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ABSTRACT

Super-resolution imaging techniques reconstruct a high resolution image from a set of low resolution images that
are taken from almost the same point of view. The problem can be subdivided into two main parts: an image
registration part where the different input images are aligned with each other, and a reconstruction part, where
the high resolution image is reconstructed from the aligned images.

In this paper, we mainly consider the first step: image registration. We present three frequency domain
methods to accurately align a set of undersampled images. First, we describe a registration method for images
that have an aliasing-free part in their spectrum. The images are then registered using that aliasing-free part.
Next, we present two subspace methods to register completely aliased images. Arbitrary undersampling factors
are possible with these methods, but they have an increased computational complexity. In all three methods,
we only consider planar shifts. We also show the results of these three algorithms in simulations and practical
experiments.
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1. INTRODUCTION

The resolution, or resolving power, of a digital imaging device is mainly limited by the number of pixels on the
sensor and the optical system. The goal of super-resolution imaging is to increase the resolution of an image by
combining the information from multiple images taken from almost the same point of view. In this paper, we
will study the super-resolution problem when the number of pixels is the limiting factor. In other words, the low
resolution images are not lowpass filtered prior to sampling, and are therefore aliased.

Most super-resolution algorithms can be decomposed into two parts: an image registration part followed by a
reconstruction. Very high accuracy is required in the registration (up to subpixel level) to be able to reconstruct
the high resolution image correctly. Next, a robust reconstruction method is needed to undo the blur caused
by the optical system and build a high resolution image from the set of irregularly spaced samples (pixels). We
will mainly study the first problem, as an accurate registration is an essential requirement for a high precision
reconstruction afterwards.

Such techniques can be applied in many domains. In digital photography, a user can hold his camera manually
in approximately the same position while taking a series of pictures. The small movements between the different
images allow to create a higher resolution image. A lower resolution, and thus cheaper digital camera can then
be used to generate high resolution images. Similarly, in satellite imaging, small movements between different
images can allow us to increase the precision of the remote sensing devices. In video surveillance, a super-
resolution image created from a sequence of images can give much higher precision than individual images from
the original sequence.

Remark that we use the term ‘resolution’ in the sense of resolving power: the power to discriminate details in
an image. An image with ten times more pixels than another image does not necessarily have a higher resolving
power. The super-resolution methods that are discussed here attempt to increase the resolving power, as opposed
to for example a bilinear interpolation from a single image, which only adds pixels but does not improve resolving
power.
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The rest of this paper is structured as follows. The state of the art in super-resolution imaging, with
an emphasis on image registration methods, is discussed in Section 2. Some new methods for registration of
undersampled images are presented in Section 3, and the results of these methods in simulations and practical
experiments are shown in Section 4. Advantages and disadvantages of the presented methods are discussed in
Section 5, and finally, some conclusions are drawn in Section 6.

2. STATE OF THE ART

The super-resolution literature dates back to the algorithm described by Tsai and Huang1 in 1984. They describe
a frequency domain method that is applied to satellite imaging. The registration parameters are computed by
searching the parameter values for which the reconstructed signal is bandlimited to a certain frequency. It is
shown that for (small) deviations from these optimal values, the signal always has a larger bandwidth. The
Fourier coefficients of the high resolution image can then be computed efficiently using an FFT-based algorithm.

A good overview of existing super-resolution methods is given by Borman and Stevenson.2 More recently,
special issues on super-resolution imaging appeared in IEEE Signal Processing Magazine3 and EURASIP Journal
on Applied Signal Processing.4 Matlab implementations with a graphical user interface for certain super-
resolution algorithms were also recently released by Farsiu et al.5 and Vandewalle et al.6

Image registration, which is the first part of most super-resolution methods, can be performed either in spatial
or in frequency domain. A survey of image registration methods is given by Brown7 and by Zitova and Flusser.8

We summarize some of the most frequently used spatial domain techniques here, before we proceed to a more
detailed overview of the frequency domain methods. One popular technique is to compute salient features and
find a mapping between corresponding features in different images.9, 10 Another approach uses a Taylor series
approximation of the images. The motion parameters are the unknowns in the approximation, and they can be
computed from the set of equations that can be derived from this approximation. Because Taylor series only
give a good approximation for small offsets, these registration methods are generally applied iteratively using a
Gaussian pyramid.11, 12 Other methods compute an optical flow field,13 and can discriminate different motion
patterns in a single image.

The frequency domain methods are limited to global motion in a plane parallel to the image plane. Planar
shifts can be described with linear phase shifts in frequency domain, while rotations (in the image plane) in
spatial domain correspond to rotations in frequency domain. Other, more general motion models are difficult
to describe in frequency domain. However, frequency domain registration methods can be computationally very
efficient, and offer a good framework to model aliasing.

If the input images are not undersampled, and their motion can be approximated by a planar shift, this
shift can be computed as the linear phase difference between the two images.14 Planar rotation can be added,
and is represented in frequency domain by a rotation over the same angle. The shift and rotation parameters
can be estimated separately, because shift only affects the phase information, while rotation affects both phase
and amplitude of the Fourier transform. Reddy and Chatterji15 and Marcel et al.16 applied this in their image
registration algorithm. To estimate the rotation, they transform the Fourier domain image into polar coordinates,
such that the rotation angle is transformed into a shift. Another rotation estimation method is presented by
Lucchese and Cortelazzo.17 They compute the rotation angle by searching the zero crossings of the difference
between the spectrum of one image and a mirrored version of the other image spectrum. The shift is estimated
in the same way as Marcel et al.

If the low resolution images are aliased, these simple relations do not hold anymore. If part of the spectrum
(generally the low frequencies) is free of aliasing, the shift parameters can still be estimated using only this
part.18–20 A rotation estimation method that is based on the low frequencies was added by Vandewalle et al.20

This method is described in more detail in Section 3.2. Such an approach also gives a good approximation if the
ratio between the signal power in the base spectrum and the power in the aliased spectrum copies is high. In
that case, the aliasing can be considered as (part of the) noise.

If the aliasing cannot be neglected in any part of the spectrum, other methods are required that explicitly
model aliasing. Two such methods will be presented in Section 3.
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The second part of the super-resolution methods is the reconstruction, in which a high resolution image is
reconstructed from the registered low resolution images. As described above, a frequency domain algorithm was
presented by Tsai and Huang.1 Kim et al.21 extended this algorithm to include blur and noise models. More
recently several other, mostly spatial domain techniques have been developed. A good overview is given by Park
et al.22 First of all, there are a set of nonuniform interpolation methods23, 24 that reconstruct a bandlimited
signal from an irregular set of samples. Another category of reconstruction algorithms is based on the POCS
method.25 These are iterative algorithms that project the reconstruction successively onto different convex sets
representing prior information about the high resolution image. After a number of iterations, the reconstructed
image converges to the image at the intersection of the different sets. Similarly, the iterative backprojection
algorithms11, 12, 26 use a model of the imaging process to estimate the low resolution images that would be created
when capturing the current reconstruction estimate. The high resolution estimate is then corrected with a term
relative to the difference between these estimated low resolution images and the real ones. Finally, a maximum
a posteriori (MAP) approach can also be used for reconstruction.9, 27, 28 It allows to easily add different priors
on the reconstructed image into the model. Farsiu et al.29 increased the robustness of the algorithm by Elad
and Hel-Or28 by replacing the L2 minimization by an L1 minimization. They also added a regularization term
to stabilize the reconstruction.

This gives only a very concise overview of the wide variety of existing super-resolution reconstruction algo-
rithms. For a more detailed overview, the reader is referred to the review articles mentioned above. We will
concentrate here on the first part of most super-resolution algorithms, the image registration. More specifically,
we will present some new registration algorithms for undersampled images.

3. METHODS

In this section, we will present three registration methods for aliased images. To simplify notations, the methods
will be described for one-dimensional signals. They can straightforwardly be extended to two dimensions. Only
planar shifts will be considered, because they are easy to describe in Fourier domain. First, we will give a brief
analysis of aliasing (Section 3.1), and set up the mathematical framework. In Section 3.2, we present a method
for registration of images that are partially aliased. And finally, in Section 3.3 and 3.4, we present two methods
to register highly undersampled images.

3.1. Aliasing

Assume f(t) is a bandlimited, periodic signal with maximum frequency L and period T = 1. Its Fourier expansion
coefficients are denoted by αl, with −L ≤ l ≤ L. We sample f(t) at a frequency N , resulting in the samples

yn = f(n/N), with 0 ≤ n < N. (1)

If the sampling frequency satisfies the Shannon sampling theorem, or N > 2L, the samples yn and their discrete
Fourier transform coefficients Yp can be written as

yn =
L∑

l=−L

ej2πln/Nαl, with 0 ≤ n < N

Yp =
1
N

N−1∑

n=0

e−j2πpn/Nyn =
1
N

L∑

l=−L

αl

N−1∑

n=0

ej2π(l−p)n/N = αp, with 0 ≤ p < N.

(2)

However, if N ≤ 2L, the signal is undersampled, and instead of (2), we obtain

yn =
L∑

l=−L

ej2πln/Nαl, with 0 ≤ n < N

Yp =
1
N

N−1∑

n=0

e−j2πpn/Nyn =
1
N

L∑

l=−L

αl

N−1∑

n=0

ej2π(l−p)n/N =
∑

i

αp+iN , with 0 ≤ p < N,

(3)
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where the index i goes over all the nonzero overlapping spectrum copies. The signal coefficients αl cannot be
uniquely determined from a single set of samples y anymore. Other, lower frequency signals also fit through the
same set of sampling locations. In images, this is visible as low frequency patterns that appear with different
directions from the original pattern, or at edges that get a ‘staircase’ effect. Illustrations of these artifacts are
given in Figure 1.

(a) (b)

Figure 1. Illustrations of aliased images. Note the ringing artifacts on the walls in (a) and the guitar strings in (b).

Similarly, if we have two sets of samples y0 and y1, taken with relative offset t1, we can write the samples y1
n

and the Fourier transform coefficients Y 1
p from this second set as

y1
n = f

( n

N
+ t1

)
=

L∑

l=−L

ej2πl(n/N+t1)αl

Y 1
p =

1
N

L∑

l=−L

ej2πlt1αl

N−1∑

n=0

ej2π(l−p)n/N

(4)

If N > 2L, the offset t1 can be easily determined using

Y 1
p

Y 0
p

=
αpe

j2πpt1

αp
= ej2πpt1 , (5)

with Y 0
p and Y 1

p the Fourier transforms of y0 and y1, respectively. However, if N ≤ 2L, we have

Y 1
p

Y 0
p

=
∑

i αp+iNej2π(p+iN)t1

∑
i αp+iN

, (6)

and the offset cannot be directly retrieved anymore.
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3.2. Registration of partially aliased images

If only part of the frequency spectrum is aliased, or L < N ≤ 2L, the registration can still be performed using
the aliasing-free part of the spectrum.20 The frequencies l with L − N < l < N − L are not aliased, and (5)
still holds. The shift parameters can therefore be estimated as the linear phase difference between the Fourier
transforms Y 0 and Y 1 of the sampled signals for the frequencies L − N < l < N − L.

3.3. SVD-based registration of completely aliased images

The approach described above is not valid anymore when N < L. In that case, the whole frequency spectrum is
aliased, and (6) has to be used at any frequency. The aliasing has to be added to the signal model in order to
be able to register the different signals.30

Let us call the undersampling factor S (S = �2L/N�). We will take S to be odd to simplify notations.
Assume there are M sets of samples available: y0, y1, . . . , yM−1. For accurate registration and reconstruction,
we need at least M > S sets of samples∗.

The Fourier transform coefficients of each of the sampled sets can be written as

Y m
p =

(S−1)/2∑

i=−(S−1)/2

ej2πtm(p+iN)αp+iN = ej2πtmp

(S−1)/2∑

i=−(S−1)/2

ej2πtmiNαp+iN , (7)

with Y m
p the p-th Fourier coefficient of the m-th sampling set ym and tm the offset of ym with respect to y0.

After putting the coefficients Y m
p (with 0 ≤ p < N) into a vector, we obtain

⎛

⎜⎜⎜⎝

Y m
0

Y m
1
...

Y m
N−1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1 0 0 0
0 ej2πtm 0 0

0 0
. . . 0

0 0 0 ej2π(N−1)tm

⎞

⎟⎟⎟⎠

(S−1)/2∑

i=−(S−1)/2

ej2πtmiN

⎛

⎜⎜⎜⎝

αiN

αiN+1

...
α(i+1)N−1

⎞

⎟⎟⎟⎠ , (8)

or

Ym = Dtm

(S−1)/2∑

i=−(S−1)/2

ej2πtmiNαi, (9)

where αi is the vector containing signal expansion coefficients αiN to α(i+1)N−1. If we pre-multiply both sides
of (9) by (Dtm)−1, we get

(Dtm)−1Ym =
(S−1)/2∑

i=−(S−1)/2

ej2πtmiNαi. (10)

From (10), we can see that the modified Fourier transforms of the sample vectors (Dtm)−1Ym (0 ≤ m < M)
all belong to the same S-dimensional space span(α−(S−1)/2, . . . ,α(S−1)/2). However, (10) is only valid for the
correct offset values t =

(
t0 t1 · · · tM−1

)
. For any other set of offset values t̂ =

(
t̂0 t̂1 · · · t̂M−1

)
,

the space spanned by the M vectors (Dt̂m)
−1

Ym is M -dimensional.

The offsets t can therefore be searched as the values for which the rank of the matrix

(
Y0 (Dt̂1)

−1
Y1 · · · (Dt̂M−1)

−1
YM−1

)
=

⎛

⎜⎜⎜⎜⎜⎜⎝

Y 0
0 Y 1

0 Y M−1
0

Y 0
1 ej2πt̂1Y 1

1 · · · ej2πt̂M−1Y M−1
1

Y 0
2 ej4πt̂1Y 1

2 ej4πt̂M−1Y M−1
2

...
...

...
Y 0

N−1 ej2(N−1)πt̂1Y 1
N−1 · · · ej2(N−1)πt̂M−1Y M−1

N−1

⎞

⎟⎟⎟⎟⎟⎟⎠

(11)
∗For images, this translates into M > S2 input images, as we want to increase the resolution in both dimensions.
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is S. Equivalently, we can search for the offset values t̂ such that the S +1-th singular value of (11) is minimized:

min
t̂

σS+1(Yt̂), (12)

where Yt̂ is the matrix from (11), and σS+1(Yt̂) represents the S + 1-th singular value of the matrix Yt̂.
Note that, as opposed to the method from Section 3.2 and most other image registration methods, all the

M sets of samples have to be registered jointly (or at least S + 1 of them). Due to the undersampling, pairwise
alignment of the different sets is not possible anymore. Tsai and Huang1 also presented such a joint approach
to registration.

3.4. Projection-based registration of completely aliased images
Another registration method for aliased signals (with N < L) is based on projections onto subspaces.31 Using
(3), we can write

0
BBBBB@

ym
0

ym
1

ym
2

...
ym

N−1

1
CCCCCA
=

0
BBBBB@

1 · · · 1 1 1 · · · 1

e−j2πLtme−j2πL/N · · · e−j2πtme−j2π/N 1 ej2πtmej2π/N · · · e−j2πLtmej2πL/N

e−j2πLtme−j2π2L/N · · · e−j2πtme−j2π2/N 1 ej2πtmej2π2/N · · · ej2πLtmej2π2L/N

...
...

...

e−j2πLtme−j2π(N−1)L/N · · · e−j2πtme−j2π(N−1)/N 1 ej2πtmej2π(N−1)/N · · · ej2πLtmej2π(N−1)L/N

1
CCCCCA

0
BBBBBBBBBBB@

α−L

...
α−1

α0

α1

...
αL

1
CCCCCCCCCCCA

,

(13)

or
ym = Φtmα, (14)

where ym is the m-th sample vector, Φtm is the shifted Fourier basis matrix, and α is the vector containing the
signal expansion coefficients αl. Combining the different sample vectors into a large vector y, we obtain

y =

⎛

⎜⎜⎜⎝

y0

y1

...
yM−1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

Φt0

Φt1

...
ΦtM−1

⎞

⎟⎟⎟⎠ α = Φtα. (15)

This shows that for the correct offsets t, the sample vector y is part of the space spanned by the columns of Φt,
which is not the case for arbitrary offsets t̂.

It is therefore only for the correct values of t that the projection of y onto the space spanned by the columns
of Φt satisfies

ŷ = P Φty = Φt(ΦtT
Φt)−1ΦtT

y = y. (16)
The offsets can then be computed as the values of t that minimize

min
t̂

‖ŷ − y‖2 = min
t̂

‖Φt̂(Φt̂
T
Φt̂)−1Φt̂

T
y − y‖2. (17)

Except for the columns that correspond to overlapping Fourier coefficients, all the columns of Φt̂ are or-
thogonal to each other, for any arbitrary value of t̂. The minimization function from (17) can therefore be split
according to the different orthogonal subspaces corresponding to sets of overlapping Fourier coefficients:

min
t̂

‖ŷ − y‖2 = min
t̂

N−1∑

n=0

‖ŷ(n) − y(n)‖2, (18)

with ŷ(n) and y(n) the projections onto the n-th subspace of ŷ and y, respectively. In Figure 2, this decomposition
is shown for two sets of samples from a one-dimensional signal. The minimization function is decomposed in
four components, corresponding to the four orthogonal subspaces. The global minimum of (18) is located where
the minima of the different components coincide. Such a decomposition reduces the computational complexity
of the method significantly.
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Figure 2. Example of the decomposition of the minimization function from (18) in its different components corresponding
to orthogonal subspaces.

4. RESULTS

The registration methods described in Section 3 were tested in both simulations and practical experiments. First,
the method based on an aliasing-free part of the spectrum (Section 3.2) is tested in a practical experiment. Four
pictures of a real outdoor scene were taken using a Sigma SD10 digital camera. The images were captured while
the camera was held manually in approximately the same position. This easily causes shifts of about ten pixels.
The images clearly show aliasing artifacts (see Figure 3(a)). As small rotations are present in these images, the
rotation estimation from Vandewalle et al.20 was also applied to the aliasing-free frequencies of these images.
For the reconstruction, we used a cubic interpolation method on the irregular set of samples. A high resolution
image is reconstructed with twice the number of samples in both dimensions (Figure 3(b)). The reconstruction
clearly shows more detail, and all aliasing has been accurately removed.

Next, the subspace methods from Section 3.3 and 3.4 were tested in simulations. A high resolution image
was shifted using subpixel shifts and subsampled by slightly more than two, to generate five low resolution input
images. The subsampling factor has to be slightly higher than the critical limit for reconstruction (which would
be two in this case), to allow for the image registration. From these five images, the motion parameters were
correctly estimated with both methods, and the original image is perfectly reconstructed (see Figure 4). Only
the result using the SVD based registration method is shown, because the result with the projection method
is the same up to computer working precision. Due to the computational complexity of these algorithms (see
Section 5), the simulations are only performed for relatively small (128x128) images, and with a subsampling
factor of two. For the image reconstruction in these simulations, the set of linear equations in (15) is solved
using a least squares method.

The performance of the two subspace-based methods was also tested under noisy conditions. A one-
dimensional signal is reconstructed from three aliased sets of samples for different amounts of white Gaussian
noise. In this simulation, 2L + 1 white Gaussian random variables were used as the Fourier coefficients of the
(bandlimited) signal. The time domain signal was obtained using an inverse Fourier transform, and the different
sets of samples are computed by sampling this signal with different offsets. Noise is then added to each of the
sets of samples. The results are shown in Figure 5, and show the robustness of our methods to noise. Subpixel
precision is obtained for SNRs above 20 dB.
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A

(a) (b)

Figure 3. Results of the algorithm using an aliasing-free part of the spectrum in a practical experiment. (a) Detail from
one of the four aliased input images to the super-resolution algorithm. (b) Detail of the resulting double resolution image.

(a) (b)

Figure 4. Results of the subspace-based algorithms. (a) One of the five input images to the algorithm (128 × 128). (b)
The original high resolution (253×253) image is perfectly reconstructed from the five low resolution shifted images. Both
the SVD-based algorithm from Section 3.3 and the projection-based algorithm from Section 3.4 give the same result.

5. DISCUSSION

The different methods described above all rely on the presence of aliasing for the reconstruction of a high
resolution image. If the high frequency content of the images is filtered out before sampling, these methods do
not give an increase in resolving power. This is the case for many consumer digital cameras. Many manufacturers
consider the appearance of aliasing artifacts more disturbing than an overall blur of the image, and thus design
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Figure 5. Results of the subspace-based algorithms on a 1D signal for different SNR values. 3 sets of 41 samples were
used to reconstruct the 81 expansion coefficients. 50 simulations on random signals were performed.

the optical system accordingly.

No point spread function was considered in this article. In other words, the sampling is assumed to be Dirac
sampling, and no blur is taken into account. However, as long as the point spread function is the same over the
whole image, and if it does not remove certain frequencies entirely, this can easily be done after the reconstruction
step. It is shown also by Elad and Hel-Or28 that the optimality of the reconstruction is not modified by this
separation between reconstruction and deblurring. The expansion coefficients α can be considered to be the
product of the true expansion coefficients with the spatial frequency response of the camera. The coefficients can
then be divided again by this spatial frequency response after reconstruction. Of course, if certain frequencies
are highly attenuated, this could amplify the noise, thus degrading the reconstruction.

One of the main difficulties with the methods for completely aliased signals from sections 3.3 and 3.4 is their
computational complexity. Both are M -dimensional minimization functions, with M the number of images.
And due to the undersampling, this minimization has to be performed jointly in all dimensions. Moreover, as
a function of the offsets t̂, these functions have many local minima, next to the global minimum (see Figure 6
for examples). If no prior estimate of the offsets is available, the function therefore has to be evaluated first
on a regular M -dimensional grid of positions. Once a good approximation is obtained from this procedure, a
standard minimization algorithm can be used to improve this initial estimate. However, in most cases we know
a priori that the shift is in a certain range (for example thanks to a prior pixel-level registration, or by knowing
that the shift is not larger than x pixels), and can thus avoid the first step.

As it describes the signal in function of an arbitrary basis matrix, the method from Section 3.4 is actually
not limited to bandlimited images. It can be straightforwardly extended to other bases, like wavelets, splines,
etc.

6. CONCLUSIONS

In this paper, we presented three frequency domain methods for the registration of undersampled images. First,
a method was presented to align images that have a part of their spectrum free of aliasing. The performance
of this method is shown in a practical experiment. Next, two methods are described to align images for which
the entire frequency spectrum is aliased. They model also the aliased part of the spectrum, and use a subspace
method to find the offset parameters. The main issue with these two algorithms is their high computational
complexity. They are tested in noiseless and noisy conditions in simulations and showed good results.
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Figure 6. Local minima in the minimization function from (12) (left) and (17) (right). Higher values are represented by
brighter grayscale values. For both images, three sets of 1D functions were used, with correct offset values t1 = 0.2 and
t2 = 0.6.
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