
Complex oxide nanostructures by pulsed laser deposition
through nanostencils

Cristian-Victor Cojocaru, Catalin Harnagea, Federico Rosei,a! and Alain Pignolet
INRS—Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet,
Varennes, QC, J3X 1S2, Canada

Marc A. F. van den Boogaart and Jürgen Brugger
École Polytechnique Fédérale de Lausanne (EPFL)—Laboratoire des Microsystèmes,
CH-1015 Lausanne, Switzerland

sReceived 8 December 2004; accepted 18 March 2005; published online 28 April 2005d

We achieved parallel nanoscale patterning of ferroelectric complex oxides by pulsed laser deposition
through a nanostencilsi.e., through a pattern of apertures in a thin free-standing membraned.
Ordered arrays of nanostructured barium titanatesBaTiO3d were obtained onto different substrates
in a single deposition step, at room temperature, replicating accurately the aperture patterns in the
stencil membrane. After a postdeposition annealing treatment, x-ray diffraction pattern showed a
nanocrystalline BaTiO3 structure close to the perovskite cubic phase with grains 30–35 nm in size.
Their local ferroelectric properties were detected using piezoresponse force microscopy. ©2005
American Institute of Physics. fDOI: 10.1063/1.1923764g

Miniaturization of electronic devices, for instance, the
nanoscale design of memories, sensors and actuators, is
prompting the development of surface patterning techniques.
Exploring methods to prepare and integrate complex func-
tional materials in the standard silicon-based technology
se.g., ferroelectric materials for nonvolatile random access
memoriesd and understanding the relationship between their
functional properties and their structure and size is also an
important area of focus.1 Attempts to create alternative, high-
resolution, and low-cost patterning processes, comparable in
precision with photolithography, have led to several “uncon-
ventional” approaches.2–5 Among others,6 focused ion beam
patterning, electron-beam direct writing, or nanoimprint li-
thography have been investigated and proposed as high-
resolution top-down techniques to pattern electroceramic
materials.7 The common drawback of these and of traditional
top-down approaches is the need for a resist or polymer pro-
cess and hence, numerous chemical, thermal, and etching
associated steps. Thus, the ability to fabricate arrays of func-
tional structures with controlled size and shape, on a sub-
strate of choice, using a minimal number of processing steps,
remains an important challenge in nanotechnology.8

Recently proposed as a flexible method to control the
parallel patterning of nanostructures, the nanostenciling ap-
proach offers high versatility in combining various func-
tional materials and different substrates by reducing the num-
ber of processing operations with respect to resist-based
lithography.9 However, to date, deposition through a nanos-
tencil has been reported only for simple metals.10–14 The
miniature shadow masks used are reusable, and protective
coatings have been tested to increase their lifetime.15

The central issue addressed in this letter is the study of
nanostructuring and patterning of complex functional mate-
rials ssuch as perovskite ferroelectric oxidesd.16 We report
here on nanostructure patterning of barium titanatesBaTiO3d
on silicon and strontium titanate SrTiO3 s100d obtained via
nanostenciling.

A first set of experiments was conducted with stencil
masks made of silicon nitride nanosieves with circular holes,
fabricated by a combination of laser interference lithography
and silicon micromachining.17 Hexagonal arrays of pores
sdown to 300 nm in diameterd were patterned and transferred
into free-standing low-stresssLS-SiNd membranes, prepared
on single-crystallines100d silicon wafers. Finally, the wafers
were diced into square pieces of 535 mm2 sstencil’s dimen-
siond. Figure 1sad displays a scanning electron micrograph
detail from a LS-SiN nanosieve with pores of 300 nm in
diameter and a 1.6mm pitch.18,19

The miniature shadow masks were mechanically at-
tached and temporarily fixed onto the substrate20 and the
assembly substrate stencil was mounted in a pulsed laser
deposition sPLDd chamber, in front of a rotating target.
BaTiO3, an oxide with perovskite crystal structure used in
capacitors and piezoelectric devices, was chosen as material
to be tested.21 A KrF excimer laser sl=248 nm, pulse
duration=14 nsd was employed for ablation with an inci-
dence angle of the laser beam on the target of 45° and laser
fluence set at 2 J/cm2. Deposition was carried out in vacuum
at 5310−5 mbar at room temperature, with a laser repetition
rate of 5 Hz.

The films were investigated by atomic force microscopy
sAFMd, scanning electron microscopysSEMd and x-ray dif-
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FIG. 1. sad SEM image of a LS-SiN nanosieve with 300 nm diameter pores
and 1.6mm pitch sbd Tapping mode AFM imagesheightd of as-deposited
BaTiO3 dots on Sis100d by PLD at room temperature through the periodic
arrays of apertures made in the LS-SiN membrane.
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fraction sXRDd after annealing at temperatures in the range
650–900 °C. AFM and piezoresponse force microscopy
sPFMd measurements22 were performed using a commercial
atomic force microscope sDI-EnviroScope, Veeco
Instrumentsd.23

Rapid fabrication of ordered nanostructures of BaTiO3
structures was achieved in a single deposition step.24 Using a
first batch of stencils with circular holes, ordered hexagonal
arrays of dot-like structures were grown over the whole sieve
areas s1 mm in length3100 mm in widthd. Figure 1sbd
shows the topographysheightd of the well-ordered structures
observed by AFM in tapping mode. The as-deposited
BaTiO3 nanostructures grown on Sis100d have a dome shape
with a heightshd of 50 nm and a widthswd of 400 nmffull
width at half maximumsFWHMdg.25

A postdeposition annealing treatment, at temperatures of
650 °C, 800 °C, and 900 °C for 1 h in O2 flow, was used to
crystallize the structures. After annealing, the aspect of the
dots changed from an amorphous dome shape to an agglom-
eration of crystallites for each dot. The annealed samples
were investigated by AFM using different cantilevers/tips
both in contact and in tapping mode. A 535 mm2 AFM to-
pographic imagescontact moded of the annealed BaTiO3
structures on the Sis100d substrate is presented in Fig. 2sad.
The tail-like shapes of the features in the AFM micrograph
might be caused by a slight off-axis geometry of the PLD
target with respect to the stencil/substrate. The SEM micro-
graph detail shown in Fig. 2sbd illustrates the BaTiO3 struc-
ture’s shape evolution after annealing.26

The continuous films and the patterned samples were
analyzed by XRD at grazing-angle incidencesv=1°d
fX-Pert Pro sPANalyticald Diffractometerg. Experimental
data snot shown hered obtained for the patterned ordered
structures and for the surrounding film area show the pres-
ence of a polycrystalline phase very similar to the perovskite
cubic phase with grains 30–35 nm in sizesusing the Scher-
rer formulad. It is known that polycrystalline BaTiO3 thin
films with fine grain sizesbelow 100 nmd could exhibit
weaker ferroelectric properties than larger grained films/
ceramics or bulk single crystals.27 However, using long inte-
gration times for the lock-in amplifier, we recorded piezo-
electric hysteresis loops from individual structures, as shown
in Fig. 3. The ferroelectric domain structure of the BaTiO3
nanostructures was probed by PFM. Figure 3sad presents the
AFM topographical image of BaTiO3 patterned on a Nb-
doped s100d SrTiO3 substrate together with the piezore-
sponse domain image simultaneously recordedfFig. 3sbdg.
The bright regions reveal that the dots predominantly have a
spontaneous polarization oriented downward. The PFM sig-
nal was very weak, which is attributed to the reduced tet-
ragonality of the BaTiO3 unit cell caused by the fine grain
size of the nanostructuress,30 nmd. However, the piezore-
sponse hysteresis loopfFig. 3scdg reveals that the spontane-
ous polarization of the dots can still be switchedfFig. 3sddg
and that the nanostructures retain ferroelectricity. This effect
proves that not only the chemical composition and the crystal
structure but also the functionality of the complex oxide
nanostructures deposited through the nanostencils are con-
served and that, in this case, ferroelectricity in BaTiO3 still
exists even at this small grain size. These results demonstrate
the power of the nanostenciling approach to investigate the
growth and properties of nanostructured complex materials,
and to study possible size effects on their functional proper-
ties. Within the frame of the present investigation, a detailed
study of the effect of the annealing temperatures28 and of the
effects of the size on the well-defined BaTiO3 pattern of
nanostructures obtained by nanostenciling on different sub-
strates is currently under way. This will lead to the optimi-
zation of the whole deposition and patterning process of the

FIG. 2. sad 535 mm2 contact mode AFM topography image of BaTiO3

structures on Sis100d after annealing at 650 °C for 1 h in O2 flow. sbd SEM
micrograph detail of an individual BaTiO3 structure.

FIG. 3. AFM and PFM investigation of individual BaTiO3 structures on a
Nb-doped 100-oriented SrTiO3 substratesad topography,sbd ferroelectric
domain structure before switching,scd switching piezoresponse hysteresis
loop, andsdd ferroelectric domain structure after switching.
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complex perovskite BaTiO3, yielding the parameters needed
to obtain nanoscale functionality.

In summary, PLD of complex materials through a nanos-
tencil is demonstrated, offering a simple method to fabricate
well-ordered structures from complex functional materials
se.g., BaTiO3d under high-vacuum or ultrahigh vacuum con-
ditions. Annealing of the as-deposited structures at tempera-
tures below 900 °C yields a polycrystalline phase with very
fine grains very similar to the cubic phase of BaTiO3. Ferro-
electric switching in these nanostructures was shown by
PFM, prompting a more detailed structural analysis. Several
issues remain to be investigated, such as the large-scale uni-
formity of the deposited nanostructures across the substrate
and the dependence of their functional properties with size.
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