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Abstract

This paper studies and compares naturally and
arti�cially evolved neural networks controlling the
motion of an animal� the anguilliform swim�
ming of a lamprey� The swimming controller of
the lamprey� extensively studied and modeled by
Grillner and Ekeberg ��� �	� is reproduced� A
real number Genetic Algorithm is used to de�
velop alternative arti�cial controllers composed of
neurons similar to those of the biological model�
We examine the feasibility of using Genetic Al�
gorithms to evolve neural controllers and evaluate
the quality of the evolved networks by compar�
ing them with the biological controller� Results
show that arti�cial controllers can be obtained
with architectures other than the biological one�
and which� in some ways� are more e
cient�

� Introduction

Interactions between Neuroscience and Arti�cial Intel�
ligence �AI� are currently growing as inspirations from
Neuroscience become frequent in AI and models and
techniques from AI are increasingly used in Neuroscience�
Our research is particularly interested in neural loco�
motion controllers for autonomous agents which are bio�
logically inspired and how to develop controllers using
Evolutionary Algorithms�
Nature has developed a diversity of very eective mo�

tion controllers which are able to create the oscillatory
activity necessary for motion as well as to adapt� using
sensory information� to dynamic environments� These
controllers are generally distributed and present remark�
able robustness and �exibility� These interesting features
have led roboticists to create biologically inspired neural
locomotion controllers for robots or simulated agents ��	�
Models of walking controllers in stick insects have� for
instance� been used to control hexapod robots ��	�
In return� AI techniques can be used to give some

insights on Neuroscience measurements and give some
hints about the computation performed� In the case
of locomotion control� the local bending re�ex of the

leech has� for instance� been reproduced by a biologic�
ally plausible recurrent neural network optimised with
an adapted backpropagation algorithm ��	�

A recent AI technique to develop adapted controllers
is evolving neural con�gurations using an Evolutionary
Algorithm� This technique has been used successfully
to develop walking controllers for hexapod agents ��	 or
biped agents ��	� for instance�

This paper examines the lamprey�s swimming control�
ler which has been studied extensively by Grillner and his
colleagues ��	� The mathematical model of the biological
controller given in ��	 is reproduced� Arti�cial control�
lers are created by using a Genetic Algorithm �GA� to
evolve neural networks composed of neurons similar to
those of the biological model� There is a double motiv�
ation for evolving arti�cial solutions� The �rst one is
to study the alternative possibilities which Nature could
have chosen to obtain controllers with an adapted beha�
viour� the second one is to evaluate how good a GA is as
a tool for creating neural controllers for a speci�c task�
Comparing the new solutions with the biological model
will determine the quality of the evolved solutions�

� Biological Controller

The lamprey is a �sh without paired �ns which swims
by creating an undulation along its body� The corres�
ponding neural activity is created by a Central Pattern
Generator �CPG� situated in the spinal cord� The CPG
is composed of segments capable of generating oscillatory
signals which are coupled together in a way that propag�
ates waves of motoneuron activity from head to tail ��	�
Several mathematical models have been developed which
are able to reproduce the neural activity measured on
real lampreys ��� �	�

The mathematical model of the biological controller
given in ��	 is simulated� using MATLAB� The model
simulates two�dimensional swimming and is based on two
simpli�cations� Firstly� populations of similar real neur�
ons are represented by single neuron units� secondly the
output of a neuron unit is not spiking but corresponds
to the mean �ring frequency of the population �� ��� �	��
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The model presented here corresponds to that model ex�
cept that stretch sensitive edge cells �EC� are not in�
cluded� These cells are not necessary for the creation of
oscillations and play a role only when the lamprey swims
in unstable water where they coordinate the neural activ�
ity with actual movements of the body ��	�
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Figure �� Biological segmental network� A segmental net�
work is made of � neurons of � di�erent types �see text�� The
biological model in this paper corresponds to the model de�
scribed in �	
� except that edge cells �EC� are not included�
A dash means no connection�
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Table �� Biological connection weights� as given in �	
� A
row corresponds to the weights of the pre�synaptic connec�
tions� Excitatory and inhibitory connections are represented
by positive and negative weights respectively� Left and right
neurons are indicated by l and r�

Segmental oscillators �Figure �� are made of � neur�
ons of � dierent types� excitatory interneurons �EIN��
contralateral inhibitory interneurons �CCIN�� lateral in�
hibitory interneurons �LIN� and motoneurons �MN�� All
receive excitation from the brainstem �BS�� The out�
put of the motoneurons is connected to lateral muscles
and waves of motoneuron activity are transformed into
waves of muscular contraction and thus undulations of
the body� The connection weights between the neuron
units are given in Table �� The self�connections of the
EIN neurons express the mutual excitation which hap�
pens among the population of neurons represented by
the single EIN unit�

A neuron unit is a leaky integrator with a saturating
transfer function de�ned by three dierential equations�
The output u of such a neuron is calculated as follows�
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where �
 and �� represent the groups of pre�synaptic
excitatory and inhibitory neurons respectively� �
 and
�� are the delayed �reactions� to excitatory and inhib�
itory input and � represents the frequency adaptation
observed in some real neurons� The parameters of each
type of neuron are given in Table �� Neuron types have
dierent times of reaction� thresholds and frequency ad�
aptation� These parameters as well as the connection
weights of Table � have been de�ned so that the simula�
tion of the model �ts physiological observations ��	�

Neuron type �  �D � �A
EIN ���� ��� �� ms ��� ��� ms
CCIN ��	 ��� �� ms ��� ��� ms
LIN ��� ��	 	� ms ��� �
MN ��� ��� �� ms ��� �

Table �� Neuron parameters� as given in �	
� � is the
threshold�  the gain� �D the time constant of the dendritic
sums� � the coe�cient of frequency adaptation and �A� the
time constant of the frequency adaptation�

Oscillatory activity appears in segmental networks
when an adequate level of excitation is applied from the
brainstem� There are no oscillations if the excitation
level is too low� and� when the level is too high� the
neurons saturate after a few oscillations� In between�
the system oscillates with a frequency proportional to
the excitation� Our simulations� show that frequencies
between ��� Hz and ��� Hz can be obtained� which does
not cover the observed range on real lampreys completely
�between ����Hz and ��Hz ���	��� A typical oscillation
is shown in Figure �� The frequency of the oscillations
in the segmental networks directly determines the speed
of the �sh in the water� The ability to change frequency
is thus an important aspect of the model as it allows the
lamprey to control its speed and adapt it to the environ�
ment�

�The di�erential equations are solved using a fourth order
Runge�Kutta method with adaptive step size�

�It has been shown that voltage�sensitive N�Methyl�D�
Aspartate receptors play an important role in slow oscillations�����
As these are not included in this model� the lowest frequencies of
the biological range can not be reproduced�
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Figure �� Typical activity of the � neurons of the biological
segmental network�

A complete controller is composed of approximately
��� interconnected segments� Interconnections are ex�
tensions of the segmental connections to �up to ten�
neighbour segments� The extent of each connection is
given in ��	� Travelling waves of oscillations are created
due to an asymmetry of the extensions favouring the
caudal direction� Extra excitation on the �ve segments
closest to the head increases the lag between segments
and reduces the undulation wavelength� Wavelengths as
small as approximately ��� of a ����segment body can
be obtained� The most e
cient swimming is obtained
with undulations whose wavelength corresponds to the
length of the body� and indeed this is what is observed
in many �shes ��	� Interestingly� the frequency of the
oscillation and the wavelength of the undulation can be
changed nearly independently�

This model can also perform turning or even backward
swimming� Turning is obtained by exciting one side more
than the other over the whole spinal cord� which results
in higher amplitudes of signal going to the muscles of one
side� Backward swimming is possible by giving some ex�
tra excitation to the most caudal �rather than rostral�
segments� which causes the travelling wave to go back�
wards�

� Evolving controllers

Arti�cial controllers are developed using a GA� The de�
velopment of solutions is done in two stages� First seg�
mental oscillators are evolved� then complete control�
lers are created by evolving the interconnections between
�xed segmental networks� The GA encodes the con�
nectivity of potential solutions and solutions are evalu�
ated by simulating their neural activity over a �xed time
and rewarding speci�c behaviours� There is no mech�
anical simulation of the lamprey�s swimming� To eval�
uate controllers without mechanical simulation is pos�
sible� �rstly� because no sensory feedback is necessary
for the creation of oscillations and� secondly� because the
body and muscular structure of the lamprey are suf�

�ciently simple that good and bad controllers can be
distinguished by evaluating their neural activity� The
main features of controllers on which we will concentrate
are the possibilities of varying the frequency of oscilla�
tions and the wavelength of spatial undulations� The
frequency of oscillations in each segment directly determ�
ines the speed of swimming and therefore control of the
frequency of oscillations means control of speed� The
control of the wavelength of the undulation allows vari�
ation of the �type� of swimming in order to adapt it to the
environment and� for instance� to �nd the most e
cient
swimming for dierent external conditions�

��� Segmental oscillators

����� Genetic Algorithm implementation

The same basic GA is used for both design stages� Solu�
tions are encoded in �xed�length chromosomes made of
real number genes � ��� �	� Parents are chosen with a
rank�based probability for breeding� and children are cre�
ated either by a two�point crossover operator �probabil�
ity Prob Xover� or by simply copying the two parents
�probability � � Prob Xover�� Genes are mutated with
a probability Prob Mut and given a new value�
new value � old value Mut Range � rand
where rand is a random number � ������ ���	� If a new
value is outside the range ��� �	� it is set to the closest
limit� A selective pressure is created by keeping the size
of the population constant and rejecting the worst solu�
tions at each generation� The GA and the simulations
are implemented with MATLAB for this design stage�

����� Encoding Assumptions

Arti�cial segmental oscillators are created by evolving
the connectivity between neurons similar to the biolo�
gical model� The problem of evolving segmental oscillat�
ors is de�ned by several assumptions�

�� Only the connectivity �i�e� the weights of all the pos�
sible connections between neurons� is evolved�

�� The number of neurons is �xed to ��

�� The types of neurons �parameters of eq� �!�� are
�xed� There are two neurons of each type as in the
biological model��

�� Weights are bounded between two �xed values� one
negative� one positive�

�� Symmetry of the connections between left and right
neurons is imposed�

�Note that the names of the neuron types EIN� CCIN and LIN
describe the function of these neurons in the biological model and
this function may change in other con	gurations� We will keep
them only to describe the corresponding neuron parameters�

�



�� Segmental oscillators have no sensory feedback �no
edge cells and no mechanical simulation��

The weight bounds are chosen to include the biological
range of weights� The symmetry between left and right
neurons reduces the dimension of the search space by a
factor of ��
A segmental oscillator is represented by a chromosome

through a direct encoding of each connection weight into
a gene� a real number between � and �� A chromosome
is translated into a con�guration by linearly transform�
ing the gene�s value into a value between the two �xed
weight bounds and transforming the rescaled vector into
the matrix giving the weights of all the possible connec�
tions�

����� Fitness function

The evaluation of the �tness of a segmental network is
based on qualitative features of the neural activity of
motoneurons� Only these neurons are considered as their
signals determine the muscular activity along the body�
An evaluation consists of �xed�length simulations with
asymmetric initial conditions��
A �tness function is developed which rewards the fol�

lowing behaviour for the motoneurons activity�

�� regular oscillations�

�� periods corresponding to an alternation of an active
and a resting phase� with a single peak of activity per
period�

�� opposite behaviour between left and right motoneur�
ons�

�� monotonic relation between excitation and oscillation
frequency�

�� large range of frequencies�

As already mentioned� controllers with a large range of
frequencies are rewarded because the frequency of oscil�
lations determines the speed of swimming and therefore
large ranges of frequency oer more �exibility in the con�
trol of speed� Note that because the activity in the in�
terneurons �neurons other than the motoneurons� is not
considered� oscillators with fewer than � active neurons
can be developed�
The mathematical de�nition of the �tness is as follows�

�tness �

��
�

�t oscil � ��  freq range�
if �t oscil � ���

�t oscil otherwise

where

�t oscil � �t� � �t� � �t� � ��������� �	

�All the left neurons of a segment are excited�

The function �t oscil rewards the three �rst points of
the desired behaviour of a solution� with the functions
�t�� �t� and �t� rewarding respectively varying out�
puts� regularity and opposite behaviour between left and
right motoneurons� These three functions are bounded
between ���� �bad behaviour� and � �good behaviour��
and vary linearly between these values for one or sev�
eral variables� The bounds for each variable� determining
when the value of the variable is bad� good or in between�
have been determined by hand on �� examples of dier�
ent behaviours from initial experiments� It is possible
to �x these bounds such that �t oscil clearly makes the
dierence between interesting solutions and the others�
A limit of ��� is thus determined above which a solution
is certain to oscillate regularly with opposite behaviour
between left and right motoneurons	�
The value freq range corresponds to the range of fre�

quency �in Hz� in which the solutions oscillate regularly
��t oscil higher than ���� with a frequency increasing
with the excitation level� An evaluation consists thus of
a �rst simulation at a �xed level of excitation �equal to ��
which determines �t oscil� followed� if �t oscil is higher
than ���� by a set of simulations at dierent excitation
levels ���� steps� in order to determine freq range�

����� Results

As �rst tests showed that there existed many dierent
solutions with similar �tness values� three experiments
were done with dierent encodings in order to study dif�
ferent neural con�gurations� encoding all the possible
connections between the � neurons� encoding all the
possible connections except feedback from motoneurons�
and encoding only the biological connections� For each
experiment� �ve evolutions are performed with dierent
initial populations of ��� chromosomes� The number of
generations for each experiment is chosen so that fre�
quency ranges higher than �Hz are reached in all runs�
An elite population is then created� made of the �� best
solutions of each initial evolution� This new population is
then further evolved until frequency ranges higher than
��Hz are reached� The basic GA parameters for each
experiment are given in Table ��

Experiment�� fully connected network� All the
possible connections between the � neurons and the
brainstem �without feedback from neurons to the brain�
stem� are encoded� resulting in �� possible connections��
Due to the left"right symmetry assumption� a chromo�
some has thus �� genes� This encoding allows feedback

�On the 
� examples of neural activities� �� correspond to inter�
esting behaviours� With the chosen 	xed bounds of �t�� �t� and
�t�� all the good behaviours have a �t oscil value higher than ���
and all the others have a value lower than ���� with most lower
than ����

�Each neuron can have a self�connection�

�



Population size ���
Number of children ��
Weight bounds ��	��	

Crossover probability ��	
Mutation probability ���
Mutation range ���

Table �� GA parameters for evolving segmental oscillators

from the motoneurons to the other neurons� which is not
the case in the biological model where the only output
connection from motoneurons goes to muscles�

As mentioned� the evolutions all started with dierent
initial populations� Within these ��� randomly gener�
ated con�gurations� only � produce varying outputs �of
which one could be a potential controller� i�e� a solu�
tion with regular asymmetric oscillations and variable
frequency�� This means that approximately �� of the
���dimension variable space sampled here corresponds
to con�gurations with varying outputs among which the
GA must �nd interesting controllers�

After ��� generations� all evolutions successfully con�
verged to potential controllers� which produce regular os�
cillations� opposite behaviour between left and right mo�
toneurons and variable frequency� There exists a large di�
versity of controller con�gurations and behaviours within
the �nal populations� Con�gurations vary in terms of
weight values� connection types and number of active
neurons� none is similar to the biological con�guration
nor to the biological con�guration with a swap of func�
tion between the neurons types� The number of neurons
participating in the oscillations varies between ��� and ��
The signal shapes of the neurons other than motoneur�
ons �the interneurons� can be very dierent� with for in�
stance� signals that have more than one peak per period�
or that oscillate without resting phases�
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Figure �� Four�neuron oscillator� Variations �broken lines�
of a ��neuron structure �� neurons A and � neurons B� found
in several evolved segmental oscillators� Only the input con�
nections of the � left neurons are given� the others can be
found by symmetry�

The frequency ranges of the best solutions of each evol�
ution after ��� generations lay between ��� Hz and ���
Hz� These results are summarised in Table �� These
�ve best solutions are able to create the oscillations with
fewer than � neurons �either � or � neurons� for most
of the frequencies in the frequency range� Some neur�
ons are active at low frequencies and do not participate
�they stay at zero� in the oscillations at higher frequen�
cies� These neurons can be removed and the solutions
still oscillate at most of the frequencies except the low�
est� Interestingly� the resulting ��neuron con�gurations
of runs �� � and � present a similar structure �when the
left"right symmetry is taken in account and the type of
neuron is ignored�� having the same type of connections�
excitatory or inhibitory� for all the connections� except
one for the solution of run�� These runs seem thus to
have converged to solutions built on a similar ��neuron
oscillator structure �Figure ���

The best solution after evolving the elite population
for ��� generations� has a very large frequency range�
����Hz �from ���Hz to ����Hz�� which is thus more than
� times larger then the frequency range of the biological
model ����Hz�� The behaviour and the connectivity of
that solution are given in Figure � and Table ��
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Figure �� Fully connected network� Simulation of the best
solution of exp��� Frequency����Hz� At higher frequencies�
only the MN and CCIN neurons are active�

EINl CCINl LINl MNl EINr CCINr LINr MNr BS

EINl ���� ��� ���� 	�� ���
 ���� ���� 
�� ���


CCINl ���� ���
 ���� ���� ���� ���
 ��
 ��� ����

LINl ��� ��� �� 	�� ���� 	�� ���� ��� ��


MNL ���� �� ���� ���� ��� ��� 
�� ���
 ��

EINr ���
 ���� ���� 
�� ���� ��� ���� 	�� ���


CCINr ���� ���
 ��
 ��� ���� ���
 ���� ���� ����

LINr ���� 	�� ���� ��� ��� ��� �� 	�� ��


MNr ��� ��� 
�� ���
 ���� �� ���� ���� ��

Table �� Fully connected network� Connection weights of
the best solution of exp��� A row corresponds to the weights
of the pre�synaptic connections� This solution is based on a
four�neuron oscillator made of MN and CCIN neurons�

The oscillations of this solution are mainly due to the
interaction between CCIN neurons and motoneurons� By

�



removing the other neurons� it is possible to create a solu�
tion which presents identical behaviour� except at low
frequencies� and which oscillates at frequencies between
���Hz and ����Hz�� Note that such a controller with
only � neurons is only possible because of the feedback
from motoneurons� This ��neuron structure is identical
to that of the best solution of run� in terms of connection
types �excitatory or inhibitory��

Experiment�� fully connected network without

MN feedback� Here all the possible connections are
encoded except that feedback from motoneurons to the
other neurons is not allowed� This situation is thus closer
to the biological model in which there is no such feed�
back and in which the motoneurons do not participate
in the creation of oscillations� �� connections are thus
encoded in ���gene chromosomes� Within the initial ���
randomly generated con�gurations� only � produce vary�
ing outputs �less than �� of the ���dimension variable
space� of which none could be a potential controller�
All evolutions� except one� successfully converged�

within ��� generations� to potential controllers� which
produce regular oscillations� opposite behaviour between
left and right motoneurons and variable frequency� The
failed evolution converged prematurely to a local max�
imum corresponding to a non�oscillating solution and did
not manage to improve it within ��� generations� Again
a diversity of neural con�gurations has been found�
The frequency ranges of the best solutions of the four

other evolutions after ��� generations lay between ����
Hz and ���� Hz �See summary in Table ��� The oscil�
lations of the best solution of run � are created by the
EIN and CCIN neurons �LIN neurons stay inactive� at
all frequencies�� The corresponding ��neuron structure
is similar in terms of connection types �excitatory or in�
hibitory� to that underlying the oscillations of the best
solutions of run� and the evolved elite population of the
�rst experiment �Figure ���
The elite population is evolved for �� extra genera�

tions� A best solution is thus created whose frequency
range is ����Hz �from ���Hz to ����Hz� which is more
than � times larger then the frequency range of the bio�
logical model� The behaviour and the connectivity of
that solution are given in Figure � and Table �� The
complete controllers evolved in the second design stage
will be based on this segmental network�

Experiment�� biological connections� In this ex�
periment only the biological connections are encoded
�the others are set to zero� and the bounds are �xed

�This shows that� in these fully connected solutions� some con�
nections or even some neurons are not necessary for creating oscil�
lations� One possibility to create solutions with only the necessary
connections �results not shown� is to add a mutation which ran�
domly sets some connections to zero and to add a factor to the
	tness function rewarding solutions with reduced connectivity�
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Figure �� Fully connected network without MN feedback�
Simulation of the best solution of exp��� Frequency�	��Hz�

EINl CCINl LINl EINr CCINr LINr BS
EINl ���	 �	�� ���� ��� ���� ���� ���
CCINl ��� ��� ���� ���	 ��� �	�� ����
LINl ���� ��� ��� �	�� ���� ���� ����
MNL ���� �	�� ���� ���� ���� ��� ����
EINr ��� ���� ���� ���	 �	�� ���� ���
CCINr ���	 ��� �	�� ��� ��� ���� ����
LINr �	�� ���� ���� ���� ��� ��� ����
MNr ���� ���� ��� ���� �	�� ���� ����

Table �� Fully connected network without MN feedback�
Connection weights of the best solution of exp��� A row cor�
responds to the weights of the pre�synaptic connections�

such that the types of connection� excitatory or inhibit�
ory� are identical to the biological model� The �� connec�
tions are encoded in ���gene chromosomes� Within the
initial ��� randomly generated con�gurations� �� ����
of the sampled variable space� produce varying outputs
of which �� could be potential controllers �regular asym�
metric oscillations and variable frequency�� Having only
the biological connections and �xing their type� excit�
atory or inhibitory� thus restricts the variable space to
a much more favourable search space than having the
complete connectivity encoded�

Within only �� generations� all evolutions converged
to interesting solutions� The shapes of the signals are
very similar to those of the biological simulations� ex�
cept for their amplitudes� The frequency range of the
best solutions lay between ���Hz and ����Hz� This means
that the range of frequencies of the biological model can
be improved by changing the values of its connections
a little and using a �tness function which optimises the
frequency range� A general observation is that this im�
provement is obtained by increasing the strengths of the
connections� Interestingly� the best solutions have all
very similar weights for the inhibitory connections and
have converged to a common underlying inhibitory struc�
ture�

After evolving the elite population for �� extra gener�
ations� a best solution is created �Figure � and Table ��
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Figure �� Biological connections� Simulation of the best solu�
tion of exp��� Frequency����Hz�

EINl CCINl LINl EINr CCINr LINr BS
EINl ��� � � � ���	 � ���
CCINl ��	 � ���� � ���� � �	��
LINl ���	 � � � ���� � ���	
MNL ���� � � � ���� � ����
EINr � ���	 � ��� � � ���
CCINr � ���� � ��	 � ���� �	��
LINr � ���� � ���	 � � ���	
MNr � ���� � ���� � � ����

Table �� Biological connections� Connection weights of the
best solution of exp��� A row corresponds to the weights of
the pre�synaptic connections� The runs � to 	 converged to
solutions whose inhibitory weights are very similar to this
solution� There seems to be a common underlying inhibitory
structure which optimises the frequency range�

whose frequency range is ����Hz �from ���Hz to ����Hz��
which is approximately three times the range of the bio�
logical model and covers better the range of frequency
observed in real lampreys� from ����Hz to ��Hz ap�
proximately� As observed before� the connections are
stronger than in the biological model �absolute value of
the weights on average ��� larger than the biological
values��

Note that the weights of the biological model �in ��	�
have been set by hand in order to �t the biological data
�Ekeberg� personal communication�� As the model is
based on two important simpli�cations �a whole pop�
ulation of neurons is represented by one mathematical
neuron unit and the output of a neuron unit is not a
spiking action potential but the mean �ring frequency��
the weights of the biological model have no biological
meaning except for showing that the model is able to
reproduce the observed physiological behaviour of the
CPG� Results shown here may give some insights into
the strengths of the connections relative to each other
in order to create oscillations which cover a range of fre�
quencies which is closer to that observed in real lampreys�

Exp� Run N� of Range from to Not oscil�
gen� in Hz �Hz� �Hz�

� � ��� ��� 	�	 ���� EIN�LIN
� ��� ��� ��� ���� EIN�CCIN
� ��� ��� ��� ��	 EIN�CCIN
� ��� ��� ��� ���� CCIN
	 ��� ��� ��� ���� CCIN
elite �	� ���� ��� ���� EIN�LIN

� � �	� ���� ��� �	�	 �
� �	� � � � �
� �	� ���� ��� ���� �
� �	� ���� ��� ���� �
	 �	� ���	 ��	 ���� LIN
elite �� ���� ��� ���� �

� � 	� ���� ��� ���� �
� 	� ���� ��� ���� �
� 	� ��	 ��� ���	 �
� 	� ��� ��� ���� �
	 	� ��� ��� ���� �
elite 	� ���� ��� ���� �

Table �� Evolved segmental networks� summary of results�
This table gives the range of frequency of the solutions with
highest �tness value of each evolution� The neurons which
do not oscillate for some of the excitation levels �usually the
highest� are indicated�

��� Complete controllers

Multi�segmental controllers are developed by evolving
the interconnections between �xed segmental oscillat�
ors� Two preliminary evolutions are realised� one with an
evolved segmental network and one with the segmental
network of the biological model� The �rst evolution
will create a complete arti�cial controller� The evolved
segmental network with the largest frequency range is
chosen �best solution of experiment ��� The aim of the
second evolution is to study the interconnectivity of the
biological model� Because the physiological interconnec�
tions are not perfectly known ��	� evolving the intercon�
nections of the biological model may show whether there
are several possibilities for interconnecting the biological
segmental networks and creating travelling waves�

����� Genetic Algorithm implementation

The same basic GA as in the segmental oscillator design
stage is used here� except that genes are transformed
into integers representing the extent of an interconnec�
tion and that the GA and the simulations are implemen�
ted in C code�

����� Encoding assumptions

As in the biological model� segmental networks are in�
terconnected through extensions of connections within a
segmental network to neighbour segments� This means
that a neuron which is connected to �rather� whose out�
put is sent to� another neuron in one segment� can also
have extensions to the corresponding neuron in neigh�
bouring segments� The extent of these interconnections
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varies with each segmental connection� A connection
weight is rescaled by dividing the weight of the connec�
tion in the segmental network by the number of neigh�
bour segments it receives input from��
The encoding of a complete controller is based on the

following assumptions�

�� The weights of the segmental network are �xed� ex�
cept for the rescaling mentioned above�

�� Only the extents �in the rostral and caudal directions�
of the interconnections are evolved�

�� These extents vary between zero and a �xed limit�

�� Symmetry of the interconnections between left and
right neurons is imposed�

A complete controller is decoded from a chromosome
by transforming and rounding a gene�s value into an
integer between � and the �xed maximum extent and
transforming the resulting vector into the two matrixes
giving the extent of each segmental connection in the
rostral and caudal directions� The maximum extension
is chosen to permit the maximum biological extension
��� segments��

����� Fitness function

As for the development for segmental oscillators� the
evaluation of the �tness function is based on qualitat�
ive features of the neural activity of motoneurons�
We would like the complete controller to be such that

�� each segment oscillates regularly�

�� waves of neural activity propagate from head to tail�

�� the wavelength of the undulation can be varied by
changing the amount of extra excitation on the seg�
ments closest to the head�

An evaluation consists of two simulations of a ����
segment controller with two dierent amounts of extra
excitation on the �ve �rst segments� �� and ���� of the
level of excitation of the other segments �excitation equal
to ����� The �tness is calculated as follows�

�tness �

����
���

oscil behav� ��  Lag�����	 � Lag���	�
if oscil behav � ���
and both Lag�	 � �

oscil behav otherwise

where oscil behav is calculated by measuring �t oscil in
segments ��������������� for both evaluations �with and
without extra excitation� and taking the minimum meas�
ured value� The lag values correspond to the lag per

�This rescaling compensates the weights for the neurons in the
	rst and last segments which receive less input because they have
fewer rostral and caudal extensions respectively�

segment relative to the period of oscillation� in percent
�values typically vary between �� and ������ Note that
the range of lags is not explicitly rewarded� but only the
range between two �xed levels of extra excitation�

����� Results

The GA parameters of both experiments are given in
Table �� The evolutions of each experiment are stopped
when wavelength ranges larger than that of the biological
model are reached�

Population size ��
Number of children �
Extensions bounds �����

Crossover probability ���
Mutation probability ���
Mutation range ���

Table �� GA parameters for evolving complete controllers

Complete controller with evolved segmental net�

work A complete arti�cial controller is created by
evolving the interconnections between an evolved seg�
mental network� The best solution of experiment �
�Table ��� the solution with the largest frequency range of
the three experiments� is chosen� As this segmental net�
work has �� connections between the � neurons� the di�
mension of the search space� for both rostral and caudal
extensions is ���
An evolution of a population of �� chromosomes is

realised for �� generations� Within the initial randomly
generated population� �� of the �� con�gurations have
regular oscillations in all segments for both levels of ex�
tra excitation showing that such a segmental network
can be interconnected in dierent ways and still oscillate
regularly� However� most of these solutions present only
very small lags� some of them going from the tail to the
head� Others create travelling waves whose wavelength
is not changed by the level of extra excitation� Only six
solutions have a reasonable range of lags per segment
�higher than ���� of the period��
After �� generations only� the best solutions have

ranges of lags per segment up to ���� of the period of
oscillation� which is a little bit larger than the range of
the biological model� All the solutions except one have
extensions favouring the caudal direction on average� as
is the case for the biological model� The best solution
�Table �� has lags per segment varying almost linearly
with the amount of extra excitation on the �rst seg�
ments and lying between �����no extra excitation� and

	There are 
� possible extensions in both directions� and these
are encoded in 
��gene chromosomes because of the symmetry
assumption�
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��������� extra excitation� of the period� Wavelengths
as small as ��� of a ����segment body can thus be ob�
tained� The shortest wavelength of the biological model
is approximately ��� of the body length� Figure � shows
an example of the neural activity of the best evolved con�
troller�

EINl CCINl LINl EINr CCINr LINr
EINl ���� ��� ��� ���� ��� ���
CCINL ���	 ��� ��� ���� ��� ���
LINl ��� ���� ��� ���	 ���� ����
MNl ���� ���� ��� ��� ����� ���
EINr ���� ��� ��� ���� ��� ���
CCINr ���� ��� ��� ���	 ��� ���
LINr ���	 ���� ���� ��� ���� ���
MNr ��� ����� ��� ���� ���� ���

Table �� Complete evolved controller� rostral�caudal exten�
sions of the best solution� There is an average asymmetry of
the interconnections favouring the caudal direction�
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Figure �� Complete evolved controller� Simulation of the
best solution� A snapshot of the neural activity in a ����
segment body ���� neurons� is represented� A wave of neural
activity� and therefore an undulation of the body� is created
because of time lags between each segment� As in the bio�
logical model� these lags are due to the extra excitation on
the �ve �rst segments and to the average asymmetry of the
interconnections favouring the caudal direction� The body
represented here is simply a set of trapezia whose parallel
lengths are inversely proportional to the signal of the left and
right motoneurons of each segment�

This preliminary experiment has shown that it is pos�
sible to evolve complete arti�cial controllers using a GA�
The e
ciency of swimming with this controller should
be checked with a mechanical simulation of the body�
Initial tests show that this arti�cial model is able to in�
duce turning when one side of the spinal cord is more
excited than the other� leading to dierent amplitudes of
motoneuron signal� as with the biological model�

Complete controller with biological segmental

network The extensions of the �� connections between
the � neurons of the biological segmental network are
encoded into a ���gene chromosome� An evolution of a
population of �� chromosomes is realised for �� genera�
tions�

Again� there seem to be many possibilities for intercon�
necting the biological segmental network which result in
regular oscillations in all segments� After �� generations
the population evolved to solutions with ranges of lags
per segment similar to the biological model� The solu�
tions all present an average asymmetry of interconnec�
tions favouring the caudal direction� There is a variety of
dierent solutions among the �nal population� but none
is similar to the complete biological controller� mainly
because they have asymmetric extension for all connec�
tions� not only the connections going from the CCIN
neurons as in the biological model �see ��	��

In summary� there are several possibilities for intercon�
necting the segmental network to obtain travelling waves
with variable wavelengths for similar wavelength ranges�
The interconnectivity of the biological model is only one
of them�

� Discussion

We have shown that a GA can be successfully used to
develop arti�cial swimming controllers� in a relatively
limited number of generations� GAs have thus proved to
be an interesting design technique�

A �rst observation is that there exist many possible
solutions other than just variations of the biological con�
troller� Potential segmental oscillators vary in terms
of weight values� connection types and even number of
active neurons� This results in dierent kind of be�
haviours which have in common that the motoneurons
present regular oscillations with asymmetric behaviour�
but show dierences in the activity of the other neurons
�the interneurons�� with dierent sequences of activity
and signal shapes� The EIN� CCIN and LIN neurons
have thus taken other functions than in the biological
model where they were respectively excitatory interneur�
ons� contralateral inhibitory interneurons and lateral in�
hibitory interneurons� None of the evolved solutions cor�
responds simply to the biological con�guration with a
swap of function between the neuron types� The only
common structure which has been found in several solu�
tions is the ��neuron oscillator mentioned above �Fig�
ure ��� Preliminary results have also shown that there
exists a variety of ways in which segmental oscillators can
be interconnected in order to form complete controllers�
The variety of dierent potential solutions was also ob�
served for the leech bending re�ex by Lockery who found
that many dierent networks� with dierent sets of con�
nections� could produce a physiologically accurate local
bending input�output function ��	�
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The evolved controllers can be considered as more ef�
�cient in terms of frequency range than the biological
model� as solutions have been found with frequency
ranges several times larger than the frequency range
of the biological model� and with the same range of
wavelengths for the undulation� We have concentrated
on the ability to vary the frequency of the oscillations
and on large frequency ranges� because the frequency de�
termines the speed of swimming and a large range of fre�
quency means a greater �exibility of the controller� How�
ever� there is probably an upper limit for the frequency at
which muscles can contract and mechanical simulations
should be made to determine which highest frequencies
can actually be performed� The upper limit observed for
swimming lampreys is approximately ��Hz���
The �tness function could be extended in order to in�

clude aspects we have chosen not to consider in this �rst
approach� such as the relation between the excitation
level and the amplitude of the motoneuron signals� the
shape of these signals� the inclusion of sensory feedback�
The next step should in fact evaluate the mechanical be�
haviour rather than the neural behaviour in order to re�
ward a controller by directly rewarding the eectiveness
of swimming�
Our principal interest is to de�ne a methodology

for developing locomotion controllers for autonomous
agents� But can this research be useful for Neuroscience#
The results presented here are probably of limited in�
terest for neuroscientists and the main points we showed
are that a variety of potential solutions exists and that
the frequency range of the biological model can be op�
timized by changing the weights of the connections of
that model� resulting in a better coverage of the ob�
served physiologically frequency range� But we believe
that GAs can prove to be very useful in helping neur�
oscientists to model a system� by including knowledge
from physiological measurements as constraints on the
encoding and the �tness functions� and using a GA to
determine unknown variables� The experiment in which
we �x the biological types of connection and evolve the
connection weights is an example of such a methodology�

� Conclusion

This paper has examined the swimming controller of
lampreys and developed alternative arti�cial solutions
using a real number Genetic Algorithm� Arti�cial con�
trollers composed of neurons similar to those of Ekeberg�s
biological model ��	 have been created in two stages�
Many dierent neural con�gurations for potential con�
trollers have been shown to exist� the biological net�
work is only one of them� Arti�cial controllers have been
created which are more e
cient� in terms of frequency
range� than the biological model� with frequency ranges

�
It is not clear if this limit is due to neural or mechanical
limitations�

up to �ve times larger� We have also shown that the
biological weights can be modi�ed in order to increase
the frequency range of the biological model and better
match the physiological measurements� GAs have proved
to be an interesting tool for developing adapted arti�cial
controllers and for optimising the biological network�
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