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Abstract

This paper studies and compares naturally and
artificially evolved neural networks controlling the
motion of an animal: the anguilliform swim-
ming of a lamprey. The swimming controller of
the lamprey, extensively studied and modeled by
Grillner and Ekeberg [8, 5], is reproduced. A
real number Genetic Algorithm is used to de-
velop alternative artificial controllers composed of
neurons similar to those of the biological model.
We examine the feasibility of using Genetic Al-
gorithms to evolve neural controllers and evaluate
the quality of the evolved networks by compar-
ing them with the biological controller. Results
show that artificial controllers can be obtained
with architectures other than the biological one,
and which, in some ways, are more efficient.

1 Introduction

Interactions between Neuroscience and Artificial Intel-
ligence (AI) are currently growing as inspirations from
Neuroscience become frequent in AI and models and
techniques from AT are increasingly used in Neuroscience.
Our research is particularly interested in neural loco-
motion controllers for autonomous agents which are bio-
logically inspired and how to develop controllers using
Evolutionary Algorithms.

Nature has developed a diversity of very effective mo-
tion controllers which are able to create the oscillatory
activity necessary for motion as well as to adapt, using
sensory information, to dynamic environments. These
controllers are generally distributed and present remark-
able robustness and flexibility. These interesting features
have led roboticists to create biologically inspired neural
locomotion controllers for robots or simulated agents [1].
Models of walking controllers in stick insects have, for
instance, been used to control hexapod robots [3].

In return, AI techniques can be used to give some
insights on Neuroscience measurements and give some
hints about the computation performed. In the case
of locomotion control, the local bending reflex of the

leech has, for instance, been reproduced by a biologic-
ally plausible recurrent neural network optimised with
an adapted backpropagation algorithm [9].

A recent Al technique to develop adapted controllers
is evolving neural configurations using an Evolutionary
Algorithm. This technique has been used successfully
to develop walking controllers for hexapod agents [2] or
biped agents [4], for instance.

This paper examines the lamprey’s swimming control-
ler which has been studied extensively by Grillner and his
colleagues [8]. The mathematical model of the biological
controller given in [5] is reproduced. Artificial control-
lers are created by using a Genetic Algorithm (GA) to
evolve neural networks composed of neurons similar to
those of the biological model. There is a double motiv-
ation for evolving artificial solutions. The first one is
to study the alternative possibilities which Nature could
have chosen to obtain controllers with an adapted beha-
viour, the second one is to evaluate how good a GA is as
a tool for creating neural controllers for a specific task.
Comparing the new solutions with the biological model
will determine the quality of the evolved solutions.

2 Biological Controller

The lamprey is a fish without paired fins which swims
by creating an undulation along its body. The corres-
ponding neural activity is created by a Central Pattern
Generator (CPQG) situated in the spinal cord. The CPG
is composed of segments capable of generating oscillatory
signals which are coupled together in a way that propag-
ates waves of motoneuron activity from head to tail [8].
Several mathematical models have been developed which
are able to reproduce the neural activity measured on
real lampreys [8, 5].

The mathematical model of the biological controller
given in [5] is simulated, using MATLAB. The model
simulates two-dimensional swimming and is based on two
simplifications. Firstly, populations of similar real neur-
ons are represented by single neuron units; secondly the
output of a neuron unit is not spiking but corresponds
to the mean firing frequency of the population (€ [0, 1]).
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The model presented here corresponds to that model ex-
cept that stretch sensitive edge cells (EC) are not in-
cluded. These cells are not necessary for the creation of
oscillations and play a role only when the lamprey swims
in unstable water where they coordinate the neural activ-
ity with actual movements of the body [6].
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Figure 1: Biological segmental network. A segmental net-
work is made of 8 neurons of 4 different types (see text). The
biological model in this paper corresponds to the model de-
scribed in [5], except that edge cells (EC) are not included.
A dash means no connection.

EINI  CCINI LINI EINr CCINr LINr BS
EINI 0.4 - - - -2.0 - 2.0
CCINI 3.0 - -1.0 - -2.0 - 7.0
LINI 13.0 - - - -1.0 - 5.0
MNI1 1.0 - - - -2.0 - 5.0
EINr - -2.0 - 0.4 - - 2.0
CCINr - -2.0 - 3.0 - -1.0 7.0
LINr - -1.0 - 13.0 - - 5.0
MNr - -2.0 - 1.0 - - 5.0

Table 1: Biological connection weights, as given in [5]. A
row corresponds to the weights of the pre-synaptic connec-
tions. Excitatory and inhibitory connections are represented
by positive and negative weights respectively. Left and right
neurons are indicated by [ and r.

Segmental oscillators (Figure 1) are made of 8 neur-
ons of 4 different types: excitatory interneurons (EIN),
contralateral inhibitory interneurons (CCIN), lateral in-
hibitory interneurons (LIN) and motoneurons (MN). All
receive excitation from the brainstem (BS). The out-
put of the motoneurons is connected to lateral muscles
and waves of motoneuron activity are transformed into
waves of muscular contraction and thus undulations of
the body. The connection weights between the neuron
units are given in Table 1. The self-connections of the
EIN neurons express the mutual excitation which hap-
pens among the population of neurons represented by
the single EIN unit.

A neuron unit is a leaky integrator with a saturating
transfer function defined by three differential equations.
The output u of such a neuron is calculated as follows:

£ = (Y wwi—&) 1)
™D lG\IJ+
. 1
& = —( uw; —§_) (2)
™ iezq;_
b = %(u _9) 3)
u = { 1—exp{(® - &)= —pd (u> 0)(4)
0 (u <0)

where ¥, and U_ represent the groups of pre-synaptic
excitatory and inhibitory neurons respectively, &, and
& are the delayed ‘reactions’ to excitatory and inhib-
itory input and ¥ represents the frequency adaptation
observed in some real neurons. The parameters of each
type of neuron are given in Table 2. Neuron types have
different times of reaction, thresholds and frequency ad-
aptation. These parameters as well as the connection
weights of Table 1 have been defined so that the simula-
tion of the model fits physiological observations [5].

Neuron type © r D w TA
EIN -0.2 1.8 30ms 0.3 400 ms
CCIN 05 1.0 20ms 0.3 200 ms
LIN 80 0.5 50ms 0.0 -
MN 0.1 0.3 20 ms 0.0 -
Table 2: Neuron parameters, as given in [5]. © is the

threshold, I' the gain, 7p the time constant of the dendritic
sums, p the coefficient of frequency adaptation and 74, the
time constant of the frequency adaptation.

Oscillatory activity appears in segmental networks
when an adequate level of excitation is applied from the
brainstem. There are no oscillations if the excitation
level is too low, and, when the level is too high, the
neurons saturate after a few oscillations. In between,
the system oscillates with a frequency proportional to
the excitation. Our simulations' show that frequencies
between 1.7 Hz and 5.6 Hz can be obtained, which does
not cover the observed range on real lampreys completely
(between 0.25Hz and 10Hz [10]?). A typical oscillation
is shown in Figure 2. The frequency of the oscillations
in the segmental networks directly determines the speed
of the fish in the water. The ability to change frequency
is thus an important aspect of the model as it allows the
lamprey to control its speed and adapt it to the environ-
ment.

IThe differential equations are solved using a fourth order
Runge-Kutta method with adaptive step size.

2Tt has been shown that voltage-sensitive N-Methyl-D-
Aspartate receptors play an important role in slow oscillations[10].
As these are not included in this model, the lowest frequencies of
the biological range can not be reproduced.
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Figure 2: Typical activity of the 8 neurons of the biological
segmental network.

A complete controller is composed of approximately
100 interconnected segments. Interconnections are ex-
tensions of the segmental connections to (up to ten)
neighbour segments. The extent of each connection is
given in [5]. Travelling waves of oscillations are created
due to an asymmetry of the extensions favouring the
caudal direction. Extra excitation on the five segments
closest to the head increases the lag between segments
and reduces the undulation wavelength. Wavelengths as
small as approximately 50% of a 100-segment body can
be obtained. The most efficient swimming is obtained
with undulations whose wavelength corresponds to the
length of the body, and indeed this is what is observed
in many fishes [7]. Interestingly, the frequency of the
oscillation and the wavelength of the undulation can be
changed nearly independently.

This model can also perform turning or even backward
swimming. Turning is obtained by exciting one side more
than the other over the whole spinal cord, which results
in higher amplitudes of signal going to the muscles of one
side. Backward swimming is possible by giving some ex-
tra excitation to the most caudal (rather than rostral)
segments, which causes the travelling wave to go back-
wards.

3 Evolving controllers

Artificial controllers are developed using a GA. The de-
velopment of solutions is done in two stages. First seg-
mental oscillators are evolved, then complete control-
lers are created by evolving the interconnections between
fixed segmental networks. The GA encodes the con-
nectivity of potential solutions and solutions are evalu-
ated by simulating their neural activity over a fixed time
and rewarding specific behaviours. There is no mech-
anical simulation of the lamprey’s swimming. To eval-
uate controllers without mechanical simulation is pos-
sible, firstly, because no sensory feedback is necessary
for the creation of oscillations and, secondly, because the
body and muscular structure of the lamprey are suf-

ficiently simple that good and bad controllers can be
distinguished by evaluating their neural activity. The
main features of controllers on which we will concentrate
are the possibilities of varying the frequency of oscilla-
tions and the wavelength of spatial undulations. The
frequency of oscillations in each segment directly determ-
ines the speed of swimming and therefore control of the
frequency of oscillations means control of speed. The
control of the wavelength of the undulation allows vari-
ation of the ‘type’ of swimming in order to adapt it to the
environment and, for instance, to find the most efficient
swimming for different external conditions.

3.1 Segmental oscillators

3.1.1 Genetic Algorithm implementation

The same basic GA is used for both design stages. Solu-
tions are encoded in fixed-length chromosomes made of
real number genes € [0,1]. Parents are chosen with a
rank-based probability for breeding, and children are cre-
ated either by a two-point crossover operator (probabil-
ity Prob_Xover) or by simply copying the two parents
(probability 1 — Prob_Xover). Genes are mutated with
a probability Prob_Mut and given a new value:
new_value = old_value + Mut_Range - rand

where rand is a random number € [—0.5,0.5]. If a new
value is outside the range [0,1], it is set to the closest
limit. A selective pressure is created by keeping the size
of the population constant and rejecting the worst solu-
tions at each generation. The GA and the simulations
are implemented with MATLAB for this design stage.

3.1.2  Encoding Assumptions

Artificial segmental oscillators are created by evolving
the connectivity between neurons similar to the biolo-
gical model. The problem of evolving segmental oscillat-
ors is defined by several assumptions:

1. Only the connectivity (i.e. the weights of all the pos-
sible connections between neurons) is evolved.

2. The number of neurons is fixed to 8.

3. The types of neurons (parameters of eq. 1-4) are
fixed. There are two neurons of each type as in the
biological model?.

4. Weights are bounded between two fixed values, one
negative, one positive.

5. Symmetry of the connections between left and right
neurons is imposed.

3Note that the names of the neuron types EIN, CCIN and LIN
describe the function of these neurons in the biological model and
this function may change in other configurations. We will keep
them only to describe the corresponding neuron parameters.



6. Segmental oscillators have no sensory feedback (no
edge cells and no mechanical simulation).

The weight bounds are chosen to include the biological
range of weights. The symmetry between left and right
neurons reduces the dimension of the search space by a
factor of 2.

A segmental oscillator is represented by a chromosome
through a direct encoding of each connection weight into
a gene, a real number between 0 and 1. A chromosome
is translated into a configuration by linearly transform-
ing the gene’s value into a value between the two fixed
weight bounds and transforming the rescaled vector into
the matrix giving the weights of all the possible connec-
tions.

3.1.3  Fitness function

The evaluation of the fitness of a segmental network is
based on qualitative features of the neural activity of
motoneurons. Only these neurons are considered as their
signals determine the muscular activity along the body.
An evaluation consists of fixed-length simulations with
asymmetric initial conditions®*.

A fitness function is developed which rewards the fol-
lowing behaviour for the motoneurons activity:

1. regular oscillations,

2. periods corresponding to an alternation of an active
and a resting phase, with a single peak of activity per
period,

3. opposite behaviour between left and right motoneur-
ons,

4. monotonic relation between excitation and oscillation
frequency,

5. large range of frequencies.

As already mentioned, controllers with a large range of
frequencies are rewarded because the frequency of oscil-
lations determines the speed of swimming and therefore
large ranges of frequency offer more flexibility in the con-
trol of speed. Note that because the activity in the in-
terneurons (neurons other than the motoneurons) is not
considered, oscillators with fewer than 8 active neurons
can be developed.

The mathematical definition of the fitness is as follows:

fitooscil - (1 + freg_range)
fitness = if fit_oscil > 0.5
fit_oscil otherwise
where

fit_oscil = fit1 - fit2 - fit3 € [(0.05)%,1]

4All the left neurons of a segment are excited.

The function fit_oscil rewards the three first points of
the desired behaviour of a solution, with the functions
fitl, fit2 and fit3 rewarding respectively varying out-
puts, regularity and opposite behaviour between left and
right motoneurons. These three functions are bounded
between 0.05 (bad behaviour) and 1 (good behaviour),
and vary linearly between these values for one or sev-
eral variables. The bounds for each variable, determining
when the value of the variable is bad, good or in between,
have been determined by hand on 40 examples of differ-
ent behaviours from initial experiments. It is possible
to fix these bounds such that fit_oscil clearly makes the
difference between interesting solutions and the others.
A limit of 0.5 is thus determined above which a solution
is certain to oscillate regularly with opposite behaviour
between left and right motoneurons®.

The value freg_range corresponds to the range of fre-
quency (in Hz) in which the solutions oscillate regularly
(fit_oscil higher than 0.5) with a frequency increasing
with the excitation level. An evaluation consists thus of
a first simulation at a fixed level of excitation (equal to 1)
which determines fit_oscil, followed, if fit_oscil is higher
than 0.5, by a set of simulations at different excitation
levels (0.1 steps) in order to determine freq_range.

3.1.4 Results

As first tests showed that there existed many different
solutions with similar fitness values, three experiments
were done with different encodings in order to study dif-
ferent neural configurations: encoding all the possible
connections between the 8 neurons; encoding all the
possible connections except feedback from motoneurons;
and encoding only the biological connections. For each
experiment, five evolutions are performed with different
initial populations of 100 chromosomes. The number of
generations for each experiment is chosen so that fre-
quency ranges higher than 7Hz are reached in all runs.
An elite population is then created, made of the 20 best
solutions of each initial evolution. This new population is
then further evolved until frequency ranges higher than
14Hz are reached. The basic GA parameters for each
experiment are given in Table 3.

Experimentl, fully connected network: All the
possible connections between the 8 neurons and the
brainstem (without feedback from neurons to the brain-
stem) are encoded, resulting in 72 possible connections®.
Due to the left/right symmetry assumption, a chromo-
some has thus 36 genes. This encoding allows feedback

50n the 40 examples of neural activities, 17 correspond to inter-
esting behaviours. With the chosen fixed bounds of fit1, fit2 and
fit3, all the good behaviours have a fit_oscil value higher than 0.6
and all the others have a value lower than 0.25, with most lower
than 0.1.

6Fach neuron can have a self-connection.



Population size 100
Number of children 30
Weight bounds [-5,15]
Crossover probability | 0.5
Mutation probability | 0.4
Mutation range 0.4

Table 3: GA parameters for evolving segmental oscillators

from the motoneurons to the other neurons, which is not
the case in the biological model where the only output
connection from motoneurons goes to muscles.

As mentioned, the evolutions all started with different
initial populations. Within these 500 randomly gener-
ated configurations, only 4 produce varying outputs (of
which one could be a potential controller, i.e. a solu-
tion with regular asymmetric oscillations and variable
frequency). This means that approximately 1% of the
36-dimension variable space sampled here corresponds
to configurations with varying outputs among which the
GA must find interesting controllers.

After 200 generations, all evolutions successfully con-
verged to potential controllers, which produce regular os-
cillations, opposite behaviour between left and right mo-
toneurons and variable frequency. There exists a large di-
versity of controller configurations and behaviours within
the final populations. Configurations vary in terms of
weight values, connection types and number of active
neurons; none is similar to the biological configuration
nor to the biological configuration with a swap of func-
tion between the neurons types. The number of neurons
participating in the oscillations varies between 4,6 and 8.
The signal shapes of the neurons other than motoneur-
ons (the interneurons) can be very different, with for in-
stance, signals that have more than one peak per period,
or that oscillate without resting phases.

Excitatory
- Synapse
output =— —C_3

™\ Inhibitory
Synapse

Figure 3: Four-neuron oscillator. Variations (broken lines)
of a 4-neuron structure (2 neurons A and 2 neurons B) found
in several evolved segmental oscillators. Only the input con-
nections of the 2 left neurons are given, the others can be
found by symmetry.

The frequency ranges of the best solutions of each evol-
ution after 200 generations lay between 7.1 Hz and 9.6
Hz. These results are summarised in Table 7. These
five best solutions are able to create the oscillations with
fewer than 8 neurons (either 6 or 4 neurons) for most
of the frequencies in the frequency range. Some neur-
ons are active at low frequencies and do not participate
(they stay at zero) in the oscillations at higher frequen-
cies. These neurons can be removed and the solutions
still oscillate at most of the frequencies except the low-
est. Interestingly, the resulting 4-neuron configurations
of runs 1, 2 and 3 present a similar structure (when the
left /right symmetry is taken in account and the type of
neuron is ignored), having the same type of connections,
excitatory or inhibitory, for all the connections, except
one for the solution of runl. These runs seem thus to
have converged to solutions built on a similar 4-neuron
oscillator structure (Figure 3).

The best solution after evolving the elite population
for 150 generations, has a very large frequency range,
16.4Hz (from 2.8Hz to 19.2Hz), which is thus more than
4 times larger then the frequency range of the biological
model (3.9Hz). The behaviour and the connectivity of
that solution are given in Figure 4 and Table 4.
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Figure 4: Fully connected network: Simulation of the best
solution of exp.l. Frequency=6.7Hz. At higher frequencies,
only the MN and CCIN neurons are active.

EINI CCINI LINI MNI1 EINr CCINr LINr MNr BS
EINI1 -5.0 3.2 11.2 8.3 -0.7 -1.4 -5.0 7.0 -2.7
CCINI1 10.0 14.7 10.4 -3.2 -3.0 -1.7 0.7 3.6 10.2
LINI 5.0 2.0 5.9 8.0 12.3 8.3 -3.2 -3.9 4.7
MNL -5.0 1.9 10.3 15.0 2.3 -4.9 7.3 -0.7 9.2
EINr -0.7 -1.4 -5.0 7.0 -5.0 3.2 11.2 8.3 -2.7
CCINr -3.0 -1.7 0.7 3.6 10.0 14.7 10.4 -3.2 10.2
LINr 12.3 8.3 -3.2 -3.9 5.0 2.0 5.9 8.0 4.7
MNr 2.3 -4.9 7.3 -0.7 -5.0 1.9 10.3 15.0 9.2

Table 4: Fully connected network: Connection weights of
the best solution of exp.1l. A row corresponds to the weights
of the pre-synaptic connections. This solution is based on a
four-neuron oscillator made of MN and CCIN neurons.

The oscillations of this solution are mainly due to the
interaction between CCIN neurons and motoneurons. By



removing the other neurons, it is possible to create a solu-
tion which presents identical behaviour, except at low
frequencies, and which oscillates at frequencies between
6.9Hz and 19.2Hz’. Note that such a controller with
only 4 neurons is only possible because of the feedback
from motoneurons. This 4-neuron structure is identical
to that of the best solution of runl in terms of connection
types (excitatory or inhibitory).

Experiment2, fully connected network without
MN feedback: Here all the possible connections are
encoded except that feedback from motoneurons to the
other neurons is not allowed. This situation is thus closer
to the biological model in which there is no such feed-
back and in which the motoneurons do not participate
in the creation of oscillations. 56 connections are thus
encoded in 28-gene chromosomes. Within the initial 500
randomly generated configurations, only 3 produce vary-
ing outputs (less than 1% of the 28-dimension variable
space) of which none could be a potential controller.

All evolutions, except one, successfully converged,
within 150 generations, to potential controllers, which
produce regular oscillations, opposite behaviour between
left and right motoneurons and variable frequency. The
failed evolution converged prematurely to a local max-
imum corresponding to a non-oscillating solution and did
not manage to improve it within 150 generations. Again
a diversity of neural configurations has been found.

The frequency ranges of the best solutions of the four
other evolutions after 150 generations lay between 10.3
Hz and 17.5 Hz (See summary in Table 7). The oscil-
lations of the best solution of run 5 are created by the
EIN and CCIN neurons (LIN neurons stay inactive, at
all frequencies). The corresponding 4-neuron structure
is similar in terms of connection types (excitatory or in-
hibitory) to that underlying the oscillations of the best
solutions of runl and the evolved elite population of the
first experiment (Figure 3).

The elite population is evolved for 80 extra genera-
tions. A best solution is thus created whose frequency
range is 21.0Hz (from 2.8Hz to 23.8Hz) which is more
than 5 times larger then the frequency range of the bio-
logical model. The behaviour and the connectivity of
that solution are given in Figure 5 and Table 5. The
complete controllers evolved in the second design stage
will be based on this segmental network.

Experiment3, biological connections: In this ex-
periment only the biological connections are encoded
(the others are set to zero) and the bounds are fixed

7This shows that, in these fully connected solutions, some con-
nections or even some neurons are not necessary for creating oscil-
lations. One possibility to create solutions with only the necessary
connections (results not shown) is to add a mutation which ran-
domly sets some connections to zero and to add a factor to the
fitness function rewarding solutions with reduced connectivity.
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Figure 5: Fully connected network without MN feedback:
Simulation of the best solution of exp.2. Frequency=>5.0Hz.

EINI CCINI LINI EINr CCINr LINr BS
EINI 12.5 -5.0 -4.4 6.9 10.8 14.1 9.1
CCINI 7.6 2.7 12.8 -0.5 0.9 -5.0 -0.2
LINI 10.3 9.6 2.7 -5.0 -1.3 -3.1 14.4
MNL 14.8 -5.0 -3.4 -1.6 14.9 1.1 14.2
EINr 6.9 10.8 14.1 12.5 -5.0 -4.4 9.1
CCINr -0.5 0.9 -5.0 7.6 2.7 12.8 -0.2
LINr -5.0 -1.3 -3.1 10.3 9.6 2.7 14.4
MNr -1.6 14.9 1.1 14.8 -5.0 -3.4 14.2

Table 5: Fully connected network without MN feedback:
Connection weights of the best solution of exp.2. A row cor-
responds to the weights of the pre-synaptic connections.

such that the types of connection, excitatory or inhibit-
ory, are identical to the biological model. The 26 connec-
tions are encoded in 13-gene chromosomes. Within the
initial 500 randomly generated configurations, 76 (13%
of the sampled variable space) produce varying outputs
of which 64 could be potential controllers (regular asym-
metric oscillations and variable frequency). Having only
the biological connections and fixing their type, excit-
atory or inhibitory, thus restricts the variable space to
a much more favourable search space than having the
complete connectivity encoded.

Within only 50 generations, all evolutions converged
to interesting solutions. The shapes of the signals are
very similar to those of the biological simulations, ex-
cept for their amplitudes. The frequency range of the
best solutions lay between 8.5Hz and 10.7Hz. This means
that the range of frequencies of the biological model can
be improved by changing the values of its connections
a little and using a fitness function which optimises the
frequency range. A general observation is that this im-
provement is obtained by increasing the strengths of the
connections. Interestingly, the best solutions have all
very similar weights for the inhibitory connections and
have converged to a common underlying inhibitory struc-
ture.

After evolving the elite population for 50 extra gener-
ations, a best solution is created (Figure 6 and Table 6)
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Figure 6: Biological connections: Simulation of the best solu-
tion of exp.3. Frequency=4.2Hz.

EINI CCINI LINI EINr CCINr LINr BS
EINI 2.8 - - - -4.5 - 1.7
CCINI 1.5 - -4.3 - -1.4 - 15.0
LINI 10.5 - - - -4.4 - 11.5
MNL 14.7 - - - -3.4 - 13.8
EINr - -4.5 - 2.8 - - 1.7
CCINr - -1.4 - 1.5 - -4.3 15.0
LINr - -4.4 - 10.5 - - 11.5
MNr - -3.4 - 14.7 - - 13.8

Table 6: Biological connections: Connection weights of the
best solution of exp.3. A row corresponds to the weights of
the pre-synaptic connections. The runs 1 to 5 converged to
solutions whose inhibitory weights are very similar to this
solution. There seems to be a common underlying inhibitory
structure which optimises the frequency range.

whose frequency range is 11.9Hz (from 2.1Hz to 14.0Hz),
which is approximately three times the range of the bio-
logical model and covers better the range of frequency
observed in real lampreys, from 0.25Hz to 10Hz ap-
proximately. As observed before, the connections are
stronger than in the biological model (absolute value of
the weights on average 88% larger than the biological
values).

Note that the weights of the biological model (in [5])
have been set by hand in order to fit the biological data
(Ekeberg, personal communication). As the model is
based on two important simplifications (a whole pop-
ulation of neurons is represented by one mathematical
neuron unit and the output of a neuron unit is not a
spiking action potential but the mean firing frequency),
the weights of the biological model have no biological
meaning except for showing that the model is able to
reproduce the observed physiological behaviour of the
CPG. Results shown here may give some insights into
the strengths of the connections relative to each other
in order to create oscillations which cover a range of fre-
quencies which is closer to that observed in real lampreys.

Exp. Run | N.of Range from to  Not oscil.
gen. in Hz [Hz] [Hz]
1 1 200 7.7 5.5 13.2 EIN,LIN
2 200 8.4 1.9 10.3 EIN,CCIN
3 200 7.1 2.4 9.5  EIN,CCIN
4 200 9.6 4.2 13.8 CCIN
5 200 7.9 3.0 10.9 CCIN
elite 150 16.4 2.8 19.2 EIN,LIN
2 1 150 12.9 2.6 15.5 -
2 150 - - - -
3 150 16.0 3.7 19.7 -
4 150 10.3 2.7 13.0 -
5 150 17.5 2.5 20.0 LIN
elite 80 21.0 2.8 23.8 -
3 1 50 10.7 2.3 13.0
2 50 10.2 1.7 11.9
3 50 8.5 2.0 105 -
4 50 8.8 2.1 109 -
5 50 9.4 1.7 11.1 -
elite 50 14.1 2.0 16.1 -

Table 7: Evolved segmental networks, summary of results.
This table gives the range of frequency of the solutions with
highest fitness value of each evolution. The neurons which
do not oscillate for some of the excitation levels (usually the
highest) are indicated.

3.2 Complete controllers

Multi-segmental controllers are developed by evolving
the interconnections between fixed segmental oscillat-
ors. Two preliminary evolutions are realised, one with an
evolved segmental network and one with the segmental
network of the biological model. The first evolution
will create a complete artificial controller. The evolved
segmental network with the largest frequency range is
chosen (best solution of experiment 2). The aim of the
second evolution is to study the interconnectivity of the
biological model. Because the physiological interconnec-
tions are not perfectly known [5], evolving the intercon-
nections of the biological model may show whether there
are several possibilities for interconnecting the biological
segmental networks and creating travelling waves.

3.2.1 Genetic Algorithm implementation

The same basic GA as in the segmental oscillator design
stage is used here, except that genes are transformed
into integers representing the extent of an interconnec-
tion and that the GA and the simulations are implemen-
ted in C code.

3.2.2  Encoding assumptions

As in the biological model, segmental networks are in-
terconnected through extensions of connections within a
segmental network to neighbour segments. This means
that a neuron which is connected to (rather, whose out-
put is sent to) another neuron in one segment, can also
have extensions to the corresponding neuron in neigh-
bouring segments. The extent of these interconnections



varies with each segmental connection. A connection
weight is rescaled by dividing the weight of the connec-
tion in the segmental network by the number of neigh-
bour segments it receives input from®.

The encoding of a complete controller is based on the
following assumptions:

1. The weights of the segmental network are fixed, ex-
cept for the rescaling mentioned above.

2. Only the extents (in the rostral and caudal directions)
of the interconnections are evolved.

3. These extents vary between zero and a fixed limit.

4. Symmetry of the interconnections between left and
right neurons is imposed.

A complete controller is decoded from a chromosome
by transforming and rounding a gene’s value into an
integer between 0 and the fixed maximum extent and
transforming the resulting vector into the two matrixes
giving the extent of each segmental connection in the
rostral and caudal directions. The maximum extension
is chosen to permit the maximum biological extension
(10 segments).

3.2.3  Fitness function

As for the development for segmental oscillators, the
evaluation of the fitness function is based on qualitat-
ive features of the neural activity of motoneurons.

We would like the complete controller to be such that

1. each segment oscillates regularly,
2. waves of neural activity propagate from head to tail,

3. the wavelength of the undulation can be varied by
changing the amount of extra excitation on the seg-
ments closest to the head.

An evaluation consists of two simulations of a 100-
segment, controller with two different amounts of extra
excitation on the five first segments, 0% and 100% of the
level of excitation of the other segments (excitation equal
to 1.0). The fitness is calculated as follows:

oscil_behav- (1 + Lag(100%) — Lag(0%))
if oscil_behav > 0.5
and both Lag() > 0

oscil_behav otherwise

fitness =

where oscil_behav is calculated by measuring fit_oscil in
segments 1,10,20,...,100 for both evaluations (with and
without extra excitation) and taking the minimum meas-
ured value. The lag values correspond to the lag per

8This rescaling compensates the weights for the neurons in the
first and last segments which receive less input because they have
fewer rostral and caudal extensions respectively.

segment relative to the period of oscillation, in percent
(values typically vary between 0% and 2.5%). Note that
the range of lags is not explicitly rewarded, but only the
range between two fixed levels of extra excitation.

3.2.4 Results

The GA parameters of both experiments are given in
Table 8. The evolutions of each experiment are stopped
when wavelength ranges larger than that of the biological
model are reached.

Population size 20
Number of children 6
Extensions bounds [0,12]
Crossover probability | 1.0
Mutation probability | 0.4
Mutation range 0.4

Table 8: GA parameters for evolving complete controllers

Complete controller with evolved segmental net-
work A complete artificial controller is created by
evolving the interconnections between an evolved seg-
mental network. The best solution of experiment 2
(Table 5), the solution with the largest frequency range of
the three experiments, is chosen. As this segmental net-
work has 48 connections between the 8 neurons, the di-
mension of the search space® for both rostral and caudal
extensions is 48.

An evolution of a population of 20 chromosomes is
realised for 10 generations. Within the initial randomly
generated population, 17 of the 20 configurations have
regular oscillations in all segments for both levels of ex-
tra excitation showing that such a segmental network
can be interconnected in different ways and still oscillate
regularly. However, most of these solutions present only
very small lags, some of them going from the tail to the
head. Others create travelling waves whose wavelength
is not changed by the level of extra excitation. Only six
solutions have a reasonable range of lags per segment
(higher than 0.2% of the period).

After 10 generations only, the best solutions have
ranges of lags per segment up to 2.3% of the period of
oscillation, which is a little bit larger than the range of
the biological model. All the solutions except one have
extensions favouring the caudal direction on average, as
is the case for the biological model. The best solution
(Table 9) has lags per segment varying almost linearly
with the amount of extra excitation on the first seg-
ments and lying between 0.1%(no extra excitation) and

9There are 48 possible extensions in both directions, and these
are encoded in 48-gene chromosomes because of the symmetry
assumption.



2.4%(100% extra excitation) of the period. Wavelengths
as small as 42% of a 100-segment body can thus be ob-
tained. The shortest wavelength of the biological model
is approximately 50% of the body length. Figure 7 shows
an example of the neural activity of the best evolved con-
troller.

EINI CCINlI LINI EINr CCINr LINr
EINI 6:10 0:2 4:1 4:10 0:9 6:6
CCINL 11:5 6:9 4:3 4:10 7:1 8:9
LINI 8:8 10:4 7:3 11:5 2:10 0:11
MNI 10:4 12:9 6:8 9:9 12:11 0:9
EINr 4:10 0:9 6:6 6:10 0:2 4:1
CCINr 4:10 7:1 8:9 11:5 6:9 4:3
LINr 11:5 2:10 0:11 8:8 10:4 7:3
MNr 9:9 12:11 0:9 10:4 12:9 6:8

Table 9: Complete evolved controller: rostral:caudal exten-
sions of the best solution. There is an average asymmetry of
the interconnections favouring the caudal direction.
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Figure 7: Complete evolved controller: Simulation of the
best solution. A snapshot of the neural activity in a 100-
segment body (800 neurons) is represented. A wave of neural
activity, and therefore an undulation of the body, is created
because of time lags between each segment. As in the bio-
logical model, these lags are due to the extra excitation on
the five first segments and to the average asymmetry of the
interconnections favouring the caudal direction. The body
represented here is simply a set of trapezia whose parallel
lengths are inversely proportional to the signal of the left and
right motoneurons of each segment.

This preliminary experiment has shown that it is pos-
sible to evolve complete artificial controllers using a GA.
The efficiency of swimming with this controller should
be checked with a mechanical simulation of the body.
Initial tests show that this artificial model is able to in-
duce turning when one side of the spinal cord is more
excited than the other, leading to different amplitudes of
motoneuron signal, as with the biological model.

Complete controller with biological segmental
network The extensions of the 18 connections between
the 8 neurons of the biological segmental network are
encoded into a 18-gene chromosome. An evolution of a
population of 20 chromosomes is realised for 40 genera-
tions.

Again, there seem to be many possibilities for intercon-
necting the biological segmental network which result in
regular oscillations in all segments. After 40 generations
the population evolved to solutions with ranges of lags
per segment similar to the biological model. The solu-
tions all present an average asymmetry of interconnec-
tions favouring the caudal direction. There is a variety of
different solutions among the final population, but none
is similar to the complete biological controller, mainly
because they have asymmetric extension for all connec-
tions, not only the connections going from the CCIN
neurons as in the biological model (see [3]).

In summary, there are several possibilities for intercon-
necting the segmental network to obtain travelling waves
with variable wavelengths for similar wavelength ranges.
The interconnectivity of the biological model is only one
of them.

4 Discussion

We have shown that a GA can be successfully used to
develop artificial swimming controllers, in a relatively
limited number of generations. GAs have thus proved to
be an interesting design technique.

A first observation is that there exist many possible
solutions other than just variations of the biological con-
troller. Potential segmental oscillators vary in terms
of weight values, connection types and even number of
active neurons. This results in different kind of be-
haviours which have in common that the motoneurons
present regular oscillations with asymmetric behaviour,
but show differences in the activity of the other neurons
(the interneurons), with different sequences of activity
and signal shapes. The EIN, CCIN and LIN neurons
have thus taken other functions than in the biological
model where they were respectively excitatory interneur-
ons, contralateral inhibitory interneurons and lateral in-
hibitory interneurons. None of the evolved solutions cor-
responds simply to the biological configuration with a
swap of function between the neuron types. The only
common structure which has been found in several solu-
tions is the 4-neuron oscillator mentioned above (Fig-
ure 3). Preliminary results have also shown that there
exists a variety of ways in which segmental oscillators can
be interconnected in order to form complete controllers.
The variety of different potential solutions was also ob-
served for the leech bending reflex by Lockery who found
that many different networks, with different sets of con-
nections, could produce a physiologically accurate local
bending input-output function [9)].



The evolved controllers can be considered as more ef-
ficient in terms of frequency range than the biological
model, as solutions have been found with frequency
ranges several times larger than the frequency range
of the biological model, and with the same range of
wavelengths for the undulation. We have concentrated
on the ability to vary the frequency of the oscillations
and on large frequency ranges, because the frequency de-
termines the speed of swimming and a large range of fre-
quency means a greater flexibility of the controller. How-
ever, there is probably an upper limit for the frequency at
which muscles can contract and mechanical simulations
should be made to determine which highest frequencies
can actually be performed. The upper limit observed for
swimming lampreys is approximately 10Hz'°.

The fitness function could be extended in order to in-
clude aspects we have chosen not to consider in this first
approach, such as the relation between the excitation
level and the amplitude of the motoneuron signals, the
shape of these signals, the inclusion of sensory feedback.
The next step should in fact evaluate the mechanical be-
haviour rather than the neural behaviour in order to re-
ward a controller by directly rewarding the effectiveness
of swimming,.

Our principal interest is to define a methodology
for developing locomotion controllers for autonomous
agents. But can this research be useful for Neuroscience?
The results presented here are probably of limited in-
terest for neuroscientists and the main points we showed
are that a variety of potential solutions exists and that
the frequency range of the biological model can be op-
timized by changing the weights of the connections of
that model, resulting in a better coverage of the ob-
served physiologically frequency range. But we believe
that GAs can prove to be very useful in helping neur-
oscientists to model a system, by including knowledge
from physiological measurements as constraints on the
encoding and the fitness functions, and using a GA to
determine unknown variables. The experiment in which
we fix the biological types of connection and evolve the
connection weights is an example of such a methodology.

5 Conclusion

This paper has examined the swimming controller of
lampreys and developed alternative artificial solutions
using a real number Genetic Algorithm. Artificial con-
trollers composed of neurons similar to those of Ekeberg’s
biological model [5] have been created in two stages.
Many different neural configurations for potential con-
trollers have been shown to exist; the biological net-
work is only one of them. Artificial controllers have been
created which are more efficient, in terms of frequency
range, than the biological model, with frequency ranges

10Tt is not clear if this limit is due to neural or mechanical
limitations.
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up to five times larger. We have also shown that the
biological weights can be modified in order to increase
the frequency range of the biological model and better
match the physiological measurements. GAs have proved
to be an interesting tool for developing adapted artificial
controllers and for optimising the biological network.
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