensional input vector, the
noise term ε has mean zero, E{ }ε = 0 , and the
output is one-dimensional. The key concept of
our LWL methods is to approximate nonlinear
functions by means of piecewise linear models
([12]), similar to a first-order Taylor series ex-
pansion. Locally linear models have been dem-
onstrated to be an excellent statistical compro-
mise among the possible local polynomials that
can be fit to data ([13]). The scientific problem
in LWL is to determine the region of validity in
which a local model can be trusted, and how to
fit the local model in this region robustly.

We compute the region of validity, called a
receptive field, of each linear model from a
Gaussian kernel:

wk k
T

k k= − −( ) −( )



exp

1

2
x c D x c (1)

where ck is the center of the kth linear model,
and Dk corresponds to a positive semi-definite
distance metric that determines the size and
shape of region of validity of the linear model.
Other kernel functions are possible ([7]) but
add only minor differences to the quality of
function fitting. The most straightforward de-
velopment of our probabilistic LWL algorithm
is by reviewing memory-based Locally
Weighted Regression (LWR) ([14]), as summa-
rized in the following pseudo-code:
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βd+1  denotes the (d+1)th element of the regres-
sion vector β . The parameters of the distance
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metric D need to be optimized in computation-
ally expensive off-line cross validation ([15]).

The problems of LWR for on-line learning
are easily visible from the pseudo-code. First,
the off-line optimization of D is inappropriate,
second, the processing of all data in memory
for a lookup becomes computationally increas-
ingly infeasible with large amounts of data,
and third, the matrix inversion in step c) of the
pseudo-code can be numerically unstable and
computationally too complex in high-
dimensional input spaces. In the following, we
will first combat the latter problem and then
show that the other two points are subse-
quently easily dealt with.

2.1 EM-based Projection Regression

Despite being one of the most successful tools
in statistical data analysis, linear regression suf-
fers from large computational complexity and
numerical problems of matrix inversion in high
dimensional input spaces. Several methods
have been suggested to remedy this problem,
including principle component regression,
ridge regression, factor analysis, and partial
least squares regression, all of which can easily
be modified in the context of local linear mod-
els ([16]). Among these methods, one of the
most interesting is partial least squares regres-
sion (PLS) ([17]). In PLS, the input data is first
projected onto a one-dimensional projection in
input space, and subsequently a one-
dimensional regression is performed along this
direction. The projection direction is chosen to
be the vector of maximal correlation between
input and output data. If this algorithm is ap-
plied recursively using the residual error of the
previous projection as target for the next pro-
jection, surprisingly accurate and numerically
robust function approximation can be achieved
([18]). The number of adequate projection is
usually determined heuristically or by off-line
cross validation.

Using the idea of projection regression in
PLS as an inspiration, one can ask whether
there is an optimal projection direction to sim-
plify linear regression. The answer is easy: the
gradient of a linear function is the optimal
projection direction, and linear regression is the
way to obtain it—but, as mentioned above, this
method is too expensive and numerically brit-
tle. Using a probabilistic formulation of projec-

tion regression, however, we can derive a new
incremental algorithm for linear regression that
finds the optimal projection direction cheaply
without numerical problems.

For every data point x, let us introduce a
new vector valued variable z in linear regres-
sion such that

z x y zm m mi m
m

d

= =
=

∑β     where   
1

(3)

Thus, each coefficient of z can be interpreted as
the contribution that the corresponding x coef-
ficient has to the output y after x was projected
onto β. If for every data point x the correspond-
ing z were known, the entire linear regression
could be decomposed simply into n univariate
linear regressions, a process that is O(d), i.e.,
only of linear computational complexity in the
number of inputs d, compared to O(d3) of regu-
lar linear regression. Despite that the introduc-
tion of an unknown quantity z may look use-
less at the first glance, there exists an efficient
algorithm to estimate it statistically by means
of an Expectation-Maximization (EM) algo-
rithm ([19]). For this purpose, the learning ap-
proach needs to be reformulated as a maxi-
mum likelihood estimation problem where our
goal is to maximize:

log | log , |p p dy X y Z X Z( ) = ( )∫ (4)

i.e., an optimization function in which we inte-
grate our the unknown quantities Z, a matrix of
the same dimensionality and coefficient index-
ing as defined for X in the LWR algorithm
above. Such a problem formulation allows a
standard application of EM after assuming
normal distributions for all random variables,
i.e., z N xm m m z m~ , ,β ψ( )  and y N T

y~ ,1 z ψ( ) .
Omitting derivations due to space limitations,
the resulting iterative procedure for maximum
likelihood estimation of all unknown parame-
ters becomes the Probabilistic Partial Least
Squares (PPLS) regression algorithm outlined
below in (5). In this algorithm, we introduce ⋅
as the statistical expectation operator that is
taken with respect to the posterior distribution
p Z X y| ,( )  (e.g., see [20]). By iterating between

the E-step and M-step of (5) until the cost (4) is
approximately converged, exactly the same re-
sults for β can be obtained as in ordinary least
squares solutions.
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Probabilistic Partial Least Squares :
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Two properties of PPLS are remarkable.
First, one iteration of EM is computationally
linear in the number of inputs d and the algo-
rithms converges usually within a moderate
number of iterations—this allows PPLS to op-
erate in really high dimensional spaces (we
tested up to 100,000 inputs in preliminary
work). Second, the update equation for β in (5)
simply corresponds to univariate linear regres-
sion between each input dimension and the ex-
pected value of the corresponding coefficient of
z—exactly what we had hoped for at the be-
ginning of this section. As a last point, PPLS is
easily modified to become a fully Bayesian es-
timation technique that guards against overfit-
ting, and it is equally straightforward to in-
clude the weighting factor in (1) for spatially
localizing PPLS.

2.2 Learning The Distance Metric D

As we demonstrated in previous work
([21],[6]), local linear models fitted by least
squares allow deriving statistically robust
methods to adjust the coefficients of the dis-
tance metric D in (1) by means of on-line gradi-

ent descent techniques that mimic leave-one-
out crossvalidation:

Gradient descent update of :D
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The cost function in (7) was derived in ([6]). It
corresponds to a weighted mean squared error,
corrected by a term in the denominator that en-
sures good generalization properties of learn-
ing in the spirit of leave-one-out crossvalida-
tion. In high dimensions, D is usually assumed
to be a diagonal matrix to reduce computa-
tional complexity.

2.3 Incremental Updating

The batch updates of the preceding two sec-
tions can be reformulated as recursive update
equations where all sums over training data in
(5) is accumulated incrementally, usually by
employing a forgetting factor ([22]).

2.4 The Final Algorithm

 The above learning rules can be embedded in
an incremental learning system—Locally
Weighted Probabilistic Projection Regression
(LWPPR)—that automatically allocates new lo-
cally linear models as needed ([6]):

Initialize LWPPR with no receptive field (RF);
For every new training sample (x,y):
     For k=1 to #RF:
          calculate the activation from (1)
          update according to (5) and (7)
     end;
     If no linear model was activated by more
than wgen;
          create a new RF with c=x, D=Ddef
     end;
end;
In this pseudo-code algorithm, wgen is a thresh-
old that determines when to create a new re-
ceptive field, and Ddef is the initial (usually di-
agonal) distance metric.
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The prediction for a query point is then
formed as the weighted average of the predic-
tions of all local models:

ˆ
ˆ

,y
w y

w
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k q kk
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kk

K= =

=

∑
∑

1

1

(8)

3 Empirical Evaluations
In the following sections, we will provide sev-
eral examples of applying our learning meth-
ods to on-line learning with our humanoid ro-
bot (Figure 1).

3.1 Inverse Dynamics Learning

The goal of this learning task was to approxi-
mate the inverse dynamics model of our 30-
degree-of-freedom humanoid robot by on-line
learning while tracking a figure-8 pattern in
Cartesian space ([23]). The input data consisted
of 90 dimensions: 30 joint positions, velocities,
and accelerations. The goal of learning was to
approximate the appropriate feedforward
torque command of all hydraulic robot motor
in response to the input vector. The inverse
model was part of a computed torque control-
ler, distributed over 4 parallel processors in a
VME bus, running the real-time operating sys-
tem vxWorks ([24]).

The LWPPR models were trained on-line
while the robot performed a pseudo randomly
drifting figure-8 pattern in front of its body.
Lookup proceeded at 480Hz, while updating
the learning model was achieved at about
70Hz. At certain intervals, learning was
stopped and the robot attempted to draw a
planar figure-8 at 2Hz frequency for the entire
pattern. The quality of these drawing patterns
is illustrated in Figure 2.  In Figure 2a, x_des
denotes the desired figure-8 pattern, x_sim il-
lustrates the figure-8 performed by our robot
simulator that uses a perfect inverse dynamics
model (but not necessarily a perfect tracking
and numerical integration algorithm), x_param
is the performance of the estimated rigid body
dynamics model ([25]), and x_lwpr shows the
results of LWPPR. While the rigid body model
has the worst performance, LWPPR obtained
the results comparable to the simulator.

Figure 2b illustrates the speed of LWPPR learn-
ing. The x_nouff trace demonstrates the figure-
8 patterns performed without any inverse dy-
namics model, just using a low gain PD con-

troller. The other traces show how rapidly
LWPPR learned the figure-8 pattern during
training: they denote performance after 10, 20,
30, and 60 seconds of training. After 60 seconds,
the figure-8 is hardly distinguishable from the
desired trace.
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Figure 2: On-line earning of tracking a figure-8 with
LWPPR. a Comparison of learning controller with a perfect
simulation (sim) and a controller using an estimated rigid
body dynamics model (param), b) Progress of tracking per-
formance over 60 seconds of learning.

3.2 Inverse Kinematics Learning

Learning of inverse kinematics is useful when
the kinematic model of a robot is not accurately
available, when Cartesian information is pro-
vided in uncalibrated camera coordinates, or
when the computational complexity of analyti-
cal solutions becomes too high. For instance, in
our humanoid robot we observed that offsets in
sensor readings and inaccurate knowledge of
the exact kinematics of the robot can lead to
significant error accumulations for analytical
inverse kinematics computations, and that it is
hard to maintain an accurate calibration of the
active vision system. Instead of re-calibrating
the entire system frequently, we would rather
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employ a self-calibrating, i.e., learning ap-
proach. An additional appealing feature of
learning inverse kinematics is that it avoids
problems due to kinematic singularities—
learning works out of experienced data, and
such data is always physically correct and does
not demand impossible postures as can result
from an ill-conditioned matrix inversion.

We applied LWPPR to learning a model for
resolved motion rate control for inverse kine-
matics ([26]). A principled resolution of the
high level of redundancy can be achieved with
a simple trick: we use LWPPR to acquire the
direct kinematics x = f ( )θθ , and within each lo-
cal model also learn the inverse mapping
˙ ˙x → θθ . It can be shown that this spatially local-

ized inversion in velocity space gives a well-
defined solution to the inverse kinematics
problem ([27]), and that it is also possible to in-
clude a kinematic optimization criterion to bias
the local inverse solution to a particular solu-
tion ([26]).

Figure 3a shows the performance of inverse
kinematics learning for the right endeffector of
the robot after approximately 10 minutes of
training on pseudo-random sinusoidal arm
movement data. The figure-8 test pattern dem-
onstrates that the robot accomplished decent,
but not quite accurate performance. Training
the robot directly on the figure-8 test patter for
one more minute results in highly accurate
tracking (Figure 3b). The final experiment in
Figure 3c started with an untrained system,
and learn the inverse kinematics from scratch,
while performing the figure-eight task itself.
Figure 3c  shows the progression of the sys-
tem’s performance from the beginning of the
task to about 3 minutes into the learning. One
can see that the system initially starts out mak-
ing slow inaccurate movements. As it collects

data, however, it rapidly converges towards
the desired trajectory. Within a few more min-
utes of training on the task, the performance
approached that seen in Figure 3b.

3.3 Imitation Learning

We also applied LWPPR in the context of imita-
tion learning of point-to-point movements
([28]). For this purpose, we developed a novel
representation of movement plans in form of
nonlinear dynamical system theory:
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In these equations, the variable y denotes the
desired trajectory in joint space for our human-
oid, g denotes the goal state, the variable s cor-
responds to a timing variable, and the variable
v to a time varying scaling factor. Omitting the
details of the development of (9) due to space
limitation, the most important element to em-
phasize is the function f s v( , )  in the second
equation of (9): f s v( , )  is our function ap-
proximation system that is employed here to
change the attractor landscape of the dynami-
cal system: s is used to localize function ap-
proximation in time, while v is the input to the
local linear models. f s v( , )  acts thus as a time-
variant gain to the integration of y. The entire
dynamical system can be shown to be globally
convergent to the goal state g, and globally
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Figure 3: Inverse kinematics learning: a) performance of after being trained on data collected from pseudo-random
sinusoidal movement, b) performance after 60 seconds of additional training on the figure-8, c) time course of
learning.
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Lyapunov stable for most of the component
equations.

Given a joint-space representation of a
teacher’s movement, LWPPR can learn to imi-
tate this trajectory essentially in one-shot learn-
ing using as learning output ˙ ˙ /y y zdes demo y= −α .
The learning result is nonlinear attractor land-
scape that retains the spatiotemporal pattern of
the demonstration, but that can also be re-used
for targets g at different positions and for dif-

ferent movement speeds—this property is
guaranteed due to topological invariance of (9)
under a change of the goal. Figure 4 illustrates
learning movement imitation for a tennis fore-
hand. The teacher’s movement was recorded as
joint angle trajectories by a special exoskeleton.
A separate copy of the dynamic system in (9)
was instantiated for each joint angle and the
teacher’s movement was approximated with
LWPPR. The second column of Figure 4 show

 

 

 

 
Figure 4: Imitation learning of a tennis forehand. The left column shows the teacher’s movement, the right column the ro-

bot’s movement towards a visually observed tennis ball.
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the robot performance re-using the learned
movement to hit a tennis ball, i.e., the learned
movement was properly generalized to a novel
target.

4 Conclusions
We presented a statistical learning approach
for on-line learning of complex nonlinear func-
tions. The suggested system was demonstrated
to be useful in various complex learning task in
humanoid robotics. We are currently working
on Bayesian techniques to replace the gradient
descent part of our learning methods, and also
on inserting our learning approach in provably
stable adaptive control methods.
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