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Abstract

The purpose of this thesis is to develop numerical methods for optimization, control and shape

design in computational fluid dynamics, more precisely in haemodynamics.

The application studied is related with the shape optimization of an aorto-coronaric bypass.

The optimization process has to keep into account aspects which are very different and some-

times conflicting, for this reason the process has been organized in more levels dealing with a

geometrical scale. Moreover we have chosen to use simplified low fidelity models during the

application of the complex optimization tools and to verify in feed-back with higher fidelity

models the configurations previously obtained. In our case we deal with fluid models based

on Stokes and Navier-Stokes equations, for lower and higher fidelity approach respectively,

also in the unsteady formulation.

At an outer level of the optimization process, efficient numerical methods based on para-

metrized partial differential equations have been developed to get real-time and accurate

information concerning the preliminary configurations, and to get a sensitivity analysis on

geometrical quantities of interest and on functionals, related with fluid mechanics quantities.

This approach is carried out by reduced basis methods which let us rebuild approximate so-

lutions for parametrized equations by other solutions already computed and stored, allowing

huge computational savings.

At an inner level we have developed local shape optimization methods by optimal flow control

theory based on adjoint approach. Two different approaches have been developed: the former

is based on the local displacement of each node on the boundary, the latter is based on small

perturbation theory into a reference domain. This approach is more complex but let us avoid

mesh reconstruction at each iteration and study the problem into a deeper context from a

theoretical point of view and do a generalization dealing with unsteady flows.
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Version abrégée

Le but de cette thèse est le développement de méthodes numériques pour l’optimisation, le

contrôle et le project de forme dans le cadre de la dynamique des fluides, notamment en

hémodynamique.

On étudie en particulier une application de ces méthodes à l’optimisation d’un bypass aorto-

coronaire.

Le processus d’optimisation est basé sur des aspects différents et des exigences parfois contra-

dictoires; pour cette raison il a été structuré sur plusieurs niveaux correspondants à différentes

echelles géométriques. En outre, on a choisi d’utiliser des modèles simplifiés pour l’application

des complexes outils d’optimisation et de vérifier les états optimaux à posteriori par des

modèles plus précis. Dans notre cas, il s’agit de modèles portant respectivement sur les

équations de Stokes et Navier-Stokes, éventuellement non stationnaires.

Dans un niveau extérieur (par rapport au processus d’optimisation) on a développé des

méthodes numériques efficaces basées sur des équations parametrisées qui donnent des in-

formations précises “en temps réel” sur une configuration indicative à considerer à travers

l’analyse de sensitivité pour les quantites d’intérêt et les fonctionneles typiques de la dy-

namique des fluides. Cette approche utilise les méthodes dites “à bases réduites”, qui perme-

ttent de reconstruire des solutions approchées d’équations parametrisées en fonction d’autres

solutions déjà calculées et disponibles, ce qui réduit énormément les réssources de calcul

nécessaires.

Dans un niveau interne on a développé des méthodes d’optimisation de forme locale par la

théorie du contrôle optimal des fluxes en utilisant la formulation basée sur l’état adjoint. On

a étudié deux approches: une première portant sur le déplacement des noeuds du bord, et

une deuxième qui utilise une technique de pérturbations sur un domaine de référence. Cette

dernière approche, même si plus complexe, a l’avantage d’éviter la réconstruction du maillage

et permet d’étudier le problème d’une façon plus profonde, ainsi que de le généraliser.
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Estratto

L’obiettivo di questo lavoro di tesi è quello di sviluppare metodi numerici di ottimizzazione,

controllo e progetto di forma in fluidodinamica computazionale, precisamente in emodinamica.

L’applicazione studiata è relativa all’ottimizzazione della forma di un bypass aorto-coronarico.

Il processo di ottimizzazione deve tenere conto di aspetti molto diversi ed esigenze spesso

contrastanti, per questo motivo è stato organizzato su più livelli di scala geometrica. Inoltre,

si è scelto di usare modelli semplificati a bassa fedeltà durante l’applicazione dei complessi

strumenti di ottimizzazione e di verificare successivamente in feed-back le configurazioni ot-

tenute con modelli a più alta fedeltà. Nel nostro caso si tratta rispettivamente di modelli

basati sulle equazioni di Stokes e di Navier-Stokes, anche non stazionarie.

Ad un livello più esterno del processo di ottimizzazione si sono sviluppati metodi numerici

efficienti basati su equazioni parametrizzate che permettono di ottenere informazioni accu-

rate in tempo reale circa la configurazione di massima da considerare, mediante un’analisi

di sensitività su grandezze geometriche di interesse e funzionali legati a grandezze fluidodi-

namiche. Tale approccio è costituito da metodi a basi ridotte che permettono di ricostruire

delle soluzioni approssimate per equazioni parametrizzate in funzione di altre soluzioni già

calcolate e memorizzate, garantendo notevoli risparmi computazionali.

A un livello più interno si sono sviluppati metodi di ottimizzazione di forma locale mediante

la teoria del controllo ottimale dei flussi nella formulazione basata sul problema aggiunto.

Sono stati sperimentati due approcci: uno si basa direttamente sullo spostamento dei nodi

del contorno, mentre l’altro su piccole perturbazioni in un dominio di riferimento.

Il secondo approccio, più complesso, permette però di evitare la ricostruzione della griglia e

di studiare il problema in maniera più approfondita da un punto di vista teorico, e di farne

una generalizzazione.
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Chapter 1

Introduction and Motivation

The theory of optimal control based on variational systems of equations is applied in order

to optimize the shape of the incoming branch of the bypass (the toe) into the coronary. At

this level two different options are addressed for shape design: one implements local boundary

variations in the computational domain, the other, based on the theory of small perturbations,

makes use of a linearized design in a reference domain. As a pre-processing stage, reduced basis

methodologies based on parametrized partial differential equations are developed to provide (a)

a sensitivity analysis for geometrical quantities of interest in bypass complete configurations

and (b) rapid and reliable prediction of integral functional outputs. The aim of this work is

(i) to provide design indications for arterial surgery in the perspective of future development

for prosthetic bypasses, (ii) to develop multi-level numerical methods for optimization and

shape design by optimal control, and (iii) to provide input-output relationships led by models

with lower complexity (i.e simplified flow models) and competitive computational costs to be

validated with higher fidelity models in feed-back.

In this introduction multi-level geometrical approaches in the study of aorto-coronaric bypass

anastomoses configurations and their optimization are briefly discussed.

1.1 Bypass clinical aspects: surgery, materials, state of the

art

The surgical realization of a bypass to overcome a critically stenosed artery is a very common

practice in everyday cardiovascular clinic (see Figure 1.1 [126]).

When a coronary artery is affected by a stenosis, the heart muscle cannot be properly oxy-

genated through blood. Aorto-coronaric anastomosis restores the oxygen amount through a

bypass surgery downstream an occlusion (see Figure 1.2).

At present, different kind and shape for aorto-coronaric bypass anastomoses are available and

consequently different surgery procedures are used to set up a bypass.

A bypass can be made up either by organic material (e.g. the saphena vein taken from pa-

tient’s legs or the mammary artery) or by prosthetic material. The current saphenous bypass

solution requires the extraction of saphena vein with possible complications. In this respect,

1
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Figure 1.1: Simplified bypass model.

Figure 1.2: Heart, coronary arteries and bypass.

prosthetic bypasses are less invasive. They may feature very different shape for bypass anas-

tomoses, such as, e.g., cuffed arteriovenous access grafts (Figure 1.3 and 1.4). Different cuffed

models are used and analyzed such as Taylor patch [28] and Miller cuff bypass [30], but also

standard end-to-side anastomoses at different graft angle [29] or other shaped carbon-fiber

prostheses. For a discussion and a comparative approach based on fluid mechanics consider-

ations see Cole et al. [27], [26].

In the cardiovascular system altered flow conditions such as separation, flow reversal, low

and oscillatory shear stress areas and abnormal pulse pattern are all recognized as potentially

important factors in the development of arterial diseases (White et al. [165], Loth et al.

[87]). A detailed understanding of local haemodynamics phenomena and the effect of vascular

wall modification on flow patterns can have useful clinical applications especially in surgical

procedures or prostheses tailoring (see Steinman et al. [147], Moore et al. [99]). Concerning

bypass setting, lots of different aspects and post-surgical complications have to be taken into

consideration, among them we mention intimal thickening hyperplasia (near suture lines),

which is a narrowing of coronaries, restenosis, surgical injury, long term graft failure. Every

year 8% of all patients risk bypass occlusion, after ten years 80% bypasses must be replaced

(data from HeartCenterOnLine c©). Repeating procedures typically carry a higher risk of
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Figure 1.3: Different anastomoses configurations: end-to-side (top) and cuffed on the bed

(bottom).

Figure 1.4: Miller cuffed bypass model.

complications.

Because of all these different aspects the design and analysis of artificial arterial bypass

is a very complex problem. Carbon fiber, bioartificial and collagen cuffed grafts instead

of natural saphenous vein can be used in bypass shape design without needing “in loco”

reconstruction. In this framework, optimal flow control and shape optimization provide a

new interesting approach to the problem, aimed at improving arterial bypass graft on the

basis of a better understanding of fluid dynamics aspects involved in the bypass studying.

A parametric analysis on inflow conditions, branch angle and upstream geometry for bypass

graft, considering also secondary flows due to the particular configuration studied, has been

provided recently by Sherwin and Doorly [141].
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1.2 Framework: mathematical modelling in haemodynamics

Improvement in the understanding of the genesis of coronary diseases is very important as it

allows to reduce surgical and post-surgical failures. It may also suggest new means in bypass

surgical procedures with less invasive methods and to devise new shape in bypass configura-

tion (see Perktold et al. [112], O’Brien and McGloughin [107]).

Generally speaking, mathematical modelling and numerical simulation can allow better un-

derstanding of phenomena involved in vascular diseases (see Abdoulaev et al. [1], Quarteroni,

Tuveri and Veneziani [125], Quarteroni and Formaggia [126], Fung [39] and more recently

Gerbeau and Chapelle [42]).

In this work we aim at providing design indications for bypasses surgical procedures by apply-

ing numerical optimization methods at two different geometrical levels: the former is based

on the local shape of the incoming branch, the latter is devoted to a complete bridge config-

uration.

At each geometrical level we have developed different approaches based on either low fidelity

steady Stokes flows and on high fidelity unsteady Navier-Stokes. The idea is to use complex

optimization tools with low fidelity fluid model, then to verify results in feedback on the

complete (high fidelity) fluid model.

At a fine geometrical level the background provided by mathematical modelling and numeri-

cal simulation has led us to apply the optimal control theory of systems governed by partial

differential equations (PDEs) with the aim of optimizing the (local) shape of a simplified

bypass model.

At a coarser geometrical level efficient schemes for reduced basis methodology (see Patera et

al. [118]) applied to parametrized partial differential equations (P 2DEs) are being used to

provide useful and quick indications (outputs) for bypass complete configuration in a repet-

itive design environment as shape design requires. With the reduced basis approach also a

sensitivity analysis of the initial configuration and a study of important geometrical quantities

in bypass can be obtained. (see [135] for an introduction and [111] for details). Figure 1.5

clarifies our geometrical double-level of interest for bypass design.
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The ultimate goal is to build an input-output relationship hold by different models character-

ized by an increasing degree of complexity (dealing with different fluid models and optimiza-

tion methods) and focused on different geometrical levels. The outputs of interest are design

quantities and fluid mechanics indexes, while the inputs are typically geometrical quantities.

The multilevel approach is introduced in Figure 1.6.

1.2.1 On control approaches

At a local geometrical level optimal control of one (or several) aspect of the problem entails the

minimization of a cost functional which describes physical quantities involved in the specific

problem. Optimization process is carried out by a control function which, depending upon

the context, may represent initial or boundary conditions, shape of the domain (by boundary

variations), force terms, sources, etc. In computational fluid dynamics two different kind of

optimal control problems can be faced.

The former is called Data Control, in which case the control is on different variables of the

problem such as initial and boundary conditions, force terms, sources and coefficients. Control

function can act either on the boundary or part of it, or on the whole computational domain

or part of it. When control is put on the flux we have a flow control problem (Becker [14],

Berggren [17], Hinze and Kunish [57], Ravindran and Hou [58], [59], Gunzburger [49], Slawig

[142]).

The other field is called Domain Control, since the solution of the system of PDEs is controlled

by boundary variations of the domain itself. This field is related with shape optimization

and optimal shape design, see e.g. the work by Jameson et al. [66], [67], [68], Pironneau

[115], Mohammadi and Pironneau [97], Kawohl et al. [70], Di Césaré [33], in the context

of aerodynamics for external flows (wings and airfoils design) and internal flows (nozzles,

channels).

The problem we are considering is related both with optimal shape design (see also J.Haslinger

and R.A.E. Makinen [52]) and flow control (see Gunzburger [50]) in haemodynamics, involved

in the observation of the evolving system and in cost functionals, such as vorticity or wall

shear stress. Optimization process is carried out by a control function used as parameter in

modelling the shape of the domain.

At this level two control approaches have been used: in the former the control function is used

to define directly the boundary shape (local boundary variation method) in the true domain

(see [123]); in the latter, the control function is used to define the mapping transformation

from the reference domain to the true one. In this case the design problem becomes an optimal

control problem on coefficients and the analysis can be based on small perturbation theory

in fluid mechanics (see [4]). Theoretical investigation based on perturbation theory analysis

and linearized shape design provides results on existence and uniqueness of solution and on

the well-posedness of the problem, and permits us to better understand the problem from a

theoretical point of view. In this second approach also an unsteady fluid model has been used

during control process. In both cases the adjoint approach, proposed for example by J.L.

Lions [82], Marchuk [95] and Agoshkov et al. [96], to get cost functionals gradient in problem
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with distributed or boundary control and observation, has been developed. In the functional

optimization process a descent gradient-type method (with fixed optimized step size) is used

(see Ciarlet [25]). Numerical approximation is based on the Galerkin-Finite Element Method

[127]. Algorithms were developed for control and optimization as well as for the coupling

between state and adjoint problems.

At the end of these first investigation stages based on optimal design a cuffed bypass is

found with a shape which resembles the Taylor arterial patch [26]. A feedback validation

procedure has then been implemented by solving the unsteady Navier-Stokes equations in the

original configuration as well as in the final configuration obtained after applying the shape

optimization processes. The original elements dealing with this part of the work are the use of

small perturbation techniques in fluid mechanics combined with optimal flow control, the use

of reference domain formulation to avoid mesh reconstruction at each iteration, the setting

of a shape optimization problem as an optimal control problem on coefficients, representing

coordinates transformations. This approach has been used both for steady and unsteady

flows.

1.2.2 Reduced basis methods for pre-process and real time optimization

Especially in the field of optimization or design, where the evaluation of many different

possible configurations is required – corresponding to different choices of the design parameters

– even for modest-complexity problems, the computational cost is unacceptably high. To

more efficiently utilize the existing computational resources, reliable methods that reduce

the complexity of the problem while at the same time preserve all relevant information, are

becoming very important.

Input-Output relationship

Central to every design, optimization, or control problem is the evaluation of an “input-

output” relationship. The set of input parameters µ, which we will collectively denote as

“inputs,” identify a particular configuration of the system or of one of its components. These

inputs may represent design or decision variables, such as geometry or physical properties

– for example, control variables in optimization studies; or characterization variables, such

as physical properties, in inverse problems. The output parameters s(µ), which we will

collectively denote as “outputs”, are performance indexes for the particular input µ – for

example stresses, velocity, flow rates. These outputs are typically expressed as functionals

of field variables associated with a set of parametrized partial differential equations which

describe the physical behavior of the system or its components. Then we are interested in

calculating the outputs s(µ) = F(µ), for many different inputs/configurations µ chosen from

a parameter space D ⊂ R
P , where P is the number of input parameters. Here, F encompasses

the mathematical description of the physical problem at different levels of complexity.

For the evaluation of F the underlying equations have to be solved. Usually, an analytical

solution is not easy to obtain, rather a discretization procedure like the finite-element method,

is used; then F is replaced by Fh, a discrete form amenable to numerical solution. The
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basic premise, is that as the discretization “length” h → 0, then Fh → F , and consequently

sh(µ) → s(µ), ∀µ ∈ D but as h→ 0 the cost of evaluating Fh becomes prohibitive. Especially

in the context of design, control, or parameter identification where “real-time” response or

many “input-output” evaluations are required, a balance between computational cost and

accuracy/certainty is essential.

Computational method

Identifying the problem in the high dimensionality of the discrete problems, model-order

reduction techniques have been developed. The critical observation is that instead of using

projection spaces with general approximation properties — like in finite element method—

we choose problem-specific approximation spaces and use these for the discretization of the

original problem. Using such spaces, we can construct a model that represents with sufficient

accuracy the physical problem of interest using a significantly smaller number of degrees

of freedom. Depending on the choice of the global approximation spaces many possible

reductions are available.

The computational methods developed in this work permit rapid and reliable evaluation of

this input-output relationship induced by partial differential equations in the limit of many

queries — that is, in the design, optimization, control, and characterization contexts. In

designing new methods, certain qualities must be considered:

• Efficiency is crucial for the problems in consideration. To achieve efficiency, we shall

use the reduced-basis method; a weighted-residual Galerkin-type method, where the

solution is projected onto low-dimensional spaces with certain problem-specific approx-

imation properties.

• Relevance. Usually in a design or optimization procedure we are not interested in the

field solution, but rather in certain design measures such as the drag coefficient in the

case of flow past a bluff body, or the average temperature on a surface in the case of heat

conduction. The methods developed as part of this work give accurate approximations

to these outputs of interest, defined as functional outputs of the field solution.

• Reliability. To quantify the error introduced by the reduced-basis method, an error

analysis must be invoked on outputs of interest.

In our field of interest, reduced basis approximation provides not only high computational

savings, a rapid (real-time) and accurate methodological pre-process to detect the essential

feature of the optimization process itself, but also the study of a geometrical sensitivity analy-

sis of a complete bypass configuration. By selecting a limited number of relevant geometrical

parameters (bypass diameter t, artery diameter D, stenosis length S, graft angle θ, bypass

bridge height H, see Figure 1.5) and a moderate number (N) of sample parameters

µk = {tk, Dk, Sk, θk,Hk}, k = 1, . . . , N,

we solve the parametrized equations that govern the physical problem in a reference domain

Ω, properly mapped by coordinate transformations [135]. Then we build properly reduced
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basis functional approximation spaces for velocity and pressure to guarantee approximation

and algebraic stability. For a new sample µk we look for a new solution which is given by a

weighted combination of previously computed and stored solutions. Weights are given by the

solution of a state problem on the subspace of the reduced basis by a Galerkin projection (see

[111]). In this thesis reduced basis methods have been applied especially to Stokes and Navier

Stokes problem. A more pedagogical introduction to elliptic operators is presented in the Ap-

pendix A in order to set up the ground for an unfamiliar reader for a better understanding

when addressing the Stokes and Navier-Stokes problem, while advection-diffusion operators

are considered in the conclusive part dealing with perspectives and developments. The most

original contribution are concerned with the pressure treatment in Stokes and Navier-Stokes

problem, the introduction of geometrical parametrization of domain by affine and non-affine

maps, the study of different options to guarantee approximation stability of reduced basis ap-

proximation and, finally, basis orthonormalization to achieve algebraic stability for reduced

basis. This methodological development highlights the great potential of reduced basis meth-

ods in optimal flow control and shape optimization, not only for pre-process optimization.

Reduced basis can be seen as methods to solve in real-time complex problem with great

computational savings without loosing accuracy and fast convergence.

1.2.3 Thesis outline

The thesis is organized as follows. Part I deals with optimal flow control and local shape

optimization.

In Chapter 2 we deal with local shape optimization by optimal control (briefly recalled) using

local boundary variations and Stokes equations. Design quantities of interest are introduced

and motivated. A simplified bypass model is considered. Preliminary feedback procedures are

described. In this chapter we introduce also methodological algorithms to solve our problem.

In Chapter 3 we deal with small perturbation techniques in fluid mechanics. The linearized

shape design problem is described using an optimal control approach in a reference domain

using Stokes equations. Theoretical results on well-posedness of the problem, existence and

uniquiness of solution are discussed.

In Chapter 4 we extend our work considering unsteady Stokes equations and introducing a

generalization of our approach. Numerical results are presented in each chapter.

Part II is devoted to reduced basis techniques for optimization problems. In Chapter 5 we

introduce the reduced basis problem for Stokes equations where we focus our attention on

geometrical parametrization using Cartesian geometries, and proof of stability. Preliminary

results on sensitivity analysis of bypass configuration are described. Different outputs are

considered and the dual residual weighted approach is introduced to improve the accuracy of

the output calculation.

In Chapter 6 we deal with a more complex problem introducing non-affine coordinate trans-

formations and curved geometries.

In Chapter 7 reduced basis methods are discussed for steady Navier-Stokes equations. Other
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feedback results are introduced considering bypass configurations. This chapter concludes the

study of the bypass optimization and provides a comparison between low fidelity models, based

on Stokes equations, and high fidelity models based on Navier-Stokes equations.

In Chapter 8 several further aspects are considered, such as the possibility to use reduced

basis for an optimal control problem (the example deals with advection-diffusion operators),

combined also with shape sensitivity. Finally a reduced basis methodology for an unsteady

version of the problem is suggested. This chapter provides some perspectives towards the

solution of solving parametrized optimal control problems and some conclusions.

Appendix A provides an introduction on reduced basis techniques to explain the method-

ology and all its aspects dealing with elliptic operators. In this appendix is shown also how

to build a parametrized geometrical configuration.

To summarize, the first part of this thesis is focused on shape optimization techniques for

local configurations: local boundary variations, small perturbation techniques led by optimal

flow control. The second part of the dissertation deals with the optimization of global config-

urations and is led by the development of reduced basis techniques in parametrized domain

with an approach based on a “step-by-step” increasing complexity. The “glue” between the

two parts is represented from one side by the kind of application that is considered and, from

the other side, by the methodological aspects that are developed. To help the reader following

the logical flow of the work, in Figure 1.7 we present the general organization of the thesis

with theoretical, methodological and conceptual links highlighted. More interpretation paths

can be outlined. For example, in Figure 1.8 we provide the same scheme focusing on the

application point of view.
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Chapter 2

Optimal Control and Shape

Optimization by Local Boundary

Variations

In this chapter we present the first approach in the study of Aorto-Coronaric bypass anasto-

moses. The theory of optimal control based on adjoint formulation is introduced and applied

in order to optimize the shape of the zone of the incoming branch of the bypass (the toe) into

the coronary using a local boundary variations method led by the gradient of a cost functional.

The aim is to provide design indications in the perspective of future development for prosthetic

bypasses. With a reduced model based on Stokes equations and a vorticity functional in the

down-field zone of bypass, a Taylor like patch is found. A feedback procedure by Navier-Stokes

fluid model based on the analysis of wall shear stress and its related indexes is proposed.

The chapter is organized as follows: firstly we make some remarks on optimal control theory,

then we turn our attention to design quantities of interest for the specific bypass configuration

problem and we set up a geometrical framework to analyze our problem. Then we describe

a first shape optimization algorithm and provide several numerical results. For a general

introduction on the bypass anastomoses problem we suggest to see Perktold et al. [80].

2.1 A control approach: looking for cost functional

optimization

In this section we briefly review the optimal control theory. This will provide the ground for

the set up of our shape optimization algorithms. For a general presentation of the optimal

control theory the interested reader can refer to Lions [82], [83] and Aziz et al. [9]. For

functional analysis elements see Yosida [167], Brezzi and Gilardi [20].

In the optimal control problems the following mathematical ingredients will set the stage:

• A control function u which belongs to a functional space Uadm ⊂ U , called admissible

control space.

15
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• A state system y(u) associated to the control u, y belongs to the Hilbert space V and is

the solution of a PDE problem defined on the domain Ω:

Ay(u) = f +Bu, (2.1.1)

where f is a given function (source term), while A is an operator defined on V with

values in V ′ and B is a linear operator defined on U and valued in V ′, respectively. The

latter equation is called state equation and represents the physical system to control

and optimize. Note that u→ y(u) is an affine map.

• An observation function z(u) belonging to a suitable space Z which is related to y(u)

through an operator C, z(u) = Cy(u). Our observation will coincide with the restriction

of z(u) upon a convenient subset of the computational domain Ω, so in our case C is

indeed a restriction operator.

• A cost functional J(u) (to be minimized) which is a non-negative quantity depending

on the observation z(u).

The general formulation of an optimal control problem reads:

• Find a function u ∈ Uadm so that:

J(u) = inf{J(v), ∀v ∈ Uadm}. (2.1.2)

Note that the formulation (2.1.1) covers the case where the control variable is either a bound-

ary condition or a source term. Optimal shape design can be regarded as a special case of

control theory where the control is the boundary itself. More precisely, u → Ω(u) → y(u),

where u → Ω(u) is the parametrization of the domain by a control parameter u and the

problem is to minimize a functional J(u, y(u)), which depends on u through y(u), but also

directly (for instance J is an integral of a quantity depending on y(u) extended to a region

depending on u). See Mohammadi and Pironneau [97]. In our problem the control will be a

subset of the domain boundary Γ(u).

In the following section we will construct some cost functionals of our interest.

2.2 Design control quantities

As already seen in the previous section, cost functionals are related with the observation of

physical quantities in the system.

Our interest is for the use of optimal control strategies in the context of improving and

optimizing the shape of aorto-coronaric bypasses (see Figure 1.1). In the literature several

physical quantities (often called “indexes”) have been proposed in order to asses and measure,

at some extent, arteries occlusion risk (or re-occlusion after bypass surgery). These indexes

have been introduced in order to enlight some specific mechanism that could be correlated to

the narrowing of coronaries (phenomena called intimal thickening). A first index stems from
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the observation that a crucial role is played by blood flow oscillations during the diastolic

phase of every single heart beat. Another index attemps at measuring the rapid variations

of the shear stress (2.2.2) on the vascular wall. In any case these and other indexes (that we

are going to review briefly) could be considered as a starting point on the way to synthesize

the enormous amount of information given by numerical simulation for the bypass design and

they can be used to build cost functionals of interest for our problem.

The Oscillatory Shear Index (OSI) was introduced in 1983 by Zarins and Giddens [168] to

identify the occlusion risk zones. It is defined as follows:

OSI =
1

2

(
1 −

∫ T
0 τwdt∫ T

0 |τw|dt

)
, (2.2.1)

where [0, T ) is the time interval of a single heart beat (T ' 1 sec) and τw is the wall shear

stress, indicated with WSS and defined for a Newtonian fluid as:

τw = µ
∂u

∂n̂
· t̂, (2.2.2)

where u is the blood velocity field, µ is the blood viscosity, n̂ and t̂ are, respectively, normal

and tangential unit vector on the arterial wall. OSI measures the temporal oscillations of the

shear stress pointwise, without taking into account the shear stress trend in the immediate

neighborhood of a specific (critical) point.

Another indicator of occlusion risk zones is the Mean Wall Shear Stress Gradient (MWSSG)

(see Veneziani [156] and Wells et al. [164]) defined as:

MWSSG =
1

T

∫ T

0
|WSSG|dt, (2.2.3)

where the Wall Shear Stress Gradient (WSSG) is defined as:

WSSG =
∂τw

∂t̂
= ∇τw · t̂. (2.2.4)

According to MWSSG, the zones featuring occlusion risk or abnormal flow pattern are those

where strong variations in the shear stress along the wall occur. This index is dual to OSI,

since it weighs spatial variations.

An alternative to OSI is the Oscillatory Flow Index (OFI), see Taylor et al. [149]:

OFI =
1

2

(
1 −

∫ T
0 Qdt
∫ T
0 |Q|dt

)
, (2.2.5)

where Q is the flow rate across an artery section Γf ,

Q =

∫

Γf

ρu · n̂dΓ, (2.2.6)

being ρ the blood density. It quantifies temporal oscillations in flow rate.

A problem arising when using one of the previous functionals for optimization purposes is
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that they don’t have a quadratic form. We can use these quantities for feed-back processes,

but we need functionals which can provide a good average in time and in space of shear stress

trend. With this aim, we propose other integral quantities that can be defined along the

artery wall Γw (or a critical part of it). Set for all t > 0:

Σ(t) =

∫

Γw

(∂τw(t)

∂t

)2
dΓ, (2.2.7)

and

Q(t) =

∫

Γw

(∂Q(t)

∂t

)2
dΓ. (2.2.8)

Then we define:

Jτ = mean[0,T ]Σ(t) =
1

T

∫ T

0
Σ(t)dt =

1

T

∫ T

0

∫

Γw

( ∂
∂t
τw(t)

)2
dΓdt, (2.2.9)

which is the L2 − norm of the wall shear stress rate (L2 −WSSR). Similarly, we define the

analogous L2 − norm of the flow rate Q (L2 − FR):

JQ = mean[0,T ]Q(t) =
1

T

∫ T

0
Q(t)dt =

1

T

∫ T

0

∫

Γf

( ∂
∂t
Q
)2
dΓdt. (2.2.10)

These new indexes Jτ and JQ could be seen as a lumped and complete information from

the previous cost functionals because they take into account both of spacial and temporal

oscillation of fluid mechanics quantities.

In the perspective of using low fidelity methods for control process (to reduce computational

time and costs) and then higher fidelity methods in feedback we are going also to measure

other fluid mechanics quantities such as vorticity and energy dissipation (due to viscous terms)

in distributed zone of flow field (and not pointwise quantities), above all when using steady

fluid models. These indexes (vorticity, viscous energy dissipation) contain many information

on flow properties and their links with geometry variation.

2.3 Mathematical modelling of the problem.

Blood is a very complex fluid which interacts with the compliant arterial vessels. Some sim-

plificatory assumptions are in order in view of applying a control procedure. Concerning the

fluid model we consider blood as a Newtonian fluid, modelled by Navier-Stokes equations

(or even by the simplified Stokes model). This model is an acceptable approximation when

studying blood flow in large or medium-size arteries. In coronary arteries blood is also char-

acterized by a low velocity profile. The Reynolds number (the ratio between inertial and

viscous forces) is rather low, so the flow can be regarded as laminar .

2.3.1 The geometrical model

To model the incoming branch of a bypass, different bypass anastomoses models have been

taken into consideration. We have simplified our model by considering a longitudinal section
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in the mean plane reducing it to a two-dimensional problem. As initial configuration we have

used a fiberglass model developed at the Surgical Vascular Division of Aahrus University Hos-

pital (Denmark). See Figure 2.1. To define anastomoses geometry for numerical simulation,

Figure 2.1: 3-D Anastomoses fiberglass model (Aahrus University Hospital, Denmark)

different aspects have to be accounted for:

• Fluid dynamics phenomena in the bypass are strictly related with the shape assumed,

such as the presence of blood re-circulating zones, flow separation and vorticity. Blood

pulsatility due to heart beat influences our analysis and this aspect will be considered

in the next chapters. The most critical zone in the bypass design is the toe and must

be carefully modelled. The toe, in fact, models the incoming branch of the bypass and

influences the way in which the blood approaches in the host artery from the bypass

bridge device. See Figure 2.2.

• Another important aspect to keep into consideration is the graft angle between the

incoming branch and the occluded artery. This aspect will be discussed in details in the

second part of this thesis.

• The diameter of the occluded branch (the lower branch) is D = 3.5 mm and the one

taken in this first investigation for the bypass is 0.96 ·D, as suggested in Quarteroni and

Formaggia [126] and used in surgery procedures. This quantity will be studied more

deeply in the second part of the thesis.

A curvature in the vascular wall is introduced to model coronary arteries in order to take

into consideration the presence of the heart muscle. Figure 2.2 shows the mean plane before

applying the shape optimization process. These simple considerations already underline the

importance of the study of a complete parametrized bypass configuration taking into account

graft angle, curvature and other quantities to define the complete device scheme.

2.3.2 The state problem: Navier-Stokes and Stokes equations

In our optimal control process we use as state equations the steady Stokes equations which are

however well suited for modelling Newtonian flows at low Reynolds number. In reality, because
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of flow pulsatility we should consider the unsteady Navier-Stokes equations. Unfortunately,

such as a complete fluid model would be too complex and expensive to control because of

evolution terms, non linearity in the adjoint problem and the fact that the shape of our

computational domain depends on time. Nonetheless, after performing shape optimization

on our reduced model governed by steady Stokes equations, we will turn our attention to the

complete Navier-Stokes model for feed-back procedures considering design cost functionals

such as the ones presented in Section 2.2. We focus therefore on the steady Stokes problem.

The Stokes equations in a two-dimensional computational domain Ω with velocity vector

u = (u, v)T and pressure p (which is divided by the constant blood density ρ) read:





−ν∆u + ∇p = f in Ω ⊂ R
2,

∇ · u = 0 in Ω,

u = 0 on Γw,

u · t̂ = 0, u · n̂ = gin on Γin,

ν ∂u∂n̂ − pn̂ = 0 on Γout,

(2.3.1)

where f is a force field (for example gravity f = (0, 9.8)Tms−2), n̂ and t̂ are, respectively,

normal and tangential unit vector on the domain boundary ∂Ω. The latter is partitioned in

three components: Γin is the inflow boundary, Γout the outflow boundary and Γw the bound-

ary corresponding to the arterial wall; Figure 2.2 represents schematically the computational

geometry and the symbols used.

Concerning boundary conditions, no-slip conditions are imposed on all vascular walls of Γw,

Stenosis

INFLOW

OUTFLOW

Toe
Graft

Heel

Downfield

Bypass

Γ c

Γ Γ

Γ

out

in

w

Γ

Occlusion Ω
Bed

w

wd

Figure 2.2: Anastomosis schematic model and symbolic notation used for domain and bound-

aries, with down-field observation zone Ωwd.

over the stenosed artery portion (if we consider a complete occlusion, otherwise we have to

consider this section in the same way of the inflow section but with a reduction of flow rate)

and on the incoming branch of bypass. At inflow section Γin, a Hagen-Poiseuille’s velocity

profile gin is imposed, while on outflow section Γout of the artery a free-stress, Neumann-type,

boundary condition has been imposed. Velocity values at the inflow are chosen in such a
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way that the Reynolds number Re = ūD
ν has order 103. Blood kinematic viscosity ν = µ

ρ is

4 ·10−6 m2 s−1, blood density ρ = 1 g cm−3 and dynamic viscosity µ = 4 ·10−2 g cm−1s−1; ū

is a mean inflow velocity (in absolute value) related with gin, while D is the arterial diameter

(3.5 mm). Arterial thickness is about 0.5 mm [126].

The role of control

In our problem the control w represents the shape Γw itself or a part Γc of it (typically the

incoming branch). Precisely, we write (see Figure 2.2):

Γw = Γw(rigid) ∪ Γc(toe), (2.3.2)

where

Γw(rigid) = Γw(bed) ∪ Γw(heel) ∪ Γw(graft) ∪ Γw(stenosis), (2.3.3)

then we can build our geometrical model for Γc (double-dotted in Figure 2.2) made up of M

branches Γjc(w) represented by:

Γc =
M⋃

j=0

Γjc(w), Γjc(w) = Γjc + wj , (2.3.4)

where wj is the control variable (control shape function) which changes by δwj
k at each

iteration of the optimization process. At the k − th iteration we have:

wjk =
k−1∑

m=0

(δwjm), (2.3.5)

its expression will be derived in Section 2.5. Further, we take the curves (of order up to N)

Γjc(s) =

N∑

i=0

αjif
j
i (s), (2.3.6)

which represent the initial shape, s is the horizontal abscissa that parametrizes the curve

Γc, f
j
i (s) =

∑i
k=0 aks

k are given shape polynomial functions of ith order and αji are suitable

weights (clearly each branch describing the initial shape must be properly set to guarantee a

boundary with sufficient regularity).

Weak formulation for the state problem

We introduce a weak formulation for the state problem (2.3.1), see [127]: find u ∈ V =

(H1(Ω))2, p ∈ Q = L2(Ω) s.t.





a(u,v) + b(p,v) = F (v) ∀v ∈ X,

b(q,u) = 0 ∀q ∈ L2(Ω),

u = uin on Γin,

(2.3.7)
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where

a(u,v) =

∫

Ω
ν∇u · ∇vdΩ,

b(p,v) = −

∫

Ω
p∇ · vdΩ, F (v) =

∫

Ω
f · vdΩ,

X := {v : v ∈ (H1(Ω))2,v = 0 on Γin ∪ Γw},

and uin is ginn̂ on Γin and 0 on Γw. Note that the second equation in system (2.3.7) may be

also written in the equivalent form: −b(q,u) = 0; after numerical discretization, the latter

formulation will lead to an algebraic system which is no longer symmetric but always positive

definite ([127]). This alternative will be adopted to build the adjoint problem.

Galerkin approximation

The Galerkin approximation for the Stokes equations (2.3.7) is the following: find uh ∈ Vh,

ph ∈ Qh such that




a(uh,vh) + b(ph,vh) = (f ,vh) − a(Rh,vh) ∀vh ∈ Vh,

−b(qh,uh) = b(qh,Rh) ∀qh ∈ Qh,
(2.3.8)

here Rh ∈ Vh and Rh|Γin
= uinh

. The spaces Vh ⊂ V and Qh ⊂ Q are two families of

subspaces of finite dimension depending on the discretization parameter h. For the proof

concerning the existence and uniqueness of solution of problem (2.3.8) and approximation

stability aspects we suggest to see [127]. We denote

{ϕj ∈ Vh}, {φk ∈ Qh},

the basis functions for the spaces Vh and Qh, respectively. We can develop uh and ph on their

basis getting

uh(x) =
∑N

j=1 Ujϕj(x), ph(x) =
∑M

k=1 pkφk(x), (2.3.9)

where N = dim(Vh), M = dim(Qh). We get the following linear system for the state problem:




AU + BTP = F,

BU = 0,
(2.3.10)

where A ∈ R
N×N and B ∈ R

M×N are matrices related to bilinear forms a(·, ·) and b(·, ·),

with elements given by

A = (aij) = (a(ϕj,ϕi)),

B = (bkm) = (b(φk,ϕm)),

while U and P are vectors of unknowns,

U = (Uj), P = (pj).
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Remark on stabilization

We have based our approximation on Galerkin-Finite element method and we use, for example,

piecewise linear elements for velocity (ϕ) and pressure φ. This choice of elements with the

same polynomial degree has to be accompanied by a stabilization procedure. We use the

SUPG stabilization (see, e.g., Quarteroni and Valli [127]). We introduce a relaxation on the

incompressibility constraint: find uh ∈ Vh, ph ∈ Qh such that:





a(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh,

b(uh, qh) = Φh(qh) ∀qh ∈ Qh,
(2.3.11)

where Φh has a linear dependence on the test function qh, but can also depend on uh, ph, f

and h. An example of Φh in the case of linear finite elements P
1 − P

1 is:

Φh(qh) =
∑

K∈Th

h2
K

∫

K
∇ph · ∇qh,

where Th is the finite element triangulation whose elements are indicated with K.

2.3.3 The observation on the system

After having described the control strategy on the boundary and introduced the state problem

(and its approximation) we have to choose a cost functional. We consider a distributed

observation in the down-field zone of the incoming branch of the bypass indicated as Ωwd (see

Figure 2.2). For this preliminary study our observation will be the vorticity ω = ∇ × u =
∂v
∂x − ∂u

∂y ; u is the solution of the Stokes equations (2.3.1) and we control the system by

minimizing the following functional:

J(w) =
1

2

∫

Ωwd

| ∇ × u |2 dΩ + α‖w‖2, (0 < α� 1). (2.3.12)

where the last term provides the minimum shape deformation and guarantees existence of

the solution. The symbol ‖.‖ denotes the norm of L2(Ωwd). By this observation we can draw

information on the vorticity distribution. The curl of the vorticity will provide a source term

of the adjoint problem, whose solution represents the sensitivity of the cost functional to the

observation (related with state solution) and will be used during our optimization procedure

to get the gradient of the cost functional allowing computational savings. For further aspects

on vorticity reduction problems see Berggren [17].

We underline that we consider not only what happens on the vascular wall (i.e. on part

of the domain boundary) but also in the fluid domain. For this reason this investigation is

also a flow control problem and not only a shape optimization problem, because an optimal

shape design problem is usually based only on the boundary observation. In this approach

we have also taken into consideration another important aspect, concerning wall stiffness and

elasticity. In fact we can rewrite the cost functional of interest into a different form, replacing

the term α‖w‖2 of (2.3.12) with the following one including the minimization of the wall
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deformation (which will depend on mechanical properties of the wall), in the zone where the

bypass merges with the artery:

J(w) =
1

2

∫

Ωwd

| ∇ × u |2 dΩ +
E0

ξ

∑

j

( ∫

Γj
c(w)

dΓ − l̃j

)2
. (2.3.13)

Here l̃j is the original length of the vascular wall Γ
j
c(w), ξ is a suitable weight, while E0 is

Young’s elasticity modulus (3 ·106 dyne cm−2). We are thus considering a multi-objective op-

timization of a prosthetic device. The last term in (2.3.13) describes the elastic wall behavior

and provides a measure for elastic energy and wall deformation. The two quantities on the

right end side of (2.3.13) have to be weighed by the choice of ξ.

The choice of a vorticity based functional to extract information can be better understood

looking at Figures 2.3 and 2.4 where vortices structures in the downfield zone of a bypass are

shown.

Figure 2.3: Vorticity in the down-field zone of a bypass (from a numerical simulation car-

ried out by Fischer, Lee, Loth; University of Illinois and Argonne National Laboratories by

permission).

Figure 2.4: Vorticity in the downfield zone of a bypass: 2D details at the incoming branch

(from a numerical simulation carried out by Fischer, Lee, Loth; University of Illinois and

Argonne National Laboratories by permission).
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2.3.4 The adjoint problem

As already mentioned, during the optimization process we must solve another PDE problem,

the so-called adjoint problem. Considering the cost-functional (2.3.12), the state problem

(2.3.7) and replacing test functions v and q with p and σ, respectively, the associate La-

grangian reads:

L(u, p; p, σ;w) = J(w) − a(u,p) − b(p,p) + (f ,p) + b(σ,u), (2.3.14)

whose derivative with respect to (u, p) imposed equal to zero gives us the adjoint problem

(see Gunzburger [50]):

Lu,p(u, p; p, σ;w)[δu, δp] = −

∫

Ω
ν∇δu · ∇pdΩ +

∫

Ω
δp∇ · pdΩ −

∫

Ω
σ∇ · δudΩ+

+

∫

Ωwd

(∇× u) · (∇× δu)dΩ = 0, ∀[δu, δp],

which,using the notation already introduced for the state problem, can be written in the weak

form as: find p ∈ X, σ ∈ L2(Ω) s.t.

{
a(p,q) − b(σ,q) = H(q) ∀q ∈ X,

b(σ̂,p) = 0 ∀σ̂ ∈ L2(Ω),
(2.3.15)

where p and σ denote the adjoint velocity and pressure, respectively. We have replaced the

test functions δu and δp with q and σ̂ respectively, while the observation term is

H(q) =

∫

Ωwd

(∇× u) · (∇× q)dΩ =

=

∫

Ωwd

q · (∇×∇× u)dΩ +

∫

Γwd

n̂ · (q ×∇× u)dΓ,

using in the last step Green’s identities. This term is related with an internal source defined

in the down-field zone and its boundary, see for details Berggren [17] where a similar problem

is studied. A no-slip condition is imposed on the vascular wall Γw(w) and also on Γin, while

a “free-stress” condition ν ∂p∂n̂ + σn̂ = 0 is imposed on Γout.

The discretization of this problem is carried out using the Galerkin-Finite Element method

as introduced for the state problem (2.3.8): find ph ∈ Vh, σh ∈ Qh such that





a(ph,qh) − b(σh,qh) = H(qh) ∀qh ∈ Vh,

b(σ̂h,ph) = 0 ∀σ̂h ∈ Qh,
(2.3.16)

An important role is played by the adjoint solution to get the quantity J ′(w), which is used to

provide indications on the shape modification of Γjw. In fact, J ′(w) = G(p,u, w): a detailed

analysis will follow in Section 2.5 after introducing some notions on optimization algorithm

(Section 2.4).
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We anticipate here, just to clarify, that at k − th iteration of the optimization algorithm

described in Section 2.4.3 we will have

δwjk = −ξj(s)λ
j
kJ

′
k(wjk), (2.3.17)

where λjk is a relaxation parameter for descent gradient-based method, called step-size (see

Quarteroni, Sacco and Saleri [129]), while ξj(s) is a weight for the shape variation, used to

satisfy congruence geometrical conditions such as shape continuity and guarantee that the

internal arterial diameter cannot go below a certain threshold.

The cost functional depends on k (Jk(wk)) to underline that at each iteration the integral is

computed in a zone of the domain (Ωwd)k whose shape is changing at each iteration. During

the shape optimization process we have two degrees of freedom available (x, y) in the mean

plane of the bypass. We only consider a normal displacement with respect to the original

boundaries (as done also by Gunzburger [50] and Mohammadi and Pironneau [97]). For this

reason the weight parameter ξj(s) is a function of linear abscissa only.

2.4 Optimization and control algorithm

Before the description of the algorithm for the solution of the discretized control problem

(state and adjoint equations) introduced in Sections 2.3.2-2.3.4 we recall some elements dealing

with cost functional optimization and geometrical topology to manage with shape variations.

2.4.1 Gradient method

Let U be a Hilbert space, (., .) its associated scalar product, and w ∈ U → J(w) ∈ R then

J ′(w) is a linear operator from U to R such that

J(w + δw) = J(w) + J ′(w)δw + o(‖δw‖U )

At the basis of gradient methods is the Taylor expansion

J(w + ρz) = J(w) + ρ(GradwJ(w), z) + o(ρ‖z‖U ) ∀w, z ∈ U , ∀ρ ∈ R, (2.4.1)

where GradwJ(w) is the element of U defined by

(GradwJ(w), z) = J ′
w(w)z ∀z ∈ U ,

given by Riesz’ Theorem. By taking z = −GradwJ(w) in (2.4.1), with 0 < ρ� 1 we find:

J(w + ρz) − J(w) = −ρ‖GradwJ(w)‖2
U + o(ρ‖GradwJ(w)‖U ).

Hence if ρ is small enough the first term on the right-hand side will dominate the remainder

and the sum will be negative:

ρ‖GradwJ(w)‖2
U > o(ρ‖GradwJ(w)‖U ) ⇒ J(w + ρz) < J(w).
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Thus the sequence defined by:

wn+1 = wn − ρGradwJ(wn), n = 0, 1, 2, . . . (2.4.2)

makes the sequence of real numbers J(wn) monotonically decreasing. We have the following

result:

Theorem 2.4.1 (from Pironneau [70]). If J is continuously differentiable, bounded from

below, and +∞ at infinity, then all accumulation points w∗ of wn, generated by (2.4.2) satisfies

GradwJ(w∗) = 0

This is the so-called optimality condition of the first order of the problem. If J is convex then

w∗ is a minimum; if J is strictly convex the minimum is unique. By taking the best ρ in the

descent direction zn = −GradwJ(wn),

ρn = argminρ{J(wn + ρzn)},

that is

J(wn + ρnzn) = minρ{J(wn + ρzn)},

we obtain the so-called method of steepest descent with optimal step size. Indeed, thanks to

the analysis in [116], it is enough to find ρn with the following property (Armijo rule) to

guarantee convergence: find ρ such that for 0 < α < β < 1:

−ρβ‖z‖2 < J(wn + ρz) − J(wn) < −ρα‖z‖2

to have wn+1 = wn + ρz. An approximate Armijo rule takes only one line of slope α‖z‖2 and

first finds the largest ρ of the form ρ = ρ02±k which gives a decrement for J below the line

for ρ and above the line for 2ρ: choose ρ0 > 0, α ∈ (0, 1) and find ρ = ρ02±k where k is the

smallest signed integer (k can be negative) such that

J(wn + ρz) − J(wn) < −ρα‖z‖2

and

−2ρα‖z‖2 ≤ J(wn + 2ρz) − J(wn).

A good choice is ρ0 = 1, α = 1
2 .

2.4.2 Shape variation and control

In functional spaces, as in finite dimension, optimization methods require the gradient of

the cost functional J and for this we need to define an underlying Hilbert structure for the

parameter space, in our case the shapes (see Zolésio [144]). Two strategies can be pursued:

• All the admissible shapes are obtained by a mapping transformation from a reference

domain Ω̃ : Ω = T (Ω̃). Then the parameter is T : R
d → R

d. This approach will be used

and illustrated in detail in the next two chapters.
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• It is possible to guarantee the Hilbert structure (the existence of a scalar product) only

for small variations of the shape ∂Ω. Dealing with local shape variations δw defined

about a reference boundary Γ we consider:

Γ′(w) = {x + δw(x)n̂(x) : x ∈ Γ},

where n̂ is the outer normal to Γ at x and Ω is the domain which is on the left side

of the oriented boundary Γ′(w). The Hilbert structure is placed on w, for instance

w ∈ Hm(Γ). Considering a small perturbation Σ′ of Σ ⊂ Γ given by δw = −λJ ′(w),

using a gradient method, we have:

Σ′ = {x− λJ ′(w)n̂ : x ∈ Σ}

where w is a function of x ∈ Σ, Σ is endowed with sufficient regularity, and λ is a

positive number destined to tend to zero. We denote the “new” domain Ω′ = Ω(Σ′).

For any f ∈ H1(C), where C is a subset of Ω ∪ Ω′ we have
∫

Ω′

f −

∫

Ω
f =

∫

Σ
δwf + o(λ). (2.4.3)

This strategy has been used in this chapter and illustrated in the following sections.

2.4.3 The iterative process

The generic step of an algorithm for the solution of the control problem described in Section

2.3 can be devised as follows. Note that the pedix h referring to discretized solution is omitted

for simplicity of notation and the index k refers to iteration index.

• Solve the state problem (2.3.8) with velocity components uk and vk in the domain Ωk

with the moving boundary Γjck(wk−1) obtained from the previous iteration of the control

cycle.

• Compute the vorticity ∇× uk in the domain (Ωwd)k.

• Evaluate the cost functional (2.3.12) or (2.3.13).

• Solve the adjoint problems (2.3.16) for pk and σk with source term H depending on

(∇× uk).

• Use the stopping test on the quantity J ′
k(wk) related with uk and the adjoint state

(pk, σk):

‖J ′
k(wk)‖U ≤ tol, (2.4.4)

for a suitable tolerance tol.

• Estimate the shape variation δwjk (δwj0 = 0) on the boundary Γjck(wjk) by a descent

gradient-type method (see Kawohl et al. [70]). Then using (2.4.2):

δwjk|Γj
ck

= −λjkJ
′
k(wjk) = −λ̃jkGk(pk,uk, wk) (2.4.5)

with 0 < λjk � 1, which causes a vertical shape displacement δwjk in (2.3.4).
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• Update the boundary shape:

Γjck+1
(wk) ' Γjc +wjk + δwjk = Γjc +

k∑

m=0

(δwjm). (2.4.6)

• Modify the boundary and re-construct or adapt the computational grid (see Section

(2.4.4)).

Figure 2.5 shows a general scheme for a flow control and shape optimization problem (dis-

cretization aspects are understood in the scheme focused on optimization algorithm). For

more on optimal shape design techniques by boundary variations and shape parameters see

e.g. Di Césaré [33].

2.4.4 Mesh strategy

During the shape optimization process, introduced above, the mesh is subject to be modified

by boundary variations. There are two different strategies for mesh treatment at every step:

• Mesh reconstruction. This process is computationally expensive, even if new elements

can be added.

• Mesh stretching and elements adaptivity after boundary variations operated by small

deformation. This approach is faster and cheaper than the previous one. Mesh is usually

stretched only in the computational domain surrounding the boundary Γc subject to

shape changes. This technique is better because, when applicable, it guarantees the

continuity of the solution (for both state and adjoint problem) during the optimization

process (at different iterations).

Our approach used both strategies: the mesh was completely re-built only after a certain

number of iterations, when the elements lost some of their properties set to guarantee regu-

larity, while at each step mesh was stretched by locally boundary variations and adapted. In

this process regularity conditions were put on grid quality such as on the control of minimum

angles or maximum side-lengths. See Hecht et al. [55] and [53]. To preserve regular meshes

during shape deformation we may reduce the step-size of the gradient method (to limit shape

deformation) or introduce some regularization procedures.

Smoother

To avoid boundary oscillations (and irregular shapes) and due to the fact that the gradient

method produces shape variations δwk which have necessarily less regularity than the original

parametrization we can apply the following smoothing operator over the shape, defined in

Ωk, as proposed and demonstrated by Mohammadi and Pironneau [97]:




(I − ε∆)δw = δw̃,

δw = 0 on Γin ∪ Γout,
∂δw
∂n̂ = 0 on Γc,

δw = δw̃ on Γw\Γc

(2.4.7)
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Figure 2.5: Optimal shape design by flow control: scheme of the algorithm.

where δw̃ is the shape variation to be regularized and δw the smoothed one, while ε is a

viscosity parameter to be set to avoid mesh degeneration. For this reason a control over

geometrical quantities such as minimum angle or maximum side-length has been used. We

use this smoothing procedure at each iteration between steps (2.4.5) and (2.4.6); the value of

the “viscosity” parameter at convergence is set to zero, so that we have an identity operator
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in (2.4.7). To better understand the necessity of regularization we can say that if we desire

δw ∈ C1(Γ), where Γ is a portion of the boundary of Ω ⊂ R
2, the gradient method does not

necessarily produce C1(Γ) variation of δw but only L2(Γ) and therefore we need to project

them thanks to (2.4.7).

2.5 An equivalent interpretation of the problem

The cost functional (2.3.12) represents the square of the vorticity in the down-field (host

vessel) zone of the bypass. In the adjoint problem (2.3.15) we have considered the source field

H(q) =

∫

Ωwd

q · (∇×∇× u)dΩ +

∫

Γwd

n̂ · (q×∇× u)dΓ.

Let us consider the particular case where Ωwd ≡ Ω and the state problem has Dirichlet

conditions on the whole boundary or, alternatively, as it happens in our case, a free-stress

Neumann boundary condition on the outflow, where n̂ = (1, 0)T and Dirichlet conditions on

inflow and arterial walls. Then the boundary term of H(q) is zero. Note that the boundary

term of H(q) can be written also as
∫
Γwd

(∇u · n̂)qdΓ.

The following identity holds:

∇× ω = ∇×∇× u = ∇(∇ · u) − ∆u

and since we are considering incompressible flows (∇ · u = 0) it would have been equivalent,

from a physical point of view, using the source term −∆u for the adjoint problem (2.3.15)

instead of ∇×∇× u. The corresponding new cost functional (multiplied by the viscosity ν)

becomes:

J(u) =
1

2
ν

∫

Ω
|∇u|2dΩ,

and represents the minimization of the energy of the system dissipated by viscous stresses

(related with viscous drag). From now we will therefore consider this new functional.

To analyze this new problem (see also [97]), let us consider a domain Ω′ representing a small

perturbation of Ω. Its boundary Γ′ = ∂Ω′ can be represented as follows,

Γ′ = {x+ δw(x)n̂(x) ∀ x ∈ Γ = ∂Ω},

where δw is regular (for example δw ∈ C2) and small. We define also:

δu = u(Ω′) − u(Ω) ≡ u′ − u

where u has been extended from Ω to Ω′ such that u = 0 in Ω′\Ω. This extension is possible

because we have zero Dirichlet boundary condition on the wall subject to shape variations.

We will see that δu (and hence u′) can be obtained solving an additional problem. We

introduce

δJ ≡ J(Ω′,u′) − J(Ω,u) =
1

2
ν
(∫

Ω′

|∇u′|2dΩ −

∫

Ω
|∇u|2dΩ

)
,
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we have stressed the domain on which the cost functional is defined. We rewrite δJ as

δJ =
1

2
νδ
( ∫

Ω
|∇u|2dΩ

)
=

1

2
ν

∫

δΩ
|∇u|2dΩ + ν

∫

Ω
∇δu · ∇udΩ + o(δΩ, δu), (2.5.1)

where δΩ = Ω′ − Ω. We suppose that ∇u is smooth, and we rewrite the first term of (2.5.1),

related with δΩ as an “extension” of the value of |∇u| on Γ:

1

2
ν

∫

δΩ
|∇u|2dΩ =

1

2
ν

∫

Γ
δw|∇u|2dΓ + o(‖δw‖C2 ) =

1

2
ν

∫

Γ
δw|

∂u

∂n̂
|2dΓ + o(‖δw‖C2 ), (2.5.2)

having exploited the fact that the tangential derivative ∂u
∂t̂

= 0 since u = 0 on Γ. To rewrite

the second term of (2.5.1) it is possible to show that δu is a solution to the following problem

(now referring to the domain considered in Section 2.3) representing small flow perturbation

in Ω. Then rewriting problem (2.3.1) we have: find δu and δp in Ω such that




−ν∆δu + ∇δp = 0 in Ω ⊂ R
2,

∇ · δu = 0 in Ω,

δu = 0 on Γw\Γc,

δu = 0 on Γin,

ν ∂δu
∂n̂ − δpn̂ = 0 on Γout,

δu = −δw ∂u
∂n̂ on Γc,

(2.5.3)

Here we assume Γc ⊂ Γ as a portion of the boundary subject to shape optimization (per-

turbation is only on Γc which becomes Γ′
c). The only non-obvious relation is the boundary

condition on Γc (we recall that u is already known). By a Taylor expansion we rewrite

u′|Γ′
c

= u′(x + δwn̂) as

u′(x + δwn̂) = u′(x) + δw
∂u′

∂n̂
|Γc + o(|δw|) = 0,

which is set to zero to satisfy non-slip conditions between fluid and wall on the new boundary

Γ′
c. Being u′(x) = u′|Γc We get:

u′|Γc = −δw
∂u′

∂n̂
|Γc ,

but δu|Γc = u′|Γc − u|Γc and u|Γc = 0 so:

δu|Γc = −δw
∂u

∂n̂
|Γc .

Now we consider (2.3.15) in the weak form and with the new right-hand-side −ν∆u (instead

of ∇×∇× u), we multiply by (δu, δp) and integrate by parts, obtaining:
{
ν
∫
Ω ∇p · ∇δudΩ − ν

∫
Γc

∂p
∂n̂ · δudΓ +

∫
Ω σ∇ · δudΩ = ν

∫
Ω ∇u · ∇δudΩ − ν

∫
Γc

∂u
∂n̂ · δudΓ,∫

Ω δp∇ · pdΩ = 0.

(2.5.4)

Using equation (2.5.3) multiplied by (p, σ) we have:
{
ν
∫
Ω ∇p · ∇δudΩ −

∫
Ω δp∇ · pdΩ = 0,∫

Ω σ∇ · δudΩ = 0,
(2.5.5)



§2.6. SOME NUMERICAL RESULTS 33

and so, comparing (2.5.4) and (2.5.5) the only term surviving is

−ν

∫

Γc

∂p

∂n̂
· δudΓ = ν

∫

Ω
∇u · ∇δudΩ − ν

∫

Γc

∂u

∂n̂
· δudΓ,

where δu|Γc = −δw ∂u
∂n̂ |Γc , so

−ν

∫

Γc

(
∂p

∂n̂
−
∂u

∂n̂
) · δudΓ = ν

∫

Ω
∇u · ∇δudΩ. (2.5.6)

Finally from (2.5.2) and (2.5.6) we can rewrite (2.5.1) as:

δJ =
1

2
ν

∫

Γc

δw|
∂u

∂n̂
|2dΓ + ν

∫

Γc

δw(
∂p

∂n̂
−
∂u

∂n̂
) ·
∂u

∂n̂
dΓ,

or

δJ = ν

∫

Γc

δw(
∂p

∂n̂
−

1

2

∂u

∂n̂
) ·
∂u

∂n̂
dΓ.

In our algorithm we are interested in J ′(w) and recalling that

δJ =

∫

Γc

J ′(w)δwdΓ

we can say that the new δw|Γc = −ρJ ′(w) = −ρν((∂p∂n̂ − 1
2
∂u
∂n̂ ) · ∂u∂n̂ ) = −ρG(p,u, w). In this

analysis we can better understand the role of the adjoint variables to get the gradient of cost

functional and the new shape.

2.6 Some numerical results

In this section we present some results carried out by local boundary variations algorithm

to optimize a preliminary bypass configuration, to obtain vorticity reduction and a feedback

procedure to prevent wall shear stress oscillations with the functional (2.2.9). Numerical

tests and simulations have been carried out using Bamg [55], a Bi-dimensional Anisotropic

Mesh Generator and FreeFem [54], a finite element Library developed at INRIA, the French

National Institute for Research in Computer Science and Control, with the development of

algorithms based on control theory and shape optimization. Several remarks carried out from

intensive preliminary numerical investigations are in order:

• The wall curvature in the host artery (to model arteries near the heart muscle) increases

vorticity.

• The graft angle of the incoming branch of the bypass influences vorticity, by reducing

the angle also vorticity is reduced in the down-field observation zone (keeping fixed the

configuration provided by other quantities such as arterial and bypass diameter).

• Bypass configuration causes an increase of vorticity in the downfield area of about

35% than the previous idealized 2D configuration without bypass bridge and coronary

occlusion.
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• After obtaining the new optimal shape for the incoming branch in 25 iterations, vorticity

reduction, in our specific modelling context led by optimal control, is about of 45% in

comparison with the starting idealized 2D configuration.

Figures 2.6-2.10 provide an account of numerical results and show the optimal shape of the

bypass obtained using steady Stokes equations in an optimal control problem with cost func-

tionals (2.3.12) and (2.3.13). As we can see the shape that is found resembles the Taylor

patch configuration [26], a little cuffed shape. The effect of the Taylor patch is to reduce

gradually the average velocity of the blood as it approaches the distal anastomosis, since

the cross-sectional area of the bypass is steadily becoming larger. This prevents the sudden

deceleration experienced in the conventional model with the fluid returning to the host vessel.

There is a gradual reduction in the momentum of the blood while approaching the junction, in

fact, the blood is guided more smoothly through the vessel thanks to the gradually changing

geometry. Flow disturbances are abated, undesirable flow separation at the toe of the bypass

diminished.
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Figure 2.6: Complete bypass configuration (bridge) before optimal shape design process:

iso-velocity [ms−1 · 10−2].

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 2.7: Complete bypass configuration at the end of shape optimization: iso-velocity,

same colorbar of the previous picture.
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Figure 2.8: Bypass configuration near the incoming branch before shape optimization (left)

and with 11% vorticity reduction (right).
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Figure 2.9: Bypass configuration near the incoming branch with 22% (left) and with 32%

vorticity reduction (right). The colorbar is the same of pictures in the previous page.
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Figure 2.10: Bypass configuration near the incoming branch with 38% (left) and with 45%

vorticity reduction (right).

2.7 Feedback procedures and results interpretation

A feedback procedure has been implemented by solving the unsteady Navier-Stokes equations

in the original configuration as well as in the final configuration obtained after applying the

optimal shape design process on a reduced model, based on steady Stokes equations. The full

Navier-Stokes problem reads, for all 0 < t < T :





∂u
∂t − ν∆u + (u · ∇)u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γw
u · t̂ = 0, u · n̂ = gin(t) on Γin
ν ∂u∂n̂ − pn̂ = 0 on Γout,

(2.7.1)
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We used Hagen-Poiseuille inflow pulsatory condition (Womersley profile with period T = 1s).

Time discretization is based on backward Euler method with a time step ∆t = 0.01s. Figures

2.11-2.12 show unsteady flows at different time steps.

During the feedback procedure we used the functional (2.2.9) to provide useful information

about unsteady fluid dynamics phenomena such as wall shear stress oscillations during pul-

satory systolic and diastolic phases. This quadratic functional is complete because it keeps

into consideration WSS variations in time and the functional is not pointwise but defined on

Γc, the vascular wall we are modelling by optimal shape design. In the specific modelling

context that we have considered, shape optimization process guarantees a reduction of 45%

of vorticity using steady Stokes flow model and a reduction of 25% in wall shear stress os-

cillations in time (on the vascular wall Γc we are modelling). In general, the flow at the

distal junction exhibits considerable spatial and temporal variations. With the adaptation

operated by shape optimization technique we find, as already seen, a graft which resembles

the Taylor patch configuration in which the anastomotic flow is less disturbed, a less adverse

shear stress distribution prevails and furthermore flow separation is reduced [26]. Intimal

thickening hyperplasia, which causes restenosis, should be alleviated at the toe in the new

bypass configuration proposed.
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Figure 2.11: Fluid dynamics unsteady phenomena into the incoming branch of bypass at

t = 0.3s, velocity [ms−1 · 10−2].
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Figure 2.12: Fluid dynamics unsteady phenomena into the incoming branch of bypass at

t = 0.5s.

In Figure 2.13 an integral quantity of interest is plotted, it is the wall shear stress variation

in time Σ(t) (2.2.7) on Γc, its calculation has been done to get information about functional

Jτ (2.2.9) which provides integral information in time (0, T ) for Σ(t). As we can see the

oscillatory behavior of Σ(t) on Γc is strongly reduced after applying shape optimization.
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Figure 2.13: Variations in time of the Wall Shear Stress Σ(t) [Nm−1s−1] (2.2.7) along Γc
(pulsatory inflow condition) in the two different bypass configurations, at the beginning (con-

tinuous line) and at the end (dashed line) of optimal shape design process.

It is also possible to develop algorithm to apply optimal control and shape optimization to

fully unsteady incompressible Navier-Stokes equations (see Laporte [75] and Le Tallec [76])

and eventually to consider the coupled fluid-structure problem (Moubachir and Zolésio [100]).

In our case at this step the interest is to develop efficient algorithms based on reduced fluid

models to provide preliminary design indications concerning surgical prosthesis realizations to

be verified in feedback and supported by other efficient optimization methods such as reduced

basis applied to parametrized domains.

We have also seen that our control approach based on a vorticity functional is related (and

equivalent from a physical point of view) with the one based on the minimization of viscous

dissipation. For this reason we can conclude that the use of the unsteady functional Jτ related

with shear stresses (and so the gradient of velocity, considering a Newtonian fluid) in feedback

is strictly related with the functional used in the shape optimization process.

As conclusion of this chapter we introduce a theoretical explanation of results, achieved

after the optimization approach, and related with fluid mechanics phenomena in the bypass,

especially in the host artery.

Applying the 2D version of Stokes Theorem (Green Theorem, see for example Adams [3]) we

can say that the cost functional calculated in down-field zone of the bypass is given by:

J(u) =

∫

Ωwd

(
∂v

∂x
−
∂u

∂y
)dΩ =

∫

Γwd

(udx + vdy)dΓ, (2.7.2)

in our case the boundary conditions on Γwd in the down-field zone provides a contribution

only at the inflow (the intersection between the bypass and the host artery) and at the outflow

(of bypass configuration considered). See scheme in Figure 2.14.
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Figure 2.14: Bypass Scheme and Green’s Theorem interpretation.

The intersection zone between the bypass and the artery is becoming larger and the mean

velocity of the blood is diminished so the term udx is becoming smaller and if the fluid is

less disturbed also the term vdy (representing a distorsion of the main stream) is small in the

down-field zone. The relationship (2.7.2) tells us that while studying (stationary) vorticity

we can get information on velocity field and viscous dissipation as well. In this framework

we can unify results already available in literature and trying to better understand our own

optimization results.



Chapter 3

Shape Design by Optimal Control

using Small Perturbation Theory

In this chapter we present another shape design approach using small perturbation theory.

The theory of optimal control based on adjoint formulation is applied to a state problem

representing the flow perturbation induced by shape variation (first order problem) in order to

optimize the incoming branch of the bypass (the toe) into the coronary. We use a method based

on the reference domain formulation described by a map whose coefficients have to be optimized

so that we show how to solve a shape design problem without dealing with shape functions and

boundary variations (that would invoke mesh adaptation, re-meshing and smoothing). Rather,

we will have to solve an optimal control problem on the coefficients of the transformation map.

3.1 An alternative approach to local boundary variations

This second proposed approach for local shape design is based on a map from the real domain

Ω to a (rectangular) reference one Ω̃ using a variable transformation:

x̃ = x, ỹ =
1

f(x, ε)
y, (3.1.1)

where f(x, ε) represents, for example, in our case, the upper shape of the bypass and can be

developed as

f(x, ε) = f0(x) + εf1(x) + ε2f2(x) + ..., (3.1.2)

being f0(x) the given (non-optimized) shape and ε is a small parameter. Assuming that the

state problem has a solution u, p that is infinitely differentiable with respect to ε:

u = u0 + εu1 + ε2u2 + ...,

p = p0 + εp1 + ε2p2 + ...,

and using small perturbation techniques (see Van Dyke [154]), we can derive the equations for

uk, pk starting from the state problem and then mapping Ω to the reference domain Ω̃. Here

39
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(u0, p0) represents the solution of the state problem in the domain Ω0 with upper boundary

f0(x), while (u1, p1) represents the flow perturbation due to the first order shape variation

f1(x), (uk, pk) are velocity and pressure perturbation induced by fk(x). At this point we

can use optimal control techniques to solve the problem for u1, p1 (the first corrections), the

function f1(x) which represents a perturbation in the shape f0(x) (weighted by ε) is another

unknown for the problem and is used as control variable. In this context Masmoudi et al.

[47] have investigated a complementary approach based on high order derivatives and Taylor

expansion of cost functional with respect to shape parameters.

The structure of this chapter is the following: in Section 3.2 we recall the problem based

on the same fluid model of the previous chapter (a generalization to unsteady flows will be

introduced in the next chapter) and we develop small perturbation techniques in Section 3.3,

then we deal with shape optimization problem in Section 3.4 and with the optimal control

framework in Section 3.5. Then we study theoretical aspects of the problem such as existence

and uniqueness of solutions in Section 3.6, we propose an algorithm in Section 3.7 and we

describe numerical results in Section 3.8. A comparison between local boundary variations

method and small perturbation is provided in Section 3.9.

3.2 Problem statement

Let Ω be a bounded domain of R
2, Γ ≡ ∂Ω is the boundary of Ω, Ω = Ω ∪ ∂Ω, x = (x, y)T

is a point of Ω. In the sequel aggregation of vector quantities u with scalar quantities p are

indicated with Q (Q = (u, p)), Φ or Φ̂.

We consider again an idealized, two-dimensional bypass bridge configuration as in Figure 3.1

and the domain of Figure 3.2, where the dotted line represents the geometry of the complete

anastomosis; Γw2
is the section of the original artery, Γin is the new anastomosis inflow after

bypass surgery, Γout is the anastomosis outflow. We consider a boundary value problem for
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Figure 3.1: Idealized, 2-D bypass bridge configuration (left) and detail of the sensible part for

the optimization process (right), where the dotted curve represents a possible shape variation.

the Stokes equations, see for example Zeytounian [169], used as in the previous chapter to
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,Γ0 = ∂Ω1 ∩ ∂Ω2 .

model low Reynolds blood flow in the optimization process. The problem reads: find u, p s.t.




−ν∆u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = uin on Γin, u = 0 on Γw1
∪ Γw3

,

−pn̂ + ν ∂u∂n̂ = gout on Γout ∪ Γw2
,

(3.2.1)

where n̂ = (n1, n2)T is the outward unit normal vector on Γ, f = f(x, y), uin = uin(x, y), gout =

gout(x, y) are given vector functions, ν = const > 0 and uf = {uin on Γin; 0 on Γw1
∪Γw3

}. In

the following we may need to impose some additional restriction on p (for example
∫
Ω pdΩ = 0

if Γin = Γ).

The weak statement of (3.2.1) reads: find u ∈ (H1(Ω))2, p ∈ L2(Ω) s.t.




a(u,v) = b(p,v) +G(v) ∀v ∈ X,

b(q,u) = 0 ∀q ∈ L2(Ω),

u = uf on Γin ∪ Γw1
∪ Γw3

,

(3.2.2)

where with v and q we indicate test functions and:

a(u,v) =

∫

Ω
ν∇u · ∇vdΩ

b(p,v) =

∫

Ω
p∇ · vdΩ, G(v) =

∫

Ω
f · vdΩ +

∫

Γout∪Γw2

gout · vdΓ,

X := {v : v ∈ (H1(Ω))2,v = 0 on Γin ∪ Γw1
∪ Γw3

}.

For further mathematical aspects of the problem see, for example, Lions [85]. The subset

Γc,ε of Γw1
is parametrized by a function f(x, ε) of x ∈ [x1, x2] and of a small parameter

ε ∈ [−ε0, ε0], ε0 = const. More precisely we assume that f(x, ε) can be developed as follows:

f(x, ε) = f0(x) + εf1(x) + ε2f2(x) + . . . , (3.2.3)
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where fk ∈ W
1,∞(x1, x2), for k = 0, (we recall that W

1,∞(x1, x2) is the space of func-

tions fk ∈ L∞(x1, x2) such that the distributional derivative of first order of fk belongs to

L∞(x1, x2)) while for k ≥ 1 fk ∈ W
1,∞
0 (x1, x2) with fk(x1) = fk(x2) = 0, k ≥ 1. Here the

function f0(x) > 0 describes the original subset Γc,0 (corresponding to Γc,ε for ε = 0) of the

boundary Γw0 ≡ ∂Ω0 of a given non-optimized domain Ω0, see Figure 3.3 (in perturbation

theory this is often called “unperturbed domain”), while fk(x), k ≥ 1, could be unknown

when dealing with control problem (see Section 3.4).
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Although a(., .), b(., .) and G(.) depend on the parametrization f of the part Γc,ε, this depen-

dence has been understood for simplicity of notations.

3.3 The problem for the perturbation functions

Let us introduce the reference (simple-shaped) domains Ω̃1 = {0 < x̃ < A, 0 < ỹ < β1 ≡ β},

Ω̃2 = {0 < x̃ < A,−β2 < ỹ < 0}, and Ω̃ = Ω̃1 ∪ Ω̃2 (see Figure 3.4). Then we assume that

f(x, ε) > 0 and consider the following variable transformation:

Tf : Ω1 ∪ Ω2 → Ω̃, x̃ = Tf (x),

such that Tf is the identity in Ω2, while Tf (x, y) = (x, β
f(x,ε)y) in Ω1.

We set x̃ = (x̃, ỹ)T and define

ũ(x̃) := u ◦ T−1
f (x̃) = u(x̃, ỹf(x̃, ε)/β).
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where ũ = (ũ, ṽ)T . Then,

dxdy =
f(x̃, ε)

β
dx̃dỹ

and the following relations hold:




∂φ
∂y (x̃) = β

f(x̃,ε)
∂φ̃(x̃)
∂ỹ ,

∂φ
∂x (x̃) = ∂φ̃(x̃)

∂x̃ − ỹ fx(x̃,ε)
f(x̃,ε)

∂φ̃(x̃)
∂ỹ

(
with fx := df

dx

)
,

(3.3.1)

{
D̃(f)ũ(x̃) := ((∇ · u) ◦ T−1

f )(x̃) = ∂ũ
∂x̃ − ỹ fx(x̃,ε)

f(x̃,ε)
∂ũ
∂ỹ + β

f(x̃,ε)
∂ṽ
∂ỹ ,

R̃(f)ũ(x̃) := ((∇× u) ◦ T−1
f )(x̃) = ∂ṽ

∂x̃ − ỹ fx(x̃,ε)
f(x̃,ε)

∂ṽ
∂ỹ −

β
f(x̃,ε)

∂ũ
∂ỹ .

(3.3.2)

Then in Ω̃ we have:

D̃(f)ũ = m2∇̃ · ũ +m1D̃(f)ũ, R̃(f)ũ = m2∇̃ × ũ +m1R̃(f)ũ,

where ∇̃φ :=
(∂φ
∂x̃ ,

∂φ
∂ỹ

)
, while ms is the characteristic function of Ωs (s = 1, 2). Now the

functional spaces X and L2 are defined on the domain Ω̃. To simplify our notation from now

on we will set (unless otherwise specified):

x = x̃, u(x, y) = ũ(x̃, ỹ), u = ũ, v = ṽ, . . . ,D = D̃,R = R̃, Ω ≡ Ω̃, Γwk
≡ Γ̃wk

,

Ω1 ≡ Ω̃1,Ω2 ≡ Ω̃2

Then problem (3.2.2) in the new variables and in the new domains reads as follows:





a(f ; u,v) = b(f ; p,v) +G(f ; v) ∀v ∈ X,

b(f ; q,u) = 0 ∀q ∈ L2(Ω),

u = uf on Γin ∪ Γw1
∪ Γw3

.

(3.3.3)

We have emphasized the dependence of a(f ; ., .), b(f ; ., .), and G(f ; .) on the shape function

f . Precisely, we have:

a(f ; u,v) = a1(f ; u,v) + a2(u,v),

a1(f ; u,v) =

∫

Ω1

fν

β

((∂u
∂x

−
yfx
f

∂u

∂y

)
·
(∂v
∂x

−
yfx
f

∂v

∂y

)
+
β2

f2

∂u

∂y
·
∂v

∂y

)
dΩ,

a2(u,v) =

∫

Ω2

ν
(∂u
∂x

·
∂v

∂x
+
∂u

∂y
·
∂v

∂y

)
dΩ,

b(f ; p,v) = b1(f ; p,v) + b2(p,v),

b1(f ; p,v) =

∫

Ω1

f

β
pD(f)vdΩ, b2(p,v) =

∫

Ω2

p∇ · vdΩ,

G(f ; v) = G1(f ; v) +G2(v),

G1(f ; v) =

∫

Ω1

f

β
f · vdΩ +

∫

(Γout∪Γw2)∩∂Ω1

gout · vdΓ,

G2(v) =

∫

Ω2

f · vdΩ +

∫

(Γout∪Γw2)∩∂Ω2

gout · vdΓ.
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Assume that the problem (3.3.3) has a solution u, p that is infinitely differentiable with respect

to ε: {
u = u0 + εu1 + ε2u2 + . . .

p = p0 + εp1 + ε2p2 + . . .
(3.3.4)

where pk ∈ L2(Ω),uk ∈ X, k ≥ 0. Using (3.2.3), (3.3.4) and small perturbation techniques

we can derive the equations for uk, pk, k ≥ 0. In particular, for k = 0 u0 and p0 satisfy the

following zero-order problem, for which velocity and pressure are obtained without considering

a shape variation:





a(f0; u0,v) = b(f0; p0,v) +G(f0; v) ∀v ∈ X,

b(f0; q,u0) = 0 ∀q ∈ L2(Ω),

u0 = uf on Γin ∪ Γw1
∪ Γw3

.

(3.3.5)

Note that the test functions v, q in (3.3.3) can be assumed to be independent of ε in the

sequel.

Correspondingly we define:

Robs,0 := R(f0)u0 (3.3.6)

representing the vorticity mapped into the simple (reference) domain. For k = 1 the functions

u1 and p1, representing small perturbations in the velocity and pressure fields, respectively,

are the solution of the equations:





a(f0; u1,v) = b(f0; p1,v) + ∂
∂εb(f ; p0,v)|ε=0+

+ ∂
∂εG(f ; v)|ε=0 −

∂
∂εa(f ; u0,v)|ε=0 ∀v ∈ X,

b(f0; q,u1) + ∂
∂εb(f ; q,u0)|ε=0 = 0 ∀q ∈ L2(Ω),

u1 = 0 on Γin ∪ Γw1
∪ Γw3

,

(3.3.7)

where we have some new terms depending on the new configuration (f1) but evaluated with

respect to the zero-order solution u0 and p0:

∂

∂ε
b(f ; p0,v)|ε=0 = bf (f1, p0,v) =

∫

Ω1

f1

β
p0D(f0)vdΩ +

∫

Ω1

f0

β
p0Df (f1,v)dΩ,

with

Df (f1,v) =
∂

∂ε
D(f)v|ε=0 = −

[
y
(f1,xf0 − f0,xf1

f2
0

)∂û
∂y

+
βf1

f2
0

∂v̂

∂y

]

Df (f1,u0) =
∂

∂ε
D(f)u0|ε=0(:= Dff1 in the sequel),

∂

∂ε
G(f ; v)|ε=0 = G1(f1; v) =

∫

Ω1

f1

β
f · vdΩ,

∂

∂ε
a(f ; v0,v)|ε=0 = af (f1; u0,v) =

∫

Ω1

f1ν

β

((∂u0

∂x
−
yf0,x

f0

∂u0

∂y

)
·
(∂v
∂x

−
yf0,x

f0

∂v

∂y

)
+
β2

f2
0

∂u0

∂y
·
∂v

∂y

)
dΩ+

−

∫

Ω1

f0ν

β
y

(f1,xf0 − f0,xf1)

f2
0

(∂u0

∂y
·
(∂v
∂x

−
yf0,x

f0

∂v

∂y

)
+
(∂u0

∂x
−
yf0,x

f0

∂u0

∂y

)
·
∂v

∂y

)
dΩ
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−

∫

Ω1

f0ν

β

(2β2f1

f3
0

)∂u0

∂y
·
∂v

∂y
dΩ.

Therefore the problem for u1, p1 reads as follows: find u1 ∈ X, p1 ∈ L2(Ω) s.t.:
{
a(f0; u1,v) − b(f0; p1,v) = bf (f1; p0,v) +G1(f1; v) − af (f1; u0,v) ∀v ∈ X,

b(f0; q,u1) + bf (f1; q,u0) = 0 ∀q ∈ L2(Ω),
(3.3.8)

This is a generalized Stokes problem (see Galdi [40]) representing the perturbations in the

system due to the induced shape variation. By a similar technique we can derive the equations

for uk, pk with k ≥ 2. However we will not further carry on this development in this work. At

the end of the chapter in Section 3.10 we are going to discuss how to deal with higher orders

and non-linear problems. The general guidelines to build the problem at different order is

based on the idea of replacing in the state equations the development of velocity, pressure and

shape and then solving the problem at various orders of ε, see also Hinch [56] and Kevorkian

[71]. In particular, our shape optimization and control problem will be considered as a first-

order problem and it will deal with flow perturbation.

3.4 The shape optimization problem

Suppose now that in (3.3.7) the function f1(x) is unknown and so are u1, p1. To complete

problem (3.3.7) we will have to formulate some “additional equations”, or, alternatively, we

should require that f1 be determined by minimizing a suitable cost functional.

Problem (3.2.2) can be supplemented by the “additional equation”:

C(f,u, p) = 0 (3.4.1)

where C is an operator (linear or nonlinear) defined on H 1
0 (x1, x2)×X×L2(Ω). (We consider

now f ∈ H1
0 for convenience). We assume C have a regular dependence on f,u, p. Using the

representations (3.2.3) and (3.3.4) we derive from (3.4.1) the following equation:

C(f,u, p) = C0(f0,u0, p0) + εC1(f1,u1, p1) + O(ε2) = 0, ∀ε ∈ [−ε0, ε0] (3.4.2)

where

C1(f1,u1, p1) :=
∂C

∂ε
(f,u, p)|ε=0. (3.4.3)

If we assume, for example, that the data of our problems are such that C0(f0,u0, p0) = 0,

then we can use

C1(f1,u1, p1) = 0 (3.4.4)

as additional equation to complete (3.3.7). An alternative approach would consist in replacing

the exact controllability equation (3.4.4) by the following minimization problem:

inf
f1

∫

Ω

f0

β
|C1(f1,u1, p1)|2dΩ, (3.4.5)

where we assume that C1 has image in L2(Ω). Note that (3.4.5) is a weak statement of

(3.4.4).
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In the next sections we apply the approach described above for the completion of (3.3.7);

moreover we will use the following special choice of (3.4.1):

C(f,u) := (∇× u) ◦ T−1
f −Robs,ε in Ωwd ⊆ Ω, (3.4.6)

where Ωwd is a suitable subset of Ω in which we want our additional equation (or our “control”)

to take place. In our application Ωwd is the down-field zone of the domain, where the the

bypass is hosted into the artery.

Moreover

Robs,ε = Robs,0 + εRobs,1 + ε2Robs,2 + . . . , with Robs,0 := ((∇× u0) ◦ T−1
f0

). (3.4.7)

Then we have: C0(f0,u0) = 0 (to consider the additional equation only for the first-order

problem), while the equation (3.4.4) reads:

C1(f1,u1) = R(f0)u1 +m1Rff1 −Robs,1 = 0 in Ωwd, (3.4.8)

where

R(f0)u1 = (∇× u1) ◦ T−1
f0

(x, y) =
∂v1
∂x

−
yf0,x

f0

∂v1
∂y

−
β

f0

∂u1

∂y
,

Rff1 := Rf (f1,u0) = −y
(f1,xf0 − f0,xf1)

f2
0

∂v0
∂y

+
βf1

f2
0

∂u0

∂y
,

which represents two contributes to vorticity due to flow perturbation (u1) and shape per-

turbation f1, respectively. Finally, Robs,1 is a given function (for example Robs,1 = −Robs,0

to reduce vorticity by a shape optimization process on f1 and flow perturbation u1 and p1).

Therefore we have the problem on the domain reported in Figure 3.4: find u1 ∈ X, p1 ∈ L2(Ω),

f1 ∈ H1
0 (x1, x2) s.t.





a(f0; u1,v) = b(f0; p1,v) + bf (f1; p0,v) +G1(f1; v) − af (f1; u0,v) ∀v ∈ X,

b(f0; q,u1) + bf (f1; q,u0) = 0 ∀q ∈ L2(Ω),

R(f0)u1 +m1Rff1 −Robs,1 = 0 in Ωwd.

(3.4.9)

Problem (3.4.9) is an “exact controllability problem”. These kind of problems have solutions

in some particular cases only. For this reason we replace (3.4.9) by the following optimal

control problem: find u1 ∈ X, p1 ∈ L2(Ω), f1 ∈ H1
0 (x1, x2) s.t.





a(f0; u1,v) − b(f0; p1,v) = bf (f1; p0,v) +G1(f1; v) − af (f1; u0,v) ∀v ∈ X,

b(f0; q,u1) + bf (f1; q,u0) = 0 ∀q ∈ L2(Ω),

inff1 = α
2 ||f1||

2
H1

0
(x1,x2)

+ γ1J1(f1, v1),

(3.4.10)

where

J1(f1,u1) =
1

2

∫

Ω
mwd

f0

β
(R(f0)u1 +m1Rff1 −Robs,1)2dΩ, (3.4.11)

α = const ≥ 0 is a small regularization parameter, γ1 > 0 is a weight coefficient, mwd is

the characteristic function of Ωwd. Problem (3.4.10) is called “first-order problem” since it

provides the solution of the first order terms in the developments (3.2.3) and (3.3.4).
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Note that the third equation from (3.4.9) is considered in (3.4.10) in the least square sense;

then when α = 0 (3.4.10) represents the weak statement of problem (3.4.9). Otherwise

the solution v1 = v1(α), p1 = p1(α), f1 = f1(α) of (3.4.10) will represent an approximate

(regularized) solution of (3.4.9).

We will also consider a generalized optimal control problem, still given by (3.4.10); however

now instead of J1 we use

J(f1,u1, p1) = γ1J1(f1,u1) + γ2J2(f1,u1, p1).

Here γ2 = const ≥ 0 is a weight coefficient, while J2(f1,u1, p1) is an additional functional

that we assume to be quadratic. A few examples of J2(f1,u1, p1) follow.

Example 3.4.1

J2(f1,u1, p1) := J2(u1, p1) =
1

2
(||p1 − pout,1||

2
L2(Γout)

+

∫

Γout

|u1 − uout,1|
2dΓ) (3.4.12)

where pout,uout are given.

Example 3.4.2 Now let Ωobs be a “small” subdomain of Ω with boundary Γobs and Γw3
⊂

Γobs:

Ωobs = (0, A) × (−β2,−β2 + δ), with 0 < δ � β1.PSfrag replacements

β1

Ωobs

−β2

x

y

0

Γc,0
−β2 + δ

Figure 3.5: Subdomain Ωobs.

If Ω = Ω1 (i.e. β2 = 0), we can take

J2(f1,u1, p1) := J2(u1) =
1

2

∫

Ωobs

|u1 − uobs,1|
2 f0

β
dΩ, (3.4.13)

where uobs is a prescribed vector-function.

Example 3.4.3 Take Ω1 = Ω, and use:
∫
Ω p1dΩ = 0,

J2(f1,u1, p1) := J2(u1) =
1

2

∫

Γw3

|
∂u1

∂n̂
− g1,obs|

2dΓ, (3.4.14)
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for a given g1,obs.

Example 3.4.4 Finally we may consider:

Ω1 = Ω,

J2(f1,u1, p1) := J2(u1) =
1

2

∫

Ωobs

f0

β
|
β

f0

∂u1

∂y
− g2,obs|

2dΩ, (3.4.15)

with a given g2,obs.

Remark 3.4.1 The term J2 can be considered as an “overdetermination” of the problem, as

in principle it allows the control of further quantities of physical interest. Using such a J2

makes easier to prove uniqueness but more troublesome to analyze existence for the optimal

control problem.

3.5 The variational equations of the optimal control problem

While considering (3.4.10) we have taken into cosideration the simple domain Ω̃ of Figure 3.4.

Another possibility consists of using the new variable transformation

x = T−1
f0

(x̃), x̃ ∈ Ω̃, x ∈ Ω0, (3.5.1)

which is the identity in Ω̃2, while T−1
f0

(x̃, ỹ) = (x̃, f0(x̃)
β ỹ) in Ω̃1. After applying (3.5.1) we will

work in the “unperturbed” domain Ω0 (see Figure 3.6) where the expressions for the bilinear

forms in (3.4.10) become simpler. Indeed, with the help of transformation (3.5.1), problem
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0
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Figure 3.6: Transformation of the simple domain into the unperturbed domain Ω0 .

(3.4.10) reads upon its reformulation in Ω0: find u := u1, p := p1,f := f1
1 s.t.





a0(u,v) − b0(p,v) = bf (f ; p0,v) +G1(f ; v) − af (f ; u0,v) ∀v ∈ X

b0(q,u) + bf (f ; q,u0) = 0 ∀q ∈ L2(Ω),

inff = α
2 ||f ||

2
H1

0
(x1,x2)

+ J(f,u, p),

(3.5.2)

1From now on we denote u1 = u, p1 = p, f1 = f however we should keep in mind that now u, p, f represent

the “first corrections” of u0, p0, f0 on the unperturbed domain.
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where

a0(u,v) =

∫

Ω0

ν
(∂u
∂x

·
∂v

∂x
+
∂u

∂y
·
∂v

∂y

)
dΩ.

b0(p,v) =

∫

Ω0

p∇ · vdΩ,

bf (f, p0,v) =

∫

Ω0,1

p0Df (f,v)dΩ +

∫

Ω0,1

f

f0
p0∇ · vdΩ,

Df (f,v) = −
[
y
(fxf0 − f0,xf

f2
0

)∂û
∂y

+
f

f0

∂v̂

∂y

]
,

Df (f, v0) := Dff,

G1(f ; v) =

∫

Ω0,1

f

f0
f · vdΩ,

af (f ; u0,v) =

∫

Ω0,1

fν

f0
∇u0 · ∇vdΩ −

∫

Ω0,1

νy
(fxf0 − f0,xf)

f2
0

(∂u0

∂y
·
∂v

∂x
+
∂u0

∂x
·
∂v

∂y

)
dΩ+

−

∫

Ω0,1

2fν

f0

∂u0

∂y
·
∂v

∂y
dΩ.

J(f,u, p) = γ1J1(f,u) + γ2J2(f,u, p),

J1(f,u) =
1

2

∫

Ω0

mwd|∇ × u +m1Rff −Robs,1|
2dΩ,

Rff := Rf (f,u0) = −y
(fxf0 − f0,xf)

f2
0

∂v0
∂y

+
f

f0

∂u0

∂y
.

∇× u =
∂v

∂x
−
∂u

∂y
, ∇ · u =

∂u

∂x
+
∂v

∂y

and J2(f,u, p) are given by corresponding expressions. At this step we have developed our

problem in two levels (zero and first order) and rewritten the first order problem in a simpler

way on the domain Ω0. In order to derive the operator form of problem (3.5.2) and formulate

the problem in an optimal control setting we introduce the following functional spaces:

X ⊆ (L2(Ω))2 ⊆ X
∗,Hp ⊆ L2(Ω) ⊆ H

p∗,

Hf ⊆ L2(x1, x2) ⊆ H
∗
f ,

W := X × H
p ⊆ H0 := (L2(Ω))2 × L2(Ω) ⊆ W

∗,

where X
∗, H

p∗, H
∗
f and W

∗ are the dual spaces of X, H
p, Hf and W, respectively. Let us

reformulate (3.5.2) in the following form: find Φ := (u, p) ∈ W = (X × H
p), f ∈ H

f , s.t.

{
L(Φ, Φ̂) = B(f, Φ̂) ∀Φ̂ = (v, q) ∈ W,

inff∈Hf
= α

2 ||f ||
2
H1 + J(f,Φ),

(3.5.3)

where

L(Φ, Φ̂) := a0(u,v) − b0(p,v) + b0(q,v),
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B(f, Φ̂) := bf (f, p0,v) +G1(f,v) − af (f,u0,v) − bf (f, q,u0).

Should Φ be a solution of (3.5.3), then

α(f, f̂)Hf
+ 〈J ′

Φ(f,Φ),Φf̂ 〉 + 〈J ′
f (f,Φ), f̂〉 = 0, (3.5.4)

for any f̂ ∈ Hf (f̂ is the independent variation), where Φf̂ ∈ W satisfies the following

equation:

L(Φf̂ , Φ̂) = B(f̂ , Φ̂) ∀Φ̂ ∈ W. (3.5.5)

In (3.5.4), J ′
Φ = ∂J

∂Φ and J ′
f = ∂J

∂f are partial derivatives of J , while 〈Q,Φ〉 is the duality

between W and W
∗ and 〈g, f〉 the duality between Hf and H

∗
f . Then we can rewrite (3.5.3)

as a system of “optimality conditions”:

{
L(Φ, Φ̂) = B(f, Φ̂) ∀Φ̂ ∈ W,

α(f, f̂)Hf + 〈J ′
Φ(f,Φ),Φf̂ 〉 + 〈J ′

f (f,Φ), f̂〉 = 0 ∀f̂ ∈ Hf .
(3.5.6)

The element Φf̂ can be eliminated from (3.5.6) by introducing the adjoint problem: find

Q := (q, σ)T ∈ W s.t.

L∗(Q, Ŵ ) := L(Ŵ ,Q) = 〈J ′
Φ(f,Φ), Ŵ 〉 ∀Ŵ ∈ W. (3.5.7)

Since Φf̂ ∈ W we can choose Ŵ = Φf̂ in (3.5.7), yielding

〈J ′
Φ(f,Φ),Φf̂ )〉 = L(Φf̂ , Q) = B(f̂ , Q) (3.5.8)

and the system of variational equations (3.5.6) reads now as follows:




L(Φ, Φ̂) = B(f, Φ̂) ∀Φ̂ ∈ W,

L∗(Q, Ŵ ) = 〈J ′
Φ(f,Φ), Ŵ 〉 ∀Ŵ ∈ W,

α(f, f̂)Hf
+B(f̂ , Q) + 〈J ′

f (f,Φ), f̂〉 = 0 ∀f̂ ∈ Hf .

(3.5.9)

The first equation is the state equation, the second is the adjoint one and the third equation

is the optimality condition. Let us define the following operators (see Lions and Magenes [84],

Lions [82] and Agoshkov [6]):

L : W → W
∗, (LΦ, Φ̂)H0

:= L(Φ, Φ̂), ∀Φ, Φ̂ ∈ W,

L∗ : W → W
∗, (Ŵ , L∗Q)H0

= (LŴ ,Q)H0
,∀Q, Ŵ ∈ W,

B : Hf → W
∗, (Bf,Φ)H0

= B(f,Φ) ∀f,Φ,

Λw : W
∗ → W

∗, (ΛwJΦ(f,Φ), Ŵ )H0
:= 〈J ′

Φ(f,Φ), Ŵ 〉,

Λf : H
∗
f → H

∗
f , (ΛfJf (f,Φ), f̂)L2(x1,x2) := 〈J ′

f (f,Φ), f̂〉.

Now the system (3.5.9) can be written in operator form as follows:




LΦ = Bf (in W
∗),

L∗Q = ΛwJΦ(f,Φ) (in W
∗),

αΛcf +B∗Q+ ΛfJf (f,Φ) = 0 (in (Hf )∗),

(3.5.10)
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where Λc is the extension to Hf of the following operator Λc,0 (defined on H2 ∩ Hf ):

Λc,0f := −fxx + f,

Remark 3.5.1 The system (3.5.10) with a cost functional J(Φ) = ‖CΦ − Ψ‖2
Hob

, where

C : W → Hob is a given operator and Ψ ∈ Hob a given observation function, is analyzed in

Agoshkov [6]. In this case J ′
f = 0 and ΛwJ

′
Φ(f,Φ) = C∗(CΦ − Ψ) and we find a “classical”

optimal control problem in the sense of J.L. Lions’ formulation.

3.6 Existence and uniqueness results

We analyze the particular cases where the cost functional J is chosen as outlined by Example

3.4.1 to obtain some uniqueness and existence results. See also Isakov [61].

Let J be the functional J2 of Example 3.4.1. Then

J(f,Φ) = J(f,u, p) =
γ1

2

∫

Ω0

mwd|∇ × u +m1Rff −Robs,1|
2dΩ+ (3.6.1)

+
γ2

2

∫

Γout

(
|p− pout|

2 + |u − uout|
2
)
dΓ

To study the problem in this case we assume that Ωwd = Ω0 and we define:

X := {u : u ∈ (H2(Ω))2,u = 0 on Γin ∪ Γw1
∪ Γw3

},

H
p := H1(Ω0), Hf := H2(x1, x2) ∩H1

0 (x1, x2).

Here we consider H2 as velocity space in order to be allowed to use the uniqueness continuation

theorem (see Weck [162], Fabre and Lebeau [35]). The derivatives J ′
Φ(f,Φ) and J ′

f (f,Φ)

become

〈J ′
Φ(f,Φ), Φ̂〉 = γ1

∫

Ω0

mwd(∇× u +m1Rff −Robs,1) · (∇× v)dΩ+

+γ2

∫

Γout

(p− pout)qdΓ + γ2

∫

Γout

(u− uout) · vdΓ,

〈J ′
f (f,Φ), f̂〉 = γ1

∫

Ω0

mwd(∇× u +m1Rff −Robs,1)Rf f̂dΩ,

∀ Φ̂ = (v, q)) and ∀ f̂ .

The system of variational equations (3.5.6) reads: find uf ∈ X, pf ∈ H
p





a0(uf ,v) = b0(pf ,v) + F (f,v) ∀v ∈ X,

b0(q,uf ) + bf (f ; q,u0) = 0 ∀q ∈ H
p(Ω),

α(f, f̂)Hf
+ γ1

∫
Ω0
mwd(∇× uf +m1Rff −Robs,1) · (∇× uf̂ +m1Rf f̂)dΩ+

+γ2

∫
Γout

((pf − pout)pf̂ + (uf − uout) · uf̂ )dΓ = 0 ∀ f̂ ∈ Hf ,

(3.6.2)
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where

F (f,v) := bf (f, p0,v) +G1(f,v) − af (f,u0,v),

and for every f̂ , uf̂ = uf (f̂), pf̂ = pf (f̂) denote the solution of the system given by the first

and second equations in (3.6.2) corresponding to a right end side f = f̂ . The system (3.5.9)

is: find uf ∈ X, pf ∈ H
p





a0(uf ,v) = b0(pf ,v) + F (f,v) ∀v ∈ X,

b0(q,uf ) + bf (f ; q,u0) = 0 ∀q ∈ H
p(Ω),

a0(q̂,q) = −b0(σ, q̂) + γ1

∫
Ω0
mwd(∇× uf +m1Rff −Robs,1) · (∇× q̂)dΩ+

+γ2

∫
Γout

(uf − uout) · q̂dΓ ∀q̂ ∈ X,

−b0(σ̂,q) = γ2

∫
Γout

(pf − pout)σ̂dΓ ∀σ̂ ∈ H
p,

α(f, f̂)Hf
+ F (f̂ ,q) − bf (f̂ ;σ,u0)+

+γ1

∫
Ω0
mwd(∇× uf +m1Rff −Robs,1)m1Rf f̂dΩ = 0 ∀f̂ ∈ Hf .

(3.6.3)

In the sequel we assume that the generalized Stokes problem (3.3.7) has a unique solution

for any given u0, p0 (the solution in the unperturbed domain Ω0) and for each f ∈ Hf . (See

Galdi [40], Fabre and Lebeau [36], Girault and Raviart [43]).

Consider now the problem (3.6.3) for α > 0.

Proposition 3.6.1 For any α > 0 problem (3.6.3) has a unique solution for any given Robs,1 .

Proof. Following Agoshkov [6], we formally invert L and L∗ in the first and second equations

of (3.5.10) then we substitute Φ, Q into the third equation and we obtain the following weak

problem: for f ∈ Hf :

α(f, f̂)Hf
+ (Af,Af̂)L2(x1,x2) = (G,Af̂ )L2(x1,x2) ∀f̂ ∈ Hf , (3.6.4)

where A is a linear operator, which depends on previous operators from variational equations,

while G will depend on the data. More precisely from (3.6.2) we obtain:

(f, f̂)Hf
= (Λff, f̂)L2(x1,x2),

(Af,Af̂)L2(x1,x2) = γ1

∫

Ω
mwd(∇× u +m1Rff) · (∇× uf̂ +m1Rf f̂)dΩ+

+γ2

∫

Γout

(ppf̂ + u · uf̂ )dΓ,

(G,Af̂ )L2(x1,x2) = γ1

∫

Ω
mwdRobs,1 · (∇× uf̂ +m1Rf f̂)dΩ + γ2

∫

Γout

(poutpf̂ + uout · uf̂ )dΓ,

where Φ = (u, p) = L−1Bf , Φf̂ = (uf̂ , pf̂ ) = L−1Bf̂,∀f̂ ∈ Hf .

We see that problem (3.6.4) has a unique solution which satisfies ‖f‖2
Hf

≤ ‖G‖2/(2α) < ∞.

Correspondingly, we can construct u, p, q, σ, which together with f provides the unique
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solution of (3.6.3). �

Consider now the problem (3.6.3) with α = 0.

Proposition 3.6.2 Assume that: i) The solution of the generalized Stokes problem satisfies(
∂v0
∂y

)2
+
(
∂u0

∂y

)2
> 0 at y = 0, x ∈ (x1, x2) ii) problem (3.6.3) has a solution. Then the

solution of (3.6.3) is unique in the class (H2(Ω))2 ×H1(Ω) × W
1,∞(x1, x2).

Proof. Let (u1, . . . , f1) and (u2, . . . , f2) be two solutions of (3.6.3). Then for u = u1 −

u2, . . . , f = f1 − f2 from (3.6.2) we obtain:





a0(u,v) = b0(p,v) + F (f,v) ∀v ∈ X,

b0(q,u) + bf (f ; q,u0) = 0 ∀q ∈ H
p(Ω),

∇× u +m1Rff = 0 in Ω,

p = 0, u = 0 on Γout.

(3.6.5)

Consider the second and third equation from (3.6.5) in Ω2,0

∇ · u = 0, ∇× u = 0 in Ω2,0.

Then ∆u = 0 in Ω2,0. Considering v with supp(v) ⊆ Ω2,0 from the first equation of (3.6.5)

we find ∇p = 0, then p = const in Ω2,0 and −pn̂ + ν ∂u∂n̂ = 0 on Γout. Since p = 0 on Γout
then p = 0 in Ω2,0 and ν ∂u∂n̂ = 0 on Γout too. Consequently, u satisfies:

∆u = 0 in Ω2,0, u = ν
∂u

∂n̂
= 0 on Γout.

This problem has only the trivial solution u = 0 in Ω2,0. Since u ∈ (H2(Ω))2 then

u =
∂u

∂n̂
= 0 on Γ0 := {(x, y) : y = 0, x1 < x < x2}.

Consider now the second and third equations from (3.6.5) in Ω1,0:





∇ · u−
[
y
(fxf0−f0,xf

f2
0

)
∂u0

∂y + f
f0
∂v0
∂y

]
= 0 in Ω1,0,

∇× u −
[
y
(fxf0−f0,xf

f2
0

)
∂v0
∂y − f

f0
∂u0

∂y

]
= 0 in Ω1,0.

(3.6.6)

On Γ0 we have:

∇ · u −
f

f0

∂v0
∂y

= 0, ∇× u +
f

f0

∂u0

∂y
= 0,

|f(x)| = f0

[
(∇ · u)2 + (∇× u)2

]1/2

[(
∂v0
∂y

)2
+
(
∂u0

∂y

)2]1/2 on Γ0,
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(the dependence of the right end side on x and y is understood). Since u = ∂u
∂n̂ = ∂u

∂y = 0 on Γ0,

then

∇ · u|y=0 =
∂u

∂x
+
∂v

∂y
|y=0 = 0, ∇× u|y=0 =

∂v

∂y
−
∂u

∂x
|y=0 = 0, x ∈ (x1, x2).

i.e. f(x) = 0. Therefore, u = 0, p = 0 too. �

Let us note once more, that if γ2 > 0 we account for the cost functional J2, then we overde-

terminate the initial problem with (3.4.4) for α = 0. Therefore in this case usually we have

uniqueness results, but not existence results. However in some physical problems the above

overdeterminations (and the presence of term α‖f‖2
Hf

) have a physical sense, therefore in

these cases we can consider the optimal control problems like (3.4.5). This problem becomes

independent of the initial problem (where we have only J1). Here, we have also existence re-

sults and can name these optimal control problems as the “optimal shape design problems”.

Nevertheless, it is interesting to investigate well posedness of the above variational problems

when α = γ2 = 0.

3.7 Iterative processes

In this section we propose some iterative processes which are well suited for solving the vari-

ational equations obtained in the previous sections and we will use them for our numerical

tests.

Consider the problem (3.5.10); if for k = 0, 1, . . . f (k) is known, then f (k+1) can be determi-

nated by solving the following equations ([6]):





LΦ(k) = Bf (k),

L∗Q(k) = ΛwJΦ(f (k),Φ(k)),

Λcw
(k) = B∗Q(k) + ΛfJf (f (k),Φ(k)),

f (k+1) = f (k) − τk(αf (k) + w(k)),

(3.7.1)

where {τk} is a family of parameters whose determination follows from the theory of extremal

problems (see Vasiliev [155]), the general theory of iterative processes ( Marchuk [94], Quar-

teroni and Valli [127], Quarteroni, Sacco and Saleri [129]), and the ill-posed problems theory

( see Tikhonov and Arsenin [151], Vainikko and Veretennikov [153]). The step (3.7.1) would

read as follows for the variational form (3.5.9) of problem (3.5.10):





L(Φ(k), Φ̂) = B(f (k), Φ̂) ∀Φ̂ ∈ W,

L(Ŵ ,Q(k)) = 〈J ′
Φ(f (k),Φ(k)), Ŵ 〉 ∀Ŵ ∈ W,

(w(k), f̂)Hf
= B(f̂ , Q(k)) + 〈J ′

f (f (k),Φ(k)), f̂〉 ∀f̂ ∈ Hf ,

f (k+1) = f (k) − τk(αf (k) +w(k)).

(3.7.2)

Consider now problem (3.6.2) (with Ωwd ⊆ Ω). The iterative process (3.7.2) for this problem
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reads as follows:





a0(u(k),v) = b0(p(k),v) + F (f (k),v) ∀v ∈ X,

b0(q,u(k)) + bf (f (k); q,u0) = 0 ∀q ∈ H
p(Ω),

a0(q̂,q(k)) = −b0(σ(k), q̂) + γ1

∫
Ω0
mwd(∇× u(k) +m1Rff

(k) −Robs,1)·

·(∇× q̂)dΩ + γ2

∫
Γout

(u(k) − uout) · q̂dΓ ∀q̂ ∈ X,

−b0(σ̂,q(k)) = γ2

∫
Γout

(p(k) − pout)σ̂dΓ ∀σ̂ ∈ H
p,

(w(k), f̂)Hf
= F (f̂ ,q(k)) − bf (f̂ ;σ(k),u0)+

+γ1

∫
Ω0
mwd(∇× u(k) +m1Rff

(k) −Robs,1)m1Rf f̂dΩ ∀f̂ ∈ Hf ,

f (k+1) = f (k) − τk(αf (k) + w(k)), k = 0, 1, . . . .

(3.7.3)

Consider now the finite dimensional case in which the functions f, {f (k)}, f̂ all are sought

for in a finite-dimensional subspace Hf,N ⊂ Hf of dimension N < ∞, whose basis ϕi ∈

W
1,∞(x1, x2), i = 1, 2, . . . , N . Then the following theorem holds.

Theorem 3.7.1 . Assume that Ωwd = Ω,
(
∂v0
∂y

)2
+
(
∂u0

∂y

)2
> 0 at y = 0, x ∈ (x1, x2). Then:

1. The problem (3.6.2) is correctly solvable (solution exists and is unique) for α ≥ 0 and

all N <∞;

2. The iterative process (3.7.3) is convergent for any α > 0, N < ∞ and provided the

parameters τk > 0, k = 0, 1, 2, . . . . are small enough;

3. If α is sufficiently small while k is sufficiently large, then {u(k), p(k), f (k)} can be taken

as an approximate solution of problem (3.6.2).

Proof:

1. The existence of the solution for α > 0 has been proved early. Let us consider the case

α = 0. Since f = ΣN
i=1aiϕi ∈ Hf,N then in the form (3.6.4) with α = 0 we conclude that

this equation is correctly solvable (because the problem (3.6.2) can have only unique

solution in X × H
p × Hf , see Proposition 3.6.2). We assume the generalized Stokes

problem to be correctly solvable for any given f ∈ Hf . Hence the problem (3.6.2) is

correctly solvable too.

2. If α > 0 then the bilinear form on the left hand side of (3.6.4) is coercive and continuous

with respect to the norm ‖f‖A,α =
√
α‖f‖2

Hf
+ ‖Af‖2

L2(x1,x2)
. Then according to the

general theory of iterative algorithm the process given by

(f (k+1), f̂)Hf
= (f (k), f̂)Hf

− τ(α(f (k), f̂)Hf
+ (Af (k), Af̂)L2(x1,x2))−

−(G,Af̂ )L2(x1,x2), k = 0, 1, . . .

is convergent for small τ > 0. Hence the process (3.7.3) is convergent also and

‖u(k) − u‖X + ‖p(k) − p‖Hp + ‖f − f (k)‖Hf
→ 0, k → ∞. (3.7.4)
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If Λ−1
C A∗A ∈ [C1, C2], C1, C2 = const, and τk = 2/(2α +C1 + C2) then (3.7.4) becomes

(see Agoshkov [6]):

‖u(k) −u‖X + ‖p(k) − p‖Hp + ‖f − f (k)‖Hf
≤ C

( C2 − C1

2α + C1 + C2

)k
→ 0, k → ∞. (3.7.5)

3. Let u0, p0, f0 be a solution of (3.6.2) when α = 0. According to the theory of ill-

posed problems (Tikhonov and Arsenin [151], Vainikko and Veretennikov [153]) we

have: ‖f0−fα‖Hp → 0 as α→ 0+, where (fα,uα, pα) is the solution of (3.6.2) for α > 0.

Hence

‖u0 − uα‖X + ‖p0 − pα‖Hp → 0, as α→ 0+.

Then owing to (3.7.4) we conclude that the statements of the theorem holds true also.

The simple schemes in Figure 3.7 can be considered as examples of the above problems when

f ∈ Hf,N for small N (the dimension of Hf,N ).
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Figure 3.7: Domain Ω with N shape functions: (a) N = 1, f = β1 + aϕ0(x), ϕ0 = x(x2 − x);

(b) N = 3, f = β1 + Σ3
i=1aiφi.

3.8 Test problem and numerical results

We consider some test problems on simplified arterial bypass configurations. Numerical sim-

ulations have been carried out using also in this case the Bamg –Bi-dimensional Anisotropic

Mesh Generator– and the finite element library FreeFem, used to develop algorithms based

on control theory and adjoint formulation for generalized Stokes problem. For application of

finite element method to incompressible flow see also Gresho and Sani [46]. In this section we

present numerical results using as cost functional the L2 norm of the vorticity in the down-

field zone of the new incoming branch of the bypass.

Wall curvature was considered only in the zone of the incoming branch of the bypass (−2 ≤

x ≤ 0) where we set f0 = 1 − sin(xπ4 ); in other parts we used piecewise constant function.

The graft angle of the bypass incoming branch (which influences vorticity) is equal to zero

(between the artery and the new incoming branch there isn’t a relative angle). This aspect

will be studied better in the next chapters dealing with a complete bypass configurations and
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parametrization.

The original configuration is very similar to the one studied by Lee, Loth and Fisher (see

Lee et al. [77] and Figure 3.8). Velocity values uin at the inflow are chosen in such a way

that the Reynolds number Re = ūD
ν has order 103. We recall that blood kinematic viscos-

ity ν = µ
ρ is equal to 4 · 10−6 m2 s−1, blood density ρ = 1 g cm−3 and dynamic viscosity

µ = 4 · 10−2 g cm−1s−1; ū is a mean inflow velocity (absolute value) related with uin, while

D is the arterial diameter (3.5 mm) [126].

Figure 3.8: Example of configuration proposed and studied by Lee, Loth and Fisher [77].

Figures 3.9-3.11 provide a preliminary account of numerical results and show how the shape

of the bypass using generalized steady Stokes equations in an optimal control problem is

smoothed out at the corner, which represents a singularity. Figure 3.9 refers to the original

configuration; whereas Figure 3.10 to the configuration obtained after 25 iterations of the

optimization algorithm (the vorticity has been reduced by about the 30%). Figure 3.11 shows

the most sensible zone of the bypass with respect to the cost functional to be minimized. In

the picture, first order shape variation (correction) f1y/β has been plotted in the reference

domain. This quantity is related with the adjoint solution, representing the shape sensitivity

with respect to the gradient of the cost functional: the “hot” zone is the one at the corner.
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Figure 3.9: Idealized 2-D bypass configuration before optimal shape design process: iso-

velocity [ms−1 · 10−2].
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Figure 3.10: Bypass configuration at the end of shape optimization using first corrections:

iso-velocity [ms−1 · 10−2].
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Figure 3.11: First correction f1
β y, quantity which is related with the adjoint solution (q, σ)

and represents the shape variation in bypass configuration (reported in the reference domain)

[m · 10−2].

The results that are obtained by applying shape optimization to first order problem provide

a regularization of the shape between the incoming branch of the bypass and the host artery.

These results provide a validation of our methodological approach: the shape found is the

one presented as “optimized” (minimizing wall shear stress) by Lei, Archie et Kleinstreuer in

[78] as an alternative one with respect to the Taylor patch, reducing wall shear stress. We

recall that the vorticity cost functional is related with the viscous dissipation dealing with

incompressible flows and that the distributed vorticity is related with the velocity field too in

the boundary of the region we considered. See Section 2.7.
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3.9 A comparison between the two methods

At the end of this first investigation stage, preliminary reported in [4] for the small perturba-

tion theory, we present below some numerical results obtained by applying both the optimal

control by local boundary variation (Figure 3.12) and the small perturbations techniques

(Figure 3.13), starting from the same configuration. Results by local boundary variations

give a shape more similar to Taylor patch (see for a comparison [78]). We have to consider

that in this case we are not dealing with a first order perturbation problem. The idea we

propose is to iterate our algorithm and restart the optimization process with a new initial

shape f̃0 which is the optimized one f̃0 = f0 + εf1 from the previous iterative process. Figure

3.14 shows the shape sensitivity with respect with the cost functional for the problem studied

by local boundary variations, while Figure 3.15 shows the reduction of the cost functional

(3.4.11) during the optimization processes and a comparison between the two methods. The

vorticity reduction during the linearized shape design process (by small perturbation) is shown

in Figure 3.15 for the first iterative process. It is possible to iterate the process to get the

same configuration provided by local boundary variations approach (Figure 3.12) and a more

consistent vorticity reduction as in the local boundary variations case.

The method proposed in this chapter has allowed us (i) to study a shape optimization prob-

lem as a control problem on a set of coefficients representing shape functions, (ii) to set the

problem in the theoretical framework of a generalized Stokes problem and (iii) to avoid all

the topological aspects related with shape optimization with nodal variations in the compu-

tational mesh.
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Figure 3.12: Bypass configuration (velocity [ms−1 · 10−2], same colorbar of Fig. 3.10) near

the incoming branch after shape optimization by boundary variations (30 iterations, 40%

vorticity reduction).
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Figure 3.13: Bypass configuration (velocity [ms−1 · 10−2], same colorbar of Fig. 3.10, 25

iterations and 30% vorticity reduction) after design by small perturbations.
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Figure 3.14: Bypass configuration and its shape sensitivity in reference domain with respect

to the cost functional (quantity related with adjoint solution) to underline the most sensible

zone related with observation [m · 10−2].

3.10 Further developments

In this chapter we have focused on the problem of determining the first corrections for the

shape design of simplified two-dimensional bypass configurations.

We recall here that we are in the perspective of using low order models for optimal control and

shape optimization algorithms, but this methodology may be applied to fully unsteady incom-

pressible Stokes (as we will do in the next chapter) and Navier-Stokes equations and consider

the coupled fluid-structure problem. The setting of the problem in a three-dimensional geom-

etry will provide more realistic design indications concerning surgical prosthesis realizations.

The development of tools for geometry reconstruction from medical data (medical imaging

and other non-invasive means) and their integration with numerical simulation could provide
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Figure 3.15: Distributed vorticity [m2s−1] reduction achieved during the two optimization

processes: shape design by local boundary variations and small perturbations.

improvements in disease diagnosis procedures and more realistic models. Also the integration

of numerical models with experimental ones could allow to get a more complete study frame-

work, see for example Bertolotti et al. [18].

An important application of the numerical method developed in this chapter is the possibility

to realize the iterative process for solving initial non-linear problems. For that it is sufficient

to consider f = f0 + εf1, where f0 is the initial configuration and f1 the computed first

correction, as the new f0, then to calculate a new first correction and so on.

A further useful development may be devoted to build domain decomposition methods (see

Quarteroni and Valli [128]) based on optimal control approaches. What we are going to

develop in the next chapters of this thesis, after a generalization of the approach we have

proposed here, are efficient schemes for reduced-basis methodology approximations (see Pat-

era, Maday, Prud’homme, Rovas, Veroy and Turinici in [118] and/or [119]) to study complete

parametrized bypass configuration. This methodology will be more efficient for the use in a

repetitive design environment as optimal shape design methodology requires.
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Chapter 4

Shape Design by Optimal Control

with Unsteady Flows and

Perturbation Method

In this chapter we present an approach for the study of the Aorto-Coronaric bypass anas-

tomoses using unsteady Stokes equations. Our aim is still to develop optimization methods

based on simplified fluid models. This approach can be seen as a methodological generalization

of the results of the previous chapter; as a matter of fact, the shape optimization process takes

into account unsteady flow phenomena over a period T to build an optimized shape which is

not time dependent. The small perturbation method, coupled with optimal control, is extended

to unsteady flows, moreover existence and uniqueness results are generalized to the unsteady

case.

4.1 Introduction

In this chapter we still apply optimal control for the shape optimization of Aorto-Coronaric

bypass anastomoses. We consider unsteady (rather than steady) Stokes equations with the

aim of providing a better understanding of the blood flow dynamics. We analyze the “first

correction” method which is derived by applying a perturbation method to the initial un-

steady problem in a space-time domain Ω × (0, T ) with Ω ⊂ R
2. The boundary ∂Ω of Ω is

parametrized by a suitable function f . In this chapter we extend the approach and the results

already introduced in the previous chapter (and preliminary reported in [4]) to the case where

the non-stationary Stokes equations are used. An outline of this chapter is as follows. In

Section 4.2 we formulate our problem, in Section 4.3 we deal with the problem of perturbed

functions in the generalized unsteady Stokes equations framework. In Section 4.4 we introduce

the shape optimization problem and its equations in the optimal control framework dealing

with unsteady cost functionals (Section 4.5). In Section 4.6 uniqueness and existence results

are extended, then in Section 4.7 an iterative optimization algorithm is proposed. Section

4.8 deals with a test problem and numerical results, finally some conclusions are drawn in

63
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Section 4.9.

4.2 The non-stationary problem

Let Ω be a bounded domain of R
2 with boundary Γ, x = (x, y)T is a point of Ω, t ∈ [0, T ], T <

∞, is the time variable. As before we consider the idealized, two-dimensional bypass bridge

configuration of Figure 4.1 and the domain on Figure 4.2, where the dotted line represents

the geometry of the complete anastomosis; Γw2
is the section of the original artery, Γin is the

new anastomosis inflow after bypass surgery, Γout is the anastomosis outflow.
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Figure 4.1: Idealized, 2-D bypass bridge configuration (left) and detail of the sensible part for

the optimization process (right). The dotted curve represents the portion of the boundary

that is subjected to change.
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We consider the following boundary-value problem for the unsteady Stokes equations, used
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to model blood flow at low Reynolds number: find u, p s.t.





ut − ν∆u + ∇p = f in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

u = uin on Γin, u = 0 on Γw1
∪ Γw3

∀t ∈ (0, T ),

−pn̂ + ν ∂u∂n̂ = gout on Γout ∪ Γw2
∀t ∈ (0, T, )

u = u∗ at t = 0 in Ω,

(4.2.1)

where ut := ∂u
∂t , u∗ is a given vector function such that ∇ · u∗ = 0 in Ω, n̂ = (n1, n2)T is

the outward unit normal vector on Γ, f = f(x, y, t), uin = uin(x, y, t), gout = gout(x, y, t)

are given vector functions, ν = const > 0 and uf = {uin on Γin; 0 on Γw1
∪ Γw3

}. As seen

previously, the subset Γc,ε of Γw1
is parametrized by a function f(x, ε) of x ∈ [x1, x2] and

ε ∈ [−ε0, ε0], ε0 = const is a small parameter. More precisely we assume that f(x, ε) is time

independent and can be developed as follows:

f(x, ε) = f0(x) + εf1(x) + ε2f2(x) + . . . , (4.2.2)

where fk ∈ W
1,∞(x1, x2), for k = 0, and fk ∈ W

1,∞
0 (x1, x2), for k ≥ 1, so that fk(x1) =

fk(x2) = 0, k ≥ 1. Here the function f0(x) > 0 describes the original subset Γc,0 of the

boundary of the “unperturbed domain”, Γw0 ≡ ∂Ω0 (see Figure 4.3), while fk(x), k ≥ 1,

could be unknown when considering a control problem (see Section 4.4).
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We introduce the following real Hilbert spaces:

X := {v : v ∈ (H1(Ω))2,v = 0 on Γin ∪ Γw1
∪ Γw3

},

H := L2(Ω × (0, T )) ≡ H∗, Y := L2(0, T ; X),

W := {u : u ∈ Y,ut ∈ L2(0, T ;Y ∗),u(x, y, T ) = 0}.

The weak statement of Eq.(4.2.1) reads: find u ∈ L2(0, T ; (H1(Ω))2), p ∈ H s.t.





a(u,v) − b(p,v) = G(v) ∀v ∈W,

b(q,u) = 0 ∀q ∈ H,

u = uf on Γin ∪ Γw1
∪ Γw3

∀ t ∈ (0, T ),

(4.2.3)

we recall that with v and q we indicate test functions and:

a(u,v) =

∫ T

0

∫

Ω
ν∇u · ∇vdΩdt−

∫ T

0

∫

Ω
u · vtdΩdt,

b(p,v) =

∫ T

0

∫

Ω
p∇ · vdΩdt,

G(v) =

∫ T

0

∫

Ω
f · vdΩdt +

∫ T

0

∫

Γout∪Γw2

gout · vdΓdt +

∫

Ω
u∗ · v(x, y, 0)dΩ.

The forms a(., .), b(., .) and G(.) depend on the parametrization f of Γc,ε, however this de-

pendence will be understood for simplicity of notations.

4.3 The unsteady problem for the perturbed functions

Let us introduce the reference (simple-shaped) domains Ω̃1 = {0 < x̃ < A, 0 < ỹ < β1 ≡ β},

Ω̃2 = {0 < x̃ < A,−β2 < ỹ < 0}, and Ω̃ = Ω̃1 ∪ Ω̃2 (see Figure 4.4). Then we assume that

f(x, ε) > 0 and consider the following variable transformation:

Tf : Ω1 ∪ Ω2 → Ω̃, x̃ = Tf (x);

Tf is the identity in Ω2, while Tf (x, y) = (x, β
f(x,ε)y) in Ω1. We set x̃ = (x̃, ỹ) and define

ũ(x̃, t) := u ◦ T−1
f (x̃, t) = u(x̃, ỹf(x̃, ε)/β, t).

where ṽ = (ũ, ṽ). Then,

dxdy =
f(x̃, ε)

β
dx̃dỹ

and for every φ̃ : Ω̃×(0, T ) → R and φ = φ̃◦Tf the following relations hold (with fx := df/dx):

∂φ

∂y
(x̃, t) =

β

f(x̃, ε)

∂φ̃(x̃, t)

∂ỹ
,
∂φ

∂x
(x̃, t) =

∂φ̃(x̃, t)

∂x̃
− ỹ

fx(x̃, ε)

f(x̃, ε)

∂φ̃(x̃, t)

∂ỹ
, (4.3.1)
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{
D̃(f)ũ(x̃, t) := ((∇ · u) ◦ T−1

f )(x̃, t) = ∂ũ
∂x̃ − ỹ fx(x̃,ε)

f(x̃,ε)
∂ũ
∂ỹ + β

f(x̃,ε)
∂ṽ
∂ỹ ,

R̃(f)ũ(x̃, t) := ((∇× u) ◦ T−1
f )(x̃, t) = ∂ṽ

∂x̃ − ỹ fx(x̃,ε)
f(x̃,ε)

∂ṽ
∂ỹ −

β
f(x̃,ε)

∂ũ
∂ỹ .

(4.3.2)

Then in Ω̃ we have:

D̃(f)ũ = m2∇̃ · ũ +m1D̃(f)ũ, R̃(f)ũ = m2∇̃ × ũ +m1R̃(f)ũ,

where ∇̃φ :=
(∂φ
∂x̃ ,

∂φ
∂ỹ

)
, while ms is the characteristic function of Ω̃s (s = 1, 2). To simplify

the notations from now on we will set (unless otherwise specified):

x = x̃, u(x, y, t) = ũ(x̃, ỹ, t), u = ũ, v = ṽ, . . . ,

D = D̃,R = R̃, Ω ≡ Ω̃, Γwk
≡ Γ̃wk

.

Then problem (4.2.3) in the new reference frame Ω̃, now renamed Ω, reads as follows:




a(f ; u,v) − b(f ; p,v) = G(f ; v) ∀v ∈W,

b(f ; q,u) = 0 ∀q ∈ H,

u = uf on Γin ∪ Γw1
∪ Γw3

∀t ∈ (0, T ).

(4.3.3)

We have emphasized the dependence of a(f ; ., .), b(f ; ., .), and G(f ; .) on f . Precisely, upon

writing Ω1 instead of Ω̃1 and Ω2 instead of Ω̃2 for simplicity of notation we have (unless

otherwise specified, integration is carried out with respect to dΩdt):

a(f ; u,v) = a1(f ; u,v) + a2(u,v),

a1(f ; u,v) =

∫ T

0

∫

Ω1

fν

β

((∂u
∂x

−
yfx
f

∂u

∂y

)
·
(∂v
∂x

−
yfx
f

∂v

∂y

)
+
β2

f2

∂u

∂y
·
∂v

∂y

)
−

−

∫ T

0

∫

Ω1

f

β
u · vt,

a2(u,v) =

∫ T

0

∫

Ω2

ν
(∂u
∂x

·
∂v

∂x
+
∂u

∂y
·
∂v

∂y

)
−

∫ T

0

∫

Ω2

u · vt,

b(f ; p,v) = b1(f ; p,v) + b2(p,v),

b1(f ; p,v) =

∫ T

0

∫

Ω1

f

β
pD(f)v, b2(p,v) =

∫ T

0

∫

Ω2

p∇ · v,

G(f ; v) = G1(f ; v) +G2(v),

G1(f ; v) =

∫ T

0

∫

Ω1

f

β
f · v +

∫ T

0

∫

(Γout∪Γw2)∩∂Ω1

gout · vdΓdt+

+

∫

Ω1

f

β
u∗(x, y) · v(x, y, 0)dΩ,

G2(v) =

∫ T

0

∫

Ω2

f · v +

∫ T

0

∫

(Γout∪Γw2)∩∂Ω2

gout · vdΓdt+

+

∫

Ω2

u∗(x, y) · v(x, y, 0)dΩ.
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Assume that problem (4.3.3) has a solution u, p that is infinitely differentiable with respect

to ε: {
u = u0 + εu1 + ε2u2 + . . .

p = p0 + εp1 + ε2p2 + . . .
(4.3.4)

where pk ∈ H,uk ∈ Y, k ≥ 1, the test functions v, q appearing in (4.3.3) and in the sequel

can be assumed as independent of ε.

Using (4.2.2)-(4.3.4) and the small perturbation technique we can deduce the equations sat-

isfied by uk, pk, k ≥ 0. In particular, for k = 0, u0 and p0 satisfy





a(f0; u0,v) − b(f0; p0,v) = G(f0; v) ∀v ∈W,

b(f0; q,u0) = 0 ∀q ∈ H,

u0 = uf on Γin ∪ Γw1
∪ Γw3

∀t ∈ (0, T ).

(4.3.5)

Correspondingly we define:

Robs,0 := R(f0)u0. (4.3.6)

We introduce some further functional spaces H
p and Hf for p and {fk}, respectively, which

satisfy:

H
p ⊆ H ⊆ H

p∗, Hf ⊆ L2(x1, x2) ⊆ H
∗
f ,

W := W × H
p ⊆ H0 := L2(Ω × (0, T ))2 × L2(Ω × (0, T )) ⊆ W

∗.

Then we set:

Y := Y × H
p ⊆ H0 ⊆ Y

∗,

Then for k = 1 the functions u1, p1, considered as the components of the vector-function

Φ1 := (u1, p1) ∈ Y, f1 ∈ Hf , satisfy the equation:

L(Φ1, Φ̂) = B(f1, Φ̂) ∀Φ̂ := (v, q) ∈ W, (4.3.7)

where

L(Φ1, Φ̂) := a0(f0; u1,v) − b0(f0; p1,v) + b0(f0; q,u1),

B(f1, Φ̂) := bf (f1; p0,v) +G1(f1; v) − af (f1; u0,v) − bf (f1; q,u0),

bf (f1; p0,v) :=
∂

∂ε
b(f ; p0,v)|ε=0 =

∫ T

0

∫

Ω1

f1

β
p0D(f0)v+

+

∫ T

0

∫

Ω1

f0

β
p0Df (f1,v),

Df (f1,v) :=
∂

∂ε
D(f)v|ε=0 = −

[
y
(f1,xf0 − f0,xf1

f2
0

)∂û
∂y

+
βf1

f2
0

∂v̂

∂y

]
,

Df (f1,u0) :=
∂

∂ε
D(f)u0|ε=0(:= Dff1 in the sequel),

G1(f1; v) :=
∂

∂ε
G(f ; v)|ε=0 =

∫ T

0

∫

Ω1

f1

β
f · v +

∫

Ω1

f1

β
u0(x, y) · v(x, y, 0)dΩ,
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af (f1; u0,v) :=
∂

∂ε
a(f ; v0,v)|ε=0 =

=

∫ T

0

∫

Ω1

f1ν

β

((∂u0

∂x
−
yf0,x

f0

∂u0

∂y

)
·
(∂v
∂x

−
yf0,x

f0

∂v

∂y

)
+
β2

f2
0

∂u0

∂y
·
∂v

∂y

)
−

−

∫ T

0

∫

Ω1

f0ν

β
y

(f1,xf0 − f0,xf1)

f2
0

(∂u0

∂y
·
(∂v
∂x

−
yf0,x

f0

∂v

∂y

)
+
(∂u0

∂x
−
yf0,x

f0

∂u0

∂y

)
·
∂v

∂y

)

−

∫ T

0

∫

Ω1

f0ν

β

(2β2f1

f3
0

)∂u0

∂y
·
∂v

∂y
−

∫ T

0

∫

Ω1

f1

β
u0 · vt.

Problem (4.3.7) is a weak statement for the non-stationary Stokes problem. In the sequel

we assume that this problem has a unique solution for any given u0, p0 (the solution in the

unperturbed domain Ω0), and for each f1 ∈ Hf .

4.4 The shape optimization problem: unsteady cost function-

als

In this section our mathematical derivation will be formal, in the sense that we allow our-

selves the regularity that is necessary for our manipulation. Suppose now that the (time

independent) function f1 in problem (4.3.7) is unknown and so are u1, p1. To complete

problem (4.3.7) we will have to either provide some additional equations or require that f1

be determined by minimizing a suitable (time dependent) cost functional.

In general terms, problem (4.3.7) will be supplemented by the additional equation:

C(f,u, p) = 0 (4.4.1)

where C is an operator (linear or nonlinear) defined on H 1
0 (x1, x2) × Y × H

p. (We consider

now f ∈ H1
0 (Ω) for convenience). We assume C to depend smoothly on its variables f,u, p.

Using the representations (4.2.2) and (4.3.4) we derive from (4.4.1) the following equation:

C(f,u, p) = C0(f0,u0, p0) + εC1(f1,u1, p1) + O(ε2) = 0, ∀ε ∈ [−ε0, ε0] (4.4.2)

where

C1(f1,u1, p1) :=
∂C

∂ε
(f,u, p)|ε=0. (4.4.3)

If we assume that the data of our problems are such that C0(f0,u0, p0) = 0, then we can

replace (4.4.2) by the approximate equation

C1(f1,u1, p1) = 0 (4.4.4)

and use it to complete (4.3.7), yielding an exact controllability problem. An alternative ap-

proach would consist in replacing (4.4.4) by the following equivalent minimization problem:

inf
f1

∫ T

0

∫

Ω

f0

β
|C1(f1,u1, p1)|2dΩdt, (4.4.5)
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where we assume that C1 has image in H
p. In the next sections we apply the approaches

(4.4.4)-(4.4.5) described above for the completion of (4.3.7) and we will move from the fol-

lowing special choice of (4.4.1):

C(f,u) := ((∇× u) ◦ T−1
f )(x, y, t) −Robs,ε(x, y, t) in Ωwd ⊆ Ω ∀t ≥ 0, (4.4.6)

where we recall that Ωwd is a suitable subset of Ω in which we want our additional equation

(or our “control”) to take place. Moreover

Robs,ε = Robs,0 + εRobs,1 + ε2Robs,2 + . . . , Robs,0 := ((∇× u0) ◦ T−1
f0

). (4.4.7)

Then we have: C0(f0,u0) = 0, while the equation (4.4.4) corresponding to the special choice

(4.4.6) reads:

C1(f1,u1) = R(f0)u1 +m1Rff1 −Robs,1 = 0 in Ωwd, ∀t, (4.4.8)

where

R(f0)u1 = (∇× u1) ◦ T−1
f0

(x, y) =
∂v1
∂x

−
yf0,x

f0

∂v1
∂y

−
β

f0

∂u1

∂y
,

Rff1 := Rf (f1,u0) = −y
(f1,xf0 − f0,xf1)

f2
0

∂v0
∂y

+
βf1

f2
0

∂u0

∂y
.

In conclusion we consider the following problem: find Φ1 = (u1, p1) ∈ Y, f1 ∈ H1
0 (x1, x2) s.t.

{
L(Φ1, Φ̂) = B(f1, Φ̂) ∀Φ̂ = (v, q) ∈ W,

R(f0)u1 +m1Rff1 −Robs,1 = 0 in Ωwd ∀t ≥ 0,
(4.4.9)

where Robs,1 is a given function (for example in our case it could be Robs,1 = −Robs,0).

Problem (4.4.9) is an “exact controllability problem”. These problems have solutions in some

particular cases only. For this reason we replace (4.4.9) by the following generalized optimal

control problem: find Φ1 = (u1, p1) ∈ Y, f1 ∈ H1
0 (x1, x2) s.t.

{
L(Φ1, Φ̂) = B(f1, Φ̂) ∀Φ̂ = (v, q) ∈ W,

inff1 = α
2 ||f1||

2
H1

0
(x1,x2)

+ J(f1,u1, p1),
(4.4.10)

where

J(f1,u1, p1) = γ1J1(f1,u1) + γ2J2(f1,u1, p1) + γ3J3(f1,u1, p1),

J1(f1,u1) =
1

2

∫ T

0

∫

Ω
mwd

f0

β
(R(f0)u1 +m1Rff1 −Robs,1)2,

α = const ≥ 0 is a small regularization parameter, γ1, γ2, γ3 are non-negative constant

weights, mwd is the characteristic function of Ωwd. The functional J1(f1,u1) allows the

control of the vorticity over a period T which is, as already seen, a relevant clinical index

related also with velocity and viscous dissipation (more specifically to shear stresses), while

J2(f1,u1, p1) and J3(f1,u1, p1) are additional functionals that are assumed to be quadratic.

Note that the second equation in (4.4.9) is considered in (4.4.10) in the least square sense;

then (4.4.10) for α = 0, γ2 = γ3 = 0 provides the weak statement of problem (4.4.9). For
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α > 0 the solution v1 = v1(α), p1 = p1(α), f1 = f1(α) of (4.4.10) represents an approximate

(regularized) solution of (4.4.9).

An example of J2(f1,u1, p1) follows:

J2(f1,u1, p1) = J2(u1, p1) := (4.4.11)

=
1

2

(
||p1 − pout,1||

2
L2(Γout×(0,T )) + ||u1 − uout,1||

2
L2(Γout×(0,T ))2

)

The functional J3 is introduced in order to enhance the smoothness in time of u1, p1. There

we will take:

J3(f1,u1, p1) = J3(τ ; p1) :=
1

2
‖J (p1 − pout,1)‖2

L2(Γout×(0,T )),

where

J (p) :=
p(x, y, t) − p(x, y, t− τ)

τ
,

where τ ≥ 0 is a parameter, while it is assumed that the functions p1, pout,1 be extended by

parity to the negative values of t (i.e. p(x, y, t) := p(x, y,−t) as t < 0, (x, y) ∈ Ω, etc). If

p1, pout,1 ∈ H1(0, T ;L2(Ω)) and τ → 0 then J3 → 1
2‖p1,t − (pout,1)t‖

2
L2(Γout×(0,T )). Otherwise

said, J3 in fact imposes a regularity restriction on p1. If τ → ∞, then J3 → 0 and no

additional restriction holds on p1. If 0 < τ <∞ then the introduction of J3 can be regarded

as a tool that yields a regularization condition for p1 on Γout × (0, T ). (Of course there are

other ways to introduce similar regularity restrictions).

4.5 The optimal control formulation for unsteady flows

When considering (4.4.10) we have considered the simple domain of Figure 4.4, that we have

previously denoted with Ω. An alternative possibility (that we are going to follow) consists

of using the new variable transformation

x = T−1
f0

(x̃), x̃ ∈ Ω, x ∈ Ω0, (4.5.1)

which is the identity in Ω2, while T−1
f0

(x̃, ỹ) = (x̃, f0(x̃)β ỹ) in Ω1, then working in the “unper-

turbed” domain Ω0 (see Figure 4.5), as done in the previous chapter, the expressions for the

bilinear forms in (4.4.10) become simpler.

Indeed in Ω0 × (0, T ) problem (4.4.10) can be reformulated as follows: find Φ = (u, p) :=

Φ1 = (u1, p1) ∈ Y, f := f1 ∈ Hf
2, such that

{
L(Φ, Φ̂) = B(f, Φ̂) ∀Φ̂ := (v, q) ∈ W,

inff∈Hf
= α

2 ||f ||
2
H1

0
(x1,x2)

+ J(f,Φ),
(4.5.2)

where

L(Φ, Φ̂) = a0(u,v) − b0(p,v) + b0(q, v),

2From now on we denote u1 = u, p1 = p, f1 = f however we should keep in mind that now u, p, f represent

the “first corrections” of u0, p0, f0 on the unperturbed domain.
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Figure 4.5: Transformation of the simple domain into the unperturbed domain Ω0.

B(f, Φ̂) := bf (f, p0,v) +G1(f,v) − af (f,u0,v) − bf (f, q,u0),

a0(u,v) =

∫ T

0

∫

Ω0

ν
(∂u
∂x

·
∂v

∂x
+
∂u

∂y
·
∂v

∂y

)
−

∫ T

0

∫

Ω0

u · vt,

b0(p,v) =

∫ T

0

∫

Ω0

p∇ · v,

bf (f, p0,v) =

∫ T

0

∫

Ω0,1

p0Df (f,v) +

∫ T

0

∫

Ω0,1

f

f0
p0∇ · v,

Df (f,v) = −
[
y
(fxf0 − f0,xf

f2
0

)∂û
∂y

+
f

f0

∂v̂

∂y

]
,

Df (f, v0) := Dff,

G1(f ; v) =

∫ T

0

∫

Ω0,1

f

f0
f · v +

∫

Ω0,1

f

f0
u0 · v(x, y, 0)dΩ,

af (f ; u0,v) =

∫ T

0

∫

Ω0,1

fν

f0
∇u0 · ∇v −

∫ T

0

∫

Ω0,1

νy
(fxf0 − f0,xf)

f2
0

(∂u0

∂y
·
∂v

∂x
+
∂u0

∂x
·
∂v

∂y

)
+

−

∫ T

0

∫

Ω0,1

2fν

f0

∂u0

∂y
·
∂v

∂y
,

J(f,u, p) = γ1J1(f,u) + γ2J2(f,u, p) + γ3J3(τ ; p),

J1(f,u) =
1

2

∫ T

0

∫

Ω0

mwd|∇ × u +m1Rff −Robs,1|
2, (4.5.3)

Rff := Rf (f,u0) = −y
(fxf0 − f0,xf)

f2
0

∂v0
∂y

+
f

f0

∂u0

∂y
,

J2(f,u, p) and J3(τ, p) are defined similarly. Let us derive the operator form of problem

(4.5.2). Should Φ be a solution of (4.5.2), then

α(f, f̂)Hf
+ 〈J ′

Φ(f,Φ),Φf̂ 〉 + 〈J ′
f (f,Φ), f̂〉 = 0, (4.5.4)

for any f̂ ∈ Hf (f̂ is the independent variation), where Φf̂ ∈ W satisfies the following equation:

L(Φf̂ , Φ̂) = B(f̂ , Φ̂) ∀Φ̂ ∈ W. (4.5.5)
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In (4.5.4), J ′
Φ = ∂J

∂Φ and J ′
f = ∂J

∂f are partial derivatives of J , while 〈Q,Φ〉 stands for W〈Q,Φ〉W∗

the duality between W and W
∗ and 〈g, f〉 for the duality Hf

〈g, f〉H∗

f
between Hf and H

∗
f . Then

we can write for (4.5.2) the system of “optimality conditions”:

{
L(Φ, Φ̂) = B(f, Φ̂) ∀Φ̂ ∈ W,

α(f, f̂)Hf
+ 〈J ′

Φ(f,Φ),Φf̂ 〉 + 〈J ′
f (f,Φ), f̂〉 = 0 ∀f̂ ∈ Hf .

(4.5.6)

The element Φf̂ can be eliminated from (3.5.6) by introducing the adjoint problem: find

Q := (q, σ) ∈ W s.t.

L∗(Q, Ŵ ) := L(Ŵ ,Q) = 〈J ′
Φ(f,Φ), Ŵ 〉 ∀Ŵ ∈ Y. (4.5.7)

Since Φf̂ ∈ Y we can choose Ŵ = Φf̂ in (4.5.7), yielding

〈J ′
Φ(f,Φ),Φf̂ )〉 = L(Φf̂ , Q) = B(f̂ , Q) (4.5.8)

and the system of variational equations (4.5.6) reads now as follows:





L(Φ, Φ̂) = B(f, Φ̂) ∀Φ̂ ∈ W,

L∗(Q, Ŵ ) = 〈J ′
Φ(f,Φ), Ŵ 〉 ∀Ŵ ∈ Y,

α(f, f̂)Hf
+B(f̂ , Q) + 〈J ′

f (f,Φ), f̂〉 = 0 ∀f̂ ∈ Hf .

(4.5.9)

The first equation is the state equation. By means of the following operators (see Lions and

Magenes [84], Lions [82] and Agoshkov [6]):

L : Y → W
∗, (LΦ, Φ̂)H0

:= L(Φ, Φ̂),

L∗ : W → Y
∗, (Ŵ , L∗Q)H0

= (LŴ ,Q)H0
,

B : Hf → W
∗, (Bf,Φ)H0

= B(f,Φ)

Λw : Y
∗ → Y

∗, (ΛwJΦ(f,Φ), Ŵ )H0
:= 〈J ′

Φ(f,Φ), Ŵ 〉,

Λf : H
∗
f → H

∗
f , (ΛfJf (f,Φ), f̂)L2(x1,x2) := 〈J ′

f (f,Φ), f̂〉,

the system (4.5.9) can be written in operator form as follows:





LΦ = Bf (in W
∗),

L∗Q = ΛwJΦ(f,Φ) (in Y
∗),

αΛcf +B∗Q+ ΛfJf (f,Φ) = 0 (in (Hf )∗),

(4.5.10)

there Λc is the extension to Hf of the operator:

Λc,0f := −fxx + f

whose domain is D(Λc,0) = H2(Ω) ∩ Hf .
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4.6 Existence and uniqueness results for unsteady case

We analyze the particular cases where the cost functional J is chosen as outlined in Section

4.4, and we extend uniqueness and existence results proven to the unsteady case. Let J be a

weighted sum of the functionals J1, J2, J3 of Section 4.4. Then

J(f,Φ) = J(f,u, p) =
γ1

2

∫ T

0

∫

Ω0

mwd|∇ × u +m1Rff −Robs,1|
2dΩdt+ (4.6.1)

+
γ2

2

∫ T

0

∫

Γout

(
|p− pout|

2 + |u − uout|
2
)
dΓdt +

γ3

2

∫ T

0

∫

Γout

|J (p− pout)|
2dΓdt

We assume that Ωwd = Ω0 and we define the spaces:

X := {u : u ∈ (H2(Ω))2,u = 0 on Γin ∪ Γw1
∪ Γw3

},

H
p := L2(0, T ;H1(Ω0)), Hf := H2(x1, x2) ∩H1

0 (x1, x2).

Also here we pretend that the velocity be in H2 in order to use the uniqueness continuation

theorem. The derivatives J ′
Φ(f,Φ) and J ′

f (f,Φ) become

〈J ′
Φ(f,Φ), Φ̂〉 = γ1

∫ T

0

∫

Ω0

mwd(∇× u +m1Rff −Robs,1) · (∇× v)dΩdt+

+γ2

∫ T

0

∫

Γout

(p− pout)qdΓdt + γ2

∫ T

0

∫

Γout

(u − uout) · vdΓdt+

+γ3

∫ T

0

∫

Γout

J (p− pout) · J (q)dΓdt,

〈J ′
f (f,Φ), f̂〉 = γ1

∫ T

0

∫

Ω0

mwd(∇× u +m1Rff −Robs,1)Rf f̂dΩdt,

∀ Φ̂ = (v, q) and ∀ f̂ .

The system of variational equations (4.5.6) becomes: find Φf = (uf , pf ) ∈ Y × H
p s.t.





L(Φf , Φ̂) = B(f, Φ̂) ∀Φ̂ ∈W × H
p,

α(f, f̂)Hf
+ γ1

∫ T
0

∫
Ω0
mwd(∇× uf +m1Rff −Robs,1) · (∇× uf̂+

+m1Rf f̂)dΩdt+ γ2

∫ T
0

∫
Γout

((pf − pout)pf̂ + (uf − uout) · uf̂ )dΓdt

+γ3

∫ T
0

∫
Γout

J (pf − pout)J (pf̂ )dΓdt = 0 ∀f̂ ∈ Hf ,

(4.6.2)

where for every f̂ , uf̂ = uf (f̂), pf̂ = pf (f̂) denote the solution of the system given by the

first equation in (4.6.2) corresponding to a right end side f = f̂ . The system (4.5.9) becomes:

find Φf = (uf , pf ) ∈ Y × H
p, Q = (q, σ) ∈W × H

p s.t.





L(Φf , Φ̂) = B(f, Φ̂) ∀Φ̂ ∈W × H
p,

L∗(Q, Ŵ ) = 〈J ′
Φ(f,Φ), Ŵ 〉 ∀Ŵ ∈ Y × H

p,

α(f, f̂)Hf
+B(f̂ , Q)+

+γ1

∫ T
0

∫
Ω0
mwd(∇× uf +m1Rff −Robs,1)m1Rf f̂dΩdt = 0 ∀f̂ ∈ Hf ,

(4.6.3)
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where

〈J ′
Φ(f,Φ), Ŵ 〉 = γ1

∫ T

0

∫

Ω0

mwd(∇× uf +m1Rff −Robs,1) · (∇× q̂)dΩdt+

+γ2

∫ T

0

∫

Γout

(uf − uout) · q̂dΓdt+ γ2

∫ T

0

∫

Γout

(pf − pout)σ̂dΓdt+

+γ3

∫ T

0

∫

Γout

J (pf − pout) · J (σ̂)dΓdt.

Consider now the problem (4.6.3) for α > 0.

Proposition 4.6.1 For any α > 0 problem (4.6.3) has a unique solution for any given Robs,1 .

Proof. Following [6] and what already seen in the previous chapter for steady flow, we

formally invert L and L∗ in the first and second equations of (4.5.10), then we substitute Φ,

Q into the third equation and we obtain the following weak problem, f ∈ Hf satisfies:

α(f, f̂)Hf
+ (Af,Af̂)L2(x1,x2) = (G,Af̂ )L2(x1,x2) ∀f̂ ∈ Hf . (4.6.4)

A is a linear operator, while G depends on the data. Precisely, from (4.6.2) we obtain:

(f, f̂)Hf
= (Λff, f̂)L2(x1,x2),

(Af,Af̂)L2(x1,x2) = γ1

∫ T

0

∫

Ω
mwd(∇× u +m1Rff) · (∇× uf̂ +m1Rf f̂)dΩdt+

+γ2

∫ T

0

∫

Γout

(ppf̂ + u · uf̂ )dΓdt + γ3

∫ T

0

∫

Γout

J (p) · J (pf̂ )dΓdt,

(G,Af̂ )L2(x1,x2) = γ1

∫ T

0

∫

Ω
mwdRobs,1 · (∇× uf̂ +m1Rf f̂)dΩdt+

+γ2

∫ T

0

∫

Γout

(poutpf̂ + uout · uf̂ )dΓdt + γ3

∫ T

0

∫

Γout

J (pout) · J (pf̂ )dΓdt,

where Φ = (u, p) = L−1Bf , Φf̂ = (uf̂ , pf̂ ) = L−1Bf̂, ∀f̂ ∈ Hf .

We see that if α > 0 then problem (4.6.4) has a unique solution which satisfies ‖f‖2
Hf

≤

‖G‖2/(2α) < ∞. Correspondingly, we can construct u, p, q, σ, which together with f pro-

vide the unique solution of (4.6.3). �

Consider now problem (4.6.3) with α = 0.

Proposition 4.6.2 Assume that:

i) The solution of the generalized non-stationary Stokes problem (4.3.7) satisfies:

(∂v0

∂y

)2
+
(∂u0

∂y

)2
> 0 at y = 0, x ∈ (x1, x2);
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ii) problem (4.6.3) has a solution in the class (L2(0, T ;H2(Ω)2)×L2(0, T ;H1(Ω))×W 1,∞(x1, x2).

Then this solution is unique.

Proof. Let (u1, p1, f1) and (u2, p2, f2) be two solutions of (4.6.3). Then for u = u1−u2, p =

p1 − p2, f = f1 − f2 from (4.6.2) we obtain:





a0(u,v) − b0(p,v) = F (f,v) ∀v ∈W,

b0(q,u) + bf (f ; q,u0) = 0 ∀q ∈ H
p,

∇× u +m1Rff = 0 in Ω × (0, T ),

p = 0, u = 0 on Γout × (0, T ).

(4.6.5)

Consider the classical form of the second and the third equation from (4.6.5) in Ω2,0 × (0, T )

∇ · u = 0, ∇× u = 0 in Ω2,0 × (0, T ).

Then ∆u = 0 in Ω2,0 ∀t ∈ (0, T ). Considering v with supp(v) ⊆ Ω2,0 from the first equation

of (4.6.5) we find ∇p = 0, then p = const in Ω2,0 and −pn̂ + ν ∂u∂n̂ = 0 on Γout ∀t. Since

p = 0 on Γout then p = 0 in Ω2,0 and ν ∂u∂n̂ = 0 on Γout too. Consequently, for all t ∈ (0, T ),

u satisfies:

∆u = 0 in Ω2,0, u = ν
∂u

∂n̂
= 0 on Γout.

Owing to the uniqueness continuation theorem this Cauchy problem has only the trivial

solution u = 0 in Ω2,0. Since u ∈ L2(0, T ;H2(Ω)2) then

u =
∂u

∂n̂
= 0 on Γ0 := {(x, y) : y = 0, x1 < x < x2}, ∀t ∈ (0, T ).

Consider now the second and third equations from (4.6.5) in Ω1,0 in their classical form,

∀ t ∈ (0, T ): 



∇ · u−
[
y
(fxf0−f0,xf

f2
0

)
∂u0

∂y + f
f0
∂v0
∂y

]
= 0 in Ω1,0,

∇× u −
[
y
(fxf0−f0,xf

f2
0

)
∂v0
∂y − f

f0
∂u0

∂y

]
= 0 in Ω1,0.

(4.6.6)

On Γ0 we have:

∇ · u −
f

f0

∂v0
∂y

= 0, ∇× u +
f

f0

∂u0

∂y
= 0,

|f(x)| = f0

[
(∇ · u)2 + (∇× u)2

]1/2

[(
∂v0
∂y

)2
+
(
∂u0

∂y

)2]1/2 on Γ0,

(the dependence of the right end side on x and y is understood). Since u = ∂u
∂n̂ = ∂u

∂y = 0 on Γ0,

then

∇ · u|y=0 =
∂u

∂x
+
∂v

∂y
|y=0 = 0, ∇× u|y=0 =

∂v

∂y
−
∂u

∂x
|y=0 = 0, x ∈ (x1, x2).

i.e. f(x) = 0. Therefore, u = 0, p = 0 too, ∀t ∈ (0, T ). �
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4.7 The iterative process in the non-stationary case

In this section we propose some iterative processes for solving the space-time variational

equations obtained in the previous sections. These algorithms are an extension of those

introduced in the previous chapter. Consider the problem (4.5.10); if for k = 0, 1, . . . f (k) is

known, then f (k+1) can be determinated by solving the following equations [6]:





LΦ(k) = Bf (k),

L∗Q(k) = ΛwJΦ(f (k),Φ(k)),

Λcw
(k) = B∗Q(k) + ΛfJf (f (k),Φ(k)),

f (k+1) = f (k) − τk(αf (k) + w(k)),

(4.7.1)

where {τk} is a family of parameters whose determination follows from the theory of extremal

problems (see Vasiliev [155]), the general theory of iterative processes (see Marchuk [94],

Quarteroni and Valli [127], Quarteroni, Sacco and Saleri [129]), and the ill-posed problems

theory (Tikhonov and Arsenin [151], Vainikko and Veretennikov [153]). Its variational form

reads as: 



a0(u(k),v) − b0(p(k),v) = F (f (k),v) ∀v ∈W,

b0(q,u(k)) = −bf (f (k); q,u0) ∀q ∈ H
p,

a0(q̂,q(k)) + b0(σ(k), q̂) = Gk(q̂) ∀q̂ ∈ Y,

−b0(σ̂,q(k)) = gk(σ̂) ∀σ̂ ∈ H
p,

(w(k), f̂)Hf
= dk(f̂) ∀f̂ ∈ Hf ,

f (k+1) = f (k) − τk(αf
(k) + w(k)), k = 0, 1, . . . ,

(4.7.2)

where

F (f (k),v) = bf (f (k), p0,v) +G1(f (k),v) − af (f (k),u0,v),

Gk(q̂) = γ1

∫ T

0

∫

Ω0

mwd(∇× u(k) +m1Rff
(k) −Robs,1) · (∇× q̂)dΩdt+

+γ2

∫ T

0

∫

Γout

(u(k) − uout) · q̂dΓdt,

gk(σ̂) = γ2

∫ T

0

∫

Γout

(p(k) − pout)σ̂dΓdt+ γ3

∫ T

0

∫

Γout

J (p(k) − pout) · J σ̂dΓdt,

dk(f̂) = F (f̂ ,q(k)) − bf (f̂ ;σ(k),u0)+

+γ1

∫ T

0

∫

Ω0

mwd(∇× u(k) +m1Rff
(k) −Robs,1)m1Rf f̂dΩdt.

Consider now the finite dimensional case in which the function f, {f (k)}, f̂ all are sought

for in a finite-dimensional subspace Hf,N ⊂ Hf of dimension N < ∞, whose basis ϕi ∈

W
1,∞(x1, x2), i = 1, 2, . . . , N . Then the following theorem holds true.
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Theorem 4.7.1 Assume that:

Ωwd = Ω,

(∂v0
∂y

)2
+
(∂u0

∂y

)2
> 0 at y = 0, x ∈ (x1, x2).

Then:

1. For α ≥ 0 and any N < ∞ the problem (4.6.2) is well posed (i.e. it admits a unique

solution that depends continuously on the data);

2. The iterative process (4.7.2) is convergent for any α > 0, N < ∞, provided the para-

meters τk > 0, k = 0, 1, 2, . . . . are small enough;

3. If α is sufficiently small while k is sufficiently large, then {u(k), p(k), f (k)} can be regarded

as an approximate solution of problem (4.6.2).

Proof:

1. For α > 0 the existence was proven earlier in Proposition 4.6.1. Let us consider the case

α = 0, since f = ΣN
i=1aiϕi ∈ Hf,N , then (4.6.4) is well posed (because problem (4.6.2)

can have only unique solution in X × H
p × Hf , see Proposition 4.6.2). We assume the

unsteady Stokes problem to be well posed for given f ∈ Hf . Hence the problem (4.6.2)

is well posed too.

2. If α > 0 then the bilinear form on the left hand side of (4.6.4) is coercive and continuous

with respect to the norm

‖f‖A,α =
√
α‖f‖2

Hf
+ ‖Af‖2

L2(x1,x2)
.

Then the process given by

(f (k+1), f̂)Hf
= (f (k), f̂)Hf

− τ(α(f (k), f̂)Hf
+ (Af (k), Af̂)L2(x1,x2))−

−(G,Af̂ )L2(x1,x2), k = 0, 1, . . .

is convergent for small τ > 0. Hence also the process (3.7.3) is convergent and

‖u(k) − u‖Y + ‖p(k) − p‖Hp + ‖f − f (k)‖Hf
→ 0, k → ∞. (4.7.3)

If Λ−1
C A∗A ∈ [C1, C2], C1, C2 = const, choosing τk = 2/(2α + C1 + C2) we obtain (see

Agoshkov [6]):

‖u(k) − u‖Y + ‖p(k) − p‖Hp + ‖f − f (k)‖Hf
≤ C

( C2 − C1

2α + C1 + C2

)k
(4.7.4)

which tends to zero as k → ∞.
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3. Let u0, p0, f0 be a solution of (3.6.2) when α = 0. According to the theory of ill-posed

problems ([151] and [153]) we have: ‖f0 − fα‖Hf
→ 0 as α → 0+, where (fα,uα, pα) is

the solution of (3.6.2) for α > 0. Hence

‖u0 − uα‖Y + ‖p0 − pα‖Hp → 0, as α→ 0+.

Owing to (4.7.3) this concludes our proof. �

4.8 Numerical results for unsteady generalized Stokes prob-

lem

To test and extend our methodology we consider some test problems on the initial configura-

tion already used in the previous test case.

Velocity values uin at the inflow are chosen in such a way that the Reynolds number Re = ūD
ν

be of the order 103, the mean Reynolds number is 1250, the maximum is 2500. The inlet

Poiseuille velocity profile has a pulsatile nature over the period T = 1s (heart beat) and the

law considered was: uin = −0.475(y − 1)(y − 2)(1 − t)n̂, see Figure 4.8. Blood kinematic

viscosity ν = µ
ρ is equal to 4 ·10−6 m2 s−1, blood density ρ = 1 g cm−3 and dynamic viscosity

µ = 4 · 10−2 g cm−1s−1; ū is the mean inflow velocity u =
( N

Γin

N T

0
|uin·n̂|dΓdt

N
Γin

N T
0
dΓdt

)
which yields

the desired Reynolds number, while D is the arterial diameter (3.5 mm), see Quarteroni and

Formaggia [126], Quarteroni, Tuveri and Veneziani [125].

Dealing with unsteady blood flow into the coronaries (from the Aorta artery) we have to face

some difficulties and fix some hypotheses to model the pulsatile flow and the fluid mechanical

phenomena in the endograft region (see for preliminary considerations Bertolotti et al. [18]).

The first aspect deals with the fact that we consider a complete stenosis into the artery (the

flow rate from the stenosed section is set to zero), and this yields a retrograde flow, see

Kute and Vorp [74]. The second aspect deals with the way blood flow is modelled into the

coronaries. Being embedded on the heart surface muscle, coronaries do not share the same

behavior similar the other arteries during systolic and diastolic phases. In fact, during systolic

phase, the left ventricle contracts and squeezes the coronaries. To take that into account, we

have adopted the same pulsatile flow at the inlet of the bypass bridge as the one of the aortic

vessel from the opening of the coronaries to the end of the period. The flow-rate function goes

from a maximum quantity to zero. For more details we suggest to see Sankaranarayanan et

al. [140]. Figures 4.6 and 4.7 show the flow-rate waveform for the Aorta and the left coronary,

respectively; we can see that the flow-rate in the aorta goes from zero to a maximum and

then to zero in the systolic phase and remains at zero during diastolic phase. To model blood

flow into the bypass bridge we have adopted the aorta flow-rate waveform but from the time

step in which the coronaries are open (and not squeezed): for this reason in the bypass we

have a flow-rate waveform starting from a maximum and going to zero.
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Figure 4.6: Flow-rate waveform at the inlet of the ascending Aorta from [140].

Figure 4.7: Flow-rate waveform at the left coronary from [140].

In this section we present numerical results using as cost functional J(f,u) = J1(f,u) (intro-

duced in Equation (4.5.3)). This is equivalent to the L2 norm of the vorticity on (Ωwd×(0, T ))

(restricted in the downfield zone of the new incoming branch of the bypass, where the obser-

vation is made). We have set Robs,1 = −0.45 · R(f0)u.

For the space approximation of the unsteady Stokes equations we use P
1 − P

1 (piecewise lin-

ear) finite elements and SUPG stabilization (see [127]). Time discretization is based on first

order backward differentiation (which is unconditionally stable).

In figures 4.9-4.14 we report the numerical results obtained and show how the shape of the

bypass is changed to reduce downfield vorticity. The shape is smoothed out at the upper

corner and a slightly cuffed incoming branch is created. These results provide a shape which

resembles the Taylor patch (see Cole et al. [26]). We have shown original bypass configuration

(and horizontal velocity to show relevant fluid dynamics phenomena) at different time-steps

(t1 = 0.1 s, t2 = 0.4 s, t3 = 0.7 s) and then the configurations obtained at different iterations

of our optimization process (i.e. at N1 = 5, N2 = 11 and N3 = 17). These results can be

regarded as an improvement of previous results that were obtained using a steady fluid flow

model. The similarity between the present results and those obtained in [4] (and introduced

in the previous chapter) can be ascribed to the fact that shape f (k) does not depend on time,

moreover the shape variation at each optimization step δf (k) is given by the sum of the con-

tributions from all time-steps in (0, T ) and the first contribution is the one that dominates
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(when considering a pulsatile flow). In these simulations we can find the typical flow reversal

caused by the stenosed zone and the other related aspects described for instance in Lei et

al. [79]. Figure 4.15 shows pointwise vorticity ([1/s]) in bypass configuration before and at

the end of the control process. Vorticity is diminished near the upper corner (in the original

configuration we have a concentrated vorticity at the singularity) but also in the bed of the

artery in the down-field zone: this indicates that the flow is less disturbed and the main flow

decreases its attitude to recirculate in the stenosed zone. These phenomena are due to the

fact that the bypass section is smoothed and increased and the flow is guided more smoothly

through the section. Figure 4.16 shows the variation of corrections (x, δf n(x)y/β) at the first

iteration and after 14 iterations of the shape design process. These plots represent a measure

of shape variation (first corrections) with respect to the problem. Note that δf n is related

with state and adjoint solutions. At the beginning of the process we can see (plot on the left)

that the corner is the most sensible zone of the domain, after 14 iterations of the process (plot

on the right) the shape variation is reduced (max δf (n) is 10% of the one at the first step).

In Figure 4.17 we report total vorticity ([m2/s]) in down-field zone during the control process

at different time steps. We underline that only for the curve at t = 1 s we have a complete

result dealing with vorticity reduction over a period T , other curves represent partial results

considering a fraction of T (optimization is carried out over a period T at each iteration).

The most important contribution to total vorticity is given by the flow behavior in the first

part of the period considered. The total vorticity reduction is quite substantial. Figure 4.17

shows the total vorticity trend in time. At the end of the process we can see that the vorticity

behavior in time has the same trend, however its value is reduced.
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Figure 4.8: Unsteady (pulsatile) Stokes velocity profiles at the inflow [ms−1].
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Figure 4.9: Horizontal velocity [ms−1 · 10−2] at t = 0.1s for initial test configuration (left)

and after 5 iterations (right).

Figure 4.10: Horizontal velocity [ms−1 · 10−2] after t = 0.1s at 11 (left) and 17 (right)

iterations.

Figure 4.11: Horizontal velocity [ms−1 · 10−2] at t = 0.4s for initial test configuration (left)

and after 5 iterations (right).
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Figure 4.12: Horizontal velocity [ms−1 · 10−2] after t = 0.4s at 11 (left) and 17 (right)

iterations.

Figure 4.13: Horizontal velocity [ms−1 · 10−2] at t = 0.7s for initial test configuration (left)

and after 5 iterations (right).

Figure 4.14: Horizontal velocity [ms−1 · 10−2] after t = 0.7s at 11 (left) and 17 (right)

iterations.



84 CHAPTER 4. SHAPE DESIGN WITH UNSTEADY FLOWS

Figure 4.15: Distributed vorticity [s−1 · 10−2] in original configuration (left) and at the end

of the optimization process (right). Vorticity in the upper corner and in the bed of the artery

is diminished.

Figure 4.16: Variation of corrections (x, δf n(x)y/β) at the first iteration (left) and after 14

iterations of the process (right) [m · 10−2].
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Figure 4.17: Total vorticity [m2s−1] reduction at different time steps during shape optimiza-

tion.
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Figure 4.18: Total vorticity [m2s−1] in time during shape optimization for different configu-

rations.

4.9 Conclusions about Part I

In the first part of this thesis we have proposed several mathematical approaches based on

optimal flow control techniques for shape optimization problem. They both use simplified

fluid models to be verified in feed-back and are based on local boundary variations and small

perturbation theory. Using a vorticity cost functional we tried to unify different approaches

about bypass configurations already available in literature in which cost functionals depend

on velocity field, viscous dissipation and stresses: all these quantities can indeed be related to

vorticity. In the last approach we have also modelled the unsteady flow rate in the coronary

after bypass implanting procedures.

The approach proposed and discussed in this chapter and in the previous one, based on small

perturbation in fluid mechanics and set into a reference domain, is more general than the one

discussed in Chapter 2 and has permitted us to investigate the problem from a theoretical

point of view and to generalize the approach dealing with transient flows and to use a unique

computational mesh.

The results we have analyzed in this part of the work underline the importance of an accurate

modelling of the incoming branch of the bypass, in particular with cuffed and/or patched

shapes, which provide an enlarged section between the bypass and the host artery. Some of

the results found using shape optimization and optimal flow control were already known in

literature, but not validated yet by optimization techniques and not interpreted and unified

using vorticity cost functional.

What ought be done to generalize and validate our results on the local shape of the incoming

branch of the bypass is to study a complete bridge configuration depending on a certain

number of parameters. This aspect will be considered in the second part of the thesis by

reduced basis techniques where we will deal both with Stokes and Navier-Stokes equations.
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Another issue is how to reduce computational costs in solving optimal control problems, like

the ones proposed in Chapters 2−4, which are very expensive: reduced basis methods can be

adopted also in this respect and, in the last part, it will be shown how to use reduced basis

to solve optimal control problems.



Part II

Reduced Basis Techniques for

Optimization

87





Chapter 5

Reduced Basis Methods for Stokes

Equations

In this chapter we extend reduced basis techniques3 to Stokes equations in domains with

affine (or approximately affine) parameter dependence to have a rapid and reliable prediction

of linear-functional outputs. Particular attention is given to the approximation problem: (i)

to the pressure treatment of incompressible Stokes problem; (ii) to find an equivalent inf-sup

condition to guarantee stability of reduced basis solutions enriching the reduced basis veloc-

ity approximation space with the solutions of a supremizer problem; (iii) to provide algebraic

stability of the problem by bounding the condition number of reduced basis matrices using an

orthonormalization procedure applied to functions used as basis; (iv) to improve accuracy of

outputs estimation by a dual residual method based on adjoint problem approach;(v) to reduce

computational costs in order to have real time solution of parametrized problem; (vi) finally,

by considering more complex (“non-compliant”) outputs.

The motivation in developing reduced basis techniques is the set-up of computational methods

which allow huge computational savings to solve also the problems introduced in the first part

of this thesis. In this chapter we will derive a methodology focusing on bypass optimization

problem, however we will also address some issues and results which are interesting indepen-

dently of the problem considered in the previous chapters.

5.1 Reduced basis for viscous flows

In this chapter we are going to introduce the reduced basis formulation for a pre-process

optimization on a Cartesian geometry for a simplified bypass configuration. Preliminary

applications of reduced basis techniques to incompressible viscous flows problems are given in

Peterson [113], in Ito and Ravindran [64] and also [62] for optimal control problems; however

in these papers the pressure approximation is not considered and stability of solutions is

not discussed. More recent works dealing with free divergence velocity spaces and physical

parameters and focused on a posteriori error estimates are the ones by Patera, Veroy et

3For an introduction on reduced basis methods and related aspects see Appendix A.
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al. [159], [104], and [160]. This chapter (which generalizes the results of [111]) is organized

as follows: in Section 5.2 we formulate the problem for parametrized Stokes equations. In

Section 5.3 we introduce the Stokes reduced basis formulation and analyze the stability of the

approximation. In Section 5.4 we study a procedure to control N (the number of reduced basis

functions) more tightly and to apply an adaptive procedure for the basis construction using a

suitable error projection. In Section 5.5 we analyze the inf-sup condition which is necessary

for the stability of reduced basis approximation. Then in the Section 5.6 we present some

numerical results based on three different test cases. In Section 5.7 we deal with algebraic

stability problem and we present possible solutions to achieve it by an orthonormalization

procedure. In Section 5.8 we introduce some sensitivity results based on geometrical quantities

of interest for the bypass configuration. In Section 5.9 we start dealing with more complex

outputs related with fluid mechanics quantities and based on a dual residual approach. A

recent interesting approach to parametrized domains is provided by Maday and Rønquist

[88], where a reduced basis element method based on a domain decomposition approach is

proposed. The idea is to decompose the computational domain into a series of subdomains

that are deformations of a few reference domains into geometrically similar parts (“elements”).

Associated with each reference subdomain there are precomputed solutions corresponding to

the same governing partial differential equation (the case deals with steady Stokes equations),

but solved for different choices of parameters deforming the subdomains and mapped onto

the reference shape. In our case we do not consider a domain decomposition approach and

we deform the complete parametrized domain. Our approach is an extension of the one used

to introduce the parametrization of physical quantities by affine (and then non-affine) maps.

5.2 The parametrized Stokes problem

We start considering parametrized Stokes equations in the same “T” domain introduced in

Appendix A with one more parameter, H, the bypass bridge height as in Figure 5.1. Referring

to the following steady Stokes problem in a domain Ω̂





−ν4û + ∇p̂ = f̂ in Ω̂,

∇ · û = 0 in Ω̂,

û = 0 on Γ̂w; û = ĝin on Γ̂in, ν
∂û
∂n̂ − p̂n̂ = 0 on Γ̂out,

(5.2.1)

its weak formulation reads: find û ∈ Y = H1
ΓD

(Ω) ×H1
ΓD

(Ω), p̂ ∈ Q = L2(Ω), Ω ⊂ R
2 such

that:





ν

∫

Ω̂
∇û · ∇ŵdΩ −

∫

Ω̂
p̂∇ · ŵdΩ =

∫

Ω̂
f̂ · ŵdΩ+〈F̂ 0, ŵ〉 ∀ŵ ∈ Y,

∫

Ω̂
q̂∇ · ûdΩ = 〈Ĝ0, q̂〉 ∀q̂ ∈ Q,

(5.2.2)

F̂ 0, Ĝ0 are terms due to non-homogeneous Dirichlet boundary condition (u = gin) on Γ̂in,

Γ̂D = Γ̂in ∪ Γ̂w, on Γ̂out we have a free stress Neumann condition. In our case the true



§5.2. THE PARAMETRIZED STOKES PROBLEM 91PSfrag replacements

Γ̂out

Γ̂w

Γ̂in

Ω̂1

θ

Ω̂2

Ω̂4

Ω̂3

1

t

x
y

D

S

L

H

Figure 5.1: True physical domain: sub-domains and parameters.

domain is made up of R = 4 subdomains: Ω̂ =
⋃R
r=1 Ω̂r, so that the bilinear and linear forms

of the problem weak statement read for 1 ≤ i, j ≤ d = 2 and ν̂i,j = νδi,j as:

〈Âû, ŵ〉 =

R∑

r=1

∫

Ω̂r

∂û

∂x̂i
ν̂ij

∂ŵ

∂x̂j
dΩ̂, (5.2.3)

〈B̂p̂, ŵ〉 = −
R∑

r=1

∫

Ω̂r

p̂∇ · ŵdΩ̂, (5.2.4)

〈F̂ , ŵ〉 = 〈F̂s, ŵ〉 + 〈F̂ 0, ŵ〉, (5.2.5)

and

〈F̂s, ŵ〉 =
R∑

r=1

∫

Ω̂r

f̂ŵdΩ̂, 〈F̂ 0, ŵ〉 = −〈Âĝin, ŵ〉, 〈Ĝ0, q̂〉 = 〈B̂q̂, ĝin〉. (5.2.6)

Then we write: {
〈Âû, ŵ〉 + 〈B̂p̂, ŵ〉 = 〈F̂ , ŵ〉 ∀ŵ ∈ Y,

−〈B̂q̂, û〉 = 〈Ĝ0, q̂〉 ∀q̂ ∈ Q.
(5.2.7)

We want to build a system of P 2DEs (Parametrized Partial Differential Equations) depending

on a set of geometrical coefficients µ, that we call parameters. Then (5.2.7) is traced back

to a reference domain (Fig.5.2) by an affine mapping of the subdomains Ω̂r into Ωr. For any

x̂ ∈ Ω̂r, r = 1, . . . , R, its image x ∈ Ωr is given by

x = Gr(µ; x̂) = Gr(µ)x̂+ gr, 1 ≤ r ≤ R; (5.2.8)
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Figure 5.2: Reference domain Ω.

we thus write
∂

∂x̂i
=
∂xj
∂x̂i

∂

∂xj
= Grji(µ)

∂

∂xj
(5.2.9)

and we get in the reference domain Ω:

〈Au,w〉 =

R∑

r=1

∫

Ωr

∂u

∂xi

(
Grii′(µ)ν̂i′j′G

r
jj′(µ)det(Gr(µ))−1

) ∂w
∂xj

dΩ ∀w ∈ Y, (5.2.10)

〈Bp,w〉 = −
R∑

r=1

∫

Ωr

p
(
Grij(µ)det(Gr(µ))−1

)∂wj
∂xi

dΩ ∀w ∈ Y, (5.2.11)

〈F,w〉 = 〈Fs,w〉 + 〈F 0,w〉, (5.2.12)

where

〈Fs,w〉 =

R∑

r=1

∫

Ωr

(
f̂ rdet(Gr(µ))−1

)
wdΩ; 〈F 0,w〉 = −〈Agin,w〉; 〈G0, q〉 = 〈Bq, gin〉.

(5.2.13)

We introduce a vector of parameters µ = {t,D,L, S,H, θ} ∈ Dµ ⊂ R
P , Dµ is given by:

[tmin, tmax] × [Dmin, Dmax] × [Lmin, Lmax] × [Smin, Smax] × [Hmin,Hmax] × [θmin, θmax].

The transformation tensors for bilinear viscous terms are defined as follows:

νrij(µ) = Grii′(µ)ν̂i′j′G
r
jj′(µ)det(Gr(µ))−1, 1 ≤ i, j ≤ 2, r = 1, ..., R,

then in our case:

ν1 = ν

[
t
H − tan θ

− tan θ 1+tan2 θ
t H

]
; ν2 = ν

[
S
D 0

0 D
S

]
; (5.2.14)
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ν3 = ν

[
t
D 0

0 D
t

]
; ν4 = ν

[
L
D 0

0 D
L

]
. (5.2.15)

The tensors for pressure and divergence forms are:

χrij(µ) = Grijdet(G
r(µ))−1

and are given by:

χ1 =

[
t −H tan θ

0 H

]
; χ2 =

[
S 0

0 D

]
; (5.2.16)

χ3 =

[
t 0

0 D

]
; χ4 =

[
L 0

0 D

]
. (5.2.17)

Furthermore, we may define

Θq(i,j,r)(µ) = νrij(µ), 〈Aq(i,j,r)u,w〉 =

∫

Ωr

∂u

∂xi

∂w

∂xj
dΩ, (5.2.18)

Φs(i,j,r)(µ) = χrij(µ), 〈Bs(i,j,r)p,w〉 = −

∫

Ωr

p
∂wi
∂xj

dΩ, (5.2.19)

for 1 ≤ r ≤ R, 1 ≤ i, j ≤ d = 2 (q and s are condensed indexes of i, j, r quantities) and we

apply affine decomposition:

A(Θ(µ),u,w) =

Qa∑

q=1

Θq(µ)A(u,w)q ;

B(Φ(µ), p,w) =

Qb∑

s=1

Φs(µ)B(p,w)s ;

in our case Qa = 20 and Qb = 9, in reality: max(Qa) = d × d × d × R = 32, max(Qb) =

d× d×R = 16;

The Stokes problem rewritten on the reference domain Ω reads: find (u(µ), p(µ)) ∈ Y ×Qsuch

that: {
A(µ; u(µ),w) + B(µ; p(µ),w) = 〈F,w〉 ∀ w ∈ Y,

B(µ; q,u(µ)) = 〈G0, q〉 ∀ q ∈ Q.
(5.2.20)

A necessary condition for the well posedness of this problem is the so-called inf-sup condition

(LBB) [127]:

∃ β0 > 0 : β(µ) = inf
q∈Q

sup
w∈Y

B(µ, q,w)

‖w‖Y ‖q‖Q
≥ β0,∀ µ ∈ Dµ, (5.2.21)

where Y = H1
0 ×H1

0 . To verify it let us introduce a supremizer operator T µ: Q→ Y defined

as follows:

(T µq,w)Y = B(µ; q,w), ∀ w ∈ Y. (5.2.22)

It is readily shown that:

T µq = arg sup
w∈Y

B(µ; q,w)

‖w‖Y
, (5.2.23)
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then

β2(µ) = inf
q∈Q

(T µq, T µq)Y
‖q‖2

Q

, (5.2.24)

by definition (5.2.22):

‖T µq‖2
Y = B(µ; q, T µq),

and by applying (5.2.23) and (5.2.21)

inf
q∈Q

(T µq, T µq)Y
‖q‖2

Q

= inf
q∈Q

‖T µq‖2
Y

‖q‖2
Q

=

= inf
q∈Q

[
sup
w∈Y

(T µq,w)Y
‖w‖Y ‖q‖Q

]2
= inf

q∈Q

[
sup
w∈Y

B(µ, q,w)

‖w‖Y ‖q‖Q

]2
= β2(µ),

this proofs (5.2.24). In our numerical approximation the Stokes problem has been solved

by Galerkin-Finite Element Method using Taylor-Hood P
2 − P

1 elements for velocity and

pressure, respectively. See Girault and Raviart [43], Gresho and Sani [46], and Gunzburger

[48].

5.3 The reduced basis formulation of the Stokes equations

In the reduced basis approximation we take some “µ” samples Sµ
N = {µ1, . . . ,µN}, where

µn ∈ Dµ, n = 1, . . . , N .

The reduced basis pressure space is QN = span {ξn, n = 1, . . . , N}, where ξn = p(µn).

We can build the reduced basis velocity space as Y µ
N = span {ζn, n = 1, . . . , N ;T µξn, n =

1, . . . , N}, where ζn = u(µn). The reduced basis approximation problem reads:

find (uN (µ), pN (µ)) ∈ Y µ
N ×QN s.t.:

{
A(µ; uN (µ),w) + B(µ; pN (µ),w) = 〈F,w〉 ∀ w ∈ Y µ

N ,

B(µ; q,uN (µ) = 〈G, q〉 ∀ q ∈ QN .
(5.3.1)

Problem (5.3.1) is subject to an equivalent reduced basis inf-sup condition.

Lemma 5.3.1 We define

βN (µ) = inf
q∈QN

sup
w∈Y µ

N

B(µ, q,w)

‖w‖Y ‖q‖Q
.

Then we can prove that

βN (µ) ≥ β(µ) ≥ β0 > 0,∀µ ∈ Dµ.

Proof:

β(µ) = inf
q∈Q

sup
w∈Y

B(µ, q,w)

‖w‖Y ‖q‖Q
≤ inf

q∈QN

sup
w∈Y

B(µ, q,w)

‖w‖Y ‖q‖Q
= inf

q∈QN

B(µ; q, T µq)

‖T µq‖Y ‖q‖Q
≤

≤ inf
q∈QN

sup
w∈Y µ

N

B(µ, q,w)

‖w‖Y ‖q‖Q
= βN (µ). �
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To demonstrate the Lemma above we have applied the fact that QN ⊂ Q, the definition of the

supremizer and the fact that the velocity space is enriched by supremizers, respectively. For

further elements dealing with supremizer operator and the reduced basis framework see Rovas

[134] for the general non-coercive problem and Patera et al. [161] especially for Helmholtz

and Burgers equations.

We rewrite for computationally convenience Y µ
N using the affine dependence of B(µ, q,w) on

the parameter and the linearity of T µ: T µξ =
∑Qb

q=1 Φq(µ)T qξ for any ξ and µ, which allows

us to write:

Y µ
N = span {

Q
b

∑

k=1

Φk(µ)σkn, n = 1, . . . , 2N},

where Q
b

= Qb + 1,ΦQ
b

= 1. For n = 1, . . . , N :

σkn = 0, for k = 1, . . . , Qb;σ
Q

b
n

= ζn = u(µn).

For n = N + 1, . . . , 2N :

(σkn,w)Y = B(ξn−N ,w)k,∀w ∈ Y, for k = 1, . . . , Qb; (5.3.2)

σ
Q

b
n

= 0.

For a new “µ” we want a solution given by a combination of previously computed stored

solutions as basis functions:

uN (µ) =

2N∑

j=1

uNj(µ)
( Q

b

∑

k=1

Φk(µ)σkj

)
,

pN (µ) =
N∑

l=1

pNl(µ)ξl,

whose weights uNj and pN are given by the following reduced basis linear system:

{ ∑2N
j=1 A

µ
ijuNj(µ) +

∑N
l=1 B

µ
ilpNl(µ) = F µi , 1 ≤ i ≤ 2N,∑2N

j=1 B
µ
jluNj(µ) = Gµl , 1 ≤ l ≤ N,

(5.3.3)

where the sub-matrices A and B are given by:

Aµij =

Qa∑

k=1

Q
b

∑

k′=1

Q
b

∑

k′′=1

Θk(µ)Φk′(µ)Φk′′(µ)A(σk′i, σk′′j)
k, 1 ≤ i, j ≤ 2N,

Bµ
il =

Q
b

∑

k=1

Q
b

∑

k′=1

Φk(µ)Φk′(µ)B(σk′i, ξl)
k, 1 ≤ i ≤ 2N, 1 ≤ l ≤ N,

and:

F µi =

Q
b

∑

k′=1

Φk′(µ)〈F, σk′i〉, 1 ≤ i ≤ 2N ; Gµl = 〈G0, ξl〉, 1 ≤ l ≤ N.
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Finally problem (5.7.10) can be written in compact form as

(
A B

BT 0

)(
uN
p
N

)
=

(
F

G

)
. (5.3.4)

This linear system whose unknowns are the coefficients of the linear combination of previously

computed off-line solutions has the same structure of a finite element Stokes problem. Using

reduced basis we deals with matrix of smaller dimension (of order of N) and with full matrices

(instead of sparse ones).

5.3.1 Outputs of interest

As outputs of interest we may consider, for example, the mean value of the velocity compo-

nents:

s1(µ) =

R∑

r=1

∫
Ωr u1dΩ∫
Ωr dΩ

; s2(µ) =

R∑

r=1

∫
Ωr u2dΩ∫
Ωr dΩ

(5.3.5)

other outputs are derived from velocity such as vorticity:

sv(µ) =
R∑

r=1

∫

Ωr

(∂u2(µ)

∂x1
−
∂u1(µ)

∂x2

)
dΩ, (5.3.6)

where we have set u = (u1, u2)T and x = (x1, x2)T , or wall shear stress:

sτ (µ) =

∫

Γw

ν
∂u(µ)

∂n̂
· t̂dΓ, (5.3.7)

where t̂ is the tangential unit vector. In the last two examples we may introduce a dual

residual correction based on an adjoint problem to improve output accuracy. See Section 5.9.

5.3.2 Reduced basis on-line complexity

We have the following computational costs to build (on-line) reduced basis matrix, given

also the supremizer component in the velocity space: O(Qa(Q
b
)24N2) for sub-matrix A,

O((Q
b
)22N2) for B, O(Q

b
2N) for F and O(9N 3) for the inversion of the full reduced basis

matrix (5.3.4). Note that the approach presented to build reduced basis velocity space is

only one of the possible solutions and the space Y µ
N , in this case, is depending on the value

of the on-line µ parameter. Other options that avoid ill conditioning problems characterized

by different computational costs are available and will be presented in Section 5.7.

5.4 Off-line optimized basis assembling: adaptive procedure

In this case an adaptive procedure based on H1 max relative error projection for velocity EH1

has been developed, optionally we can also considering and combining L2 max relative error

projection for pressure EL2 . We underline that, given the higher powers of N that appear
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in our cost computing estimation, it is crucial (both as regards online and offline effort) to

control N more tightly. To this end, we may gainfully apply our off line assembling procedure

adaptively, see also Veroy et al. [161] and Prud’homme [121]. We first construct, offline, an

approximation that, over most of the domain, exhibits an error ε (EH1 or EL2 or both) less

than εpriord : we begin with a first point µ1(SN ′=1 = {µ1}); we next (inexpensively) evaluate

error εN ′=1(µ) over a large test sample of parameter points in Dµ, denoted with Σprior; we

then choose for µ2 (and hence SN ′=2 = {µ1, µ2}) the maximizer of εN ′=1(µ) over Σprior. We

repeat this process until the maximum of εN ′=Nprior(µ) over Σprior is less than εpriord . Then,

online, given a new value of the parameter, µ, and an error tolerance εpostd (µ), we essentially

repeat this adaptive process - but now our sample points are drawn from SNprior , and the

test sample is a singleton - µ. Typically we choose εpriord � εpostd (µ) since our test is not

exhaustive; and therefore, typically, N post(µ) � Nprior. With the adaptive process we get

higher accuracy at lower N: modest reductions in N can translate into measurable performance

improvements. This procedures is very important not only to get a computationally cheaper

and faster procedure but also to avoid ill-conditioning in matrix assembling procedures. Error

projection procedure, described below, has permitted us to have an off-line adaptive (and

optimized) assembling procedure which is very fast and inexpensive, without reduced basis

matrix assembling procedures, but only the solution of a linear system.

5.4.1 L2 pressure error projection

Given a new µ and hence a new approximated ph(µ) pressure solution we solve the following

linear system:
N∑

j

∫

Ω
ξiξjcj =

∫

Ω
ξiph(µ), 1 ≤ i ≤ N, (5.4.1)

where ξi are N pressure solutions used as basis given by: ξi =
∑NP

k=1 pikΦk, computed solving a

finite element problem on NP pressure nodes of the mesh; Φk are finite element local functions

for the pressure. Expanding (5.4.1) by finite element approximation we can write:

N∑

j=1

NP∑

l=1

NP∑

k=1

pil(

∫

Ω
ΦlΦk)pjkcj =

NP∑

m=1

NP∑

n=1

pim(

∫

Ω
ΦmΦn)phn

(µ), 1 ≤ i ≤ N,

(pT
i
Mpp

j
)c = pT

i
Mpp

h
(µ),

M̂
p
c = F p.

Once we have c we write the L2 pressure error EL2 as:

E2
L2 = ‖ph(µ)‖2

L2 −
N∑

i=1

N∑

j=1

ci(

∫

Ω
ξiξj)cj ,

where (
∫
Ω ξiξj) is the pressure mass matrix M̂

p
ij =

∑NP

l=1

∑NP

k=1 pil(
∫
Ω ΦlΦk)pjk , 1 ≤ i, j ≤ N ,

i.e. pT
i
Mpp

j
.
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5.4.2 H1 velocity error projection

Given a new µ and hence a new approximated velocity solution uh(µ) we solve the following

linear system

2N∑

j

(

∫

Ω
ζiζj +

∫

Ω
∇ζi · ∇ζj)cj =

∫

Ω
ζiuh(µ) +

∫

Ω
∇ζi · ∇uh(µ), 1 ≤ i ≤ 2N, (5.4.2)

where ζi are 2N velocity solutions used as basis, made up of finite element approximated

velocities and supremizer solutions, written as: ζi =
∑N

k=1 uikΨk on N velocity nodes by

Ψk finite element velocity local functions. Expanding the system (5.4.2) by finite element

approximation (on N nodes) we get, for 1 ≤ i ≤ 2N :

[

2N∑

j=1

N∑

l=1

N∑

k=1

uil(

∫

Ω
ΨlΨk)ujk +

2N∑

j=1

N∑

l=1

N∑

k=1

uil(

∫

Ω
∇Ψl · ∇Ψk)ujk ]cj =

=

N∑

m=1

N∑

n=1

uim(

∫

Ω
ΨmΨn)uhn

(µ) +

N∑

m=1

N∑

n=1

uim(

∫

Ω
∇Ψm · ∇Ψn)uhn

(µ),

(uTi (M +K)uj)c = uTi (M +K)uh(µ),

M̂
u
c = F u.

Once we have c we write the H1 velocity error EH1 as:

E2
H1 = ‖uh(µ)‖2

H1 −
2N∑

i=1

2N∑

j=1

ci(

∫

Ω
(ζiζj + ∇ζi · ∇ζj)cj ,

where (
∫
Ω ζiζj) is the velocity mass matrix

∑N
l=1

∑N
k=1 uil(

∫
Ω ΨlΨk)ujk , i.e. uTjMui and

(
∫
Ω ∇ζi · ∇ζj) =

∑N
l=1

∑N
k=1 uil(

∫
Ω ∇Ψl · ∇Ψk)ujk the velocity stiffness matrix, i.e. uTj Kui.

5.5 The computation of the constant β of the inf-sup condition

The calculation of the constant of the inf-sup condition for finite element (β) and reduced

basis method (βN ) has been carried out as a test to guarantee approximation stability.

• In the case in which we want to calculate β we have a generalized eigenvalue problem

on sparse matrices (see Gresho and Sani [46], Malkus [93], and Quarteroni and Valli

[127]):

(GTK−1G)x = Sx = λM px (5.5.1)

K is the finite element (velocity) stiffness matrix (
∫
Ω ∇Ψl · ∇Ψk), G is the velocity-

divergence finite element matrix (
∫
Ω Φl∇ · Ψk), Mp is the finite element pressure mass

matrix (
∫
Ω ΦlΦk), λ are eigenvalues and x eigenvectors. The β constant is given by

β =
√
λmin (5.5.2)
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• To calculate βN we have a generalized eigenvalues problem on reduced basis (full) ma-

trices (previously defined):

(BTA−1B)xN = SNxN = λNM̂
p
xN (5.5.3)

βN =
√
λNmin

(5.5.4)

• We have tested that equivalent reduced basis inf-sup parameter condition: βN (µ) ≥

β(µ) ≥ β0 > 0,∀µ ∈ Dµ has been satisfied. Table 5.1 shows a test driven to calculate

the constant β of the inf-sup condition studying a one-parameter varying configuration

(the diameter D, for example) at different N .

D β βN , N = 1 βN , N = 2 βN , N = 3

0.63 2.0249 3.9096 2.7895 2.531

0.68 2.0286 3.9316 2.8708 2.6625

0.73 2.0274 3.952 2.9456 2.7992

0.78 2.0257 3.971 3.0145 2.9386

0.83 2.0237 3.9888 3.0781 3.0729

0.88 2.0216 4.0054 3.137 3.0729

0.93 2.0192 4.0208 3.1918 3.186

0.98 2.0167 4.0353 3.243 3.264

1.03 2.0139 4.0487 3.291 3.3466

1.08 2.011 4.0612 3.3361 3.3759

Table 5.1: β and βN in one parameter dependent configuration (D for example). Other

parameters are frozen.

5.6 Some preliminary numerical results

Several numerical tests were carried out to develop all the Stokes reduced basis toolbox and to

study different related aspects: affine mapping transformation in reference domains, off-line

optimization basis assembling procedure, approximation and algebraic stability (LBB inf-sup

equivalent condition fulfillment and condition number control). Different meshes have been

used (from coarse to fine). Using finer mesh CPU (Pentium IV, 2GHZ) operation time in-

creases a lot during computing procedures such as assembling off-line adaptive calculations

(i.e. reduced basis approximation spaces and matrix assembling, error estimation and, even-

tually, orthogonalization) and it is maintained reasonable during on-line calculation. A mesh

adaptation procedure in some zones has been achieved. Taylor-Hood finite elements have

been used: P
2−P

1 elements (for velocity and pressure respectively) [127]. Different solver for

finite element and reduced basis systems have been used: both iterative (such as Bi-CGSTAB,

Conjugate Gradient Method, GMRES ) and direct, see [129]. The reduced basis solutions have

been compared directly with true finite element solutions by computing H 1 relative error for

velocity and L2 relative error for pressure.
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5.6.1 First Test: homogeneous Dirichlet boundary conditions, forced flow,

3(1) varying parameter(s)

The first test we introduce deals with a forced Stokes flow in the “T” domain with all zero

Dirichlet boundary conditions (flow closed into a cavity), varying only three parameters avail-

able (depending by one adimensional quantity: τ). Data and relationships for geometrical

parameters used to solve the problem follow (see also Figure 5.1).

• (I) The bypass diameter is t = 3− 2τ , the stenosis length S = τ and the outflow length

L = τ .

• (II) The viscosity is ν = 0.04 m2s−1, the force field is f̂ = (0, 10x)Tms−2 in the true

domain Ω̂.

• (III) The parameter τ is ranging in [0.1, 1.45]. All other parameters are frozen: the

bridge height H = 1, the arterial diameter D = 1 and the graft angle θ = 0.

Figures 5.3 and 5.4 show examples of flow solution: velocity and pressure for two configura-

tion with τmin and τmax; Figure 5.5 shows the error reduction using the adaptive optimized

procedure of Section 5.4 during basis assembling procedure, based on H 1 relative (projected)

error minimization, on the left, and the parameters distribution during basis assembling pro-

cedure, on the right. Figure 5.6 shows true relative error reduction (H 1 for velocity and L2

for pressure) considering a great number of different geometrical configurations. Tables 5.2-

5.3 show error reduction (and its magnitude); Table 5.4 shows the proofs of approximation

stability of reduced basis formulation computing βN , the LBB inf-sup equivalent constant

and its comparison with β from Galerkin (FEM) approximation. Table 5.5 shows true error

on a possible output of interest, for example s(µ) =
∫
Ω f · u(µ)dΩ. Results on outputs are

reported also in Figure 5.7.
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Figure 5.3: Velocity and pressure solution for τ = 0.1.
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Figure 5.4: Velocity and pressure solution for τ = 1.45.
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N Rel. Err. H1 Max Rel. Err. H1 mean Rel. Err. L2 Max Rel. Err. L2 mean

1 9.8900e − 001 5.9138e − 001 2.5790e − 001 1.0878e − 001

2 2.1583e − 001 7.8312e − 002 2.0387e − 002 1.1826e − 002

3 2.3301e − 002 1.0174e − 002 5.9742e − 003 1.4583e − 003

4 3.7543e − 003 8.7714e − 004 4.4999e − 004 5.5973e − 005

5 3.2670e − 003 5.0383e − 004 3.2752e − 004 3.3635e − 005

6 1.4271e − 004 3.6446e − 005 2.8591e − 005 1.7688e − 006

7 8.4314e − 005 1.8559e − 005 2.7009e − 005 1.5313e − 006

Table 5.2: Table of H1 and L2 relative errors on velocity and pressure, respectively, 50 test

configurations, 3(1) parameters, N < 7.
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Figure 5.6: Left: relative true H1 velocity errors, max and mean error over a large test

sampling (50 configurations). Right: relative true L2 pressure errors, max and mean error

over a large test sampling (50 configurations); errors in log-log scale.

N Rel. Err. H1 Max Rel. Err. H1 mean Rel. Err. L2 Max Rel. Err. L2 mean

8 4.3142e − 005 7.4860e − 006 7.0025e − 007 1.6084e − 007

9 2.4504e − 006 5.2102e − 007 2.2660e − 007 4.1354e − 008

10 1.6485e − 006 2.5155e − 007 1.3400e − 007 2.8537e − 008

11 1.8195e − 007 1.7635e − 008 8.8023e − 008 4.5140e − 009

12 5.3852e − 008 6.9109e − 009 8.6392e − 010 1.5917e − 010

13 2.4053e − 008 2.9963e − 009 1.5813e − 010 4.1002e − 011

14 1.2923e − 009 2.5982e − 010 1.0129e − 010 1.4957e − 011

15 1.0702e − 009 1.6946e − 010 8.7277e − 011 1.1840e − 011

Table 5.3: Table of H1 and L2 relative errors on velocity and pressure, respectively, 50 test

configurations, 3(1) parameters, N > 7.

N βN N βN N βN

1 6.5012e + 000 6 5.7051e + 000 11 5.6263e + 000

2 5.8811e + 000 7 5.7048e + 000 12 5.6245e + 000

3 5.7978e + 000 8 5.7047e + 000 13 5.6087e + 000

4 5.7876e + 000 9 5.7056e + 000 14 5.5935e + 000

5 5.7344e + 000 10 5.6309e + 000 15 5.4651e + 000

Table 5.4: βN equiv. LBB inf-sup constant. β = 5.0164 (τ = 0.76).
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∫
Ω f ·u. Right: convergence

of sN to s (∗) versus N (τ = 0.356).

N ∆s N ∆s N ∆s

1 9.4249e + 002 6 1.2142e − 002 11 2.4146e − 006

2 4.0905e + 000 7 9.6898e − 003 12 7.7663e − 007

3 7.0984e + 000 8 1.3454e − 003 13 8.4071e − 007

4 9.3965e − 001 9 4.4785e − 004 14 2.4822e − 007

5 9.5652e − 001 10 3.5133e − 004 15 2.0706e − 007

Table 5.5: Output error: ∆s = s− sN for τ = 0.356.
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5.6.2 Second Test: mixed Dirichlet/Neuman boundary conditions, 5(2)

varying parameters

The second test deals with a flow in the “T” shape bypass geometry with Neumann homo-

geneous boundary conditions on inflow Γin and outflow Γout and zero Dirichlet condition on

the wall Γw. We deal with five varying parameters (bound by 3 relationships depending on

two quantities τ and ρ). Data and values used follow.

• The bypass diameter is t = 3 − 2τ , the stenosis length is S = τ , the outflow length is

L = τ , the artery diameter is D = ρ, the bypass height is H = 1 − ρ.

• The viscosity is 0.04 m2s−1, while the force field is f = (0, 10)Tms−2 in true domain Ω̂.

• The parameters range is τ ∈ [0.1, 1.45] and ρ ∈ [0.1, 1.9].

Figure 5.8 shows an example of flow solution (velocity) for a certain parameters combination;

Figure 5.9 shows on the left the off-line parameters distribution during basis assembling

procedures based on the reduction of the H1 relative projected error using the adaptive

procedure; on the right we have max and mean output error ∆s over a large number of

different configurations, considering, for example, s(µ) =
∫
Ω f · u(µ)dΩ . Figure 5.10 shows

the true relative error reduction (H1 for velocity and L2 for pressure) considering a great

number of different geometrical configurations. Table 5.6 shows error reduction (and its

magnitude) and Table 5.7 the true error over the output of interest.
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N Rel. Err. H1 Max Rel. Err. H1 mean Rel. Err. L2 Max Rel. Err. L2 mean

5 2.93e − 001 7.86e − 002 3.09e − 002 6.14e − 003

10 1.33e − 002 4.47e − 003 6.79e − 003 6.96e − 004

15 2.98e − 003 6.65e − 004 8.16e − 004 9.021e − 005

20 4.61e − 004 8.01e − 005 6.24e − 004 1.60e − 005

Table 5.6: Table of H1 relative errors on velocity and L2 relative errors on pressure, 50 test

configurations, 5(2) parameters, N ≤ 20.

N ∆s max N ∆s mean

5 9.62e − 002 5 4.73e − 002

10 2.49e − 002 10 5.27e − 003

15 2.09e − 003 15 5.63e − 004

20 7.68e − 004 20 5.35e − 005

Table 5.7: ∆s = s− sN : max and mean error over output s for 50 configurations.

5.6.3 Third Test: homogeneous Dirichlet boundary conditions, forced flow,

6(3) varying parameters

The third test we carried out considered a forced Stokes flow in the “T” domain with all

zero Dirichlet boundary conditions, varying all the six parameters available (depending by

two quantities: τ, ρ ), including the graft angle θ. Data and relationship used in this test are

reported below.

• The bypass diameter is t = 3 − 2τ , the stenosis length is S = τ , the outflow length is

L = τ , the artery diameter is D = ρ, the bypass height is H = 2−ρ and the graft angle

is θ.

• The viscosity is 0.04 m2s−1, the force field is f̂ = (0, 10x)Tms−2 in the true domain Ω̂.

• The parameters range are: τ ∈ [0.1, 1.45], ρ ∈ [0.1, 1.9] and for the graft angle θ ∈

[0, π/3].

Figure 5.11 shows the projected error reduction (as shown in Section 5.4.2) using the adaptive

procedure in basis assembling, based on H1 error minimization and parameters distribution

during basis assembling procedure. Figure 5.12 shows true error reduction (H 1 for velocity

and L2 for pressure) considering a great number of different geometrical configurations. The

plateau in pressure error plot is due to the fact that we are optimizing reduced basis velocity

approximation space with adaptive procedures, but nothing is done with pressure. Table

5.8 shows error reduction (and its magnitude) and Table 5.9 the true error on an output of

interest: s(µ) =
∫
Ω f · u(µ)dΩ. A second option is carried out using and adaptive off-line
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procedure based on total projected error (velocity and pressure). Figure 5.13 shows total

(projected) error reduction using the adaptive procedure during basis assembling. Figure

5.14 shows true error reduction (H1 for velocity and L2 for pressure) considering different

geometrical configurations. In this case the plateau in pressure error behavior disappears

because we are optimizing reduced basis velocity and pressure approximation spaces with

adaptive procedures minimizing off-line error.
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Figure 5.11: Basis assembling: total H1 velocity (projected) error reduction during basis

assembling (left) and parameters distribution during off-line reduced basis assembling (right).
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N Rel. Err. H1 Max Rel. Err. H1 mean Rel. Err. L2 Max Rel. Err. L2 mean

5 1.60e − 001 5.65e − 002 9.55e − 001 7.08e − 002

10 1.01e − 001 1.60e − 002 9.48e − 001 5.74e − 002

15 1.348e − 002 4.14e − 003 7.02e − 003 2.17e − 004

20 7.82e − 003 1.49e − 003 5.64e − 003 1.20e − 004

25 4.79e − 003 9.37e − 004 3.63e − 003 6.66e − 005

Table 5.8: Table of velocity relative errors H 1 and pressure L2, 90 test configurations, 6(3)

parameters, N ≤ 25.

N ∆s Max N ∆s mean

5 1.34e − 001 5 3.26e − 002

10 1.26e − 001 10 6.91e − 003

15 4.064e − 003 15 6.87e − 004

20 2.50e − 003 20 2.92e − 004

25 1.38e − 003 25 2.31e − 004

Table 5.9: Max and mean for 90 configurations Functional output difference ∆s = (s− sN):

Max and mean values for 90 configurations s =
∫
Ω f · u.
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sampling (90 configurations). Right: relative true L2 pressure errors: Max and mean error
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5.6.4 On computational costs

In Table 5.10 we report some computational costs (CPU time) versus N . Finite element

solution is obtained with a CPU time of 112.23, adopting a mesh with O(103) elements,

see Figure 5.2. Note the computational savings in the on-line step once we have assembled

reduced basis matrix. In the same table we have inserted H 1 error indication to compare

the computational costs and precision reached. The example refers to the case of a single

parameter D, the arterial diameter.

N CPUtime H1 error % N CPUtime H1 error %

1 1.597 6.24E − 1 1.4 2 2.445 2.16E − 1 2.2

3 3.225 6.58E − 3 2.9 4 4.937 5.30E − 4 4.4

5 5.908 1.92E − 4 5.2 6 5.908 1.006E − 4 5.2

7 6.68 5.27E − 5 5.9 8 7.55 3.36E − 5 6.7

9 8.442 6.83E − 7 7.52 10 9.314 1.11E − 7 8.3

11 10.615 2.66E − 8 9.45 12 14.11 1.98E − 8 12.57

13 14.38 1.25E − 8 12.81 14 17.895 2.91E − 12 15.9

15 20.601 1.38E − 12 18.4 16 24.646 4.05E − 13 21.9

17 24.625 2.20E − 13 21.9 18 23.614 2.74E − 14 21.1

19 24.025 2.19E − 14 21.4 20 25.257 1.39E − 15 22.5

Table 5.10: Computational costs (CPU time) varying N (and H 1 velocity error) and com-

parison with computational cost of FEM solution (%).
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5.7 On algebraic and approximation stability

To control the condition number of reduced basis matrix we have adopted an orthonormaliza-

tion procedure applied to velocity and pressure basis functions. After orthonormalization (to

achieve algebraic stability) we have to satisfy the approximation stability condition on βN ,

the equivalent reduced basis (RB) LBB inf-sup constant. But if we apply orthonormalization

algorithm to reduced basis approximation spaces, assembled as proposed in Section 5.3, we

may loose the validity of Lemma 5.3.1 to guarantee the stability of the approximation. For

this reason we are going to propose other options in building the reduced basis velocity space.

5.7.1 Orthonormalization: Gram-Schmidt (GS) algorithm

We recall very briefly the main step of GS orthonormalization:

• Given: zj , j = 1, ..., N a family vector of functions;

• we obtain qj =
Pjzj

||Pjzj ||
, where Pj is an orthogonal projector onto the orthogonal com-

plement of < q1,q2, ...,qj−1 >.

• Each qj is orthogonal to q1,q2, ...,qj−1 and lies in < z1, z2, ..., zj >.

• Each ||qj || = 1.

• Pj = I −Qj−1Q
T
j−1; Qj−1 = {q1, ...,qj−1};

• Pjzj = zj − (qT1 zj)q1 − (qT2 zj)q2 − ...− (qTj−1zj−1)qj−1;

• {q1, ...,qN} is an orthogonal basis of < z1, z2, ..., zN >.

The norm ‖.‖ used is the Y = (H1(Ω))2 for velocity (and supremizers) and L2(Ω) for pressure.

The scalar product qTi zj is the one induced by the functional space and the norm we use.

The orthonormalization procedure has been applied to reduced basis functions. For velocity

and pressure the procedure is standard. For the supremizer we have to introduce some

considerations. Referring to previous supremizer formulation of Equation 5.3.2 and to the

compact notation already introduced, for n = N+1, . . . , 2N in the reference domain we have:

(σn,v)H1 =

Qb∑

q=1

Φq(µ)(σqn,v)H1 =

Qb∑

q=1

Φq(µ)B(ξn−N ,v)q ∀ v ∈ (H1
ΓD

(Ω))2,

where

(σn,v)H1 = B(µ, ξn−N ,v), (5.7.1)

we recall that

(σqn,v)H1 = B(ξn−N ,v)q (5.7.2)

and

B(µ, ξ,v) =

Qb∑

q=1

Φq(µ)B(ξ,v)q .
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At this point we have two possibilities (referring to n− th supremizer σn, n = N + 1, . . . , 2N)

in applying orthonormalization:

i) an orthonormalization (GS) directly on σn done on-line (being σn dependent on µ) to obtain

σ⊥n as new element (basis function) to enrich RB velocity space:

σ⊥n =
P⊥
n σn

||P⊥
n σn||

,

σ⊥n =
P⊥
n (
∑Qb

q=1 Φq(µ)σqn)

||P⊥
n (
∑Qb

q=1 Φq(µ)σqn)||
,

P⊥
n = I −Qn−1Q

T
n−1, Qi = {σ⊥1 , ..., σ

⊥
i };

ii) an orthonormalization (GS) on components σqn made off-line (σqn are not depending on

µ) to get σ⊥∗
qn :

σ⊥∗
qn =

P⊥
qnσqn

||P⊥
qnσqn||

,

P⊥
qn = I −Qq(n−1)Q

T
q(n−1), Qqi = {σ⊥∗

q1 , ..., σ
⊥∗
qi },

σ⊥∗
qn =

n−1∑

k=1

γkqnσ
⊥∗
qk ,

Figure 5.15 shows the reduction of the condition number of Stokes reduced basis linear system

matrix by orthonormalizing reduced basis functions (using method (i) for supremizer, includ-

ing also orthonormalization for velocity and pressure basis functions). A very interesting
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Figure 5.15: Orthonormalization: condition number of reduced basis Stokes linear system

matrix with complete orthonormalized basis (left) and with a partial orthonormalization only

on velocity and pressure (right), but not on supremizer.

property (visible also in Figure 5.15) is the following:
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Property 5.7.1 The condition number is limited and bounded after orthonormalization. The

upper bound is given by the ratio between continuity and coercivity constant associated with

the bilinear form.

Proof

We define the coercivity and continuity constant, associated with the bilinear form A, as:

α(µ) ≡ infv∈Y
A(µ,v,v)

‖v‖2
Y

, (5.7.3)

γ(µ) ≡ supv∈Y
A(µ,v,v)

‖v‖2
Y

. (5.7.4)

We now assume that our basis functions σn, n = 1, . . . , 2N are orthonormal, that is,

(σi, σj)Y = δi,j , 1 ≤ i, j ≤ 2N, (5.7.5)

and we wish to bound the condition number of the reduced basis matrix Aµ given by

Aµij = A(µ, σi, σj). (5.7.6)

We note that for any φ ∈ R
2N ,

φTAµφ =
2N∑

i=1

2N∑

j=1

φiφjA(µ, σi, σj)

≥ α(µ)

2N∑

i=1

2N∑

j=1

φiφj(σi, σj)Y =

= α(µ)
2N∑

i=1

φ2
i .

Similarly

φTAµφ ≤ γ(µ)

2N∑

i=1

φ2
i . (5.7.7)

It then follows that

α(µ) ≤
φTAµφ

φTφ
≤ γ(µ) ∀ φ ∈ R

2N , (5.7.8)

and therefore the condition number of A is bounded by γ(µ)/β(µ). �
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5.7.2 Approximation stability: other supremizer options

By orthonormalizing the supremizer solutions according to the approach (i) we could lose

approximation stability (guaranteed by Lemma 5.3.1) in the attempt of preserving algebraic

stability by reducing the condition number. We can orthonormalize just using method (i)

pressure ξ and velocity ζ basis functions and not the supremizer σn solutions and use the

approach (ii) to orthogonalize the supremizer on its component σkn (before summation) to

preserve Lemma 5.3.1.

To achieve this goal we may introduce two further different options in assembling the suprem-

izer solutions for stabilization procedure by building in a different way the reduced basis

velocity approximation space so that we may guarantee both approximation and algebraic

stability.

First option

We have considered the following reduced basis spaces:

YN = span {σn, n = 1, . . . , NQ
b
},

where Q
b

= Qb + 1. For n = 1, . . . , N :

σn = ζn = u(µn).

For n = N + 1, . . . , NQ
b
, condensing index m and k in n, we have: (σn,w)Y = (σ̃mk,w)Y ,

where

(σ̃mk,w)Y = B(ξm,w)k,∀w ∈ Y, k = 1, . . . , Qb, m = 1, . . . , N ;

uN (µ) =

NQ
b

∑

j=1

uNj(µ)σj ,

pN (µ) =

N∑

l=1

pNl(µ)ξl;

the reduced basis system becomes:

{ ∑NQb

j=1 AµijuNj(µ) +
∑N

l=1 B
µ
ilpNl(µ) = Fi, 1 ≤ i ≤ NQb,∑NQb

j=1 Bµ
jluNj(µ) = Gl, 1 ≤ l ≤ N,

(5.7.9)

where:

Aµij =

Qa∑

k=1

Θk(µ)A(σi, σj)
k, 1 ≤ i, j ≤ NQb,

Bµ
il =

Q
b

∑

k=1

Φk(µ)B(σi, ξl)
k, 1 ≤ i ≤ NQb, 1 ≤ l ≤ N,

Fi = 〈F, σi〉, 1 ≤ i ≤ NQb, Gl = 〈G0, ξl〉, 1 ≤ l ≤ N.
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In this case the basis is no longer µ (on line) dependent, the reduced basis velocity space,

enriched by supremizers, has a bigger dimension (NQb > 2N) than previously. The compu-

tational costs are as follows: O(Qa(Q
b
)2N2) for sub-matrix A, O((Q

b
)2N2) for B, O(Q

b
N)

for F , but the cost for inversion of the full reduced basis matrix (6.4.6) increases now to

O((Q
b

+ 1)3N3). This approach has the big advantage to preserve Lemma 5.3.1, to let us

apply orthonormalization (method (ii)) and to preserve the mentioned Lemma also after or-

thonormalization. This approach is the best if we want to be sure to preserve both algebraic

and approximation stability after orthonormalization, if necessary. Figure 5.16 shows errors

behavior by testing this first new supremizer option over a large test sampling (zero Dirichlet

conditions and 3 geometrical parameters).
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Figure 5.16: New supremizer first option, H1 relative error (for velocity) and L2 relative error

(for pressure) using 50 configurations.

Second option

Another approach is based on the idea that supremizers are built upon summation using the

same µj values used to store velocity ζj(µ
j) and pressure solutions ξj(µ

j) (also in this case

the basis for velocity is not dependent on the on-line value of µ and it is completely assembled

off-line):

YN = span {σn =

Q
b

∑

k=1

Φk(µn)σkn, n = 1, . . . , 2N},

where Q
b

= Qb + 1,ΦQ
b

= 1. For n = 1, . . . , N :

σkn = 0, for k = 1, . . . , Qb;σ
Q

b
n

= ζn = u(µn).

For n = N + 1, . . . , 2N :

(σkn,w)Y = B(ξn−N ,w)k,∀w ∈ Y, for k = 1, . . . , Qb;
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σ
Q

b
n

= 0.

The reduced basis solution is given by

uN (µ) =

2N∑

j=1

uNj(µ)
( Q

b

∑

k=1

Φk(µj)σkj

)
,

pN (µ) =

N∑

l=1

pNl(µ)ξl,

by solving the system:

{ ∑2N
j=1 A

µ
ijuNj(µ) +

∑N
l=1 B

µ
ilpNl(µ) = Fi, 1 ≤ i ≤ 2N,∑2N

j=1 B
µ
jluNj(µ) = Gl, 1 ≤ l ≤ N ;

(5.7.10)

where:

Aµij =

Qa∑

k=1

Θk(µ)A(σi, σj)
k =

=

Qa∑

k=1

Q
b

∑

k′=1

Q
b

∑

k′′=1

Θk(µ)Φk′(µi)Φk′′(µj)A(σk′i, σk′′j)
k, 1 ≤ i, j ≤ 2N ;

Bµ
il =

Q
b

∑

k=1

Φk(µ)B(σi, ξl)
k =

=

Q
b

∑

k=1

Q
b

∑

k′=1

Φk(µ)Φk′(µi)B(σk′i, ξl)
k, 1 ≤ i ≤ 2N, 1 ≤ l ≤ N ;

Fi = 〈F, σi〉 =

Q
b

∑

k′=1

Φk′(µi)〈F, σk′i〉, 1 ≤ i ≤ 2N, Gl = 〈G0, ξl〉, 1 ≤ i, l ≤ N.

This option is also competitive concerning computational costs dealing with 3N×3N reduced

basis matrices (5.3.4) instead of (Q
b
+1)N×(Q

b
+1)N matrix (usually (Q

b
+1) � 3). We have

the following computational costs to build reduced basis matrices, given also the supremizer

components in the velocity space: O(Qa4N2) for sub-matrix A, O(Q
b
2N2) for B, O(N) for

F and O(9N 3) for the inversion of the full reduced basis matrix (5.3.4).

Using this option we cannot demonstrate that Lemma 5.3.1 is preserved (even without or-

thonormalization). We have tested numerically this option and we can argue that also this

approximation is reasonably stable. Numerical results are shown in Figure 5.17 where we have

reported errors behavior always testing a large number of configurations (Dirichlet conditions

and 3 varying parameters). Convergence is very fast in this case. Figure 5.18 shows condition

number reduction of reduced basis linear system and a comparison of condition number of

the matrix without orthonormalization.
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Figure 5.17: New supremizer second option, H1 relative error (velocity) and L2 relative error

(pressure) over 50 configurations.
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the new supremizer second option. On the left results with orthonormalization, on the right

without it.
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5.8 Some preliminary results on bypass configurations

As preliminary reported in [136] and [137] we start introducing some results on the complete

bypass configurations using reduced basis techniques. We refer to the configuration reported

in Figure 5.19. The idea has been the use of reduced basis (with also different approximation

spaces) to test a huge number of different bypass configurations (i.e. a great number of

parameters combinations).

As measure of blood flow perturbation we have considered for example the mean blood ve-

locity:

s(µ) = s1(µ) + s2(µ) =

R∑

r=1

∫
Ωr
u1dΩ∫

Ωr
dΩ

+

R∑

r=1

∫
Ωr
u2dΩ∫

Ωr
dΩ

. (5.8.1)

We underline that, as seen in Chapter 2, also the velocity field is an interesting quantity to

be studied in parametrized configuration, above all if we consider inflow and outflow of the

downfield zone of the bypass configuration (being related with vorticity by Green’s Theorem).

In our case the inflow is the intersection between the new bridge and the host artery which

is the zone studied in the local shape optimization approach.

We underline that, as seen in Chapter 2, also the velocity field is an interesting quantity to

be studied in parametrized configuration, above all if we consider inflow and outflow of the

downfield zone of the bypass configuration (being related with vorticity by Green’s Theorem).

In our case the inflow is the intersection between the new bridge and the host artery which

is the zone studied in the local shape optimization approach.

With great computational costs savings we can provide in real time useful clinical indication

dealing with a great number (i.e. hundreds) of bypass configurations and to understand the

role of each geometrical parameter and their reciprocal influence. Numerical results indicate

a very good convergence behavior and a tight control on the maximum N . Numerical tests on

the bypass configuration (Figure 5.19) have been carried out imposing a mean Reynolds num-

ber of 103, a blood kinematic viscosity ν = 4·10−6 m2 s−1 and a force field: f = (0, 9.8)Tms−2.

Solutions used as basis functions are always obtained by Galerkin-Finite Element method with

Taylor-Hood elements (P2 and P
1 for velocity and pressure, respectively). Figure 5.20 shows

good convergence of the relative mean errors (H 1 for velocity and L2 for pressure) testing

a great number of configurations. We have carried out three different tests on parametrized

families of bypass configurations by our input-output methodology. Figure 5.21 shows the

first case of study where we have investigated the bypass graft angle perturbation (other

parameters are frozen) measuring the increase of our output of interest (5.8.1): varying θ

form ∼ 0 to π
3 the increase of the mean blood flow is very high in the range [0, π/6] and

smoothed in the range [π/6, π/3]. Results are shown for different N to underline the fidelity

of approximation with a few basis functions. Experimental results reported in [146] and other

numerical simulations described in [152], [140], [141] and [60] provide the same interpretation

of the role played by graft angle into an end-to-side anastomosis concerning flow separation

and perturbation. Figure 5.22 shows the flow perturbations with respect to the quantity
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S
D : the ratio between the stenosis length and the arterial diameter (best performances when
S
D ≥ 1) and the quantity t

D (improving performances when the ratio is less than unity, i.e.

bypass diameter smaller than arterial diameter). These results can be linked with the ones

obtained during shape optimization where we find that it is better to get a flow which is

diminishing its velocity when it is approaching the host artery (section is becoming larger,

i.e. D > t, but also S > D). These results are a consequence of the continuity equation and

of the fact that we are dealing with incompressible fluids.
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Figure 5.19: Schematic bypass configuration and reference domain.

10
0

10
1

10
2

10
−4

10−3

10−2

10−1

100

101

N

Er
ro

rs

L2 pressure
H1 velocity

H1 

L2 

Figure 5.20: Reduced basis convergence results: mean error on velocity and pressure.

0 0.5 1 1.5
0

5

10

15

20

25

30
  

θ

s

N=25
N=22
N=19
N=16

Figure 5.21: Output s [ms−1 · 10−2] versus the parameter θ at different N .



§5.9. NON-COMPLIANT OUTPUTS: DUAL RESIDUAL APPROACH 119

0 2 4 6
10

15

20

25

30

35

40

t/D, S/D

S/D,N=17
S/D,N=14
t/D,N=15
t/D,N=12s  

 

S/D 

 

Figure 5.22: Output s [ms−1 · 10−2] versus the ratios t
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D at different N .

5.9 Non-compliant outputs: dual residual approach

Finally, as it is typical in engineering practice, we assume that we are not interested in

calculating only the solution of parametrized problem (5.3.1). Rather we are interested in

obtaining performance measures that characterize the particular configuration µ ∈ D and have

physical importance like, for example, flow-rate, vorticity, shear stress. Given the solution

[u(µ), p(µ)] to (5.3.1), the output of interest can be written as:

s(µ) = `O([u(µ), p(µ)];µ) = `Ou (u(µ);µ) + `Op (p(µ);µ); (5.9.1)

with `Ou (·;µ) ∈ Y ′, ∀µ ∈ D and `Op (·;µ) ∈ Q′, ∀µ ∈ D, which implies that `O(·;µ) ∈

(Y ×Q)′, ∀µ ∈ D is a bounded linear functional. We also require in the following a dual, or

adjoint, problem associated with `O(·;µ): find [ψ(µ), λ(µ)] ∈ Y ×Q such that

{
A(v, ψ(µ);µ) + B(v, λ(µ);µ) = −`Ou (v;µ) ∀v ∈ Y,

B(ψ(µ), q;µ) = −`Op (q;µ) ∀q ∈ Q.
(5.9.2)

We note that A and B are the continuous bilinear forms introduced in (5.2.10) and (5.2.11),

respectively. The adjoint problem (5.9.2) is subject to the same inf-sup condition (5.2.21) of

the state problem.

Finally, we make the assumption of affine parameter dependence also for the linear form

representing the output:

`O([w, q];µ) =

MO∑

q=1

πqO(µ)`qO([w, q]), (5.9.3)

∀w ∈ Y, ∀q ∈ Q, where MO is an integer that depend on the problem (and output) in

consideration. For a general overview on the adjoint problem and its reduced basis formulation

see Patera et al. [118] and Rovas [134].
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5.10 Reduced basis approximation for adjoint problem

We next define our primal and dual reduced-basis approximation spaces. To wit, for the

primal and dual problem we choose N and M points: µi, i = 1, . . . , N and µi, i = 1, . . . ,M ,

respectively, not necessarily the same as for the primal problem in our parameter set D. We

denote the collection of the samples as:

SprN =
{
µ1, . . . , µN

}
, SduM =

{
µ1, . . . , µM

}
.

We then compute [u(µi), p(µi)] ∈ Y ×Q and [ψ(µi), λ(µi)] ∈ Y ×Q, the solutions of (5.3.1)

for the primal problem (pr) and (5.9.2)) for the dual one (du), respectively, for all µi ∈ SprN
and µi ∈ SduM . We have to calculate the quantities σprkn ∈ Y, and σdukn ∈ Y q = 1, . . . , Qb, and

n = N + 1, . . . 2N or n = M + 1, . . . , 2M , respectively, which satisfy the supremizer problem:

(
σprkn, v

)
Y

= Bk(v, p(µn−N )), ∀v ∈ Y, k = 1, . . . , Qb, n = N + 1, . . . , 2N (5.10.1)

(
σdukn, v

)
Y

= Bk(v, λ(µn−M )), ∀v ∈ Y, k = 1, . . . , Qb, n = M + 1, . . . , 2M. (5.10.2)

We then define the primal and dual “pressure” approximation spaces Qpr
N and Qdu

M

QprN = span
{
p(µi), i = 1, . . . , N

}
≡ span {ξpri , i = 1, . . . , N} , (5.10.3)

QduM = span
{
λ(µi), i = 1, . . . ,M

}
≡ span

{
ξdui , i = 1, . . . ,M

}
; (5.10.4)

and the “velocity” approximation spaces Y pr
N (µ) and Y du

M (µ) (referring to the first supremizer

option with N or M pressure functions and 2N or 2M velocity functions for primal and dual

problem, respectively)

Y pr
N (µ) = span



u(µi),

Qb∑

q=1

Φq(µ)σprq(N+i), i = 1, . . . , N



 ≡ span {σpri , i = 1, . . . , 2N} ,

(5.10.5)

Y du
M (µ) = span



ψ(µi),

Qb∑

q=1

Φq(µ)σduq(M+i), i = 1, . . . ,M



 ≡ span

{
σdui , i = 1, . . . , 2M

}
;

(5.10.6)

with dimensions dimQpr
N = N , dimY pr

N (µ) = 2N , dimQdu
M = M , and dimY du

M (µ) = 2M .

In the construction of the reduced-basis spaces, we do not necessarily need to choose an equal

number of pressure and velocity modes for primal and dual problem. We can also choose N pr
u

velocity basis functions for Y pr
N (µ), and Npr

p basis functions for the for Qpr
N and the same for

the dual problem. Another remark deals with the existence of two different kinds of approach

for the primal and dual reduced basis approximation. Here we have introduced the so-called

“non-integrated” (building different spaces for primal and dual problem) approach, as used

in [134], another method is introduced in [118] where the “integrated” approach is used: in

this case the approximation space for primal and dual problem is the same and made up of
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both ζpri and ζdui . The approach used here (the “non-integrated”) has significant advantages

concerning computational costs and conditioning aspects.

Using the definitions of reduced basis approximation spaces we can define the reduced-basis

problems for primal and dual problem. We look for [uN (µ), pN (µ)] ∈ Y pr
N (µ) × Qpr

N and

[ψM (µ), λM (µ)] ∈ Y du
M (µ) ×Qdu

M , such that:

{
A(uN (µ);µ) + B(v, pN (µ);µ) = `(v;µ) ∀v ∈ Y pr

N (µ),

B(uN (µ), q;µ) = 0 ∀q ∈ Qpr
N ,

(5.10.7)

and, {
A(v, ψM (µ);µ) + B(v, λM (µ);µ) = −`Ou (v;µ) ∀v ∈ Y du

M (µ),

B(ψM (µ), q;µ) = −`Op (q;µ), ∀q ∈ Qdu
M ,

(5.10.8)

respectively. The solution of the dual problem is carried out as already seen for the state

problem with the splitting of the procedure into an off-line (performed once) and online part

(performed many times). If [uN , pN ] ∈ Y pr
N (µ) ×Qpr

N and, [epru , e
pr
p ](µ) ≡ [u− uN , p− pM ](µ)

is the error, the residual Rpru (·; [uN , pN ];µ) ∈ Y ′ is defined

Rpru (v; [uN , pN ];µ) = `(v;µ) −A(uN (µ),v;µ) − B(v, pN (µ);µ) =

= A(epru (µ),v;µ) + B(v, eprp (µ)) ∀v ∈ Y,
(5.10.9)

where the second line follows from equation (5.3.1). Similarly the residual related to the

incompressibility constraint Rpr
p (·; [uN , pN ];µ) ∈ Q′ is

Rprp (q; [uN , pN ];µ) = −B(uN (µ), q;µ)

= B(epru (µ), q;µ) ∀q ∈ Q.
(5.10.10)

We can the define the primal residual Rpr(·; [uN , pN ];µ) ∈ (Y ×Q)′, from

Rpr([w, q]; [uN , pN ];µ) = Rpru (w; [uN , pN ];µ) +Rprp (q; [uN , pN ];µ) =

= A(epru (µ),w;µ) + B(w, eprp (µ)) + B(epru (µ), q;µ) ∀[w, q] ∈ Y ×Q.

(5.10.11)

For the dual problem, if [ψM , λM ] ∈ Y du
M (µ)×Qdu

M and, [eduu , e
du
p ](µ) ≡ [ψ−ψM , λ−λM ](µ) is

the error, we define in a similar way the residualsRdu
u (·; [ψM , λM ];µ) ∈ Y ′ andRdup (·; [ψM , λM ];µ) ∈

Q′:

Rduu (v; [ψM , λM ];µ) = −`Ou (v;µ) −A(v, ψM (µ);µ) − B(v, λM (µ);µ) =

= A(eduu (µ),v;µ) + B(v, edup (µ)) ∀v ∈ Y,
(5.10.12)

and
Rdup (q; [ψM , λM ];µ) = −`Op (q;µ) − B(ψM (µ), q;µ) =

= B(eduu (µ), q;µ) ∀q ∈ Q.
(5.10.13)

The dual residual is then Rdu(·; [wM , qM ];µ) ∈ (Y ×Q)′ is then

Rdu([w, q]; [ψM , λM ];µ) = Rduu (w; [ψM , λM ];µ) +Rdup (q; [ψM , λM ];µ)

= A(w, eduu (µ);µ) + B(w, edup (µ)) + b(eduu (µ), q;µ) ∀[w, q] ∈ Y ×Q.

(5.10.14)
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The output approximation is then obtained from

sN (µ) = `O([uN , pN ](µ);µ) −Rpr([ψM , λM ](µ); [uN , pN ](µ);µ); (5.10.15)

where the adjoint correction helps improving the accuracy of the approximation. In Patera

and Rønquist [110] a detailed analysis concerning the output correction is provided. For a

more general framework we suggest to see also Giles and Pierce [114]. For the computation

of the primal and dual basis functions, a total of N +M Stokes problems need to be solved.

In addition, (N +M)Qb Y -solves are required for the calculation of supremizers σkn. Finally,

a number of matrix-vector and inner products are required for the formation of a number

of auxiliary quantities. The important thing to note it that once the expensive and memory

intensive off-line part is completed, a database with O((N 2+M2)QaQ
2
b) quantities, is created.

In the on-line part, for each new µ ∈ D, and using this database: first, O((N 2+M2)QaQ
2
b) op-

erations are required to form the reduced-basis problems; and second O(N 3 +M3) operations

are required to invert the resulting linear systems and compute the output approximation.

Note that during on-line calculation no explicit reference is made to the continuous or, in

practice, finite-element problem and so computational costs are not depending on the costs

of finite-element solution. As N and M will typically be small, significant computational

savings are expected.

5.10.1 Some elements for output error estimation

Let [u, p](µ) ∈ Y ×Q be the exact solution for the primal problem (5.3.1), and [uN , pN ](µ) ∈

YN ×QN the reduced-basis approximation obtained by solving (5.10.7). Subtracting (5.3.1)

and (5.10.7), the error [epru , e
pr
p ](µ) ≡ [u−uN , p−pN ] ∈ Y ×Q to the primal problem satisfies

the following equation:

{
A(epru (µ),v;µ) + B(v, eprp (µ)) = Rpru (v; [uN , pN ](µ);µ), ∀v ∈ Y,

B(epru (µ), q;µ) = Rprp (q; [uN , pN ](µ);µ), ∀q ∈ Q,
(5.10.16)

with similar equation valid for the dual error [eduu , e
du
p ](µ) ≡ [ψ − ψM , λ − pM ](µ) ∈ Y × Q.

We can get a posteriori error estimator for the output. From (5.9.1) and (5.10.15) the error

in the output is given by

s(µ) − sN(µ) = `Ou (u(µ);µ) + `Op (p(µ);µ)

−`Ou (uN (µ);µ) − `Op (pN (µ);µ) +Rpr([ψM , λM ](µ); [uN , pN ](µ);µ) =

= `Ou (epru (µ);µ) + `Op (eprp (µ);µ) +Rpr([ψM , λM ](µ); [uN , pN ](µ);µ)

which from the definition of the adjoint problem (5.9.2) and the primal residual (5.10.11) can

be written as

s(µ) − sN (µ) = −A(epru (µ), ψ(µ);µ) − B(epru (µ), λ(µ);µ) − B(ψ(µ), eprp (µ);µ)

+ A(epru (µ), ψM (µ);µ) + B(epru (µ), λM (µ);µ) + B(ψM (µ), epru (µ);µ) =

= −A(epru (µ), eduu (µ);µ) − B(epru (µ), edup (µ);µ) − B(eduu (µ), epru (µ);µ) =

= −Rduu (epru ; [ψM , λM ](µ);µ) −Rdup (eprp (µ); [ψM , λM ](µ);µ);
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here the definitions for the primal and dual residuals (5.10.11) and (5.10.14), respectively,

have been used. We then have:

|s(µ) − sN (µ)| ≤ supv∈Y
Rdu

u (v;[ψM ,λM ](µ);µ)
‖v‖Y

‖epru (µ)‖Y + supq∈Q
Rdu

p (q;[ψM ,λM ];µ)

‖q‖Q
‖eprp (µ)‖Q

= ‖Rduu (·; [ψM , λM ](µ);µ)‖Y ′‖epru (µ)‖Y + ‖Rdup (·; [ψM , λM ];µ)‖Q′‖eprp (µ)‖Q,
(5.10.17)

obtaining a bound depending on the dual norms for the dual residuals multiplied for the pri-

mal error. We can conclude that if we consider corrected outputs with dual-residual we have

a faster convergence and a greater accuracy with respect to the non-dual corrected version

because in the dual corrected case the output error is bounded by a product of dual residuals

and primal errors. There is a trade-off between accuracy and computational cost: for exam-

ple, for exponentially convergent primal and dual approximation (the worst case concerning

the advantage of the dual approach), the primal-dual combined approach gives comparable

accuracy at 1/4 the computational cost even if the problem complexity has increased in solv-

ing an adjoint problem and assembling dual basis.

5.10.2 Results using non-compliant outputs

In Figure 5.23 we present a comparison considering the mean error on output using the dual

residual correction with respect to the non-corrected one (considering only Stokes primal

problem). The improvement in accuracy achieved is shown in the worst case, where the

primal space has already some approximation properties for the dual problem. The test is

concerned with a 4-parameters bypass configuration (using several parameters combinations)

and the “non-compliant” output considered was the distributed vorticity:

s =

∫

Ω
(
∂u1

∂x2
−
∂u2

∂x1
)dΩ.

In Figure 5.24 we show the convergence for primal and dual error (H 1 velocity relative errors)

and a mean relative error over the non-compliant vorticity output considering a great number

of different 3-parameters bypass configuration. In this case we can see the “square effect”

(the output error is bounded by the product between the primal error with the dual residual

as shown in 5.10.17) and we have an accuracy in the dual corrected case for N = 10 which

is the same we get for N = 20 in the non-corrected case and with computational costs which

are 1/8 (based on LU scaling) with respect to the non-corrected approach. In Figure 5.25 we

show some results dealing with the dual corrected output error, the relative H 1 velocity error

for primal problem, the error for the non-corrected output (s̃N (µ)) and a theoretical upper

bound for the non-corrected output. The latter is given by

s(µ) − s̃N (µ) = `Ou (u(µ);µ) + `Op (p(µ);µ)

−`Ou (uN (µ);µ) − `Op (pN (µ);µ) =

= `Ou (epru (µ);µ) + `Op (eprp (µ);µ) =

= `Ou (epr
u (µ);µ)

‖epr
u (µ)‖Y

‖epru (µ)‖Y +
`Op (epr

p (µ);µ)

‖epr
p (µ)‖Q

‖eprp (µ)‖Q

≤ supv∈Y
`Ou (v;µ)
‖v‖Y

‖epru (µ)‖Y + supq∈Q
`Op (q;µ)

‖q‖Q
‖eprp (µ)‖Q,
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where the upper bound is the dual norm of the linear functional times the primal error. Also

in this case we can see how the dual correction improves the output accuracy.

Now we can turn our attention on our main application and study bypass parametrized
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Figure 5.23: Max output error (comparison with and without correction).
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Figure 5.24: H1 velocity relative error for dual and primal problems and output relative

errors.

configuration with more complex outputs. We report some summary results dealing with 4

varying parameters (i.e t,D, S, θ). Results are an extension of the ones obtained considering

the flow perturbation due to the increase of mean velocity. In Figures 5.26 and 5.27 we have

summarized our results by reporting only few spots (each representing a different configura-

tion) to keep the plot quite clear, which show the distributed vorticity m2s−1 cost functional

with respect to S
D (reported in x1 axis ) and t

D (represented by the colored scale) and θ graft

angle (reported in x2 axis and represented by the dimension of the colored spots). We can

conclude that quantities S
D and t

D are more important and only freezing them the graft angle

has a crucial role (to have a look on some numerical results dealing with blood recirculation

at different graft angle see [141], where other geometrical parameters are frozen). Vorticity

is reduced when the ratio S
D is bigger than unity and when t

D is smaller than unity. These
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results are a further explanation of fluid mechanics phenomena related with geometry for

incompressible flows. We want also to underline how the output seems to be sensible with

the changes in bypass configuration.
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Figure 5.25: H1 error, upper bound for output error (non-corrected), adjoint-corrected and

non-corrected output error.
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t
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D . Real-time “clinical” indications by a great number (i.e. hundreds) of

bypass configurations (Re= 103).
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Figure 5.27: Bidimensional version of Figure 5.26.

5.11 Conclusions

We have provided some elements to solve rapidly and efficiently Stokes equations in parame-

trized domains and to extract information on some fluid mechanics outputs and a sensitivity

analysis on some geometrical parameters, describing a complete configuration for a bypass.

Reduced basis techniques allow us huge computational savings and real-time results and they

guarantee at the same time the stability of the approximation. To complete this study we

have to extend the application of reduced basis to Navier-Stokes equations in parametrized

domains and in problems involving non-affine mapping dependence (i.e. shape design problem

with curved walls). Some recent works are [159] for Navier-Stokes reduced basis formulation

and references [145] and [12] dealing with non-affine parameter dependence. The latter es-

pecially introduces an efficient reduced basis discretization procedure replacing non-affine

coefficient functions with a collateral reduced basis expansion which permits an offline-online

computational decomposition by a stable and inexpensive empirical interpolation procedure.

These issues will make the subject of the following chapter.



Chapter 6

Reduced Basis Methods for Stokes

Equations in Domains with

Non-Affine Parametric Dependence

In this chapter we extend reduced basis techniques applied to Stokes equations in domains

parametrized by affine and non-affine maps with respect to a reference domain. The proposed

method is ideally suited also for shape optimization problem with more realistic configuration.

An “empirical”, stable and inexpensive interpolation method has permitted to replace non-

affine coefficient functions with an expansion which leads to a computational decomposition

between the offline–parameters independent–stage for reduced basis generation and the online–

parameters dependent–approximation stage based on Galerkin projection, used to find a new

solution for a new set of parameters by a combination of previously computed stored solutions.

As in the affine case this computational decomposition leads us to preserve reduced basis

properties: rapid and accurate convergence and computational economies. The applications

and results are based on parametrized geometries describing domains with curved walls, a

preliminary test based on a stenosed channel and then some tests on the bypass configuration.

This method is well suited to treat also problems in fixed domains with non-affine parameters

dependence expressing varying physical coefficients.

6.1 An extension on the use of reduced basis

This chapter is an extension of applications and results collected in [138] dealing with the

application of reduced basis techniques for Stokes equations in curved parametrized domains.

After this introduction, in Section 6.2 the empirical interpolation procedure proposed by Ma-

day et al. [12] and applied to non-affine transformation terms, mapping the real domain into

a reference one, is briefly described. In this chapter we focus on the use of this interpola-

tion procedure for geometrical non-affine transformation terms, the coupling with the affine

ones and the introduction of parametrized complex geometries in the reduced basis problems.

In Section 6.3 we recall the parametrized Stokes equations framework coupling affine and

127
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non-affine parametric dependence. In Section 6.4 we introduce Stokes reduced basis formu-

lation extended to the non-affine case. Then in Section 6.5 we introduce some numerical

results based on two different geometries. Finally, in Section 6.6 we give a preview on the

development guidelines for viscous flow and shape optimization problems.

6.2 Empirical interpolation for (coefficient) functions approx-

imation

To start with we recall the empirical interpolation procedure, proposed in [12]. This procedure

has been applied also in Grepl [44] for parabolic equations. We consider a (coefficient) function

g(x, µ), depending on spatial coordinates and on a set of parameters µ ∈ D ⊂ R
P (for some

P ≥ 1). The function g(x, µ) represents, for example, a coefficient for a linear or bilinear form,

that shows up when a non-affine mapping transformation of a physical domain into a reference

one indicated with Ω is applied. We assume that g(x, µ) ∈ L∞(Ω) for all choice of µ. Our goal

is to rewrite this function as an expansion given by products between parameters dependent

coefficients and “shape functions” depending only on spacial coordinates. We introduce Ξg

as a suitably fine parameter sample over D and the related quantities

µgM = argmaxµ∈Ξg infz∈W g
M−1

‖g(., µ) − z‖L∞(Ω)

to build the sets SgM = {µgm, 1 ≤ m ≤ M}, 1 ≤ M ≤ Mmax, SgM = SgM−1 ∪ µgM and the

following approximation spaces

W g
M = span{γm = g(., µgm), 1 ≤ m ≤M}, 1 ≤M ≤Mmax.

The quantity µg1 is chosen “a priori” so that γ1(x) 6= 0. We need to construct nested sets of

interpolation points:

TM = {t1, . . . tM}, 1 ≤M ≤Mmax,

by the following algorithm. Starting from M = 1 we store

γ1(x) = g(x, µg1), t1 = argsupx∈Ω|γ1(x)|, q1(x) = γ1(x)/γ1(t1),

for M ≥ 2 we have to solve a linear system to get σM−1 and then rM (x) in assembling TM :

M = 2, . . . ,Mmax : ΣM−1
j=1 σM−1

j qj(ti) = γM (ti), 1 ≤ i ≤M − 1;

rM (x) = γM (x) − ΣM−1
j=1 σM−1

j qj(x), tM = argsupx∈Ω|rM (x)|,

qM(x) = rM (x)/rM (tM ).

At the end of the algorithm our function is approximated by gM (x, µ) and split into two parts

(decoupled) each of them depending only on the µ parameter (λm(µ)) or on x coordinates

(qm(x)), i.e:

gM (x, µ) = ΣM
m=1λm(µ)qm(x),
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where λj are given by the solution of the following linear system

ΣM
j=1qj(ti)λj(µ) = g(ti, µ), 1 ≤ i ≤M.

We choose Mmax as being the minimum M s.t. the maximum interpolation error:

εM (µ) = ‖g(., µ) − gM (., µ)‖L∞(Ω) (6.2.1)

satisfies εM ≤ εmax (for a prescribed tolerance εmax).

This interpolation process can be justified. A priori we can introduce a Lebesgue constant

ΛM = supx∈Ω ΣM
m=1|V

M
m (x)|, where V M

m is the only element of W g
M such that V M

m (ti) = δim.

It is possible to demonstrate ([12]) that ΛM is bound by the quantity 2M − 1. For the

interpolation error (6.2.1) we have:

εM ≤ (1 + ΛM )ε∗M (µ),

where ε∗M (µ) ≡ infz∈W g
M
‖g(., µ) − z‖L∞(Ω),∀µ ∈ D. The bound on the Lebesgue constant is

pessimistic and compensated (as in polynomial approximation) by the rapid convergence of

the term ε∗M (µ).

The problem of locally non-affine dependence of g(x, µ) on parameter µ is also studied in

Solodukhov [145].

6.3 The Stokes problem with non-affine parametric depen-

dence

The parametrized Stokes equations have been formulated in Section 5.2 in a domain Ω̂ ∈ R
2

whose shape is depending affinely on a set of geometrical parameters in each subdomain Ω̂r

such that Ω̂ =
⋃R
r=1 Ω̂r.

In this section we build a system of P 2DEs (Parametrized Partial Differential Equations)

depending on a set of geometrical parameters (µ) as coefficients whose dependence from

parameters is both affine and non-affine (in different subdomains). As already seen, problem

(5.2.7) can be traced back to a reference domain, in this case by an affine mapping on some

subdomains Ω̂r
G into Ωr

G and by a non-affine mapping on the remaining subdomains Ω̂r
T into

Ωr
T . In this case R = RG+RT and Ω =

⋃RG

r=1 Ωr
G∪

⋃RT

r=1 Ωr
T . For any x̂ ∈ Ω̂r

G, r = 1, . . . , RG,

its image x ∈ Ωr
G is given by

x = Gr(µ; x̂) = Gr(µ)x̂+ gr, 1 ≤ r ≤ RG; (6.3.1)

we thus write on ΩG
r

∂

∂x̂i
=
∂xj
∂x̂i

∂

∂xj
= Grji(µ)

∂

∂xj
. (6.3.2)

For any x̂ ∈ Ω̂r
T , r = 1, . . . , RT , its image x ∈ Ωr

T is given by

x = T r(µ; x̂), 1 ≤ r ≤ RT ; (6.3.3)
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we thus write on Ωr
T

∂

∂x̂i
=
∂xj
∂x̂i

∂

∂xj
= T rji(µ, x)

∂

∂xj
. (6.3.4)

Referring to problem (5.2.7) and to formulation from (5.2.10) to (5.2.13), we can write with

the current parametrization in the reference domain Ω:

〈Au,w〉 =

RG∑

r=1

∫

Ωr
G

∂u

∂xi

(
Grii′(µ)ν̂i′j′G

r
jj′(µ)det(Gr(µ))−1

) ∂w
∂xj

dΩ+ (6.3.5)

RT∑

r=1

∫

Ωr
T

∂u

∂xi

(
T rii′(µ, x)ν̂i′j′T

r
jj′(µ, x)det(T r(µ, x))−1

) ∂w
∂xj

dΩ ∀w ∈ Y,

〈Bp,w〉 = −

RG∑

r=1

∫

Ωr
G

p
(
Grij(µ)det(Gr(µ))−1

)∂wj
∂xi

dΩ+ (6.3.6)

−

RT∑

r=1

∫

Ωr
T

p
(
T rij(µ, x)det(T r(µ, x))−1

)∂wj
∂xi

dΩ ∀w ∈ Y,

〈F,w〉 = 〈Fs,w〉 + 〈F 0,w〉, (6.3.7)

where

〈Fs,w〉 =

RG∑

r=1

∫

Ωr
G

(
f̂ rdet(Gr(µ))−1

)
wdΩ +

RT∑

r=1

∫

Ωr
T

(
f̂ rdet(T r(µ, x))−1

)
wdΩ; (6.3.8)

〈F 0,w〉 = −〈Agin,w〉; 〈G0, q〉 = 〈Bq,gin〉.

In Section 6.5 we introduce two different parametrizations based on different test cases and

we show their explicit forms. The transformation tensors for bilinear forms with affine and

non-affine mappings are defined, respectively, as follows:

νrGij
(µ) = Grii′(µ)ν̂i′j′G

r
jj′(µ)det(Gr(µ))−1, 1 ≤ i, j ≤ 2, r = 1, ..., RG, (6.3.9)

νrTij
(µ, x) = T rii′(µ, x)ν̂i′j′T

r
jj′(µ, x)det(T r(µ, x))−1, 1 ≤ i, j ≤ 2, r = 1, ..., RT , (6.3.10)

The tensors for pressure and divergence forms are defined, respectively, for affine and non-

affine mappings as:

χrGij
(µ) = Grijdet(G

r(µ))−1, (6.3.11)

χrTij
(µ, x) = T rij(µ, x)det(T r(µ, x))−1, (6.3.12)

For the non-affine parts we apply the empirical interpolation procedure of Section 6.2 to

expand non-affine mapping terms and decouple the parameters dependent contribution from

the one depending only on spacial coordinates. We write:

νrTij
(µ, x) = Σ

Ma
ijr

m=1β
r
ijm(µ)γrijm(x), (6.3.13)

χrTij
(µ, x) = Σ

Mb
ijr

m=1α
r
ijm(µ)ωrijm(x), (6.3.14)
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where m refers to the number of interpolation functions we use for each form (related with

max interpolation error), i and j are indexes related to linear/bilinear form, r refers to

subdomains; β and α are weight quantities depending on the parameters µ, γ and ω are

interpolation functions used as basis.

Furthermore, we may define

Θq(i,j,r)(µ) = νrGij
(µ), A

q(i,j,r)
G (u,w) =

∫

Ωr
G

∂u

∂xi

∂w

∂xj
dΩ, (6.3.15)

Φs(i,j,r)(µ) = χrGij
(µ), B

s(i,j,r)
G (p,w) = −

∫

Ωr
G

p
∂wi
∂xj

dΩ, (6.3.16)

for 1 ≤ r ≤ RG, 1 ≤ i, j ≤ d = 2 (q and s are condensed indexes of i, j, r quantities) and

Ψt(i,j,r,m)(µ) = βrijm(µ), A
t(i,j,r,m)
T (γ(x),u,w) =

∫

Ωr
T

γrijm(x)
∂u

∂xi

∂w

∂xj
dΩ, (6.3.17)

Υp(i,j,r,m)(µ) = αrijm(µ), B
p(i,j,r,m)
T (ω(x), p,w) = −

∫

Ωr
T

ωrijm(x)p
∂wi
∂xj

dΩ, (6.3.18)

for 1 ≤ r ≤ RT , 1 ≤ i, j ≤ d = 2, 1 ≤ m ≤ max(M a
ijr,M

b
ijr) (t and p are condensed indexes

of i, j, r,m quantities). We apply an effectively affine decomposition:

A(µ,u,w) =

Qa
G∑

q=1

Θq(µ)Aq
G(u,w) +

Qa
T∑

t=1

Ψt(µ)At
T (γ(x),u,w);

B(µ, p,w) =

Qb
G∑

s=1

Φs(µ)BsG(p,w) +

Qb
T∑

p=1

Υp(µ)BpT (ω(x), p,w) ;

in general max(Qa
G) = d×d×d×RG, max(Qb

G) = d×d×RG, QaT = Σd
j=1Σd

i=1ΣRT

r=1M
a
ijr and

QbT = Σd
j=1Σd

i=1ΣRT
r=1M

b
ijr. The Stokes problem rewritten on the reference domain Ω reads:

find (u(µ), p(µ)) ∈ Y ×Q such that

{
A(µ; u(µ),w) + B(µ; p(µ),w) = 〈F,w〉 ∀ w ∈ Y,

B(µ; q,u(µ)) = 〈G0, q〉 ∀ q ∈ Q.
(6.3.19)

We recall that this problem has an inf-sup condition (LBB) [127] to be guaranteed:

β(µ) = inf
q∈Q

sup
w∈Y

B(µ, q,w)

‖w‖Y ‖q‖Q
≥ β0 > 0,∀ µ ∈ D;

here Y = H1
0 ×H1

0 .

We re-introduce the supremizer operator T µ: Q→ Y so that

(T µq,w)Y = B(µ; q,w), ∀ w ∈ Y

and

T µq = arg sup
w∈Y

B(µ; q,w)

‖w‖Y
.
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Then

β2(µ) = inf
q∈Q

(T µq, T µq)Y
‖q‖2

Q

.

For the proofs see the previous chapter. At this step we can solve the Stokes problem by

Galerkin-Finite Element Method using Taylor-Hood P
2−P

1 elements for velocity and pressure,

respectively. See Girault and Raviart [43], Gresho and Sani [46], and Gunzburger [48].

6.4 The Stokes reduced basis formulation with non-affine pa-

rameters

As seen, in the reduced basis approximation we construct a set of “µ” parameters samples

Sµ
N = {µ1, . . . ,µN}, where µn ∈ Dµ, n = 1, . . . , N .

Correspondingly, we define a set of couples (u(µn), p(µn)) which are approximate solutions

of the Stokes problem. Then the reduced basis pressure space is QN = span {ξn, n =

1, . . . , N}, where ξn = p(µn), while the reduced basis velocity space is YN = span {ζn, n =

1, . . . , N ;T µ
n
ξn, n = 1, . . . , N}, where ζn = u(µn).

The problem in reduced basis approximation reads: find (uN (µ), pN (µ)) ∈ YN ×QN s.t:
{

A(µ; uN (µ),w) + B(µ; pN (µ),w) = 〈F,w〉 ∀ w ∈ YN ,

B(µ; q,uN (µ) = 〈G0, q〉 ∀ q ∈ QN .
(6.4.1)

This problem is well posed if it does admit an inf-sup property. We introduce

βN (µ) = inf
q∈QN

sup
w∈YN

B(µ, q,w)

‖w‖Y ‖q‖Q
,

where β(µ) is the inf-sup constant related to Galerkin-Finite Element Method. We rewrite

for computational convenience YN using the effectively affine dependence of B(µ; q,w) on the

parameter and the linearity of T µ:

T µξ =

Qb
G∑

q=1

Φq(µ)T qGξ +

Qb
T∑

p=1

Υp(µ)T pT ξ (6.4.2)

for any ξ and µ, where:

(T qGξ,w)Y = BqG(q,w), ∀ w ∈ Y,

(T pT ξ,w)Y = BpT (ω, q,w), ∀ w ∈ Y,

which allows us to write:

YN = span {

Q
b
G∑

k=1

Φk(µn)σkn +

Qb
T∑

k′=1

Υk′(µn)σ̃k′n, n = 1, . . . , 2N},

where Q
b
G = QbG + 1,ΦQ

b
G = 1, µN+j = µj, 1 ≤ j ≤ N .

For n = 1, . . . , N :

σkn = 0, for k = 1, . . . , Qb
G;
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σ̃k′n = 0, for k′ = 1, . . . , Qb
T ;

σ
Q

b
n

= ζn = u(µn).

For n = N + 1, . . . , 2N :

(σkn,w)Y = BkG(ξn−N ,w),∀w ∈ Y, for k = 1, . . . , Qb
G; (6.4.3)

σ
Q

b
n

= 0;

(σ̃kn,w)Y = BkT (ω, ξn−N ,w),∀w ∈ Y, for k = 1, . . . , Qb
T . (6.4.4)

For a new “µ” we want a solution given by a combination of previously computed stored

solutions as basis functions:

uN (µ) =

2N∑

j=1

uNj(µ)
( Q

b
G∑

k=1

Φk(µj)σkj +

Qb
T∑

k′=1

Υk′(µj)σ̃k′j

)
,

pN (µ) =

N∑

l=1

pNl(µ)ξl,

whose weights uNj and pNl are given by the following reduced basis linear system:

{ ∑2N
j=1 A

µ
ijuNj(µ) +

∑N
l=1 B

µ
ilpNl(µ) = Fi 1 ≤ i ≤ 2N,∑2N

j=1 B
µ
jluNj(µ) = Gl 1 ≤ l ≤ N ;

(6.4.5)

where the sub-matrices A and B are built by online-offline computational decoupled proce-

dure:

Aµij =

Qa
G∑

k=1

Θk(µ)Ak
G(

Q
b
G∑

k′=1

Φk′(µi)σk′i,

Q
b
G∑

k′′=1

Φk′′(µj)σk′′j)+

+

Qa
T∑

k=1

Ψk(µ)Ak
T (γ,

Q
b
T∑

k′=1

Υk′(µj)σ̃k′j ,

Q
b
T∑

k′′=1

Υk′′(µi)σ̃k′′i), 1 ≤ i, j ≤ 2N ;

Bµ
il =

Q
b
G∑

k=1

Φk(µ)BkG(

Q
b
G∑

k′=1

Φk′(µi)σk′i, ξl)+

+

Q
b
T∑

k=1

Υk(µ)BkT (ω,

Q
b
T∑

k′=1

Υk′(µi)σ̃k′i, ξl), 1 ≤ i ≤ 2N, 1 ≤ l ≤ N ;

where Ak
T ,A

k
G,B

k
T and BkG are assembled offline, and:

Fi = 〈F,

Q
b
G∑

k′=1

Φk′(µi)σk′i〉 + 〈F,

Qb
T∑

k′=1

Υk′(µi)σ̃k′i〉, 1 ≤ i ≤ 2N ;

Gl = 〈G0, ξl〉, 1 ≤ l ≤ N.
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System (6.4.5) can therefore be written as:

(
A B

BT 0

)(
uN
p
N

)
=

(
F

G

)
. (6.4.6)

Remark 6.4.1 We recall that more options dealing with the supremizer calculation and basis

assembling procedures are available. At this step we have adopted, for simplicity, the second

alternative option introduced in the previous chapter (and in [111]), where all the velocity

reduced basis functions are µ (on-line) independent (they depend only on samples µj used to

store basis). By using this option we cannot demonstrate the validity of the stability condition

βN (µ) ≥ β(µ) ≥ β0 > 0,∀µ ∈ Dµ, even if results guarantee the stability of approximation.

This option is competitive concerning computational costs dealing with 3N ×3N reduced basis

matrices (6.4.6) instead of (Q
b
+1)N×(Q

b
+1)N matrix (usually (Q

b
+1) � 3, Q

b
= Q

b
G+QbT ),

introduced as the first option to build reduced basis velocity space without the use of (6.4.2)

and to apply orthonormalization, if needed. Also in this case first option is better, even if

more expensive. �

Remark 6.4.2 We have the following computational costs to build reduced basis matrices,

given also the supremizer components in the velocity space: O(Qa4N2) for sub-matrix A,

O(Q
b
2N2) for B, O(N) for F and O(9N 3) for the inversion of the full reduced basis matrix

(6.4.6), where Qa = QaT + QaG, Q
b

= Q
b
G + QbT . Note that the quantities Qa

G and Qb
G are

depending only on the number of subdomains with affine mappings (RG), while quantities Qa
T

and Qb
T are depending also on the number of “shape functions” (γ(x) and ω(x)) related with

interpolation error (εmax) and the number of subdomains with non-affine mappings (RT ). �

6.5 Numerical results

Numerical tests were carried out to develop Stokes reduced basis techniques with affine/non-

affine mappings. Taylor-Hood finite elements have been used to store approximation basis

functions: P
2−P

1 elements for velocity (with supremizer) and pressure, respectively [127]. The

reduced basis solutions have been compared directly with approximate finite element solutions

by computing the H1 relative error for velocity and the L2 relative error for pressure.

6.5.1 First test: curved upper wall

In this first test we apply empirical interpolation to describe a channel with a curved and

parametrized upper wall. This simple geometry (see Figure 6.1) can be considered for ex-

ample in the study of blood flow through an artery interested by a stenosis, i.e. featuring a

reduced section (see Quarteroni and Formaggia [126]). A similar geometry can be used also

in periodical series to set up and study an oxigenator for haemodinamic applications. In our

application we have made the following assumptions:
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• To solve the parametrized Stokes problem in the domain outlined in Figure 6.1 we have

imposed zero Dirichlet conditions on the boundary ΓD, Neumann non-homogeneous

conditions on the inflow ΓNi (τn̂ = 1, τt̂ = 0, where τ = (ν ∂u∂n̂ − pn̂), with n̂ and t̂

normal and tangential directions, respectively) and Neumann homogeneous conditions

on outflow ΓNo (τn̂ = 0, τt̂ = 0).

• We consider one parameter µ ranging in the interval [−0.8, 0.8] to describe the upper

arterial wall in the physical domain, through x̂2 = f(x̂1, µ) = 1 + µsin(2πx̂1) (we have

a single domain subject to an unique non-affine mapping). Referring to Section 6.3 we

have ΩG = ∅ and ΩT = Ω, so RT = 1.

The coordinate transformation is T : Ω̂ → Ω such as x = T (x̂) and:

(x1, x2) = T (x̂1, x̂2) = (x̂1,
1

f(x̂1, µ)
x̂2) (6.5.1)

in Ω. Then,

dx̂1dx̂2 = f(x1, µ)dx1dx2

and the following relations hold:

{
∂û
∂x̂2

= 1
f(x1,µ)

∂u
∂x2

,

∂û
∂x̂1

= ∂φ
∂x1

− x2
fx1

(x1,µ)

f(x1,µ)
∂u
∂x2

(
with fx1

:= df
dx1

)
,

(6.5.2)

∇ · û =
∂u1

∂x1
− x2

fx1
(x1, µ)

f(x1, µ)

∂u1

∂x2
+

1

f(x1, µ)

∂u2

∂x2
, (6.5.3)

Using the compact notation of Section 6.3 (6.3.10 and 6.3.12) and transformation (6.5.1)

we get the following tensor for diffusion and divergence forms, respectively:

νT = ν

[
f(x1, µ) −f ′x1

(x1, µ)x2

−f ′x1
(x1, µ)x2

1
f(x1,µ) +

f ′2x1
(x1,µ)

f(x1,µ) x2
2

]
; (6.5.4)

χT =

[
f(x1, µ) −f ′x1

(x1, µ)x2

0 1

]
; (6.5.5)

where ν = 0.04Nsm−2 is the viscosity. Referring to notation of Section 6.2 we get 5

different coefficients functions gjM (x, µ) to expand.

• We apply empirical interpolation (6.3.13 and 6.3.14) to the tensors (6.5.4 and 6.5.5) and

we impose a maximum interpolation error εmax, thus considering different Mmax “shape

functions” for each gjM (x, µ). Each gjM (x, µ) refers to a different coefficient of a bilinear

form of our Stokes problem (j = 5 in this test case). Owing to empirical interpolation

we expand each tensor component to apply the effectively affine decomposition:

νT = ν

[
Σ
Ma

11

m=1β11m(µ)γ11m(x) Σ
Ma

12

m=1β12m(µ)γ12m(x)

Σ
Ma

21

m=1β21m(µ)γ21m(x) Σ
Ma

22

m=1β22m(µ)γ22m(x)

]
.
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Note that this tensor is symmetric. Moreover,

χT =

[
Σ
Mb

11

m=1α11m(µ)ω11m(x) Σ
Mb

12

m=1α12m(µ)ω12m(x)

0 1

]
.

The index r referring to every different subdomain is omitted.

• At this step, having defined all the abstract formulation of the previous sections, we have

applied the reduced basis method and assembled the approximation spaces as described

in Section 6.4.

• Tables 6.1 and 6.2 (and Figures 6.3 and 6.4) show numerical results (mean H 1 relative

errors on velocity, testing a large number of configurations) at different N and different

max interpolation error εmax. At the end of the test we have carried out a comparison

between magic points interpolation (using gjM (x, µ)) and true functions (gj(x, µ)). We

can see that for εmax ≤ 10−4 we have a good convergence and results are not dominated

or influenced by interpolation error. When the interpolation error is dominating the

reduced basis error is characterized by a constant “plateau” and is not diminished by

increasing N (see for example the case in which εmax ≥ 10−2).

Γ
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Figure 6.1: Geometrical scheme for the stenosis test problem (left) and velocity absolute value

[ms−1] for µ = 0.5 (right).

In Figure 6.5 we represent a possible configuration of interest for biomedical applications,

for example an oxygenator. It is possible to understand how the geometry can be described

using a periodic criterium by assembling a more complex configuration starting from a simple

subdomain. The framework should be completed addressing our attention to periodic bound-

ary conditions. This configuration has been studied also by Wei et al. in [163] considering a

wavy-walled channel with a poroelastic layer to investigate physiological flows in capillaries

and venules.
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Figure 6.2: Horizontal and vertical velocity [ms−1] for µ = 0.5.
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Figure 6.3: H1 relative mean error on velocity for different εmax, imposed on all gjM (x, µ),

considering different µ test values.

N εmax = 0.1 εmax = 0.01 εmax = 10−3 εmax = 10−4

1 2.2549e + 000 4.2557e − 001 4.2656e − 001 4.2653e − 001

2 2.1926e + 000 1.3614e − 001 1.3708e − 001 1.3709e − 001

3 2.1361e + 000 2.1768e − 002 2.1880e − 002 2.1886e − 002

4 2.1267e + 000 1.5939e − 002 1.5963e − 002 1.5964e − 002

5 2.1226e + 000 4.9955e − 003 4.9358e − 003 4.9388e − 003

6 2.1172e + 000 3.5905e − 004 1.9177e − 004 1.9183e − 004

7 2.1131e + 000 2.4352e − 004 6.7685e − 005 6.7584e − 005

8 2.1080e + 000 1.8644e − 004 8.2645e − 006 8.1374e − 006

9 1.7357e + 000 1.8016e − 004 1.9044e − 006 1.7880e − 006

10 1.7043e + 000 1.7929e − 004 9.0032e − 007 7.7022e − 007

11 8.8174e − 001 1.7868e − 004 1.5746e − 007 2.6138e − 008

12 3.8732e − 001 1.7743e − 004 1.5181e − 007 1.8676e − 008

Table 6.1: Mean H1 velocity relative errors for different εmax.
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Figure 6.4: H1 mean relative error on velocity for different εmax, imposed on all gjM (x, µ)

(left) and comparison with the use of “true” gj(x, µ) functions, without empirical interpolation

(right).

N εmax = 10−5 εmax = 10−6 exact gj

1 4.2654e − 001 4.2654e − 001 4.2654e − 001

2 1.3709e − 001 1.3709e − 001 1.3709e − 001

3 2.1885e − 002 2.1884e − 002 2.1884e − 002

4 1.5963e − 002 1.5963e − 002 1.5963e − 002

5 4.9380e − 003 4.9380e − 003 4.9380e − 003

6 1.9180e − 004 1.9181e − 004 1.9181e − 004

7 6.7581e − 005 6.7582e − 005 6.7582e − 005

8 8.1348e − 006 8.1356e − 006 8.1356e − 006

9 1.7812e − 006 1.7813e − 006 1.7813e − 006

10 7.6544e − 007 7.6542e − 007 7.6542e − 007

11 2.2070e − 008 2.1981e − 008 2.1980e − 008

12 1.4503e − 008 1.4421e − 008 1.4421e − 008

Table 6.2: Mean H1 velocity relative errors for different εmax and comparison with “true” gj .
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Figure 6.5: Periodic channel: vertical velocity (top) and horizontal velocity (bottom) [ms−1],

same colorbars of Figure 6.1.

6.5.2 Second test: bypass with curved incoming branch

We introduce a vector of parameters µ = {t,D,L, S,H, θ, υ} ∈ Dµ ⊂ R
P , Dµ is given by:

[tmin, tmax] × [Dmin, Dmax] × [Lmin, Lmax] × [Smin, Smax] × [Hmin,Hmax] × [θmin, θmax] ×

[υmin, υmax]. For a schematic view of the problem see Figure 6.6. The new element in-

troduced in the study of the complete configuration is the curvature of the artery and of

the bypass wall to deal with a more realistic configuration. In this problem we have affine

and non-affine parameters dependence in different subdomains. The aim of the test is to

combine the study of affine and the non-affine terms in the same problem by varying different

geometrical parameters and then to test reduced basis convergence. Referring to notation in

Section 6.3 we have RG = 3 (number of subdomains with affine dependence, i.e. Ω2,Ω3,Ω4),

RT = 1 (number of subdomains with non-affine dependence, i.e Ω1). For more info on this

applications dealing only with affine parameters dependence we suggest to see [137]. The

coordinate transformation in Ω1 with non-affine parameter dependence is given by:

{
x1 = 1

H x̂1

x2 = 1
t (x̂2 − (υH2x1(x1 − 1) +Hx1 tan(θ)))

(6.5.6)
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The role of parameters t and H is to stretch subdomain Ω1 (as L, S,D stretch the remaining

subdomains), the parameter υ introduces a curvature in the walls of the incoming branch of

the bypass and θ is responsible for a rigid rotation varying the graft angle. The tensors for

viscous terms are given by:

ν1
T = ν

[ t
H −(tan θ + 2υHx1 − υH)

−(tan θ + 2υHx1 − υH) (1+(tan θ+2υHx1−υH)2)
t H

]
; (6.5.7)

ν2
G = ν

[ S
D 0

0 D
S

]
; ν3
G = ν

[ t
D 0

0 D
t

]
; ν4

G = ν
[ L

D 0

0 D
L

]
. (6.5.8)

The tensors for pressure and divergence forms are given by:

χ1
T =

[ t −H(tan θ + 2υHx1 − υH)

0 H

]
; χ2

G =
[ S 0

0 D

]
; (6.5.9)

χ3
G =

[ t 0

0 D

]
; χ4

G =
[ L 0

0 D

]
. (6.5.10)

We have applied empirical interpolation expansion to the components of tensor ν 1
T and χ1

T

and built reduced basis approximation.
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Figure 6.6: Geometrical scheme for the bypass test problem (physical domain and reference

one).

We have carried out four different tests, based on the same geometry but with different

parameters:

(a) we consider only υ parameter to create a curvature in the wall, we deal only with non-

affine mapping in one subdomain where we apply empirical interpolation;

(b) then, we consider υ and also parameters L and S, each of them is operating into different

subdomains and we combine affine and non-affine transformations;

(c) in the third test we consider parameters υ, L, S and t so that we have more parameters

in the same subdomain subject to non-affine parametric dependence;
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Figure 6.7: Haemodinamic flow: absolute value of velocity [ms−1 · 10−2] in bypass subject to

curved wall and graft angle (υ = 0.41 and θ = π/3).

(d) in the last term we introduce also graft angle θ so that we have rigid rotation, stretching

(due to t or/and H) and curvature (due to υ) in the same subdomain. Figure 6.7 shows

an example of haemodinamic flow in our curved geometry.

In Tables 6.3-6.6 we report numerical results (H 1 errors on velocity and L2 errors for pres-

sure) considering about 50 configurations at different N for different test cases (a)-(d). The

maximum interpolation error considered has been εmax = 10−5 not to have interpolation error

dominating our approximation and to avoid a constant “plateau” in error plots. In Figure 6.8

we report errors in log-log scale dealing with (d) test case. Figure 6.9 shows the offline set of

parameters used to store the basis functions by the adaptive optimized assembling procedure

we used, introduced in Veroy et al. [161] and Prud’homme [121].

100 101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
L2 pressure relative error reduction

N

L2
 e

rr
or

100 101 102
10−6

10−5

10−4

10−3

10−2

10−1

100

101
H1 rel. error reduction during

N

H
1 

re
l. 

er
r.

Figure 6.8: L2 and H1 relative errors for pressure and velocity, respectively (max and mean).
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N H1 mean (a) H1 max (a) H1 mean (b) H1 max (b)

1 0.048058118 0.136051645 0.066384779 0.10111214

2 0.001552862 0.002320168 0.039400421 0.098294259

3 7.1431E − 06 1.03781E − 05 0.003468971 0.004683999

4 1.62586E − 07 8.24285E − 07 0.003163783 0.003657563

5 6.101E − 10 1.41057E − 09 0.000858429 0.00231849

6 7.01E − 12 3.212E − 11 0.000129567 0.000272338

7 − − 5.5189E − 05 4.23899E − 05

8 − − 3.18091E − 05 3.83384E − 05

9 − − 1.23528E − 05 2.2659E − 05

10 − − 7.29802E − 06 9.86723E − 06

11 − − 1.51548E − 06 2.30932E − 06

12 − − 2.34584E − 07 5.31751E − 07

13 − − 1.2129E − 07 2.40584E − 07

14 − − 7.51433E − 08 1.18963E − 07

15 − − 3.23837E − 08 9.11491E − 08

Table 6.3: H1 velocity relative errors for different number of varying parameters and εmax =

10−5: (a) only υ (non-affine) parameter varying, (b) υ, L, S (affine and non-affine) parameters

(in different subdomains) varying.
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Figure 6.9: Parameters distribution during off-line optimized basis assembling procedures.
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N H1 mean (c) H1 max (c) H1 mean (d) H1 max (d)

1 0.563465887 1.106596438 0.487915824 3.904000929

2 0.155181008 0.426078474 0.302592595 1.385050105

3 0.023388203 0.06289385 0.243772546 0.511847739

4 0.006968648 0.013543197 0.032855726 0.067523767

5 0.00241075 0.00754956 0.018203568 0.048221219

6 0.00074055 0.001924017 0.009246898 0.035139624

7 0.000442849 0.001727769 0.007747967 0.022901482

8 0.000224509 0.000784976 0.002552479 0.012609594

9 6.57733E − 05 0.000360971 0.001338957 0.012582395

10 1.22527E − 05 8.0297E − 05 0.000534446 0.001979371

11 3.46346E − 06 2.09716E − 05 0.000321415 0.001391688

12 1.011E − 06 7.81558E − 06 0.000207283 0.000936665

13 1.91343E − 07 1.04166E − 06 0.000123885 0.000930468

14 2.38061E − 08 2.38061E − 07 8.34764E − 05 0.000340849

15 − − 3.74193E − 05 0.000260742

16 − − 1.41356E − 05 8.64251E − 05

17 − − 8.12437E − 06 4.87599E − 05

18 − − 5.44325E − 06 3.614E − 05

Table 6.4: H1 velocity relative errors for different number of varying parameters and εmax =

10−5: (c) υ, L, S, t parameters varying, (d) υ, t, L, S, θ parameters varying.
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N L2 mean (a) L2 max (a) L2 mean (b) L2 max (b)

1 0.00131102 0.00330782 0.049765761 0.076442818

2 4.84371E − 05 7.21384E − 05 0.001443908 0.002404592

3 2.00619E − 07 3.03232E − 07 0.000218353 0.000223485

4 2.06747E − 09 1.09034E − 08 0.000117247 0.000154309

5 8.91E − 12 2.108E − 11 2.26938E − 05 5.85041E − 05

6 1.1E − 13 5.3E − 13 2.98422E − 06 7.29587E − 06

7 − − 9.68781E − 07 2.04184E − 06

8 − − 4.43647E − 07 5.17774E − 07

9 − − 1.55099E − 07 2.51658E − 07

10 − − 7.90834E − 08 1.29403E − 07

11 − − 1.86052E − 08 2.98586E − 08

13 − − 2.30951E − 09 6.43834E − 09

14 − − 1.5816E − 09 2.43859E − 09

15 − − 6.0645E − 10 1.32561E − 09

Table 6.5: L2 pressure relative errors for different number of varying parameters and εmax =

10−5: (a) only υ (non-affine) parameter varying, (b) υ, L, S (affine and non-affine) parameters

(in different subdomains) varying.
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N L2 mean (c) L2 max (c) L2 mean (d) L2 max (d)

1 0.395384579 0.710666218 0.145944345 0.240938029

2 0.006901236 0.013288413 0.051283742 0.141755515

3 0.004135993 0.00882405 0.022163703 0.075274908

4 0.000917813 0.00212774 0.00232357 0.006473042

5 0.000217614 0.000709398 0.002227062 0.004974737

6 0.000102036 0.000478661 0.000609347 0.001651962

7 4.40703E − 05 0.000189533 0.000577145 0.001413289

8 2.55188E − 05 0.000105753 0.000239322 0.001273091

9 4.03863E − 06 2.22016E − 05 0.000122951 0.000623509

10 5.14632E − 07 3.87984E − 06 7.2085E − 05 0.000511114

11 3.35225E − 07 2.72714E − 06 2.59278E − 05 9.45921E − 05

12 3.06439E − 07 2.68244E − 06 2.04926E − 05 8.20901E − 05

13 2.11621E − 08 1.12451E − 07 8.85109E − 06 6.95492E − 05

14 3.04801E − 09 3.04801E − 08 6.46217E − 06 5.3356E − 05

15 − − 2.0293E − 06 2.76806E − 05

16 − − 8.98324E − 07 1.00727E − 05

17 − − 2.92535E − 07 1.1717E − 06

18 − − 1.99739E − 07 1.0067E − 06

Table 6.6: L2 pressure relative errors for different number of varying parameters and εmax =

10−5: (c) υ, L, S, t parameters varying, (d) υ, t, L, S, θ parameters varying.
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6.6 Conclusions

In this chapter we have shown how to expand and apply efficient, accurate and real-time

reduced basis techniques to bio-mechanics problems using more realistic geometries such as

in biomedical devices optimization problem and extended previous studies on bypass config-

uration (with curved walls). Interesting applications of the method presented in this chapter

are shape optimization problems in which we may treat both affine and non-affine paramet-

ric dependence (see for example Cholaseuk [23], and Lim and Choi [81]): usually the affine

parametric dependence could describe complete (macro and coarse) geometrical configura-

tion, while the non-affine parametric dependence could describe local configuration. At this

stage we may combine reduced basis techniques with shape design and optimal control related

problem such as the ones considered in Chapter 3 and in [4], where shape optimization in

reference domain and non-affine mapping have already been considered.

Results have shown that it is possible to consider more complex geometries in optimization

problems using reduced basis techniques and introducing empirical, stable and inexpensive

interpolation for non-affine mapping terms preserving reduced basis methods properties, first

of all rapid and accurate convergence and computational online-offline decomposition. In

the next chapter our attention will be devoted to the use of reduced basis for Navier-Stokes

equations in parametrized domain. The following chapter is going to conclude the framework

on the use of reduced basis for a (pre-process) macro-geometrical optimization on bypass and

at the same time it allows us to extend methodology.



Chapter 7

Reduced Basis for Navier-Stokes

Equations

In this chapter we introduce an extension of reduced basis methods for non-linear equations

in parametrized domains. We deal with Navier-Stokes equations. The main difference with

respect to the work described in the previous chapters, dealing with Stokes problem, is the

introduction of a non-linear transport term and the extension of reduced basis machinery to

this term, including the possibility to consider also non-affine parametric dependence by an

empirical interpolation method. The extension to Navier Stokes equations allows us to have

a feedback on the results from pre-process optimization based on complete configuration and

on the results of local shape optimization carried out by optimal control techniques using low

order (and low fidelity) methods on the proposed application.

7.1 Introduction

Until now, the use of reduced basis in this thesis and its related application was aimed at

providing real time information on solutions and fluid mechanics related outputs, computed in

parametrized domains by using low fidelity (simplified) model, such as the Stokes equations,

used to approximate low Reynolds blood flows and provide an optimized configuration. In this

chapter, with the extension of the reduced basis framework to the non-linear steady Navier-

Stokes problem, we are going to complete our pre-process optimization toolbox, providing also

some comparison to validate our results achieved using low order (and low cost) methods.

But we are also going to provide a different perspective: reduced basis methods provide real

time solutions for the design and the optimization of systems and can be used not only as a

pre-process but as a complete optimization tool in itself. This extension has been possible

thanks to the introduction of treatment for non-linearities and non-affine mappings. Another

aspect will be considered in the next chapter which provides some perspectives on the use of

reduced basis to solve optimal control (and parametrized) problems.

The present chapter is organized as follows: after this introduction, in Section 7.2 we report

an excursus of references and aspects dealing with reduced basis for Navier-Stokes, then

147
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Section 7.3 deals with the formulation of the steady Navier-Stokes problem and its related

aspects. From Section 7.4 to Section 7.6 we build the reduced basis formulation for Navier-

Stokes equations in parametrized domains with (i) affine, (ii) non-affine and (iii) affine/non-

affine combined parametric dependence. In these sections aspects dealing with algebraic and

approximation stability are recalled and extended. In Sections 7.7, 7.8 and 7.9 numerical

results and computational costs and savings are reported. Some conclusions follow.

7.2 The state of the art

The application of reduced basis methods to non-linear problems in fluid mechanics is be-

coming a problem with growing interest. Previous works were carried out in the 1990s by

Peterson [113] and by Ito and Ravindran in [64]. The former work was focused on stream func-

tion and vorticity formulation for various Reynolds number and using Taylor and Lagrangian

type basis. In the latter the authors built a reduced basis approximation for a Navier-Stokes

problem (both steady and unsteady) in a cavity using different techniques to build reduced

basis approximation spaces (Hermite and/or Taylor spaces, incorporating the derivatives of

velocity with respect to the parameter, the Reynolds number). The reduced basis formu-

lation does not consider the pressure in the reduced-order model. Then Patera and Veroy

since 2003 carried out intensive research on reduced basis in non-linear fluid mechanics using

Lagrangian basis (i.e. global approximation functions) studying natural convection problem,

parametrized by physical quantities (e.g. Grashof number [104], viscosity [160]) considering

free-divergence spaces. In 2004 they developed rigorous a posteriori error estimation and

bounds for real time computation based on the Brezzi-Rappaz-Raviart theory, see [159]. A

review is provided also in the recent work [45]. In our work we have followed the guidelines

provided by Patera et al. in their recent works and focused our attention on the following

aspects: i) the efficient treatment of non-linear term; ii) the domain parametrization; iii) the

incorporation of a stable approximation for pressure (useful in haemodynamic applications);

iv) the use of non-affine transformation maps by an empirical interpolation method to con-

sider more complex geometries, such as curved walls. Related aspects deals with the use of

different options to build the reduced basis velocity spaces and the efficient offline selection

of basis function.

More recently, researchers dealing with flow optimization and using sensitivity analysis have

addressed their attention to the reduced basis method, see for example the recent works of

Burkardt [21] and Gunzburger [50].
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7.3 Steady Navier-Stokes equations

We consider the steady Navier-Stokes equations in a domain Ω with proper boundary condi-

tions on Γ = Γin ∪ Γout ∪ Γw:





−ν∆u + (u · ∇)u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γw; u = gin on Γin,
(
ν ∂u∂n̂ − pn̂

)
= 0 on Γout.

(7.3.1)

For the mathematical theory of the Navier-Stokes equations see e.g. Galdi [41] and for aspects

dealing with their numerical solution see Temam [150], Girault and Raviart [43], Brezzi and

Fortin [19].

Before proceeding we introduce the weak formulation of problem (7.3.1) which reads: find

u ∈ Y = H1
ΓD

(Ω) ×H1
ΓD

(Ω), p ∈ Q = L2(Ω), Ω ⊂ R
2:





ν

∫

Ω
∇u · ∇wdΩ −

∫

Ω
p∇ · wdΩ +

∫

Ω
(u · ∇)u ·wdΩ =

∫

Ω
f · wdΩ+〈F 0,w〉 ∀w ∈ Y,

∫

Ω
q∇ · udΩ = 〈G0, q〉 ∀q ∈ Q,

(7.3.2)

F 0, G0 are terms due to non-homogeneous Dirichlet boundary condition (u = gin) on Γin,

ΓD = Γin ∪ Γw, on Γout we impose a free stress Neumann condition. Then we discretize

problem (7.3.2) by a stable approximation using finite element method (Taylor-Hood P
2 −

P
1 elements for velocity and pressure, respectively) on a fine mesh triangulation; see, for

example, Quarteroni and Valli [127]. The numerical methods used to solve the system of

non-linear equations (7.3.2) is the iterative Newton method and it involves the linerization of

the advection term (uh · ∇)uh considering its derivative in the Frechet sense. The linearized

version of the discretized problem (7.3.2) at each iteration reads: given u
(k)
h , find u

(k+1)
h ∈

Yh, p
(k+1)
h ∈ Qh, Ω ⊂ R

2, such that





ν

∫

Ω
∇u

(k+1)
h · ∇whdΩ −

∫

Ω
p
(k+1)
h ∇ ·whdΩ +

∫

Ω
(u

(k)
h · ∇)u

(k+1)
h · wh dΩ+

+

∫

Ω
(u

(k+1)
h · ∇)u

(k)
h ·wh dΩ −

∫

Ω
(u

(k)
h · ∇)u

(k)
h · wh dΩ =

∫

Ω
f · whdΩ+〈F 0,wh〉 ∀wh ∈ Yh,

∫

Ω
qh∇ · u

(k+1)
h dΩ = 〈G0, qh〉 ∀qh ∈ Qh,

(7.3.3)

till the convergence is reached. We can adopt a condition based on the difference between

two estimates

‖u
(k+1)
h − u

(k)
h ‖ ≤ ε

where ε is a small tolerance. We recall that the convergence for Newton method is quadratic

[129]. To solve the linearized Navier-Stokes system (7.3.3) at each Newton step we can use

the so-called Pressure Matrix Method to decouple the calculation of pressure from the velocity

field. In this case we solve our problem in three steps: in the first one we get an auxiliary
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velocity ũh, in the second step we can calculate the pressure ph and then the corrected velocity

uh. See for example Quarteroni and Valli [127].

7.4 Parametrized formulation: affine parametric dependence

We suppose that the domain we are considering is composed of R subdomains: Ω̂ =
⋃R
r=1 Ω̂r,

so that we rewrite (7.3.3) as follows, introducing the “hat” notation to indicate equations in

real domain without parametrization and dropping the subscript h for simplicity of notation:





Â(û(k+1), ŵ) + B̂(p̂(k+1), ŵ) + Ĉ(û(k+1), û(k), ŵ) + Ĉ(û(k), û(k+1), ŵ) =

= 〈F̂ , ŵ〉 + Ĉ(û(k), û(k), ŵ) ∀ŵ ∈ Y,

−B̂(q̂, û(k+1)) = 〈Ĝ0, q̂〉 ∀q̂ ∈ Q,

(7.4.1)

where for 1 ≤ i, j ≤ d = 2 and ν̂i,j = νδi,j:

Â(û, ŵ) =

R∑

r=1

∫

Ω̂r

∂û

∂x̂i
ν̂ij

∂ŵ

∂x̂j
dΩ̂, (7.4.2)

B̂(p̂, ŵ) = −
R∑

r=1

∫

Ω̂r

p̂∇ · ŵdΩ̂, (7.4.3)

Ĉ(û, v̂, ŵ) =

R∑

r=1

∫

Ω̂r

(û · ∇)v̂ · ŵdΩ̂, (7.4.4)

〈F̂ , ŵ〉 = 〈F̂s, ŵ〉 + 〈F̂ 0, ŵ〉, (7.4.5)

and

〈F̂s, ŵ〉 =

R∑

r=1

∫

Ω̂r

f̂ ŵdΩ̂, 〈F̂ 0, ŵ〉 = −〈Âĝin, ŵ〉, 〈Ĝ0, q̂〉 = 〈B̂q̂, ĝin〉. (7.4.6)

Now we want to build a system of P 2DEs (Parametrized Partial Differential Equations)

affinely depending on a set of geometrical parameters (µ). As already seen, problem (7.4.1)

is traced back to a reference domain by an affine mapping on some subdomains Ω̂r
G into Ωr.

For any x̂ ∈ Ω̂r, r = 1, . . . , R, its image x ∈ Ωr is given by

x = Gr(µ; x̂) = Gr(µ)x̂+ gr, 1 ≤ r ≤ R; (7.4.7)

we thus write on Ωr
∂

∂x̂i
=
∂xj
∂x̂i

∂

∂xj
= Grji(µ)

∂

∂xj
. (7.4.8)

We write the P 2DEs system depending on µ on a reference domain Ω ⊂ R
2. The problem

reads: given u(k), find u(k+1) ∈ Y = H1
ΓD

(Ω) ×H1
ΓD

(Ω), p(k+1) ∈ Q = L2(Ω):




A(µ; u(k+1),w) + B(µ; p(k+1),w) + C(µ; u(k+1),u(k),w) + C(µ; u(k),u(k+1),w) =

〈Fs + F 0,w〉 + C(µ; u(k),u(k),w) ∀ w ∈ Y,

B(µ; q,u(k+1)) = 〈G0, q〉 ∀ q ∈ Q,

(7.4.9)
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where:

A(µ,u,w) =

R∑

r=1

∫

Ωr

∂u

∂xi

(
Grii′(µ)ν̂i′j′G

r
jj′(µ)|(Gr(µ))−1|

) ∂w
∂xj

dΩ ∀w ∈ Y,

B(µ, p,w) = −
R∑

r=1

∫

Ωr

p
(
Grij(µ)|(Gr(µ))−1|

)∂wj
∂xi

dΩ ∀w ∈ Y,

C(µ,u,v,w) = −
R∑

r=1

∫

Ωr

ui

(
Grij(µ)|(Gr(µ))−1|

)∂vj
∂xi

wdΩ ∀w ∈ Y,

〈Fs,w〉 =

R∑

r=1

∫

Ωr

(
f̂ r|(Gr(µ))−1|

)
wdΩ; 〈F 0,w〉 = −〈Agin,w〉;

〈G0, q〉 = 〈Bq,gin〉; the general formulation of the tensors for viscous terms is

νrij(µ) = Grii′(µ)ν̂i′j′G
r
jj′(µ)det(Gr(µ))−1, 1 ≤ i, j ≤ 2, r = 1, ..., R, (7.4.10)

the one of the tensors for pressure, divergence and convective terms is:

χrij(µ) = πrij(µ) = Grijdet(G
r(µ))−1, 1 ≤ i, j ≤ 2, r = 1, ..., R. (7.4.11)

Using the affine decomposition property to exploit and decouple the online computational

stage (many queries) and the offline one (computed once) we introduce the following elements:

Θq(i,j,r)(µ) = νrij(µ), Aq(i,j,r)(u,w) =

∫

Ωr

∂u

∂xi

∂w

∂xj
dΩ,

Φs(i,j,r)(µ) = χrij(µ), Bs(i,j,r)(p,w) = −

∫

Ωr

p
∂wi
∂xj

dΩ,

Υs(i,j,r)(µ) = πrij(µ), Cs(i,j,r)(u,u,w) =

∫

Ωr

uj
∂ui
∂xj

wdΩ,

A(Θ(µ),u,w) =

Qa∑

q=1

Θq(µ)A(u,w)q;

B(Φ(µ), p,w) =

Qb∑

s=1

Φs(µ)B(p,w)s;

C(Υ(µ),u,u,w) =

Qc∑

s=1

Υs(µ)C(u,u,w)s;

where s and q are condensed indexes for i, j, r, max(Qa) = d×d×d×R, max(Qb) = d×d×R

and max(Qc) = d×d×d×R. The reduced basis approximation for the Navier-Stokes system
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(7.4.9) reads: find (u
(k+1)
N (µ), p

(k+1)
N (µ)) ∈ YN × QN , given u

(k)
N as guess solution for the

non-linear solver (taken from the previous iteration or given as u
(0)
N ), such that





A(µ; u
(k+1)
N (µ),w) + B(µ; p

(k+1)
N (µ),w) + C(µ; u

(k+1)
N (µ),u

(k)
N (µ),w)+

C(µ; u
(k)
N (µ),u

(k+1)
N (µ),w) = 〈F,w〉 + C(µ; u

(k)
N (µ),u

(k)
N (µ),w) ∀ w ∈ YN ,

B(µ; q,u
(k+1)
N (µ)) = 〈G, q〉 ∀ q ∈ QN .

(7.4.12)

As already seen we properly take some “µ” samples SµN = {µ1, . . . , µN} (snapshots), where

µn ∈ Dµ, n = 1, . . . , N .

The reduced basis pressure space is:

QN = span {ξn, n = 1, . . . , N}, (7.4.13)

where ξn = p(µn). We use the supremizer solutions to enrich YN , the reduced basis velocity

space is given by:

YN = span {σn, n = 1, . . . , 2N} = (7.4.14)

= span {ζn, T
µn

ξn, n = 1, . . . , N},

where ζn = u(µn) and T µ
n
: Q→ Y is the supremizer operator

(T µq,w)Y = B(µ; q,w; ), ∀ w ∈ Y. (7.4.15)

We recall that we can write T µ
n
ξ =

∑Qb

q=1 Φq(µn)T qξ for any ξ and µ.

Remark 7.4.1 Note that in this case the reduced basis velocity space is not depending on the

“online” value of the µ parameter because in the supremizer affine assembling procedure we

use the values of µn corresponding at each solution ξn = p(µn), considered as basis function.

This option allows us to simplify notation and to reduce complexity of the problem in this first

case. �

Other options are available to get a different space YN for velocity, for example: i) a space

which is µ independent, using only T qξ components to enrich velocity space. This option is

useful if we want to apply an orthonormalization procedure to restore algebraic stability; or

ii) a space µ dependent, using the online value of the parameter in Φq. For more elements on

the choice of supremum space we recall what introduced in Section 5.7.2 dealing with Stokes

flows and in [111]. We remind briefly also the reduced basis equivalent LBB inf-sup constant

βN (µ) with respect to β(µ) associated with the Galerkin method, and the LBB inf-sup condi-

tion which, if satisfied as in (ii), guarantees the stability of the approximation (Lemma 5.3.1):

βN (µ) ≥ β(µ) ≥ β0 > 0,∀µ ∈ Dµ where

βN (µ) = inf
q∈QN

sup
w∈YN

B(µ, q,w)

‖w‖Y ‖q‖Q
,
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and

β(µ) = inf
q∈Q

sup
w∈Y

B(µ, q,w)

‖w‖Y ‖q‖Q
.

The reduced basis solution for a new sample µ is built as:

uN (µ) =

2N∑

j=1

uNj(µ)σj , pN (µ) =

N∑

l=1

pNl(µ)ξl;

and the reduced basis non-linear system for 1 ≤ i, j, h ≤ 2N, 1 ≤ l ≤ N is:





∑2N
j=1 A

µ
iju

(k+1)
Nj (µ) +

∑N
l=1 B

µ
ilp

(k+1)
Nl (µ) +

∑2N
h=1

∑2N
j=1 u

(k)
Nh(µ)Cµ

ijhu
(k+1)
Nj (µ)+

+
∑2N

h=1

∑2N
j=1 u

(k+1)
Nh (µ)Cµ

ijhu
(k)
Nj(µ) = F µi +

∑2N
h=1

∑2N
j=1 u

(k)
Nj(µ)Cµ

ijhu
(k)
Nh(µ)

∑2N
j=1 B

µ
jlu

(k+1)
Nj (µ) = Gµl , 1 ≤ l ≤ N ;

(7.4.16)

Aµij =

Qa∑

m=1

Θm(µ)A(σi, σj)
m, Bµ

il =

Qb∑

m=1

Φm(µ)B(σi, ξl)
m;

Cµijh =

Qc∑

m=1

Υm(µ)C(σh, σj , σi)
m;

F µi = 〈F, σi〉, G
µ
l = 〈G, ξl〉.

We recall that the k index refers to the Newton iteration. The form Cµ is depending on 3

different indexes and is assembled online given the value of µ. Then for every k we have to

incorporate in Cµ the solution at the previous iteration to update the system matrix and the

right-hand-side. We can adopt the following stopping criterium

‖u
(k+1)
N (µ) − u

(k)
N (µ)‖ ≤ εN

where εN is a prescribed tolerance. When the Stokes solution is available, as in our case, it may

be used as initial guess u
(0)
N . If we compare the assembling and computational costs of Navier-

Stokes reduced basis problem with respect to Stokes problem we have to increase O(9KN 3)

operations for the solution of the non-linear system (K is the number of Newton iteration). In

reality we are going to use more efficient and faster solver with splitting procedures. The other

computational cost comes from the assembling procedure of C matrices (advection terms),

whose theoretical assembling costs are O(Qc8N3). We recall that the assembling costs for A,

B and F are, respectively, O(Qa4N2), O(Qb2N2) and O(N). The structure of the system

(7.4.16) is (
A + C(k+1) B

BT 0

)(
u

(k+1)
N

p
(k+1)
N

)
=

(
F (k)

G

)
; (7.4.17)

Numerical results dealing only with geometrical affine parametric dependence will be reported

in Section 7.7.
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7.5 Parametrized formulation: non-affine parametric depen-

dence

In this section we extend the formulation given in the previous one dealing only with non-

affine geometrical parametric dependence in the reduced basis framework for Navier-Stokes

equations. We consider a non-affine mapping from the true subdomains Ω̂r into the reference

ones denoted with Ωr. For any x̂ ∈ Ω̂r, r = 1, . . . , R, its image x ∈ Ωr is given by

x = T r(µ; x̂), 1 ≤ r ≤ R; (7.5.1)

we thus write on Ωr

∂

∂x̂i
=
∂xj
∂x̂i

∂

∂xj
= T rji(µ, x)

∂

∂xj
. (7.5.2)

Referring to the problem (7.4.9) each elements in the system has the following form for

1 ≤ i, j ≤ 2:

A(µ; u,w) =

R∑

r=1

∫

Ωr

∂u

∂xi

(
T rii′(µ, x)ν̂i′j′T

r
jj′(µ, x)det(T r(µ, x))−1

) ∂w
∂xj

dΩ ∀w ∈ Y,

B(µ; p,w) = −
R∑

r=1

∫

Ωr

p
(
T rij(µ, x)det(T r(µ, x))−1

)∂wj
∂xi

dΩ ∀w ∈ Y,

C(µ; u,v,w) = −
R∑

r=1

∫

Ωr

ui

(
T rij(µ, x)det(T r(µ, x))−1

)∂vj
∂xi

wdΩ ∀w ∈ Y,

〈Fs,w〉 =

R∑

r=1

∫

Ωr

(
f̂ rdet(T r(µ, x))−1

)
wdΩ.

In Section 7.8 we report a test case and we show the explicit forms of the previous terms.

The transformation tensors for diffusion bilinear forms with non-affine mappings are defined

as follows:

νrTij
(µ, x) = T rii′(µ, x)ν̂i′j′T

r
jj′(µ, x)det(T r(µ, x))−1, 1 ≤ i, j ≤ 2, r = 1, ..., R. (7.5.3)

The tensors for pressure, divergence and advection forms are defined for non-affine mappings

as:

χrTij
(µ, x) = πrTij

(µ, x) = T rij(µ, x)det(T r(µ, x))−1. (7.5.4)

To decouple the non-affine contributions we apply the empirical interpolation procedure of

Section 6.2 to expand mapping terms and split the parameters dependent contribution from

the one depending only on spacial coordinates. We can write:

νrTij
(µ, x) = Σ

Ma
ijr

m=1β
r
ijm(µ)γrijm(x), (7.5.5)

χrTij
(µ, x) = πrTij

(µ, x) = Σ
Mb

ijr

m=1α
r
ijm(µ)ωrijm(x), (7.5.6)
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where m refers to the number of interpolation functions we use for each form (related with max

interpolation error), i and j are indexes related to linear/bilinear form, r refers to subdomains.

β and α are weight quantities depending on the parameters µ, while γ and ω are interpolation

functions (“shape functions”) used as basis.

Reminder 7.5.1 We recall very briefly the algorithm based on the empirical interpolation

method proposed by Maday et al. in [12]:

g(x, µ), is the non− affine mapping term (i.e. a shape).

The goal is to develop:

gM (x, µ) = ΣM
m=1βm(µ)qm(x),

as a sum of products decomposed in two parts: βm(µ) parameters dependent weights; qm(x)

shape functions without a parametric dependence.

The main elements are: test shape functions and service interpolation points, respectively:

W g
M = {γm = g(., µgm), 1 ≤ m ≤M}, µgm properly chosen,

TM = {t1, . . . tM}, 1 ≤M ≤Mmax, sets of interpolation points.

The interpolation algorithm is:

for M = 1, t1 = argsupx∈Ω|γ1(x)|, q1 = γ1(x)/γ1(t1), (off − line)

then, for M = 2, . . . ,Mmax : ΣM−1
j=1 σM−1

j qj(ti) = γM (ti), 1 ≤ i ≤M − 1, (off − line)

rM (x) = γM (x) − ΣM−1
j=1 σM−1

j qj(x), tM = argsupx∈Ω|rM (x)|, (off − line)

qM(x) = rM (x)/rM (tM ); gM (x, µ) = ΣM
m=1βm(µ)qm(x), (off − line)

ΣM
j=1qj(ti)βj(µ) = g(ti, µ), 1 ≤ i ≤M, (on− line).

To stop the procedure we impose ‖g(., µ) − gM (., µ)‖L∞(Ω) ≤ εmax where εmax is an interpola-

tion error. �

We go back to our problem and, in order to build an effectively affine decomposition, we

define:

Ψt(i,j,r,m)(µ) = βrijm(µ), At(i,j,r,m)(γ(x),u,w) =

∫

Ωr

γrijm(x)
∂u

∂xi

∂w

∂xj
dΩ, (7.5.7)

Υp(i,j,r,m)(µ) = αrijm(µ), Bp(i,j,r,m)(ω(x), p,w) = −

∫

Ωr

ωrijm(x)p
∂wi
∂xj

dΩ, (7.5.8)

Υp(i,j,r,m)(µ) = αrijm(µ), Cp(i,j,r,m)(ω(x),u,v,w) = −

∫

Ωr

ωrijm(x)uj
∂vi
∂xj

wdΩ, (7.5.9)

for 1 ≤ r ≤ R, 1 ≤ i, j ≤ d = 2, 1 ≤ m ≤ max(M a
ijr,M

b
ijr) (t and p are condensed indexes of

i, j, r,m quantities). We rewrite our terms as:

A(µ,u,w) =

Qa∑

t=1

Ψt(µ)At(γ(x),u,w);
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B(µ, p,w) =

Qb∑

p=1

Υp(µ)Bp(ω(x), p,w) ;

C(µ,u,v,w) =

Qc∑

p=1

Υp(µ)Cp(ω(x),u,v,w) ;

in this case Qa = Σd
j=1Σd

i=1ΣRT
r=1M

a
ijr; Q

b = Qc = Σd
j=1Σd

i=1ΣRT
r=1M

b
ijr. We can now solve

the Navier-Stokes problem written in (7.4.9) on the reference domain Ω for some values of

parameter µ with the scope of building the reduced basis spaces. The formulation in this case

is the same as the one in the previous section. We use the same supremizer option (the one

with the µn offline value) so that we have a reduced basis velocity space YN (7.4.14) which is

µ independent. The only difference is the use of the effectively affine dependence of B(µ; q,w)

on the parameter which reads:

T µ
n

ξ =

Qb∑

p=1

Υp(µn)T pξ (7.5.10)

for any ξ and µ, where:

(T pξ,w)Y = Bp(ω, q,w), ∀ w ∈ Y.

Referring to the reduced basis non-linear system (7.4.16) we have the following sub-matrices

A, B and C, respectively:

Aµij =

Qa∑

z=1

Ψz(µ)Az(γ, σi, σj), 1 ≤ i, j ≤ 2N ;

Bµ
il =

Qb∑

z=1

Υz(µ)Bz(ω, σi, ξl), 1 ≤ i ≤ 2N, 1 ≤ l ≤ N ;

and:

Cµijh =

Qc∑

z=1

Υz(µ)Cz(ω, σi, σj, σh), 1 ≤ i, j, h ≤ 2N.

Numerical results dealing with a test case (a furrowed channel) will be reported in Section

7.8.

7.6 Parametrized formulation: affine and non-affine

parametric dependence

In this section we are going to combine the formulation introduced in the two previous sections

allowing us to prepare the framework for the application of reduced basis for Navier-Stokes

equations to our problem of interest: the study of a bypass configuration. We deal with

parametrized domains with both affine and non-affine parametric dependence (in different

subdomains). In this case we are going to use a different supremizer option, building reduced
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basis approximation space which is depending on the value of the “online” parameter µ.

We consider again a P 2DEs (Parametrized Partial Differential Equations) system, whose

formulation on the reference domain Ω is the following: find (u(µ), p(µ)) ∈ Y ×Q:

{
A(µ; u(µ),w) + B(µ; p(µ),w) + C(µ; u(µ),u(µ),w) = 〈F,w〉 ∀ w ∈ Y,

B(µ; q,u(µ)) = 〈G0, q〉 ∀ q ∈ Q.
(7.6.1)

The problem has been traced back to a reference domain by an affine mapping on some

subdomains Ω̂r
G into Ωr

G and by a non-affine mapping on the remaining subdomains Ω̂r
T into

Ωr
T . More precisely, the physical domain Ω̂ is the union of two (finite) families of subdomains

{Ω̂r
G, r = 1, . . . , RG} and {Ω̂r

T , r = 1, . . . , RT }. Then Ω̂ =
⋃RG
r=1 Ω̂r

G ∪
⋃RT
r=1 Ω̂r

T . For any

x̂ ∈ Ω̂r
G, r = 1, . . . , RG, its image x ∈ Ωr

G is given by

x = Gr(µ; x̂) = Gr(µ)x̂+ gr, 1 ≤ r ≤ RG, (7.6.2)

therefore for 1 ≤ i, j ≤ 2:
∂

∂x̂i
=
∂xj
∂x̂i

∂

∂xj
= Grji(µ)

∂

∂xj
. (7.6.3)

On the other hand, for any x̂ ∈ Ω̂r
T , r = 1, . . . , RT , its image x ∈ Ωr

T is given by

x = T r(µ; x̂), 1 ≤ r ≤ RT , (7.6.4)

thus
∂

∂x̂i
=
∂xj
∂x̂i

∂

∂xj
= T rji(µ, x)

∂

∂xj
. (7.6.5)

In the reference domain Ω we have:

A(µ; u,w) =

RG∑

r=1

∫

Ωr
G

∂u

∂xi

(
Grii′(µ)ν̂i′j′G

r
jj′(µ)det(Gr(µ))−1

) ∂w
∂xj

dΩ+ (7.6.6)

RT∑

r=1

∫

Ωr
T

∂u

∂xi

(
T rii′(µ, x)ν̂i′j′T

r
jj′(µ, x)det(T r(µ, x))−1

) ∂w
∂xj

dΩ ∀w ∈ Y,

B(µ; p,w) = −
RG∑

r=1

∫

Ωr
G

p
(
Grij(µ)det(Gr(µ))−1

)∂wj
∂xi

dΩ+ (7.6.7)

−

RT∑

r=1

∫

Ωr
T

p
(
T rij(µ, x)det(T r(µ, x))−1

)∂wj
∂xi

dΩ ∀w ∈ Y,

C(µ; u,v,w) =

RG∑

r=1

∫

Ωr
G

ui

(
Grij(µ)det(Gr(µ))−1

)∂vj
∂xi

wdΩ+ (7.6.8)

−

RT∑

r=1

∫

Ωr
T

ui

(
T rij(µ, x)det(T r(µ, x))−1

)∂vj
∂xi

wdΩ ∀w ∈ Y,

〈F,w〉 = 〈Fs,w〉 + 〈F 0,w〉, (7.6.9)
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where

〈Fs,w〉 =

RG∑

r=1

∫

Ωr
G

(
f̂ rdet(Gr(µ))−1

)
wdΩ +

RT∑

r=1

∫

Ωr
T

(
f̂ rdet(T r(µ, x))−1

)
wdΩ; (7.6.10)

〈F 0,w〉 = −〈Agin,w〉; 〈G0, q〉 = 〈Bq,gin〉.

The transformation tensors for diffusion bilinear forms with affine and non-affine mappings

are defined, respectively, as follows:

νrGij
(µ) = Grii′(µ)ν̂i′j′G

r
jj′(µ)det(Gr(µ))−1, 1 ≤ i, j ≤ 2, r = 1, ..., RG, (7.6.11)

νrTij
(µ, x) = T rii′(µ, x)ν̂i′j′T

r
jj′(µ, x)det(T r(µ, x))−1, 1 ≤ i, j ≤ 2, r = 1, ..., RT . (7.6.12)

The tensors for pressure, divergence and advection forms are defined, respectively, for affine

and non-affine mappings as:

χrGij
(µ) = πrGij

(µ) = Grijdet(G
r(µ))−1, (7.6.13)

χrTij
(µ, x) = πrTij

(µ, x) = T rij(µ, x)det(T r(µ, x))−1. (7.6.14)

For the non-affine parts we apply, as already proposed, the empirical interpolation procedure

of Section 6.2 (and recalled in the previous section) to expand non-affine mapping terms

and decouple the parameters dependent contribution from the one depending only on spacial

coordinates. We write:

νrTij
(µ, x) = Σ

Ma
ijr

m=1β
r
ijm(µ)γrijm(x), (7.6.15)

χrTij
(µ, x) = Σ

Mb
ijr

m=1α
r
ijm(µ)ωrijm(x), (7.6.16)

where m refers to the number of interpolation functions we use for each form (related with

max interpolation error), i and j are indexes related to linear/bilinear form, r is the subdo-

main index, β and α are weighing quantities depending on the parameters µ, γ and ω are

interpolation functions used as basis.

Furthermore, we define

Θq(i,j,r)(µ) = νrGij
(µ), A

q(i,j,r)
G (u,w) =

∫

Ωr
G

∂u

∂xi

∂w

∂xj
dΩ, (7.6.17)

Φs(i,j,r)(µ) = χrGij
(µ) = πrGij

(µ), B
s(i,j,r)
G (p,w) = −

∫

Ωr
G

p
∂wi
∂xj

dΩ, (7.6.18)

C
s(i,j,r)
G (u,v,w) =

∫

Ωr
G

ui
∂vi
∂xj

wdΩ, (7.6.19)

for 1 ≤ r ≤ RG, 1 ≤ i, j ≤ d = 2 (q and s are condensed indexes of i, j, r quantities), and

Ψt(i,j,r,m)(µ) = βrijm(µ), A
t(i,j,r,m)
T (γ(x),u,w) =

∫

Ωr
T

γrijm(x)
∂u

∂xi

∂w

∂xj
dΩ, (7.6.20)
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Υp(i,j,r,m)(µ) = αrijm(µ), B
p(i,j,r,m)
T (ω(x), p,w) = −

∫

Ωr
T

ωrijm(x)p
∂wi
∂xj

dΩ, (7.6.21)

C
p(i,j,r,m)
T (ω(x),u,v,w) =

∫

Ωr
T

ωrijm(x)ui
∂vi
∂xj

wdΩ, (7.6.22)

for 1 ≤ r ≤ RT , 1 ≤ i, j ≤ d = 2, 1 ≤ m ≤ max(M a
ijr,M

b
ijr) (t and p are condensed

indexes of i, j, r,m quantities used to simplify notation: each value of t or p represents a

different combination of the previous four indexes i, j, r,m). We apply an effectively affine

decomposition:

A(µ,u,w) =

Qa
G∑

q=1

Θq(µ)Aq
G(u,w) +

Qa
T∑

t=1

Ψt(µ)At
T (γ(x),u,w);

B(µ, p,w) =

Qb
G∑

s=1

Φs(µ)BsG(p,w) +

Qb
T∑

p=1

Υp(µ)BpT (ω(x), p,w) ;

C(µ,u,v,w) =

Qc
G∑

s=1

Φs(µ)CsG(u,v,w) +

Qc
T∑

p=1

Υp(µ)CpT (ω(x),u,v,w) ;

in general, max(Qa
G) = d× d× d×RG, max(Qb

G) = d× d×RG max(Qc
G) = d× d× d×RG;

QaT = Σd
j=1Σd

i=1ΣRT
r=1M

a
ijr; Q

b
T = Σd

j=1Σd
i=1ΣRT

r=1M
b
ijr and Qc

T = Σd
j=1Σd

i=1ΣRT
r=1M

b
ijr;

The non-linear problem (7.6) has to be discretized and then linearized to be solved, by an

iterative method as seen in Section 7.4.

In the reduced basis approximation we choose properly (i.e. by optimized algorithm as seen

in Section 5.4) a set of sample parameters Sµ
N = {µ1, . . . ,µN}, where µn ∈ Dµ, n = 1, . . . , N .

Correspondingly, we take a set of couples (u(µn), p(µn)) which are approximate solutions of

the Navier-Stokes problem (7.6.1). Then the reduced basis pressure space is always

QN = span {ξn, n = 1, . . . , N}, where ξn = p(µn), while for the reduced basis velocity space

we take into consideration the option in which the space is µ dependent:

Y µ
N = span {ζn, n = 1, . . . , N ;T µξn, n = 1, . . . , N}, where ζn = u(µn).

The reduced basis approximation problem reads: find (uN (µ), pN (µ)) ∈ YN ×QN s.t.:

{
A(µ; uN (µ),w) + B(µ; pN (µ),w) + C(µ; uN (µ),uN (µ),w) = 〈F,w〉 ∀ w ∈ YN ,

B(µ; q,uN (µ) = 〈G0, q〉 ∀ q ∈ QN .

(7.6.23)

We rewrite for computational convenience Y µ
N using the effectively affine dependence of

B(µ; q,w) on the parameter and the linearity of T µ:

T µξ =

Qb
G∑

q=1

Φq(µ)T qGξ +

Qb
T∑

p=1

Υp(µ)T pT ξ (7.6.24)

for any ξ and µ, where:

(T qGξ,w)Y = BqG(q,w) ∀ w ∈ Y,
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(T pT ξ,w)Y = BpT (ω, q,w) ∀ w ∈ Y,

which allows us to write:

Y µ
N = span {

Q
b
G∑

k=1

Φk(µ)σkn +

Qb
T∑

k′=1

Υk′(µ)σ̃k′n, n = 1, . . . , 2N},

where Q
b
G = QbG + 1,ΦQ

b
G = 1.

For n = 1, . . . , N :

σkn = 0, for k = 1, . . . , Qb
G;

σ̃k′n = 0, for k′ = 1, . . . , Qb
T ;

σ
Q

b
n

= ζn = u(µn).

For n = N + 1, . . . , 2N :

(σkn,w)Y = BkG(ξn−N ,w),∀w ∈ Y, for k = 1, . . . , Qb
G; (7.6.25)

σ
Q

b
n

= 0;

(σ̃kn,w)Y = BkT (ω, ξn−N ,w),∀w ∈ Y, for k = 1, . . . , Qb
T . (7.6.26)

For a new “µ” we want a solution given by a combination of previously computed stored

solutions as basis functions, i.e.:

uN (µ) =

2N∑

j=1

uNj(µ)
( Q

b
G∑

k=1

Φk(µ)σkj +

Qb
T∑

k′=1

Υk′(µ)σ̃k′j

)
,

pN (µ) =

N∑

l=1

pNl(µ)ξl,

whose unknowns uNj and pNl satisfy the following non-linear system:
{ ∑2N

j=1 A
µ
ijuNj(µ) +

∑N
l=1 B

µ
ilpNl(µ) +

∑2N
h=1

∑2N
j=1 uNh(µ)Cµ

ijhuNj(µ) = Fi, 1 ≤ i ≤ 2N,∑2N
j=1 B

µ
jluNj(µ) = Gl, 1 ≤ l ≤ N.

(7.6.27)

To solve it we apply the Newton method reads, yielding the following iteration: for k ≥ 0

given u
(k)
Nj , find u

(k+1)
Nj and p

(k+1)
Nl such that





∑2N
j=1 A

µ
iju

(k+1)
Nj (µ) +

∑N
l=1 B

µ
ilp

(k+1)
Nl (µ) +

∑2N
h=1

∑2N
j=1 u

(k)
Nh(µ)Cµ

ijhu
(k+1)
Nj (µ)+

+
∑2N

h=1

∑2N
j=1 u

(k+1)
Nh (µ)Cµ

ijhu
(k)
Nj(µ) = F µi +

∑2N
h=1

∑2N
j=1 u

(k)
Nj(µ)Cµ

ijhu
(k)
Nh(µ)

∑2N
j=1 B

µ
jlu

(k+1)
Nj (µ) = Gµl , 1 ≤ l ≤ N, 1 ≤ i ≤ 2N.

(7.6.28)

The sub-matrices A, B and C are given by:

Aµij =

Qa
G∑

z=1

Q
b
G∑

k′=1

Q
b
G∑

k′′=1

Θz(µ)Φk′(µ)Φk′′(µ)Az
G(σk′i, σk′′j)+
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+

Qa
T∑

z=1

Q
b
T∑

k′=1

Q
b
T∑

k′′=1

Ψz(µ)Υk′(µ)Υk′′(µ)Az
T (γ, σ̃k′i, σ̃k′′j), 1 ≤ i, j ≤ 2N ;

Bµ
il =

Q
b
G∑

z=1

Q
b
G∑

k′=1

Φz(µ)Φk′(µ)BzG(σk′i, ξl)+

+

Q
b
T∑

z=1

Q
b
T∑

k′=1

Υz(µ)Υk′(µ)BzT (ω, σ̃k′i, ξl), 1 ≤ i ≤ 2N, 1 ≤ l ≤ N ;

Cµijh =

Q
c
G∑

z=1

Q
b
G∑

k′=1

Q
b
G∑

k′′=1

Q
b
G∑

k′′′=1

Φz(µ)Φk′(µ)Φk′′(µ)Φk′′′(µ)CzG(σk′i, σk′′j , σk′′′h)+

+

Q
c
T∑

z=1

Q
b
T∑

k′=1

Q
b
T∑

k′′=1

Q
b
T∑

k′′′=1

Υk(µ)Υk′(µ)Υk′′(µ)Υk′′′(µ)CzT (ω, σ̃k′i, σ̃k′j, σ̃k′h), 1 ≤ i, j, h ≤ 2N ;

Fi =

Q
b
G∑

k′=1

Φk′(µ)〈F, σk′i〉 +

Qb
T∑

k′=1

Υk′(µ)〈F, σ̃k′i〉, 1 ≤ i ≤ 2N ;

Gl = 〈G0, ξl〉, 1 ≤ l ≤ N.

In compact form the linearized problem (7.6.28) can therefore be written as:

(
A + C(k+1) B

BT 0

)(
u

(k+1)
N

p
(k+1)
N

)
=

(
F (k)

G

)
. (7.6.29)

Remark 7.6.1 This reduced basis formulation seems to be more involved than the one in-

troduced in Section 7.5 due to the coupling between affine and non-affine maps in different

subdomains from one hand, the use of a different supremizer which is µ dependent, yielding

a different reduced basis velocity approximation space from the other hand. �

Remark 7.6.2 We have the following computational costs to build reduced basis matrices, ac-

counting also for the computation of supremizer components in the velocity space: O(Qa(Q
b
)24N2)

for sub-matrix A, O((Q
b
)22N2) for B, O(Qc(Q

b
)38N3) for C, O(Q

b
N) for F and O(9N 3)

for the “inversion” of the full reduced basis matrix (7.6.29) at each Newton iteration, where

Qa = QaT + QaG, Q
b

= Q
b
G + QbT , Q

c
= Q

c
G + QcT . Note that the quantities Qa

G, QbG and Qc
G

are depending only on the number of subdomains with affine mappings (RG), while quantities

QaT , QbT and Qc
T are depending also on the number of “shape functions” (γ(x) and ω(x)) re-

lated with interpolation error (εmax) and the number of subdomains with non-affine mappings

(RT ). �

Some numerical results based on the reduced basis approximation introduced in this section

will be reported in Section 7.9.
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7.7 Some preliminary results

For our first test on the use of reduced basis for Navier-Stokes equations we deal only with

affine mapping on a rectangular domain (R = 1), parametrized by two quantities D and t,

see Figure 7.1 (right). We have used the formulation introduced in Section 7.4 and have

considered a forced flow. The parameters range is: 0.1 ≤ D ≤ 1.5 and 0.1 ≤ t ≤ 1.5.

• To solve the parametrized Navier-Stokes problem in the domain outlined in Figure 7.1

we have imposed zero Dirichlet conditions on the boundary ΓD, Neumann homogeneous

conditions on the inflow ΓNi and outflow ΓNo (τn̂ = 0, τt̂ = 0, where τ = (ν ∂u∂n̂ − pn̂),

with n̂ and t̂ normal and tangential directions, respectively).

• We have considered a forcing term f = 10 · (x, y)T in order to create a flow acceleration,

to have a non-zero velocity in y-direction and not only a parabolic velocity profile. Using

the compact notation of Section 7.4 (7.4.10 and 7.4.11) and transformation (7.4.8) we

get the following tensor for diffusion, divergence and transport forms, respectively:

ν = ν̃

[
t
D 0

0 D
t

]
, χ = π =

[
t 0

0 D

]
,

where ν̃ = 0.04Nsm−2 is the viscosity.

• Taylor-Hood finite elements have been used to build offline approximation basis func-

tions: P
2 − P

1 elements for velocity (with supremizer) and pressure, respectively [127].

The problem has been solved using the Pressure-Matrix Method. The mean Reynolds

number considered was of order 102 (a low Reynolds number). Note, in fact, that the

change of the value of the parameter D (channel diameter) implies also a Reynolds

number variation (by definition).

• At this step we have applied the reduced basis method and assembled the approximation

spaces as described in Section 7.4. The basis assembling is based on the optimized

procedure introduced in Section 5.4, see Figure 7.1 for the basis construction when

increasing N .

• Figure 7.2 shows numerical results (mean and max H 1 and L2 relative errors on velocity

and pressure, respectively, on a large number of configurations) at different N . The

reduced basis solutions have been compared directly with the approximate finite element

solutions: the associate H1 relative error for velocity and L2 relative error for pressure

are computed.

7.8 Furrowed channel test

Our second test on the use of reduced basis for Navier-Stokes equations deals with non-

affine mapping on a rectangular domain (R = 1), considering a channel with an upper wall
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Figure 7.2: H1 and L2 relative errors on velocity and pressure, first test with 2 varying

parameters (D, t).

parametrized by a sinusoidal law, see Figure 7.3 (left). This may be regarded as a simplified

stenotic arterial flow, that was already investigated e.g. by Sobey and Stephanoff [143] and

[148]. We have used the formulation introduced in Section 7.5. The test case is the same

considered in Section 6.5.1 however here we consider Navier-Stokes equations whereas there

we used Stokes equations. We briefly recall the assumptions that we have made during this

study:

• To solve the parametrized Navier-Stokes problem in the domain outlined in Figure

7.3 we have imposed zero Dirichlet conditions on the boundary ΓD, Neumann non-

homogeneous conditions on the inflow ΓNi (τn̂ = 1, τt̂ = 0, where τ = (ν ∂u∂n̂ − pn̂), with

n̂ and t̂ normal and tangential directions, respectively) and Neumann homogeneous

conditions on outflow ΓNo (τn̂ = 0, τt̂ = 0).

• We consider one parameter µ ranging in [−0.8, 0.8] to describe the upper arterial wall

in the physical domain, through x̂2 = f(x̂1, µ) = 1 + µsin(2πx̂1) (we have a single
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domain subject to a unique non-affine mapping). Figures 7.3-7.5 show some simulations

to better describe the fluid dynamics phenomena involved in this case of study. The

upper curved wall is responsible of the changing of the channel section and so of the

velocity gradient. Interesting phenomena to be “captured” by reduced basis method

are the vertical velocity behavior (see Figure 7.5 on the right) and the development

of a secondary flow (to be added to the mainstream channel) when |µ| increases (see

Figure 7.4 on the right). In Sobey [143] an accurate study of steady (and unsteady)

flows has been carried out dealing with furrowed channels at different Reynolds number,

in particular focusing the attention over the secondary flows in the hollow zone of the

channel. In our case the Reynolds ranges between 102 and 4 · 103.

Γ
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No
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Figure 7.3: Geometrical scheme for curved wall test model problem (left) and velocity (ab-

solute value) for µ = 0.4, Re = 100 (right). The colorbar is the same as in Figure 6.1.
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Figure 7.4: Pressure (left) and vertical velocity (right), for µ = 0.7 and Re = 100.

Referring to Section 7.5 we have ΩG = ∅ and ΩT = Ω, so RT = 1.

The coordinate transformation is T : Ω̂ → Ω, x = T (x̂), with

(x1, x2) = T (x̂1, x̂2) = (x̂1,
1

f(x̂1, µ)
x̂2) (7.8.1)

in Ω. Then,

dx̂1dx̂2 = f(x1, µ)dx1dx2,
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Figure 7.5: Absolute value of velocity (left) and vertical velocity (right), for µ = 0.15 and

Re = 100.

and the following relations hold:

{
∂û
∂x̂2

= 1
f(x1,µ)

∂u
∂x2

,

∂û
∂x̂1

= ∂φ
∂x1

− x2
fx1

(x1,µ)

f(x1,µ)
∂u
∂x2

(
with fx1

:= df
dx1

)
.

(7.8.2)

∇ · û =
∂u1

∂x1
− x2

fx1
(x1, µ)

f(x1, µ)

∂u1

∂x2
+

1

f(x1, µ)

∂u2

∂x2
. (7.8.3)

Using the compact notation of Section 7.5 (7.5.3 and 7.5.4) and transformation (7.8.1) we

get the following tensor for diffusion and divergence (and advection) forms, respectively:

νT = ν

[
f(x1, µ) −f ′x1

(x1, µ)x2

−f ′x1
(x1, µ)x2

1
f(x1,µ) +

f ′2x1
(x1,µ)

f(x1,µ) x2
2

]
; (7.8.4)

χT = πT =

[
f(x1, µ) −f ′x1

(x1, µ)x2

0 1

]
; (7.8.5)

where ν is the viscosity [Nsm−2] whose value was varied in simulating flows at different

Reynolds number. Referring to notation of Reminder 7.5.1 we get 5 different coefficient

functions gjM (x, µ) to expand.

Reminder 7.8.1 We recall here that the coordinate transformation (7.8.2) used in this

example is the same one used in Chapters 3 and 4. �

• We apply empirical interpolation (7.5.5 and 7.5.6) to the tensors (7.8.4 and 7.8.5) and we

impose a maximum interpolation error εmax, thus considering different Mmax “shape

functions” for each gjM (x, µ). Each gjM (x, µ) represents a different coefficient for a

different term of our problem (j = 5 in this test case). Owing to empirical interpolation

we expand each tensor component to apply the effectively affine decomposition:

νT = ν

[
Σ
Ma

11

m=1β11m(µ)γ11m(x) Σ
Ma

12

m=1β12m(µ)γ12m(x)

Σ
Ma

21

m=1β21m(µ)γ21m(x) Σ
Ma

22

m=1β22m(µ)γ22m(x)

]
.
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Note that this tensor is symmetric. Moreover,

χT = πT =

[
Σ
Mb

11

m=1α11m(µ)ω11m(x) Σ
Mb

12

m=1α12m(µ)ω12m(x)

0 1

]
.

The index r referring to every different subdomain is omitted (in this case R = 1).

• At this step we may apply the reduced basis formulation to this case and assemble the

approximation spaces YN (7.4.14) and QN (7.4.13).

7.8.1 Results for low Reynolds number

We report some numerical results dealing with the solution of the furrowed channel rebuilt

by reduced basis method. First we considered low Reynolds number (∼ 100). Figures 7.6

and 7.7 show convergence results (mean and max H 1 and L2 relative errors on velocity and

pressure, respectively, testing a large number of configurations) at different N and at different

imposition of max interpolation error εmax. At the end of the test we have carried out also

a comparison between empirical interpolation (using gjM (x, µ)) and true functions (gj(x, µ)).

We can see that for εmax ≤ 10−8 we have accurate results that are not dominated or affected

by interpolation error. When the interpolation error is dominating, the reduced basis error is

characterized by a constant “plateau” and is not diminished by increasing N (see for example

the case in which εmax ≥ 10−6).
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Figure 7.6: H1 and L2 relative mean error on velocity and pressure (ν = 0.1) at different

εmax imposed on all gjM (x, µ) (great number of testing configurations).

7.8.2 Results for higher Reynolds number

A further test stage has been devoted to the increase of Reynolds number (∼ 4 · 103). We

have reported in Figure 7.8 convergence results using a max interpolation error εmax ≥ 10−6.

The comparison is always made between the “true” approximated solution by finite element

method and the “interpolated” one by reduced basis.
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Figure 7.7: H1 and L2 relative max error on velocity and pressure (ν = 0.1) at different εmax
imposed on all gjM (x, µ) (great number of testing configuration).
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Figure 7.8: H1 and L2 relative error (max and mean) on velocity and pressure (ν = 0.04)

(testing a great number of configurations).

7.8.3 Reduced basis computational costs

At the end of this section we make some remarks on the computational costs in using the

reduced basis in the online stage at different Reynolds number. This completes Remark 7.6.2

that was concerned with the assembling and computational costs. For simplicity we consider

the case of the problem of the furrowed channel with one varying parameter and at different

Reynolds number (at different viscosity values). Figure 7.9 shows online reduced basis com-

putational cost (cputime, Pentium M 1.80 GHz, 1.0 Gb of Ram, IBMrT42 ThinkPad) for

increasing N , compared with the computational cost of a finite element numerical simulation;

the Reynolds number is Re ≤ 400. We can see that reduced basis computational costs are

∼ 20% of the finite element offline solutions if we choose N = 12 corresponding to an H 1 error

on velocity of O(10−6), as shown in the picture on the right. The reduces basis approximation

spaces have been optimized during the assembling procedures. Increasing the Reynolds num-

ber (400 ≤ Re ≤ 4000) we can see how the computational saving of reduced basis techniques
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are at least of two orders of magnitude (i.e 1%) as shown in Figure 7.10, where on the right

we have also a zoom representing online computational cost when increasing N . Results in

reality depend on the choice of the initial guess for Newton iterations: in our case we have

used Stokes solution (already calculated and stored). Other elements influencing computa-

tional costs are the setting of the tolerance for the Newton algorithm (difference between the

solutions of two successive iterations), in our case set to 10−8. The numerical approxima-

tion of steady Navier-Stokes equations has been carried out by using a parametrized version

of MLife, a FEM library [139] in Matlab-PDE toolbox environment where we have consid-

ered P
2 − P

1 elements for velocity and pressure, respectively, over a triangulation of O(104)

elements (see also Gresho and Sani [46]). The sparse linear system has been solved using

Pressure-Matrix Method [127] (which is a block LU type decomposition of the system matrix)

to compute velocity in two steps and to decouple the calculation of pressure from velocity

(see [127]). The iterative methods used to solve the linearized system at each iteration have

been GMRES and Bi-CGSTAB [129]. To improve computational efficiency we have used

Cahouet-Chabard Preconditioner, see [22].
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Figure 7.9: Reduced basis online mean computational costs in comparison with finite element

simulation (left) and H1 reduced basis velocity error increasing N (right) for channel flow at

low Reynolds numbers.

We observe that the use of reduced basis is providing real time solutions (or related out-

puts) of a non-linear parametrized problems, whose solution would be quite expensive even

if considering efficient FEM solvers. The importance of real time accurate solutions increases

when considering optimization problems involving also non-affine geometrical parametric de-

pendence, as seen in the example of the furrowed channel.

7.9 The bypass problem

We retake into consideration the parametrized bypass of Figure 7.11 configuration with the

vector of parameters µ = {t,D,L, S,H, θ, υ} ∈ Dµ ⊂ R
P with Dµ given by:

[tmin, tmax] × [Dmin, Dmax] × [Lmin, Lmax] × [Smin, Smax] × [Hmin,Hmax] × [θmin, θmax] ×
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Figure 7.10: Reduced basis online mean computational costs for channel flow at higher

Reynolds numbers.

[υmin, υmax], already considered in Section 6.5.2. This test problem deals both with affine

and non-affine parameters dependence in different subdomains and it is the application of

the formulation introduced in Section 7.6. The aim of the test is to combine the study of

affine and non-affine terms in the same non-linear problem by varying different geometri-

cal parameters and then to test reduced basis convergence, extract output information and a

sensitivity analysis on parameters. Referring to notation in Section 7.6 we have RG = 3 (num-

ber of subdomains with affine dependence, i.e. Ω2,Ω3,Ω4), RT = 1 (number of subdomains

with non-affine dependence, i.e Ω1). The coordinate transformation in Ω1 with non-affine

parameter dependence is given by:
{
x1 = 1

H x̂1

x2 = 1
t (x̂2 − (υH2x1(x1 − 1) +Hx1 tan(θ))).

(7.9.1)

We recall that the role of parameters t andH is to stretch subdomain Ω1 (as L, S,D stretch the

remaining subdomains), the parameter υ introduces a curvature in the walls of the incoming

branch of the bypass and θ is responsible for a rigid rotation by letting the graft angle vary.

The tensors for viscous bilinear terms are given by:

ν1
T = ν

[ t
H −(tan θ + 2υHx1 − υH)

−(tan θ + 2υHx1 − υH) (1+(tan θ+2υHx1−υH)2)
t H

]
; (7.9.2)

ν2
G = ν

[ S
D 0

0 D
S

]
; ν3
G = ν

[ t
D 0

0 D
t

]
; ν4

G = ν
[ L

D 0

0 D
L

]
. (7.9.3)

The tensors for pressure, divergence and transport terms are given by:

χ1
T = π1

T =
[ t −H(tan θ + 2υHx1 − υH)

0 H

]
; χ2

G = π2
G =

[ S 0

0 D

]
; (7.9.4)

χ3
G = π3

G =
[ t 0

0 D

]
; χ4

G = π4
G

[ L 0

0 D

]
. (7.9.5)
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We apply empirical interpolation expansion to the components of tensors ν 1
T , χ1

T and π1
T and

we build the reduced basis approximation spaces for velocity and pressure.
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Figure 7.11: Geometrical scheme for the bypass test problem (physical domain and reference

one).

We have carried out some tests based on the same geometry considering five different varying

parameters (we have frozen L and H). In particular we are interested in varying graft angle θ

and curvature υ (defining the upstream geometry) and the ratio t
D . In Figures 7.12 and 7.13

we report numerical results (max and mean H1 errors on velocity and L2 errors for pressure)

considering several configurations at different N for two different maximum interpolation

error εmax = 10−5 and then εmax = 10−8 to avoid to have interpolation error dominating our

approximation with the constant “plateau” in error plots.
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Figure 7.12: H1 relative errors on velocity with different εmax interpolation error imposed on

all gjM (x, µ) (testing hundreds of different configurations with 5 different parameters varying).

7.9.1 Outputs sensitivities

We conclude this section with two different studies on the bypass problem providing a com-

parison between Stokes and Navier-Stokes solutions (and outputs) and some considerations

about the influence of curvature of the upper stream geometry. The ratio t
D is the most im-

portant parameter and it is responsible of recirculation in the host artery, but also curvature
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Figure 7.13: L2 relative errors on pressure with different εmax interpolation error imposed on

all gjM (x, µ) (testing hundreds of configurations with 5 different parameters varying).

has a role. The ratio S
D becomes important if we freeze t

D and so the graft angle θ.

Figure 7.14 (left) shows a comparison between the vorticity output functional calculated with

Stokes and Navier-Stokes equations. We can see that the “low fidelity” method is a good

approximation only if the ratio t
D is less than unity and this is our case, otherwise if the

bypass diameter t is too small with respect to the arterial diameter D a strong recirculation

arises in the host vessel and also vorticity increases considerably. These phenomena are not

well captured by the linearized model. An optimized value of quantity t
D is in the range

[0.85 − 0.96]. This test gives us important information about the fidelity of our model and

it allows a generalization of results available in the literature, especially provided by experi-

mental research activity and surgical experience.

Figure 7.14 (right) shows the behavior of vorticity varying the curvature of the upstream

(inflow) geometry. Increasing the curvature υ the vorticity diminishes: this behavior can be

explained by the fact that curvature is guiding the flow more smoothly. An interesting analy-

sis can be obtained introducing the Dean number, representing the ratio of the square root

of the product of the inertial and centrifugal forces to the viscous forces, defined as follows

De = 4
[D
R

] 1

2

Re, (7.9.6)

where R is the radius of curvature and Re the Reynolds number. See also Doorly and Sherwin

in [141]. If we do not have curvature the Dean number is equal to zero. In the case we have

considered, the range of the Dean number was [0, 2.31 ·Re]. By increasing the Dean number

(and so curvature, the inverse of the curvature radius) makes the peak velocity to increase, but

at the same time the velocity peak is displaced away from the centre of curvature. Note that

De = 0 corresponds to a case in which we have a centered velocity profile of Hagen-Poiseuille

type. In our case the displacement of the peak velocity profile allows the blood to be driven

into the host vessel more smoothly and to better adapt the upstream inflow condition at

the junction geometry. In our case the critical zone of the bypass near the upper wall has

lower mean velocity. The introduction of the upstream curvature has been discussed also in
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Papaharilaou, Doorly and Sherwin [108]. Results in Figure 7.14 (right) refers to a graft angle

of 45 degree and a ratio t
D = 1.
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Figure 7.14: Distributed vorticity [m2s−1] varying t
D and comparison between Stokes (∗) and

Navier-Stokes (∆) flows (left); distributed vorticity [m2s−1] and curvature (right).

7.10 Conclusions

In this chapter we have extended the use of reduced basis methodology to non-linear problems

in domains with non-affine parametric dependence. This extension has allowed us (i) to get

useful and more realistic information about parametrized bypass configuration; (ii) to compare

previous results from low fidelity method (Stokes based) with the new higher fidelity ones; (iii)

to use the reduced basis as an optimization method itself in our haemodynamic application

and not only as a pre-process optimization tool to investigate a coarse bridge configuration.

When we are considering problems with an increasing complexity, such as the ones with

non-linearities and non-affine parametrization, the use of reduced basis method becomes even

more competitive and computational savings are more relevant.

In the next chapter we provide some perspectives in developing reduced basis for optimal

control problems but with results not specifically oriented to our bypass application, but

more oriented on haemodynamics related problems.



Chapter 8

Perspectives in Flow Control by

Reduced Basis Methods

In this conclusive chapter we provide some perspectives on the use of reduced basis in parame-

trized flow control problems. We consider a different kind of problem: an advection-diffusion

scalar problem in order to investigate possible extensions of the use of reduced basis for opti-

mal control problems in parametrized domains by combining the solutions of state and adjoint

problems. With this chapter we conclude the guidelines which led us from numerical simulation

to optimal control by reduced basis methods.

8.1 Introduction

Control problems solved with the reduced basis methods were already presented by Ito and

Ravindran since 1998 in [62], [63], and [64] without considering multi-parametric problems

and geometrical parameters, and so adopting different solution procedures. Parameters can be

divided into three classes: control (i.e depending, in some way, on control function), physical

(like velocity field or diffusivity) and geometrical (i.e. related to different domain configura-

tion). We are going consider all these parameter classes to be able to solve many different

“kind” of control problems.

As a case study, we consider an advection-diffusion problem which can be seen in the frame-

work of life sciences, considering, for example, an application related with the release of drugs

or chemical elements (solutes) in blood or, more generally, physiological flows. See the work

by Quarteroni, Veneziani and Zunino in [130] and [131]. The modelling of advection-diffusion

phenomena can be useful in biomedical field for the setting, for example, of appropriate peri-

toneal dialysis procedures or the design of drug eluting stents. See, for example, Zunino

[170]. The goal can be the regulation of the substance emission by some sources in order to

keep concentration at a desired and/or acceptable level over an observation area. A similar

problem arises in environmental fluid dynamics. See, for example, [122].

In Section 8.2 we formulate a generic control problem for a linear time-independent advection-

diffusion equation using Lagrangian formulation. In Section 8.3 we describe the reduced basis

173
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approximation for the solution of the parametrized equations governing the control problem.

In Section 8.4 we describe very briefly an example of optimal flow control problem by applying

the formulation presented in Section 8.2 to derive our model. In Section 8.5, 8.6 and 8.7 we

present the parametrized state and adjoint equations, some results and an example in the

case of control, physical and geometrical input, respectively. In Section 8.8 we report some

concluding remarks and further perspectives. Section 8.9 is a quick note on time dependent

problems. Other very recent applications of reduced basis methods are provided in the field

of optimal control by Grepl [44] (unsteady advection-diffusion problems) and by Nguyen [103]

in the field of inverse problems with non-affine parametric dependence.

8.2 Optimal control problem for advection-diffusion equations

8.2.1 A formulation for optimal control problem based on Lagrangian

We recall that the goal of an optimal control problem is to find the function u ∈ U in order

to minimize the cost functional J = J(u), where w is the solution of the state equation, i.e.:

find u ∈ U so that J(u) is minimized and Aw = f +Bu,∀v ∈ V, (8.2.1)

with U and V being two Hilbert spaces. The differential operator A is an elliptic operator

defined on V with values in V ′, B is an operator defined on U and valued in V ′ which introduces

control variable u in the state equation, f is a source field. To analyze optimal control

problems, we adopt the Lagrangian approach [15], equivalent to optimal control classical

analysis, developed for example by Lions in [82]. By introducing the Lagrangian multiplier p

and the Lagrangian functional:

L(w, p, u) = J(u) + 〈p,Aw − f −Bu〉,

the unique solution of problem (8.2.1) is determined by solving the PDE system:

∇L(w, p, u) = 0.

The weak form of the state equation is:

a(w,ϕ) = (f, ϕ) + b(u, ϕ), ∀ϕ ∈ V,

where a(·, ·) is the bilinear form associated to the elliptic operator and b(·, ·) is the bilinear

form associated to the control term Bu. The cost functional can be expressed as:

J(u) =
1

2
‖Cw − zd‖

2 +
1

2
n(u, u), (8.2.2)

where operator C brings state variable w into the observation space (an Hilbert space), zd is

the desired observation function, that is the optimal control problem goal, and n(·, ·) is an

Hermitian form. Let’s denote the product (·, ·) as the L2 scalar product. The Lagrangian

functional con be expressed as:

L(w, p, u) = J(u) + b(u, p) + (f, p) − a(w, p),
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so that the optimal control solution can be calculated solving the following problem:

find (w, p, u) ∈ V × V × U : ∇L(w, p, u)[(ϕ, φ, ψ)] = 0, ∀(ϕ, φ, ψ) ∈ V × V × U .

We have then: 



Lw[ϕ] = (Cw − zd, Cϕ) − a(p, ϕ) = 0, ∀ϕ ∈ V,

Lp[φ] = (f, φ) + b(u, φ) − a(w, φ) = 0, ∀φ ∈ V,

Lu[ψ] = b(p, ψ) + n(u, ψ) = 0, ∀ψ ∈ U .

The differential Lp corresponds to the weak form of the state equation, Lw to the adjoint

equation and Lu is an optimal control constraint. The variable p is the adjoint variable and

it expresses the cost functional sensitivity to the variations of the control variable u.

The optimal control constraint Lu[ψ] can be related to the strong derivative J ′(u) by means

of the cost functional definition (8.2.2) and the Riesz theorem. In particular we can write

Lu[ψ] = 〈J ′(u), ψ〉 = (J ′(u), ψ), since the functional Lu[ψ] is linear and bounded and ψ be-

longs to an Hilbert space [127].

To solve the control problem, we adopt an iterative method. Starting from an initial value for

control variable u0, we solve the state equation; then we compute cost functional value and

we resolve the adjoint equation. Once p is known, we determine cost functional derivative J ′

and apply a suitable stopping criterium. If this criterium is not fulfilled, we start an iterative

process on control function u; we adopt, for instance, the steepest descent method:

uk+1 = uk − τkJ ′(uk), (8.2.3)

where τk is a relaxation parameter, whose value can be determined by control problem prop-

erties, see for example Agoshkov [6]. The iterative process ends with the optimal control

criterium fulfillment.

8.2.2 Optimal control problem governed by advection-diffusion equations

Let us consider the following state equation of our problem:





−∇ · (ν∇w) + V · ∇w = u in Ω ⊂ R
2,

w = 0 on ΓD,
∂w
∂n̂ = 0 on ΓN ,

(8.2.4)

where w is the state variable, u the control function defined on the domain, V is the velocity

field and ν is the diffusivity, depending on the domain coordinates x = (x, y)T . A homoge-

neous Dirichlet condition is imposed on inflow boundary ΓD := {x ∈ ∂Ω : V(x) · n̂(x) < 0},

where n̂(x) is the unit vector directed outward, and a homogeneous Neumann condition on

the rest of the boundary (ΓN := ∂Ω\ΓD). Defining H1
ΓD

:= {v ∈ H1(Ω) : v|ΓD
= 0}, the

weak form of the state equation is:

find w ∈ H1
ΓD

: a(w,ϕ) = F (ϕ;u), ∀ϕ ∈ H1
ΓD
,
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where

a(w,ϕ) :=

∫

Ω
ν∇w · ∇ϕ dΩ +

∫

Ω
V · ∇w ϕ dΩ, (8.2.5)

F (ϕ;u) :=

∫

Ω
uϕ dΩ. (8.2.6)

We then define the observation of the system on a part D of the domain (D ⊂ Ω) with the

following cost functional:

J(u) =
1

2

∫

D

(
w(u) − zd)

2dD,

where zd is the desired observation.

It is now possible to write the Lagrangian functional:

L(w, p, u) = J(u) + F (p;u) − a(w, p),

where w, p ∈ H1
ΓD

(Ω) and u ∈ L2(Ω). By differentiating it with respect to the state variable,

we obtain the weak form for the adjoint equation:

find p ∈ H1
ΓD

: aad(p, φ) = F ad(φ;w), ∀ϕ ∈ H1
ΓD
,

where

aad(p, φ) :=

∫

Ω
ν∇p · ∇φ dΩ +

∫

Ω
V · ∇φ p dΩ, (8.2.7)

F ad(φ,w) :=

∫

Ω
(w − zd) g(x, y) φ dD, (8.2.8)

whose strong form is:




−∇ · (ν∇p+ V · p) = mD(w − zd) in Ω,

p = 0 on ΓD,

ν ∂p∂n̂ + V · n̂ p = 0 on ΓN ,

where mD is the characteristic function of the subdomain D.

By differentiating the Lagrangian functional with respect to the control function u, we obtain

the weak form of the optimal condition constraint:

Lu[ψ] = 〈J ′(u), ψ〉 = (J ′(u), ψ) =

∫

Ω
pψ dΩ = 0, ∀ψ ∈  L2(Ω).

We solve our problem using an iterative method where the variation of control function is

led by a gradient method. From the optimal control constraint, we can derive a stopping

criterium for the iterative method. At k − th step of the iterative method:

• we solve state equation

find wk ∈ H1
ΓD

: a(wk, ϕ) = F (ϕ;uk), ∀ϕ ∈ H1
ΓD

;

• we solve adjoint equation

find pk ∈ H1
ΓD

: aad(pk, φ) = F ad(φ;wk), ∀ϕ ∈ H1
ΓD

;
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• if the stopping criterium is not satisfied, we update control function

uk+1 = uk + δuk δuk = −τkpk.

The stopping criterium adopted [32] is:

‖pk‖L2 < tol, (8.2.9)

that is we check if adjoint variable p L2-norm is too small (according to our fixed tolerance

tol) to produce a significative variation δuk on the new control function uk+1.

8.2.3 Numerical discretization and stabilization

Since the state and adjoint equations are both advection-diffusion equations and transport

term can dominate the diffusion one, a suitable stabilization is needed. We adopt the Stabilized

Lagrangian [32], instead of stabilizing separately state and adjoint equations in a conventional

manner [127]. In this way, stabilization is not only based on a strongly consistent method,

but also there is coherence between state and adjoint stabilized equations.

In this thesis we have adopted the approach “optimize-then-discretize” to solve optimal control

problems, as seen in Chapter 2, 3 and 4; we have firstly formulated an optimality condition,

from this condition we have built an adjoint problem and then we have discretized both state

and adjoint equations. In this chapter we use the same approach to be coherent; an alternative

approach would be the so-called “discretize then optimize” which has been considered for the

same kind of problem in [124].

Indicating with the subscript h the discretized quantities, the stabilized state equation reads:

find wh ∈ Xh : ah(wh, ϕh) = Fh(ϕh;uh), ∀ϕh ∈ Xh, (8.2.10)

where:

ah(wh, ϕh) := a(wh, ϕh)−

∑

K∈Th

δK

∫

K

(
−∇ · (ν∇wh) + V · ∇wh

)(
−∇ · (ν∇ϕh + Vϕh)

)
dK,

Fh(ϕh;uh) := F (ϕh;uh) −
∑

K∈Th

δK

∫

K
uh

(
−∇ · (ν∇ϕh + Vϕh)

)
dK.

The terms a(wh, ϕh), F (ϕh;uh) are defined in (8.2.5), (8.2.6) and wh, uh are discrete ap-

proximation of the functions w, u. The space Xh ⊂ H1
ΓD

is the finite element one. The

finite element solution is computed over the grid Th, so that the computational domain is

Ω =
⋃
K∈Th

K.

The adjoint equation is:

find ph ∈ Xh : aadh (ph, φh) = F adh (φh;wh;uh), ∀φh ∈ Xh, (8.2.11)

where:

aadh (ph, φh) := aad(ph, φh)−



178 CHAPTER 8. PERSPECTIVES IN FLOW CONTROL BY REDUCED BASIS

∑

K∈Th

δK

∫

K

(
−∇ · (ν∇ph + Vph

)(
−∇ · (ν∇φh) + V · ∇φh

)
dK,

F adh (φh;wh;uh) := F ad(φh;wh) −
∑

K∈Th

δK

∫

K

(
mD

(
wh − zd

)
·

·
(
−∇ · (ν∇φh) + V · ∇φh

)
+
(
−∇ · (ν∇wh) + V · ∇wh − uh

)
mDφh

)
dK.

Note that the terms F ad(φh;wh) are defined in (8.2.7) and (8.2.8), while ph is the discrete

approximation of functions p.

8.3 Reduced basis method for optimal control

As anticipated in Section 8.1, we can consider an input parameter of three different types:

• control input µu, which define control function u = u(µu);

• physical input µp, for example, velocity field V and/or viscosity ν;

• geometrical input µg, that is geometrical parameters which can vary the configuration

of the domain.

We make this distinction into parameter classes in order to be able to consider several aspects

(advection fields, diffusivity terms, localization of sources for releases, ect.) of the same

problem: even if, in reality, we are solving different “types” of problem. Of course, input

can be combined together to form, for example, a control-physical input. In this section, for

convenience, we refer to a generic input µ = {µu, µp, µg}, without specifying its nature.

We introduce a set of parameter samples SN = {µ1, ...,µN}, where µn ∈ D, n = 1, ..., N . For

each input vector in SN , we calculate using the finite element method a solution of the state

equation wh(µn) in the space Xh; we choose a discretization enough refined to ensure that

the solution in the high-dimensional space Xh is “in good agreement” with the exact solution

in H1
ΓD

. We do the same for the adjoint problem (note the similarity of this approach with

the one used to set the dual residual method to correct the cost functional in Section 5.10):

find a set of N samples SadN = {µ1
ad, ...,µ

N
ad}, where µn

ad ∈ D, n = 1, ..., N , and compute the

finite element approximation of the adjoint variable ph(µn
ad) ∈ Xh. The two sets SN and

SadN are chosen independently. Also the reduced basis formulation and the basis construction

procedure have been influenced by our choice of using the approach “optimize-then-discretize”

for optimal control problem. We introduce the following reduced basis spaces:

WN = span{ζn ≡ wh(µn), n = 1, ..., N} (8.3.1)

for the state problem and

ZN = span{ξn ≡ ph(µnad), n = 1, ..., N} (8.3.2)
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for the adjoint problem. Starting from the state variable, we look for an approximation wN (µ)

to wh(µ) in WN ; in particular we express wN (µ) as:

wN (µ) =

N∑

j=1

wNj
(µ)ζj = (wN (µ))T ζ, (8.3.3)

where wN (µ) ∈ R
N is the column vector of the linear combination coefficient wNj

, j = 1, ..., N .

Let pN be the reduced basis approximation of the adjoint variable:

pN (µ) =
N∑

j=1

pNj
(µ)ξj = (p

N
(µ))T ξ. (8.3.4)

The goal is to represent accurately the solution of state and adjoint problem at some new point

in parameter space, µnew, as an appropriate combination of solutions previously computed

at a small number of sample points in parameter space (µn and µnad, n = 1, ..., N). In this

case we are interested in solving the optimal control problem and finding the control function

evaluating the cost functional in a rapid, reliable and repeated way.

At each iterative step of the method adopted to solve the control problem, for the given µ ∈ D

and the given control function u (8.2.3):

• we compute the reduced basis approximation of the state variable wN (µ) ∈WN , where

a(wN (µ), v;µ) = F (v;u), ∀v ∈WN ;

• once wN is available, we determine the solution pN ∈ ZN of the adjoint equation:

aad(pN (µ), φ;µ) = F ad(φ,wN (µ)), ∀φ ∈ ZN ;

• we evaluate the reduced basis approximation of our output, i.e. the cost function

J(u,wN ) and the adjoint variable pN , which allows us to check whether the stopping

criterium is satisfied.

To apply the reduced basis method, we suppose, as usual, that for some finite (preferably

small) integers Q and Qad, the bilinear forms a(·, ·;µ) and aad(·, ·;µ) may be expressed as:

a(w, v;µ) =

Q∑

q=1

σq(µ)aq(w, v), ∀w, v ∈ H1
ΓD
, ∀µ ∈ D,

aad(p, φ;µ) =

Qad∑

q=1

σqad(µ)aqad(p, φ), ∀p, φ ∈ H1
ΓD
, ∀µ ∈ D,

for some σq(µ) : D → R, aq : H1
ΓD

×H1
ΓD

→ R, q = 1, ..., Q and for some σqad(µ) : D → R,

aqad : H1
ΓD

×H1
ΓD

→ R, q = 1, ..., Qad. We assume also affine parameter dependence for the

functionals F and F ad.

Coming to the matrix form, we define the matrices AN (µ) = a(ζ i, ζj;µ) and AadN (µ) =
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aad(ξi, ξj ;µ), 1 ≤ i, j ≤ N and the vectors FN = F (ζj, u) and F adN = F ad(ξj , wN ), 1 ≤ j ≤ N .

We observe that:

AN (µ) =

Q∑

q=1

σq(µ)Aq, (8.3.5)

AadN (µ) =

Qad∑

q=1

σqad(µ)Aqad,

where Aqi,j = aq(ζi, ζj), 1 ≤ i, j ≤ N , 1 ≤ q ≤ Q and Aqadi,j
= aqad(ξ

i, ξj), 1 ≤ i, j ≤ N ,

1 ≤ q ≤ Qad. Note that Aq, 1 ≤ q ≤ Q and Aqad, 1 ≤ q ≤ Qad are independent of input

parameter µ.

We can then reformulate the state equation as: given µ ∈ D, find the unique solution wN (µ)

to

AN (µ)wN (µ) = FN ; (8.3.6)

and the adjoint equation as: given µ ∈ D and wN (µ), find the unique solution p
N

(µ) to

AadN (µ)p
N

(µ) = F adN . (8.3.7)

8.3.1 Computational procedure: off-line/on-line decomposition

The matrices and vectors introduced in the previous section are assembled in two different

steps: the parameter-dependent (online, many queries) and the parameter-independent ones

(off-line, computed once).

In the off-line stage, we find the ζ i, the ξi, i = 1, ..., N and form the Aq , for 1 ≤ q ≤ Q, the

Aqad, for 1 ≤ q ≤ Qad and FN , F adN . The online stage, for any given new µ, we only need to

form AN (µ) from the Aq, AadN (µ) from the Aqad, then solve (8.3.6) for wN (µ) and (8.3.7) for

p
N

(µ) and finally evaluate J(u,wN ;µ).

Note that the two processes are completely decoupled. Also in this case the expensive off-line

computation be processed at an early stage and needs to be done only once. The efficient

online computation can then be used for very fast evaluations of outputs at different point

in the parameter space. The incremental cost to evaluate, for example, JN (µ) for any given

new µ is very small: (i) N is very small, typically O(10) thanks to the good convergence

properties of WN and ZN [134]; (ii) (8.3.6) and (8.3.7) can be assembled and inverted very

rapidly.

8.3.2 Error on control and error on cost functional

As seen, while solving a simple equation, for example the state equation, the reduced basis

approach looks for an approximation wN (µ) to wh(µ) in WN , presuming that wh(µ) is suffi-

ciently close to w(µ). This means that we make no distinction between the actual solution

and the finite element solution computed on a grid refined enough for our purposes. When

dealing with an optimal control problem, it is important to check that the problem solved

with the finite element method and the one solved with the reduced basis method converge to
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the same solution, although they evolve separately. To this aim, we define εu as the L2 error

on control function u at convergence and εJ as the L2 error on cost functional at convergence:

εu =

∫

Q
(ufh − ufN )2dΩ,

εJ = |Jf (uN , wN ) − Jf (uh, wh)|.

The index f refers to the values at convergence, i.e. at last iteration, and ufh and ufN are

given by:

ufh = uf−1
h − τJ ′(uf−1

h ) = u0 − τ

f−1∑

i=1

J ′(uih),

ufN = uf−1
N − τJ ′(uf−1

N ) = u0 − τ

f−1∑

i=1

J ′(uiN ),

where u0 is the initial control function.

We note that:

εu =

∫

Q
(ufh − ufN )2dΩ =

∫

Q

(
τ

f−1∑

i=1

(
J ′(uiN ) − J ′(uih)

))2
dΩ,

and, since J ′ = p by means of Riesz theorem [32]:

εu =

∫

Q

(
τ

f−1∑

i=1

(
piN − pih

))2
dΩ.

This means that the L2 error on control function u at convergence depends on the sum,

extended to all previous iterations, of the errors on adjoint variable, multiplied by relaxation

parameter τ > 0. So the larger number of iteration to converge, the larger εu is. We want

that even in the worst case (many iteration before converging), εu is reasonably acceptable.

We use an adaptive procedure for the construction of the basis as seen in Section 5.4 and A.5

(see also [135]), so that the dimension of the reduced basis N is large enough to ensure that

the errors εu and εJ are “small” in any case.

To have an idea of how J(uN , wN ), J(uh, wh) and εu vary at each iteration, see Section 8.5.4

and Section 8.6.4.

8.4 An application to flow control

We consider now a type of control problem with the aim of regulating a generic substance

emission by some sources into a fluid (for example a physiological flow) in order to achieve

a desired concentration level or to maintain the concentration level below a fixed threshold

over an observation area in the domain. This kind of problem is a parametrized extension of

the one in [32]. Preliminary results are reported in [124] dealing with a different application.

We refer to the domain in Figure 8.1 where we have positioned three different sources Q1,
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Figure 8.1: Reference domain for advection-diffusion problem.

Q2, Q3 emitting certain substances, while D is an observation area. Our goal is to provide

an example of a systematical method to control emission by some release sources so that the

concentration of the eluted substance over a certain area D is acceptable (i.e., at a desired

level), taking into account advection field and diffusivity conditions in a stationary frame (an

unsteady frame is provided in Section 8.9). In Figure 8.2 we report three different functions

describing the diffusivity ν considered in our test cases. We consider the state equation
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Figure 8.2: Three different diffusivity coefficients: ν1, ν2, ν3.

(8.2.4), where ν can also be dependent on V, describing the mean motion of the fluid, instead
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of exactly representing pointwise velocity. Diffusivity ν may depend also on the problem

type and domain geometry (x coordinate). We assume u =
∑3

i=1 uimQi
, being mQi

the

characteristic function of the i-th source and ui the rate of emission from the i-th source.

Then quantity (8.2.6) can be written as:

F (ϕ;u) =

3∑

i=1

∫

Qi

uiϕ dQi.

Solving the control problem with the iterative method, at each step we update control function

in the following way:

δuk =
3∑

i=1

δuki = −τ
3∑

i=1

pmQi
.

8.5 Control input: variable emission rates

As first test we consider a two component control input parameter µu = {u1, u2}. We fix a

total emission value utot = 27 mgs−1 corresponding to a certain release of substances in the

physiological fluid, for example. Therefore we write u3 = 27 − u1 − u2 and µu ∈ D, where

D = [0, 27] × [0, 27] with u1 − u2 ≤ 27.

8.5.1 Parametrized state equation

To compute the reduced basis approximation of the state variable (8.3.3), we need to find the

N unknown components wNj
(µu) by solving the problem:

ah(wN (µu), ζi) = Fh(ζi) i = 1, ..., N, (8.5.1)

where

ah(wN (µu), ζi) =

N∑

j=1

N∑

i=1

wNj
(µu)

[ ∑

K∈Th

∫

K
ν∇ζj · ∇ζi +

∑

K∈Th

∫

K
(V · ∇ζj)ζi+ (8.5.2)

∑

K∈Th

δK
hK
‖V‖

∫

K

(
−∇ν · ∇ζj + V · ∇ζj

)(
V · ∇ζi

)]
,

and

Fh(ζi) =

N∑

i=1

[ ∑

K∈Th

∫

K
u(µu)ζi +

∑

K∈Th

δK
hK
‖V‖

∫

K
u(µu)

(
V · ∇ζi

)]
. (8.5.3)

We define now the following matrices, related to the diffusive term, convective term and

stabilization term:

Ci,j =
∑

K∈Th

∫

K
ν∇ζj · ∇ζi, (8.5.4)

Bi,j =
∑

K∈Th

∫

K
(V · ∇ζj)ζi, (8.5.5)
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Si,j =
∑

K∈Th

δK

∫

K

(
∇ν · ∇ζi + ∇ · Vζi + V · ∇ζi

)(
−∇ν · ∇ζj + V · ∇ζj

)]
. (8.5.6)

The term ∇ν has only the component νx, being ν = ν(x). The matrix AN (8.3.5) can thus

be written as:

ANi,j
= Ci,j +Bi,j + Si,j.

In this simple and particular case, AN is independent of input parameter µu.

Let us define also the following column vectors:

Gi(µu) =
∑

K∈Th

∫

K
u(µu)ζi, (8.5.7)

Hi(µu) =
∑

K∈Th

δK
hK
‖V‖

∫

K
u(µu)

(
V · ∇ζi

)
, (8.5.8)

so that FN is:

FNi
(µu) = Gi(µu) +Hi(µu).

Both G and H depend on µu because ui = µiu on the i − th source and set to zero over the

remaining part of the domain. This assembling procedure of the right-hand-side is very fast.

The unknown vector wN (µu) is the solution of the system:

ANwN (µu) = FN (µu). (8.5.9)

8.5.2 Parametrized adjoint equation

The N unknown components pNj
(µu) for the reduced basis approximation of adjoint variable

(8.3.4) are the solution of the problem:

aadh (pN (µu), ξi) = F adh (ξi;wN , uh) i = 1, ..., N, (8.5.10)

where

aadh (pN (µu), ξi) =

N∑

j=1

N∑

i=1

pNj
(µu)

[ ∑

K∈Ti

∫

K
ν∇ξj · ∇ξi+ (8.5.11)

∑

K∈Th

∫

K

(
V·∇ξi

)
ξj+

∑

K∈Th

δK

∫

K

(
∇ν ·∇ξj+∇·Vξj+V·∇ξi

)(
−∇ν ·∇ξi+V·∇ξi

)]
, (8.5.12)

and

F adh (ξi;wN (µu);uh) =

N∑

i=1

[ ∑

K∈Th

∫

K
mD(wN (µu) − zd)ξi−

∑

K∈Th

δK

∫

K
mD(wN (µu) − zd)

(
−∇ν · ∇ξi + V · ∇ξi

)
−

∑

K∈Th

δK

∫

K
mD

(
−∇ν · ∇wN (µu) + V · ∇wN (µu) + uh

)
ξi

]
.
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Let C be the matrix (8.5.4), we now introduce Bad and Sad:

Bad
i,j =

∑

K∈Th

∫

K

(
V · ∇ξi

)
ξj = Bj,i, (8.5.13)

Sadi,j =
∑

K∈Th

δK

∫

K

(
∇ν · ∇ξj + ∇ ·Vξj + V · ∇ξj

)(
−∇ν · ∇ξi + V · ∇ξi

)]
= Sj,i. (8.5.14)

where Bj,i, Sj,i are defined by (8.5.5), (8.5.6).

The matrix AadN can be rewritten as:

AadNi,j
= Ci,j +Bad

i,j + Sadi,j .

Let Gad, Had, Iad ∈ R
N be the column vectors defined as:

Gadi =
∑

K∈Th

∫

K
mDξi, (8.5.15)

Had
i = −

∑

K∈Th

δK

∫

K
mD

(
−∇ν · ∇ξi + V · ∇ξi

)
, (8.5.16)

Iadi = −
∑

K∈Th

δK

∫

K
mD

(
−∇ν · ∇ξi + V · ∇ξi

)
ξi. (8.5.17)

All the matrices C, Bad, Sad and the vectors Gad, Had, Iad are computed off-line (i.e only

once and stored), while for every new µu we assemble online the right-hand-side F ad
N .

The unknown vector p
N

(µp) is the solution of system:

AadN pN (µu) = F adN (µu). (8.5.18)

8.5.3 Some results

We report in Table 8.1 the number of basis functions (for both state and adjoint equation),

the mean error on cost functional and on control function at convergence (computed on a high

number of random inputs) and the computational saving in the case of ν = ν2 and ν = ν3. We

have imposed tol = 10−7. The computational saving compares the time needed to perform

the on-line steps with the one necessary to complete a finite element simulation, using a mesh

with O(104) elements.

The number of basis functions and the saving percentage are the same for the two cases. The

orders of magnitude of the errors are nearly the same.

In Table 8.2 we report some details regarding only state equation: the mean H 1 error with

respect to the finite element solution (computed on a high number of random inputs) and

the computational saving for the three different diffusivity conditions. The number of basis

functions for the reduced basis approximation of state problem is N = 7 for the three cases.

Dealing with a test case we calculated several errors on control function, on cost functional

and its gradient.
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ν N Mean error on J Mean H1 error on u Saving

ν1 7 1.4E − 11 2.5E − 5 90%

ν2 7 1.9E − 12 6.1E − 6 90%

Table 8.1: Control input: number of basis functions, mean errors on cost functional and

control function at convergence and time saving.

ν mean H1 error Saving

ν1 1E − 8 96%

ν2 2.1E − 8 94%

ν3 3.7E − 8 90%

Table 8.2: Control input for state equation: mean H 1 error and time saving for control input.

8.5.4 Example

We start from the following test case, where ν = ν2: the upper source is emitting at 45% of

utot and the central one is not active, that is µu = {1215, 0} [mgs−1]. The control problem

solved by the two methods (finite element and reduced basis) leads to the optimal solution:

the upper source emission rate is reduced to 3.49%, central source remains inoperating and

the lower one is at 55.02% of utot. Figure 8.3 shows the reduced basis approximation of initial

and optimal solution.

For this particular choice of µu, control problems solved with the two methods converge both

after 21 iteration. Since the number of iteration is the same (in this case), we can compare

cost functional values (J(wN , uN ) and J(wh, uh)) at each iteration and check the L2 error on

control function trend (Figure 8.4).
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Figure 8.3: Control input: initial reduced basis solution (right) and final reduced basis solution

(left) of state equation. Substance concentration is in [µg].
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Figure 8.4: Control input: comparison between J(wN , uN ) and J(wh, uh) at every iteration

(right) and L2-error on control function trend (left).

8.6 Physical input: variable emission rates and velocity field

This case is more complex: we consider an input made of four component µp = {u1, u2, Vx, Vy}.

Once again u3 = 27 − u1 − u2 mgs
−1, having imposed u1 + u2 ≤ utot, and we fix the velocity

absolute value |V| = 1. We assume that the velocity field of the advection term can vary

in direction of an angle ranging in [−40o, 90o]. As physical input one could also choose the

“diffusivity coefficient” ν.

8.6.1 Parametrized state equation

The N unknowns wNj
(µp) (8.3.3) are the solution of the problem (8.5.1), where ah and Fh

are respectively defined in (8.5.2) and (8.5.3).

The matrix AN can be written as follows:

ANi,j
(µp) = Ci,j + Vx · Bxi,j

+ Vy ·Byi,j
+ Si,j(µp), (8.6.1)

where C is the matrix (8.5.4), S is defined by (8.5.6) and Bx and By are given by:

Bxi,j
=
∑

K∈Th

∫

K
(Ux · ∇ζj)ζi, (8.6.2)

Byi,j
=
∑

K∈Th

∫

K
(Uy · ∇ζj)ζi, (8.6.3)

with Ux = (1, 0) and Uy = (0, 1); B = Vx ·Bx+Vy ·By, where B (8.5.5) is the matrix related

to the convective term.

The source term FN is given by:

FNi
(µp) = Gi(µp) +Hi(µp).
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All the parameter-independent matrices (C, Bx, By) are assembled in the off-line stage, while

matrices S, G, H, depending on the parameter in a non-affine way, must be built on-line for

each new µp. Always in the on-line stage, matrices AN (µp) e FN (µp) are assembled.

The unknown vector wN (µp) is the solution of the system:

AN (µp)wN (µp) = FN (µp). (8.6.4)

The difference between (8.5.9) and (8.6.4) is that in the latter also AN depends on input

parameter µp. To improve efficiency of the assembling procedure described above we may

apply the decomposition of non-affine terms by the empirical interpolation method described

in Chapter 6 while assembling S, G and H, specified in (8.5.6)-(8.5.8).

8.6.2 Parametrized adjoint equation

We want to find the weights of the combination (8.3.4), in order to have the reduced basis

approximation of the adjoint variable, solution of (8.5.10). Bilinear form aadh and functional

F adh are the same as in (8.5.11) and (8.5.12).

Let AadN ∈ R
N×N be the matrix:

AadNi,j
(µp) = Ci,j + Vx ·B

ad
xi,j

+ Vy · B
ad
yi,j

+ Sadi,j(µp),

where C is defined by (8.5.4), Sad is the stabilization matrix (8.5.14), now parameter-

dependent. The elements of matrices Bad
x and Bad

y are given by:

Bad
xi,j

=
∑

K∈Th

∫

K

(
Ux · ∇ξi

)
ξj = Bxj,i

,

Bad
yi,j

=
∑

K∈Th

∫

K

(
Uy · ∇ξi

)
ξj = Byj,i

,

with Ux = (1, 0) and Uy = (0, 1), while Bxj,i
and Byj,i

are (8.6.2) and (8.6.3). Moreover

Bad = Vx ·B
ad
x + Vy · B

ad
y , where Bad is the matrix related to the convective term (8.5.13).

Source term FN is given by:

F adNi
(µp) = Gadi +Had

i (µp) + Iadi (µp).

In this case, Had (8.5.16) and Iad (8.5.17) are parameter-dependent, since they depend on

velocity vector, while Gad (8.5.15) is parameter-independent. Also in this case an efficient

computational procedure should be used.

Unknown vector p
N

(µp) is the solution of system:

AadN (µp)pN (µp) = F adN (µp). (8.6.5)

Even in this case, the difference between (8.5.18) and (8.6.5) is that in the latter also AadN
depends on input parameter µp.
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8.6.3 Some results

The use of the reduced basis method to solve both state and adjoint equations, at each

step of our iterative method to solve control problem, implies several advantages from a

computational point of view. In the case of control and physical input we have time savings

up to 65 − 70%, which means that in the same time the finite element method solves just

one iteration (state + adjoint equation using a mesh with O(104) elements), the reduced

basis method solves 3 iterations. This is a good result dealing with optimal control problems,

which are not real-time problems, but time savings could be even improved if we can adopt a

stabilization method based on terms which can be built off-line. At the present, stabilization is

needed also for the reduced basis formulation; indeed, when using the non-stabilized Galerkin

method, we have a “plateau” as N → ∞, corresponding to the Galerkin residual evaluated

for the stabilized “truth” solutions.

In our case, we can fix velocity field (the desired online value) before applying optimal control

(at first iteration) and so we can build S and Sad offline or at a step we can call “pre-online”

for our optimal control problem. Note that the basis has been assembled offline considering

different values for velocity field.

We report in Table 8.3 the number of basis function, the mean error on cost functional and

on control function at convergence (computed on a high number of random inputs) and the

computational saving (having fixed the “online” velocity field at first iteration) for ν = ν2 and

ν = ν3, having imposed tol = 10−7. To understand the slight difference in the number of basis

functions, we need to compare the weight of the diffusive term and the one of the convective

term in AN (8.6.1). As diffusivity increases, diffusive term becomes dominant and so just

“few” basis functions are needed to have a good approximation of the solution depending on

convective velocity. Since for ν = ν3 diffusivity absolute value is greater, the convective term

is less influent and fewer basis functions are needed.

In Table 8.4 we report some details about only state equation: the mean H 1 error with

respect to the finite element solution (computed on a high number of random inputs) and

the computational saving for the three different diffusivity conditions. The number of basis

functions for the reduced basis approximation of state variable is N = 81 for ν = ν3 and

N = 132 for ν = ν2.

ν N Mean error on J Mean H1 error on u Saving

ν2 132 0.9E − 9 2.5E − 7 80%

ν3 81 0.5E − 9 1.1E − 7 80%

Table 8.3: Physical input: number of basis functions, mean errors on cost functional and

control function, at convergence, and time saving (including also error calculation).
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ν mean H1-error Saving

ν1 1.1E − 6 95%

ν2 3.8E − 7 95%

ν3 5.4E − 5 90 − 95%

Table 8.4: Physical input for state equation during optimal control (velocity field is fixed at

first iteration): mean H1 error and time saving. Without fixing the online velocity field at

first iteration computational saving are ∼ 65 − 70%.

8.6.4 Example

We choose the following input: u1 = 30%, and u2 = 40%, respectively, of utot and advection

field direction at 45o with respect to x-axis. Figure 8.5 shows the initial solution and the

solution at convergence, with the upper source emitting at 30.02%, the central one at 38.81%

and the lower one at 7.27%.

Also in this second case we choose a particular input parameter so that the control problems

solved with the reduced basis method and with the finite element method converge in the

same number of iteration. Once again we can compare cost functional values (J(wN , uN )

and J(wh, uh)) at each iteration and check the L2 error on control function trend (Figure

8.6). We notice that till the 5th iteration J(wN , uN ) < J(wh, uh), while from the 5th till

convergence J(wN , uN ) > J(wh, uh). The absolute value |J(wN , uN ) − J(wh, uh)| increases

at each iteration till it sets on a constant value. At the beginning, J(wN , uN ) < J(wh, uh)

because, as seen, reduced basis solution is always an under-estimation of the finite element

solution (see Appendix A). After some iteration, instead, J(wN , uN ) > J(wh, uh) because,

since reduced basis solution is an under-estimation, the source term of the adjoint problem

is inferior and so pN (µ) < ph(µ) on the whole domain; since J ′ = p, if J ′(uN ) < J ′(uh), it

means that J(wN , uN ) decreases less rapidly and so J(wN , uN ) is greater.
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Figure 8.5: Physical input: initial reduced basis solution (right) and final reduced basis

solution (left) of state equation. Concentration is in [µg].
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Figure 8.6: Physical input: comparison between J(wN , uN ) and J(wh, uh) at every iteration

(right) and L2 error on control function trend (left).

8.7 Geometrical input: parametrized domains

The goal of this section is to show how to combine optimal control problems with the calcula-

tion of geometrical sensitivity analysis and to solve a problem with a double aim: to achieve

the desired concentration into a zone and to optimize the distribution of sources by position-

ing them in the domain. The ultimate goal is, for example, the optimization of substances

release in the domain or in a subset of it.

We refer to Figure 8.7, the physical domain Ω̂ ⊂ R
2 is divided in seven subdomains Ω̂r,

r = 1, ..., 7. We have chosen the parameters µg as C1, C2, C3 and C4 [cm], with C1 +C2 = 3

and C3 + C4 = 3. The position of the central source is fixed, while the position C3 of the

upper one and the position C2 of the lower one can vary.

Moreover, we considered this kind of parametrized domain in order to be able to handle

some practical situations: for example where to place a new emission source. The method is

based on the affine mapping procedures from reference subdomains (the ones with C1 = 2,

C2 = 1, C3 = 1 e C4 = 2) to the true ones (Ωr → Ω̂r). Also in this case we can extend this

methodology to non-affine mappings dealing with non-Cartesian geometry.

8.7.1 Parametrized state equation

Let R be the number of subdomains in which the real domain is divided: Ω̂ =
⋃R
r=1 Ω̂r. From

the weak form of the state equation (8.2.10), we define the following bilinear and linear forms:

Â(ŵ, v̂) =
R∑

r=1

∫

Ω̂r

∂ŵ

∂x̂i
ν̂rij

∂v̂

∂x̂j
dΩ̂, (8.7.1)

B̂(ŵ, v̂) =

R∑

r=1

∫

Ω̂r

Vi
∂ŵ

∂x̂i
v̂dΩ̂,
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Figure 8.7: Scheme for the computational domain: subdomains and parameters.

F̂(v̂) =
R∑

r=1

∫

Ω̂r

ûv̂dΩ̂,

Ŝ(ŵ, v̂) =

R∑

r=1

∑

K̂∈T r
h

δK̂
hK̂
‖V‖

∫

K̂

(
Vi
∂ŵ

∂x̂i

)(
Vj

∂v̂

∂x̂j

)
dK̂,

Ĝ(v̂) =

R∑

r=1

∑

K̂∈T r
h

δK̂
hK̂
‖V‖

∫

K̂
û
(
Vi
∂v̂

∂x̂i

)
dK̂,

where 1 ≤ i, j ≤ d = 2 e ν̂ri,j = ν̂δi,j . For the sake of simplicity, we assume that diffusivity ν

and |V| are constant over the whole domain. The weak form of the stabilized state equation

in the real domain can be written as:

find ŵN (µ) ∈ ŴN : Â(ŵN , v̂) + B̂(ŵN , v̂) + Ŝ(ŵN , v̂) = F̂(v̂) + Ĝ(v̂) ∀v̂ ∈ ŴN .

We are interested in writing a partial differential equation depending on the set of geometrical

parameters given as input. We introduce an affine mapping from the “true” subdomains Ω̂r

into the corresponding Ωr. For any x̂ ∈ Ω̂r, r = 1, . . . , R, its image x ∈ Ωr is given by:

x = Gr(µg; x̂) = Gr(µ)x̂+ gr, 1 ≤ r ≤ R.

For convenience, we rename µg with µ. We thus write:

∂

∂x̂i
=
∂xj
∂x̂i

∂

∂xj
= Grji(µ)

∂

∂xj
, 1 ≤ i, j ≤ d = 2

and in the reference domain Ω we have:

A(w, v;µ) =

R∑

r=1

∫

Ωr

∂w

∂xi

(
Grii′(µ)ν̂ri′j′G

r
jj′(µ)|(Gr(µ))−1|

) ∂v
∂xj

dΩ,
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B(w, v;µ) =

R∑

r=1

∫

Ωr

Vi
∂w

∂xi

(
Grii′(µ)|(Gr(µ))−1|

)
vdΩ,

F(v;µ) =

R∑

r=1

∫

Ωr

(
û|(Gr(µ))−1|

)
vdΩ,

S(w, v;µ) =

R∑

r=1

∑

K∈T r
h

δK
hK
‖V‖

∫

K
Vi
∂w

∂xi

(
Grii′(µ)Grjj′(µ)|(Gr(µ))−1|

) ∂v
∂xj

Vj dK,

G(v;µ) =

R∑

r=1

∑

K∈T r
h

δK
hK
‖V‖

∫

K
ûVi

∂v

∂xi

(
Grii′(µ)|(Gr(µ))−1|

)
dK,

for 1 ≤ i, j ≤ 2, r = 1, ..., R.

The transformation tensors for bilinear forms are defined as follows:

νrij(µ) = Grii′(µ)ν̂ri′j′G
r
jj′(µ)|(Gr(µ))−1|, 1 ≤ i, j ≤ 2, r = 1, ..., R,

λrij(µ) = Grii′(µ)Grjj′(µ)|(Gr(µ))−1| =
νrij
ν̂ri′j′

, 1 ≤ i, j ≤ 2, r = 1, ..., R,

where νr is the diffusivity in the reference subdomains. For the linear forms we define:

χri (µ) = Grii′(µ)|(Gr(µ))−1|, 1 ≤ i ≤ 2, r = 1, ..., R.

Furthermore, we may define:

σq(i,j,r)(µ) = νrij(µ), Aq(i,j,r)(w, v) =

∫

Ωr

∂w

∂xi

∂v

∂xj
dΩ,

Φs(i,r)(µ) = χri (µ), Bs(i,r)(w, v) =

∫

Ωr

Vi
∂w

∂xi
v, dΩ, (8.7.2)

Υq(i,j,r)(µ) = λrij(µ), Sq(i,j,r)(w, v) =
∑

K∈T r
h

δK
hK
‖V‖

∫

K
Vi
∂w

∂xi

∂v

∂xj
Vj dK, (8.7.3)

Gs(i,r)(v) =
∑

K∈T r
h

δK
hK
‖V‖

∫

K
ûVi

∂v

∂xi
dK,

for 1 ≤ i, j ≤ 2, r = 1, ..., R, with q and s “condensed” indexes for combinations of i, j, r and

i, r.

We can now apply affine decomposition:

A(σ(µ), w, v) =

Qa∑

q=1

σq(µ)Aq(w, v), B(Φ(µ), w, v) =

Qb∑

s=1

Φs(µ)Bs(w, v),

S(Υ(µ), wN , v) =

Qa∑

q=1

Υq(µ)Sq(wN , v), G(Φ(µ), v) =

Qb∑

s=1

Φs(µ)Gs(v),

where max(Qa) = d× d×R and max(Qb) = d×R.

The reduced basis approximation of the stabilized state equation in the reference domain Ω

reads: find wN (µ) ∈WN such that

A(wN , v;µ) + B(wN , v;µ) + S(wN , v;µ) = F(v;µ) + G(v;µ), ∀v ∈WN .
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8.7.2 Parametrized adjoint equation

Let Â be the form (8.7.1); from the weak formulation of the adjoint problem (8.2.11), we

define:

B̂ad(p̂, v̂) =
R∑

r=1

∫

Ω̂r

p̂Vi
∂v̂

∂x̂i
dΩ̂ = B̂(v̂, p̂),

F̂ad(v̂) =

R∑

r=1

∫

Ω̂r

m̂D

(
ŵ − ẑd

)
v̂ dΩ̂,

Ŝad(p̂, v̂) =
R∑

r=1

∑

K̂∈T r
h

δK̂

∫

K̂

(
Vi
∂p̂

∂x̂i

)(
Vj

∂v̂

∂x̂j

)
dK̂,

Ĝad(v̂) = −
R∑

r=1

∑

K̂∈T r
h

δK̂

∫

K̂
m̂D

(
ŵN − ẑd

)(
Vi
∂v̂

∂x̂i

)
dK̂,

Ĥad(v̂) = −
R∑

r=1

∑

K̂∈T r
h

δK̂

∫

K̂
m̂D

(
Vi
∂ŵN
∂x̂i

)
v̂ dK̂,

for 1 ≤ r ≤ R, 1 ≤ i, j ≤ 2, where B̂ is defined by (8.7.1).

The reduced basis approximation of the stabilized adjoint problem in the real domain is:

find p̂N (µ) ∈ ẐNsuchthat:

Â(p̂N , v̂) + B̂ad(p̂N , v̂) + Ŝad(p̂N , v̂) = F̂ad(v̂) + Ĝad(v̂) + Ĥad(v̂) ∀v̂ ∈ ẐN .

In the reference domain, we have:

Bad(p, v;µ) =
R∑

r=1

∫

Ωr

Vi
∂v

∂xi

(
Grii′(µ)|(Gr(µ))−1|

)
p dΩ,

Fad(v;µ) =

R∑

r=1

∫

Ωr

(
m̂D

(
ŵ − ẑd

)
|(Gr(µ))−1|

)
v dΩ,

Sad(p, v;µ) =

R∑

r=1

∑

K∈T r
h

δK

∫

K
Vi
∂p

∂xi

(
Grii′(µ)Grjj′(µ)|(Gr(µ))−1|

) ∂v
∂xj

Vj dK,

Gad(v;µ) = −
R∑

r=1

∑

K∈T r
h

δK

∫

K
m̂D

(
ŵN − ẑd

)(
Vi
∂v

∂xi

)(
Grii′(µ)|(Gr(µ))−1|

)
dK,

Had(v;µ) = −
R∑

r=1

∑

K∈T r
h

δK

∫

K
m̂D

(
Vi
∂ŵN
∂xi

)(
Grii′(µ)|(Gr(µ))−1|

)
v dK.

We introduce:

Φs(i,r)(µ) = χri (µ), B
s(i,r)
ad (p, v) =

∫

Ωr

Vi
∂v

∂xi
p dΩ,
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S
q(i,j,r)
ad (pN , v) =

∑

K∈T r
h

δK

∫

K
Vi
∂pN
∂xi

∂v

∂xj
Vj dK, ∀v ∈ ZN ,

G
s(i,r)
ad (v) = −

∑

K∈T r
h

δK

∫

K
m̂D

(
ŵN − ẑd

)(
Vi
∂v

∂xi

)
dK,

H
s(i,r)
ad (v) = −

∑

K∈T r
h

δK

∫

K
m̂D

(
Vi
∂wN
∂xi

)
v dK,

for 1 ≤ i, j ≤ 2, 1 ≤ r ≤ R, where χri (µ) is defined by (8.7.1).

By the definitions above , we write:

Bad(Φ(µ), p, v) =

Qb∑

s=1

Φs(µ)Bsad(p, v), Sad(Υ(µ), p, v) =

Qa∑

q=1

Υq(µ)Sqad(p, v),

Gad(Φ(µ), v) =

Qb∑

s=1

Φs(µ)Gsad(v), Had(Φ(µ), v) =

Qb∑

s=1

Φs(µ)Hs
ad(v),

where Υq(µ) e Φs(µ) are respectively defined in (8.7.3) and (8.7.2).

The reduced basis approximation of the stabilized adjoint equation in the reference domain

Ω is: find pN (µ) ∈ ZN such that

A(pN , v) + Bad(pN , v) + Sad(pN , v) = Fad(v) + Gad(v) + Had(v) ∀v ∈ ZN .

At this point we solve a parametrized optimal control problem.

8.7.3 Geometrical sensitivity analysis

We fix the source release rates (u1 = 20% of utot = 27 mgs−1, u2 = 5% and so u3 = 75%), so

that the only variable parameters will be the geometrical quantities in order to get important

information on geometrical parameters sensitivity. With the adaptive assembling procedure

of Section 5.4, we find 35 basis functions.

We report in Figure 8.8 the result of the analysis for the parameterized domain of Figure 8.7.

We note that, fixing C3 (i.e. for a determined upper source position), substance concentration

over the observation zone decreases when C2 goes from 0.1 to 1.3, while for 1.3 ≤ C2 ≤ 2.9

there are no important variations. This is due to the fact that for C2 ≥ 1.3 the observation

area is out of the lower emission zone. If we keep constant the position C2 of the lower source,

we note that the concentration over the observation zone increases rapidly till it reaches its

maximum around C3 = 1 and then it decreases till C3 = 2.9. The explanation of this behavior

is that for C3 = 0.1 the observation zone is partially inside the emission wake, while for C3 = 1

it’s totaly inside of it. For C3 ≥ 1 the zone comes gradually out of the emission wake.
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Figure 8.8: Variations of substance concentration (in µg) over the observation zone when the

upper (C3) and lower (C2) source positions change.

8.7.4 Sensitivity analysis applied to control problem

The choice of geometrical inputs allows us to study the state variable sensitivity to domain

variations, to know how the concentration over the observation area varies according to the

geometrical changes. We want now to exploit this sensitivity analysis in solving the control

problem, in order to optimize the source emission level while keeping the concentration level

at an optimal level.

At this purpose we modify the iterative method adopted to solve the control problem. Starting

always from an initial value for control variable u0, we solve state and adjoint equations. Once

p is known, we check if the stopping criterium (8.2.9) is satisfied. At every iterative step in

which the adjoint variable does not satisfy the stopping criterium, instead of starting directly

an iterative process on control variable u, we try first to fulfill the criterium only by varying

the positions of upper and lower sources, for example. If we cannot satisfy it just by modifying

the geometry, then we update control variable value adopting the steepest descent method

(8.2.3). In this way we minimize the number of iteration on u. Figure 8.9 clarifies this new

combined technique for solving the control problem.

The number of input parameters for this test problem is six: the emission rates of the two

sources and the geometrical parameters of our model, i.e. µ = {u1, u2, C1, C2, C3, C4}. The

set of parameters µ belongs to D = [0, 27]× [0, 27]× [0.1, 2.9]× [0.1, 2.9]× [0.1, 2.9]× [0.1, 2.9].

We notice that for a number of basis functions N = 80, the reduced basis solution of the

control problem is a “good” approximation of the finite element solution, i.e. the mean H 1

error for random input is about 10−5. To verify that the control problem solved with the

finite element method and the one solved with the reduced basis method converged to the

same solution, we compute the two errors εu and εJ for a certain number of random input.
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Imposing tol = 10−7, we find that the order of magnitude for εu mean value is 10−5, while

for εJ mean value is 10−10.

For each of the random input we solve also the simple control problem without geometrical

sensitivity, that is the one which iterates only on control function: on an average the sensitivity

analysis increases the diffusivity of the substances emitted of around 15% on the total.

w(u)

u

J’J

z d

p

J’ < toltol

J’

J’ < tol

NO

NO

NO

YES

YES

YES

State Equation

Optimal Solution

Adjoint Equation

State Equation

Adjoint Equation

(RB)

(RB)

(RB)

(RB) µVariation of

Test on µ

k+1u      = u   −   J’( w  , u  )k kkτ

Figure 8.9: Scheme of the iterative process to solve control problem combined with sensitivity

analysis.

8.8 Some concluding remarks

We found out that adopting the reduced basis method for the solution of both state and

adjoint equations, at every steps of the iterative method used to solve the optimal control

problem, implies important advantages from a computational point of view. In the analyzed
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cases we found time savings up to 70%.

The reduced basis method shows also in this case great versatility. In fact we analyzed

different input parameter classes:

• control input - in our application this kind of input is related to the emissions from

sources, for example;

• physical input - this kind of input allows us to take into account advection and diffusivity

conditions;

• geometrical input - in order to consider the position of the emitting sources with respect

to the observation zone.

With all these different parametrization we are able to solve the control problem from a

global and decisional point of view, being able to consider, at the same time, several aspects

of the same problem. All the extensions to reduced basis methods introduced in the previous

chapters (Stokes and Navier-Stokes problems in domains with also non-affine parametric

dependence) are possible.

An other interesting aspect to consider in the efficient resolution of optimal control problems

is the mesh adaptivity and the influence of the mesh on the accuracy of cost functional

estimation. This aspect is developed in the work by Dedè and Quarteroni [32].

A further extension is the development of a posteriori error estimation in the reduced basis

context dealing with problem with non-affine geometrical parametric dependence.

8.9 Appendix: reduced basis for time-dependent problem

In this appendix we show very briefly how to solve an unsteady problem with reduced basis

considering also time as a parameter. An unsteady problem has been recently studied using

reduced basis method by Grepl in [44] and before by Ito and Ravindran in [64].

Indicating with w the concentration of a substance, with V a velocity field (for example given

by a Navier-Stokes simulation in the same domain) and with ν the diffusivity coefficient,

we consider the following state equation in Ω completed with properly initial and boundary

condition: 



∂w
∂t − ν4w + V · ∇w = β(x)u(t),

w = 0 on ΓD,

∇w · n̂ = 0 on ΓN ,

y(t = 0) = 0.

(8.9.1)

The right-hand-side is built as a product of two functions: β, depending on spacial coordinates,

indicating for example the zone of emission of a source and u, time dependent, indicating an

emission rate in time. Introducing H1
ΓD

= {v ∈ H1 : v|ΓD
= 0}, we can write the weak

formulation for the problem (8.9.1):

∀ 0 < t ≤ 1 find w(t) ∈ H1
ΓD

: a(w(t), ϕ) = F (ϕ, u(t)), ∀ϕ ∈ H1
ΓD
,
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where

a(w(t), ϕ) :=

∫

Ω

∂w

∂t
ϕ dΩ +

∫

Ω
ν∇w · ∇ϕ dΩ +

∫

Ω
V · ∇w ϕ dΩ,

F (ϕ, u) :=

∫

Ω
β(x)u(t)ϕ dΩ.

We introduce a triangulation Th of the domain and a time discretization in the interval [0, 1] s.

We approximate the temporal derivative with:

∂w

∂t
=
wk − wk−1

∆t
,

where wk = w(tk = k · ∆t), for k = 1, ..., Nk with Nk = 1/∆t. Using a strategy based on

backward Euler ([127]) we find the following discretized problem:

for 1 ≤ k ≤ Nk find w
k ∈ H1

ΓD
: ak(wk, ϕ) = F k(ϕ, uk), ∀ϕ ∈ H1

ΓD
,

where

ak(wk, ϕ) := ∆t−1

∫

Ω
wk ϕ dΩ +

∫

Ω
ν∇wk · ∇ϕ dΩ +

∫

Ω
Vk · ∇wk ϕ dΩ,

F k(ϕ, uk) :=

∫

Ω
β(x)ukϕ dΩ + ∆t−1

∫

Ω
wk−1 ϕ dΩ,

and Vk is the velocity field at the instance tk, while uk = u(tk).

For values of ν ∈ [0.1, 10] we note that the local Péclet number is always greater than unity

and so we need stabilization procedure (see [127]). Indicating with wk
h ∈ Xh the Galerkin-

Finite Element approximation at instance tk, the problem becomes the following:

find wkh ∈ Xh : ak(wkh, ϕh) + L
(ρ)
h (wkh, f, ϕh) = F k(ϕ, uk), ∀ϕh ∈ Xh.

so that L
(ρ)
h (wk, f, ϕh) = 0, ∀ϕh ∈ Xh. The formulation for L

(ρ)
h is:

L
(ρ)
h (wh, f, ϕh) =

∑

K∈Th

δK(Awh − f,S
(ρ)
K (ϕh))L2(K), (8.9.2)

where Aw = ∂w
∂t − ν4w + V · ∇w and f = β(x)u(t), while

SρK =
hK
‖V‖

[ASSϕh + ρ ·ASϕh],

with ASSϕh and ASϕh we indicate, respectively, the antisymmetric part and the symmetric

part of the operator Aϕh. We decide to use SUPG method so that ρ = 0 and we consider

only the following antisymmetric part of the operator A which is:

ASSϕh =
1

2

(
∇ · (Vϕh) + V · ∇ϕh

)
=

1

2

(
∇ ·V + V · ∇ϕh + V · ∇ϕh

)
= V · ∇ϕh,

and the stabilized problem becomes:

for 1 ≤ k ≤ Nk find w
k
h ∈ Xh : ak(wkh, ϕh) + sh(wkh, ϕh;uk) = F k(ϕh;uk), ∀ϕh ∈ Xh,
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sh(wkh, ϕh;uk) :=
∑

K∈Th

δK
hK

‖Vk‖

∫

K
(Awkh − f)(ASSϕh) dK

or its equivalent formulation:

for 1 ≤ k ≤ Nk find w
k
h ∈ Xh : akh(wkh, ϕh) = F kh (ϕh;uk), ∀ϕh ∈ Xh, (8.9.3)

where

akh(wkh, ϕh) := ak(wkh, ϕh) +
∑

K∈Th

δK
hK

‖Vk‖

∫

K
(∆t−1wkh + Vk · ∇wkh)(Vk · ∇ϕh) dK,

F kh (ϕh;uk) := F (ϕh;uk) +
∑

K∈Th

δK
hK

‖Vk‖

[ ∫

K
(∆t−1wk−1

h )(Vk · ∇ϕh) dK+

+

∫

K
βhu

k(Vk · ∇ϕh) dK
]
,

where hK is the diameter of K, δK is a parameter depending on the local Péclet number, βh
is the discrete approximation of β(x) function and Xh ⊂ H1

ΓD
is the finite element space (for

example P
1). The contribution to stabilization is zero on the elements where Vk is zero. The

output of interest (concentration) into a subdomain Ωs ⊂ Ω is:

s(ν, t) = |Ωs|
−1

∫

Ωs

w(ν, t) dΩ. (8.9.4)

8.9.1 Reduced basis formulation

We consider the input made up of the following vector of parameters: µ = (ν, tf ), where

tf ∈ [0, 1] s is the time instance of which we want to know the solution, µ ∈ D ⊂ R
2,

D = [0.1, 1] × [0, 1].

The reduced basis solution of problem (8.9.3) is indicated with yN (µ) and given by:

wN (ν, tk) =
N∑

j=1

wkNj
(µ)ζj =

N∑

j=1

wkNj
(µ)

N∑

i=1

ζji ϕi. (8.9.5)

The N unknowns wkNj
(µ) are calculated by solving the following problem:

akh(wN (µ), ζh;µ) = F kh (ζh) 1 ≤ h ≤ Ne 1 ≤ k ≤ Nk,

where

akh(wN , ζh;µ) =

N∑

j=1

N∑

h=1

wkNj
(µ)

N∑

i=1

N∑

l=1

ζji ζ
h
l

[
∆t−1

∑

K∈Th

∫

K
ϕi ϕl + ν

∑

K∈Th

∫

K
∇ϕi · ∇ϕl+

∑

K∈Th

∫

K
(Vk · ∇ϕi)ϕl +

∑

K∈Th

δK
hK

‖Vk‖

∫

K
(∆t−1ϕi + Vk · ∇ϕi)(V

k · ∇ϕl)
]
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and

F kh (ζh) =

N∑

j=1

N∑

h=1

wk−1
Nj

N∑

i=1

N∑

l=1

ζji ζ
h
l

[
∆t−1

∑

K∈Th

∫

K
ϕi ϕl+∆t−1

∑

K∈Th

δK
hK

‖Vk‖

∫

K
ϕi(V

k·∇ϕl)
]
+

N∑

h=1

N∑

l=1

ζhl

[ ∑

K∈Th

∫

K
βhu

kϕl +
∑

K∈Th

δK
hK

‖Vk‖

∫

K
βhu

k(Vk · ∇ϕl)
]
.

We define M , C, B, S, as mass matrix, stiffness matrix, transport related matrix and stabi-

lization one, respectively:

Ml,i =
∑

K∈Th

∫

K
ϕi ϕl,

Cl,i =
∑

K∈Th

∫

K
∇ϕi · ∇ϕl,

Bl,i =
∑

K∈Th

∫

K
(Vk · ∇ϕi)ϕl,

Sl,i(µ) =
∑

K∈Th

δK
hK

‖Vk‖

∫

K
(∆t−1ϕi + Vk · ∇ϕi)(V

k · ∇ϕl).

We introduce matrix Ah given by:

Ahl,i
(µ) = ∆t−1 ·Ml,i + ν · Cl,i +Bl,i + Sl,i(µ).

To write also the right-hand-side we define D e G, H:

Dl,i(µ) =
∑

K∈Th

δK
hK

‖Vk‖

∫

K
ϕi(V

k · ∇ϕl),

Gl =
∑

K∈Th

∫

K
βhu

kϕl,

Hl(µ) =
∑

K∈Th

δK
hK

‖Vk‖

∫

K
βhu

k(Vk · ∇ϕl),

S, D and H are depending on µ, because δK is depending on the Péclet number (an on ν)

and they should be calculated online. All the other quantities are calculated offline.

The reduced basis solution wkN (µ) is obtained by solving the following problem:

(W TAh(µ)W ) wkN (µ) = ∆t−1 · [W T (M +D(µ))W ] wk−1
N +WT (G +H(µ)), (8.9.6)

where wk−1
N is known by the solution at the previous time step t = tk−1.

From solution (8.9.5) we can calculate the output approximation:

skN (ν, tk) = |Ωs|
−1

∫

Ωs

wkN (µ) dΩ. = |Ωs|
−1

N∑

j=1

wkNj
(µ)

N∑

i=1

ζji

∫

Ωs

ϕi dΩ. (8.9.7)
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Basis assembling

As basis function we take solutions calculated at different time steps (δt = 0.1 s) and at

different values of ν = 0.1, 0.3, 0.5, 0.7, 1 as shown in Figure 8.10. With this kind of basis

the relative H1 max error for a great number of random configurations during the optimized

assembling process is shown in Figure 8.11.
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Figure 8.10: Basis construction.
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Figure 8.11: Max H1 relative error during basis assembling and optimization.

Error on solutions

We can calculate the relative H1 error considering a great number of different random con-

figuration and using the basis assembled previously. Figure 8.12 shows max and mean error

varying N . The same calculation is carried out considering the error on outputs and it is

shown in Figure 8.13.
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Figure 8.12: Max and mean H1 relative error on solutions.
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Figure 8.13: Max and mean H1 relative error on output.
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Appendix A

An Introduction to Reduced Basis

Methods: Elliptic Equations in

Parametrized Domains

In this appendix we review several aspects of reduced basis methods and we deal for simplic-

ity with multi-parametrized subdomains in the elliptic case (introduced also in [135]). The

essential components of the method are (i) (provably) rapidly convergent global reduced-basis

approximations — Galerkin projection onto a space WN spanned by solutions of the governing

partial differential equation at N selected points in parameter space; (ii) a posteriori error es-

timation — relaxations of the error-residual equation that provide inexpensive bounds for the

error in the outputs of interest; and (iii) off-line/on-line computational procedures — methods

which decouple the generation and projection stages of the approximation process. The oper-

ation count for the on-line stage — in which, given a new parameter value, we calculate the

output of interest and associated error bound — depends only on N (typically very small) and

the parametric complexity of the problem; the method is thus ideally suited for the repeated

and rapid evaluations required in the context of parameter estimation, design, optimization,

and real-time control. In [118] a rigorous a posteriori error bound framework for reduced-basis

approximations of elliptic coercive equations is developed. The resulting error estimates are,

in some cases, quite sharp: the ratio of the estimated error in the output to the true error

in the output, or effectivity, is close to (but always greater than) unity. We use a posteriori

bound error estimator applied also to an adaptive procedure in choosing the approximation

space and its dimension, minimizing the estimated error or the effectivity [161].

A.1 Overview on reduced basis

The optimization, control, design and characterization of an engineering component or system

requires, as seen also in the first part of the thesis, the prediction of certain “quantities of

interest,” or performance metrics, which we shall denote outputs — for example velocity field,

maximum stresses, maximum temperatures, heat transfer rates, flow rates, vorticity, or lifts

205
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and drags. These outputs are typically expressed as functionals of field variables associated

with a parametrized partial differential equation which describes the physical behavior of the

component or system. The parameters, which we shall denote inputs, serve to identify a

particular “configuration” of the components: these inputs may represent design or decision

variables, such as geometry, or characterization variables, such as physical properties — for

example in inverse design problems. We thus get an implicit input–output relationship, eval-

uation of which demands solution of the underlying partial differential equations. See [158]

for a detailed presentation of the state of the art of the design problem and some examples.

The development of computational methods is permitting rapid and reliable evaluation of

this partial-differential-equation-induced input-output relationship in the design, optimization

and control contexts. See recent developments in [134]. The approach used is based on the

reduced-basis method, first introduced in the late 1970s for non-linear structural analysis,

and later developed more extensively in the 1980s and 1990s [11, 13, 37, 113, 117, 133]. The

reduced basis method recognizes that the field variable is not, in fact, some arbitrary member

of the infinite-dimensional solution space associated with the partial differential equation;

rather, the field variable resides, or evolves, on a much lower-dimensional manifold induced

by the parametric dependence.

In the application we use global approximation spaces; second, we make rigorous a posteriori

error estimations; and third, we exploit off-line/on-line computational decompositions (see

Balmes [11] for application of this strategy within the reduced–basis context). These three

steps allow us — for the restricted but important class of “parameter-affine” problems, that it

has been extended in Chapters 6 and 7 — to reliably decouple the generation and projection

stages of reduced-basis approximation, thereby effecting computational economies of several

orders of magnitude.

In Section A.2 we present the problem statement. In Section A.3 we describe the a posteriori

error estimation framework. In Section A.4 we present the a priori convergence theory applied

also to our output bounds and not only to approximate solution. In Section A.5 we study

our procedure to control N more tightly and to apply our error bound adaptively in the

choice of µ parameters family. Finally, in Section A.6, we present the application and in

the Section A.7 the numerical results for our “model-problem” example, in Section A.8, we

provide our guidelines for the development of reduced basis method in fluid mechanics and

precisely in haemodynamics. These aspects are the subject of Chapters 5, 6, 7 and 8. Finally,

in Section A.9 we provide an historical review on model-order reduction and some remarks

on its development.

A.2 Problem formulation

We first introduce a Hilbert space Y , and an associated inner product and a norm, (·, ·) and

‖ · ‖ ≡ (·, ·)1/2, respectively. We next introduce the dual space of Y , Y ′, and the associated

duality pairing between Y and Y ′, Y ′〈·, ·〉Y ≡ 〈·, ·〉.

We then define, for any µ ∈ Dµ ⊂ R
P , the parametrized (distributional) operator A(µ) : Y →
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Y ′. We assume that A(µ) = A(Θ(µ)), where, for any Θ ∈ R
Q
+, A(Θ): Y → Y ′ is given by

A(Θ) = A0 +

Q∑

q=1

Θq Aq ,

and the Θq : Dµ → R+, q = 1, . . . , Q, are non-negative functions. Here R+ refers to the

non-negative real numbers. The range of Θ is denoted Dθ; and we define θmin (≥ 0), θmax

(assumed finite), and Dθ
box ⊂ R

Q
+ as

θmin
q ≡ sup t{t∈R+ | Θq(µ)≥t, ∀µ∈Dµ}, q = 1, . . . , Q ,

θmax
q ≡ inf t{t∈R+ | Θq(µ)≤t, ∀µ∈Dµ}, q = 1, . . . , Q ,

and Dθ
box ≡ ΠQ

q=1[θmin
q , θmax

q ], respectively.

Finally, we require that A0 is continuous, symmetric, and coercive, and that the Aq, q =

1, . . . , Q, are continuous, symmetric, and positive-semidefinite (〈Aqv, v〉 ≥ 0, ∀ v ∈ Y ); it

follows that A(Θ) (respectively, A(µ)) is continuous, symmetric, and coercive for all θ in

Dθ
box (respectively, for all µ in Dµ).

The general formulation for the problem can then be stated as: given µ ∈ Dµ, and linear

functional F ∈ Y ′, evaluate the output

s(µ) = 〈F, u(µ)〉,

where u(µ) ∈ Y is the unique solution of A(Θ(µ)) u(µ) = F ; we shall interpret the latter as

〈A(Θ(µ)) u(µ), v〉 = 〈F, v〉, ∀ v ∈ Y. (A.2.1)

Output s(µ) may also be interpreted as the energy of the solution — s(µ) = 〈F, u(µ)〉 =

〈A(Θ(µ)) u(µ), u(µ)〉 — and is hence strictly positive. The output s(µ) is “compliant,” and

the operator A(Θ) is symmetric; however, the formulation will be readily extended [118] to

treat both non-compliant outputs, s(µ) = 〈L, u(µ)〉 for given L ∈ Y ′, and non-symmetric,

but still coercive, operators. We may also express our output as

s(µ) = 〈F,A−1(Θ(µ))F 〉. (A.2.2)

Here, for any θ ∈ Dθ
box, A−1(Θ): Y ′ → Y is the (continuous, symmetric, coercive) inverse of

A(Θ); further, ∀G ∈ Y ′, 〈A(Θ) A−1(Θ) G, v〉 = 〈G, v〉, ∀ v ∈ Y .

A.2.1 Galerkin approximation

The u(µ) of (A.2.1) are, in general, not known exactly. In order to construct our reduced-basis

space we will therefore require a finite-dimensional “truth” approximation to Y , which we

shall denote Ỹh; Ỹh is an N -dimensional subspace of Y . For example, for Ω ⊂ R
d=1, 2, or 3, and

Ỹh ⊂ H1(Ω), Ỹh will typically be a finite element approximation space associated with a very

fine triangulation Th of the computational domain. We assume that the triangles, denoted

with T jh , also referred to as elements, cover the computational domain Ω , Ω̄ = ∪Th∈Th
T̄h (T̄h
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is the closure Th) and that each of the elements do not overlap, T ih ∩ T
j
h = 0, ∀T ih, T

j
h ∈ Th.

The subscript h denotes the diameter of the triangulation defined as:

h = sup
Th∈Th

sup
x,y∈Th

|x− y|; (A.2.3)

here | · | is the Euclidean norm.

Discrete Problem

Using then the triangulation Th, we define the space Ỹh as the space of continuous functions

which are piecewise linear over each of the elements Th ∈ Th:

Ỹh = {v ∈ C0(Ω̄) |v|Th
∈ P

1(Th), ∀Th ∈ Th}. (A.2.4)

If N is the number of nodes in the triangulation, we introduce the Lagrangian basis functions

φi ∈ Ỹh , such that φi(xj) = δi j, i, j = 1, . . . ,N , where xj are the coordinates of node j, and

δi i = 1 if i = j, or δi j = 0 if i 6= j . Each function φi has compact support over the region

defined by the elements surrounding node i . In general, we expect that N will be very large.

See also [127] for more detailed studies on FEM approximation.

Our Galerkin-FEM approximation can be stated as: given a µ ∈ Dµ, evaluate the output

s̃(µ) = 〈F, ũ(µ)〉, (A.2.5)

where ũ(µ) ∈ Ỹh is the unique solution of

〈A(Θ(µ)) ũ(µ), v〉 = 〈F, v〉, ∀ v ∈ Ỹh. (A.2.6)

As before, the output can be expressed as a (strictly positive) energy: s̃(µ) = 〈F, ũ(µ)〉 =

〈A(Θ(µ)) ũ(µ), ũ(µ)〉.

It is convenient to express (A.2.5)–(A.2.6) in terms of the basis for Ỹh = {φi, i = 1, . . . ,N}.

We first introduce the matrices Ãq ∈ R
N×N , q = 0, . . . , Q, as Ãq i j = 〈Aφj , φi〉, 1 ≤ i, j ≤ N ;

it is readily shown that Ã0 (respectively, Ãq, q = 1, . . . , Q) is symmetric positive-definite

(respectively, symmetric positive-semidefinite). For any Θ ∈ Dθ
box, we then define Ã(Θ) ∈

R
N×N as

Ã(Θ) = Ã0 +

Q∑

q=1

Θq Ãq;

Ã(Θ) is symmetric positive-definite for all Θ ∈ Dθ
box. In the same way we introduce F̃ ∈ R

N

as F̃i = 〈F, φi〉, 1 ≤ i ≤ N .

Our approximation can then be restated as: given µ ∈ Dµ, evaluate the output

s̃(µ) = F̃
T
ũ(µ),

where T refers to the algebraic transpose and ũ(µ) ∈ R
N is the unique solution of

Ã(Θ(µ)) ũ(µ) = F̃ ; (A.2.7)
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Note that ũ(µ) and ũ(µ) = (ũ1, . . . , ũN )T are related via

ũ(µ) =
N∑

j=1

ũj(µ) φj .

As always, our compliance output can be expressed as an energy:

s̃(µ) = ũT (µ) Ã(Θ(µ)) ũ(µ),

or, equivalently,

s̃(µ) = F̃
T
Ã

−1
(Θ(µ)) F̃ , (A.2.8)

where Ã
−1

(Θ) is the (symmetric, positive-definite) inverse of Ã(Θ). Note that since N can

be large, solution of (A.2.7), and hence evaluation of s̃(µ), will be computationally expensive.

Computational Complexity

We see that the original problem has been replaced by a finite-dimensional one. Assuming

sufficient regularity of the solution u(µ) the a priori convergence theory for this type of finite-

elements suggests that the error in the output |s(µ)− s̃(µ)| will converge as h2 (see Theorem

4.1 in Patera and Rønquist [110]), where h is defined in (A.2.3). Moreover as h → 0, we get

ũ(µ) → u(µ) and s̃(µ) → s(µ). The above a priori result suggests also that to decrease the

error in the output by a factor C > 0, we need to increase the number of elements and therefore

N roughly by the same factor. We see that as the requirements for accuracy increase or the

geometric complexity increases, we need higher N to obtain accurate and reliable results (to

ascertain the accuracy we need a posteriori error estimators). Moreover, in the presence of

singularities or boundary layers, local refinement is essential, further increasing the required

degrees of freedom.

The discussion above suggests that even for relatively simple problems in simple domains

N is large, at least O(103), but it is not uncommon for N to be O(106) or higher. We

also see the difficulty, as N increases, so does the size of the linear system (A.2.7), which

has to be inverted. By virtue of the compact support of φi, the matrix Ã is sparse and

therefore iterative solvers can be used to obtain a solution. The computational complexity

scales as O(N a), where a depends on the condition number of the problem (which increases

quadratically with 1/h). Especially in contexts where repeated solution of (A.2.7) is required,

the computational requirements soon become unacceptably large.

A.2.2 Reduced basis method

Identifying the problem in the high dimensionality of the finite-element spaces, we look for

ways to further reduce the computational complexity. The large number of degrees of freedom

required in the case of finite-element methods, is attributed to the particular choice of basis

functions, which have general approximation properties for functions in Y . To further reduce

the computational complexity we look for spaces with approximation properties specific to

the problem of interest.
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The critical observation is that the solution and the output evolve in a low-dimensional

manifold induced by the parametric dependence of the problem. Central to reduced-basis

methods, first introduced in Nagy [102], is constructing an approximation to this manifold.

In our approach, slightly different from earlier approaches, we construct linear reduced-basis

spaces comprising of solutions to (A.2.7) at different parameter points. We then use these

spaces to find an approximation uN (µ) to the exact solution.

Earlier approaches viewed the reduced-basis method as a combined projection and contin-

uation method. A different view, suitable for our purposes, is that of multi-dimensional

parameter-space interpolation. The required interpolation weights are obtained by solving

suitably defined low-dimensional problems chosen to minimize the approximation error mea-

sured in problem-specific energy norms.

Reduced-basis space

We introduce some “µ” samples SµN = {µ1, . . . , µN}, where µn ∈ Dµ, n = 1, . . . , N . We then

define our reduced basis space WN = span{ζ̃n, n = 1, . . . , N}, where ζ̃n = ũ(µn), n = 1, . . . , N .

Recall that ũ(µn) is the solution of (A.2.6) for µ = µn. We denote ζ̃
n

= ũ(µn), n = 1, . . . , N .

In the first step, given a µ ∈ Dµ, we find sN (µ) = 〈F, uN (µ)〉, where uN (µ) ∈WN satisfies

〈A(Θ(µ)) uN (µ), v〉 = 〈F, v〉, ∀ v ∈WN .

Also in this case we can express the output as an energy, sN (µ) = 〈A(Θ(µ)) uN (µ), uN (µ)〉.

In terms of our basis functions, we define the symmetric positive-definite matrix AN (µ) ∈

R
N×N as AN i j(µ) = 〈A(Θ(µ)) ζ̃j , ζ̃i〉, 1 ≤ i, j ≤ N , and the vector FN ∈ R

N as FN i = 〈F, ζ̃i〉,

1 ≤ i ≤ N . It is a simple matter to observe that

AN (Θ) = AN 0 +

Q∑

q=1

Θq AN q, (A.2.9)

where (ANq)i j = 〈Aq ζ̃j, ζ̃i〉, 1 ≤ i, j ≤ N , 0 ≤ q ≤ Q; note that the ANq ∈ R
N×N , 0 ≤ q ≤ Q,

are independent of θ.

We can then restate the formulation as: given µ ∈ Dµ, find sN (µ) = F TNuN (µ), where

uN (µ) ∈ R
N is the unique solution to

AN (Θ(µ)) uN (µ) = FN .

Note that uN (µ) =
∑N

j=1 uN j(µ) ζ̃j. The output may also be expressed as

sN(µ) = uTN (µ) AN (Θ(µ)) uN (µ) = F TN A−1
N (Θ(µ)) FN . (A.2.10)

Remark A.2.1 The a priori convergence theory, and extensive numerical tests, suggest that

the convergence of the reduced-basis approximation to the exact will be very fast. In fact,

exponential convergence is observed in all the numerical tests. This suggests that even with a

very modest N , we can expect to achieve good accuracy. The linear system above can be formed

and solved very efficiently in the case where the operator depends affinely on the parameters.

In this case we can separate the computational steps into two stages:
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• The off-line stage, in which the reduced-basis space is constructed and some pre-processing

is performed. This is an expensive step, that needs to be performed only once, requiring

solutions of finite-element problems.

• The on-line stage, in which for each new parameter value, the reduced-basis approxima-

tion for the output of interest is calculated.

The on-line stage is “blackbox” in the sense that there is no longer any reference to the original

problem formulation: the computational complexity of this stage scales only with the dimension

of the reduced-basis space and the parametric complexity of the partial differential operator.

The “blackbox” nature of the on-line component of the procedure has other advantages. In

particular, the on-line code is simple, non-proprietary, and completely decoupled from the

(often complicated) off-line “truth” code. This is particularly important in multidisciplinary

design optimization, in which various models and approximations must be integrated.

A.3 Reduced basis output bounds

The computational relaxation introduced in the previous section, allows us to compute very

efficiently accurate approximations to the solution and the output of interest. Thanks to the

expected rapid convergence N could, in theory, be chosen quite small. However, in practice

we do not know how small N should be: this will depend on the desired accuracy, the choice

of µi in the construction of the reduced-basis spaces, the output of interest and the particular

problem in question. Either too many or too few basis functions will be retained: the former

results in computational inefficiency; the later in unacceptable uncertainty. For the successful

application of reduced-basis methods it is therefore critical that we can ascertain the accuracy

of our predictions; for this reason rigorous error-estimation approaches are needed, directly

for outputs of interest, to validate a posteriori the accuracy of our predictions.

We prove that these estimators s+
N (µ) and s−N (µ) are upper and lower bounds, respectively,

to the “true” output s̃(µ) that would be obtained by solution of the expensive finite-element

problem:

s−N (µ) ≤ s̃(µ) ≤ s+N (µ). (A.3.1)

Unlike the exact value, these error estimators can be computed inexpensively — with a

complexity that scales only with the dimension of the reduced-basis space.

In reality the error in the output has two components:

|s(µ) − sN (µ)| ≤ |s(µ) − s̃(µ)| + |s̃(µ) − sN (µ)|;

the first related to the discretization error (see in Section A.9.2); and the second to the

reduced-basis error. In practice, both of these errors have to be estimated for reliability in

our predictions. Estimation of the discretization error has been treated extensively in the

literature; see Patera and Peraire [109] for a review. For our purposes, we assume that h

is chosen very conservatively such that s̃(µ) ≈ s(µ) and the dominant error is due to the

reduced-basis approximation.
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A.3.1 Bound conditioner

In the previous section we have seen how to compute our predictor , sN (µ) from equation

(A.2.10); in the next steps we are going to compute our bounds, s−N (µ) ≤ s̃(µ) ≤ s+N(µ). The

latter may be interpreted also as a posteriori estimators. We first define the error ẽ(µ) ∈ Y

as ẽ(µ) = ũ(µ) − uN (µ) and residual R ∈ Y ′ as 〈R(µ), v〉 ≡ 〈F −A(Θ(µ)) uN (µ), v〉, ∀ v ∈ Y ;

and then R̃(µ) ∈ R
N as R̃i(µ) = 〈R(µ), φi〉 i = 1, . . . ,N . We note that

R̃(µ) = F̃ − Ã(Θ(µ)) uN (µ) , (A.3.2)

and that uN (µ) is given by

uN (µ) =

N∑

n=1

uNn(µ) ζ̃n ; (A.3.3)

by construction: ζ̃n =
∑N

i=1 ũ i(µ
n) φi. We then introduce a symmetric, continuous, and

coercive bound conditioner as in Veroy [158] C(µ) : Y → Y ′ such that the minimum and

maximum eigenvalues

ρmin(µ) ≡ min
v∈Y

〈Ã(µ)v, v〉

〈C(µ)v, v〉
, (A.3.4)

ρmax(µ) ≡ max
v∈Y

〈Ã(µ)v, v〉

〈C(µ)v, v〉
, (A.3.5)

satisfy the following spectral condition:

1 ≤ ρmin(µ), ρmax ≤ ρ, (A.3.6)

for some (preferably small) constant ρ ∈ R.

We note that:

ρmin(µ) ≤
〈Ã(µ)v, v〉

〈C(µ)v, v〉
≤ ρmax(µ) ∀v ∈ Y, (A.3.7)

and for any ê ∈ Y and ẽ ∈ Y such that:

〈Ã(µ)ẽ, v〉 = 〈R̃(µ), v〉, ∀v ∈ Y, (A.3.8)

and

〈C(µ)ê, v〉 = 〈R̃(µ), v〉, ∀v ∈ Y, (A.3.9)

we can show that:

ρmin(µ) ≤
〈Ã(µ)ẽ, v〉

〈C(µ)ê, v〉
≤ ρmax(µ). (A.3.10)

In addition to the spectral condition (A.3.6), we also require a “computational invertibility”

hypothesis, in particular that C−1(µ) be of the form:

C−1(µ) =
∑

i∈I(µ)

αi(µ) C−1
i

where (i) I(µ) ⊂ {1, . . . , I} is a parameter-dependent set of indices, I is a finite (preferably

small) integer, and each µ ∈ Dµ. (ii) The Ci : Y → Y ′ are parameter-indipendent symmetric,

coercive operators.
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A.3.2 Error and output bounds

We now find ê(µ) ∈ R
N such that

C(µ) ê(µ) = R̃(µ); (A.3.11)

this equation will of course have a unique solution since C(µ) is symmetric positive-definite.

We can now define our lower and upper bounds as

s−N (µ) = sN (µ),

and

s+N (µ) = sN(µ) + ∆N (µ) ,

where ∆N (µ), the bound gap, is given by

∆N (µ) ≡ êT (µ) C(µ) ê(µ)

= R̃
T

(µ) C−1(µ) R̃(µ)

= R̃
T

(µ) ê(µ).

The previous expressions for the bound gap will be useful in the theoretical and computational

context.

A.3.3 Minimum coefficient bound conditioner

We now consider a method for choosing the Ci and the associated αi called Minimum Coeffi-

cient Bound Conditioner.

To begin we recall our separability assumption on Ã(Θ):

Ã(Θ(µ)) = Ã0 +

Q∑

q=1

Θq(µ) Ãq ∀ µ ∈ Dµ
box,

where Θ(µ) : Dµ → R and the Ãq : Y → Y ′. We now define

Ã(θ) = Ã0 +

Q∑

q=1

θq Ãq,

where θ ∈ R
Q and Ã(θ) : Y → Y ′ and Ãq ≡ Ãq. If Θq(µ) = θq, we may then write

Ã(Θ(µ)) = Ã(θ),

where Θ : Dµ → Dθ and Dθ ≡ Range(Θ) ∈ R
Q. Then we introduce I points θi as samples

SθI = {θ1, . . . , θI}, where θi ∈ Dθ
box, i = 1, . . . , I. We choose

αi(µ) =
(

min
1≤q≤Q

(Θq(µ)

θqi

))−1
, (A.3.12)
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and

Ci =

Q∑

q=1

θqi Ãq. (A.3.13)

Our bound conditioner C(µ) ∈ R
N×N is

C(µ) =


 ∑

i∈I(µ)

αi(µ)Ci
−1(θi)




−1

. (A.3.14)

Clearly, C−1 and hence C are symmetric positive-definite. In words, C−1 is an approximation

to Ã
−1

(Θ(µ)) In our application we used a single-point conditioner. We set I = 1, S θI = {θ},

|I(µ)| = 1, I(µ) = {1}. For further information and a detailed understanding of bound

conditioner families (and special cases) we suggest to see [90, 118, 120].

A.3.4 Bounding properties

It remains to demonstrate our claim that s−N (µ) ≤ s̃(µ) ≤ s+N (µ) for all N ≥ 1. We prove at

first that for all µ ∈ Dµ, and all N ≥ 1, s−N (µ) ≤ s̃(µ). We have that

s̃(µ) − sN (µ) = 〈F, ũ(µ) − uN (µ)〉

= 〈A(Θ(µ)) ũ(µ), ũ(µ) − uN (µ)〉

= 〈A(Θ(µ)) (ũ(µ) − uN (µ)), ũ(µ)〉

= 〈A(Θ(µ)) (ũ(µ) − uN (µ)), ũ(µ) − uN (µ)〉 (A.3.15)

≥ 0

having used the definition of s(µ), (A.2.6), the symmetry of A, Galerkin orthogonality, and

coercivity, respectively.

This lower bound proof is a standard result in variational approximation theory. We now

turn to the upper bound to demonstrate that for all µ ∈ Dµ, and all N ≥ 1, s+N (µ) ≥ s̃(µ).

We first define ẽ ∈ R
N as ẽ = ũ− uN ; it then follows from (A.2.7) and (A.3.2) that

Ã(Θ(µ)) ẽ(µ) = R̃(µ) , (A.3.16)

which is the usual error-residual relationship. It then follows from (A.3.15) that

s̃(µ) − sN(µ) = ẽT (µ) Ã(Θ(µ)) ẽ(µ)

= R̃
T

(µ) Ã
−1

(Θ(µ)) R̃(µ) .
(A.3.17)

It thus only remains to write the effectivity :

ηN (µ) ≡
s+N (µ) − sN (µ)

s̃(µ) − sN(µ)
=

∆N (µ)

s̃(µ) − sN (µ)
=

R̃
T

(µ)C−1(µ)R̃(µ)

R̃
T

(µ)Ã
−1

(Θ(µ))R̃(µ)
, (A.3.18)
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using the boundaries properties (A.3.7) and (A.3.10) and equations (A.3.11)-(A.3.16) we have:

ηN (µ) ≡
êT (µ) C(Θ(µ)) ê(µ)

ẽT (µ) Ã(Θ(µ)) ẽ(µ)
=

〈C̃(µ)ê, ê〉

〈Ã(Θ(µ))ẽ, ẽ〉
, (A.3.19)

therefore:

ρmin(µ) ≤ ηN (µ) ≤ ρmax(µ); (A.3.20)

by construction, ρmin(µ) ≥ 1 for all µ ∈ Dµ and therefore:

ηN (µ) ≥ 1, (A.3.21)

and s+N (µ) ≥ s(µ) as required. Note that the result (A.3.20) also indicates the sharpness of

our bounds: it follows from (A.3.6) that:

ηN (µ) ≤ ρ. (A.3.22)

This result provides insight as to the properties of a good bound conditioner. Clearly, we

wish ρmax(µ) to be as close to unity, and hence as close to ρmin, as possible.

A.3.5 Computational procedure: off-line/on-line decomposition

We review here arguments given in detail in [118]; early applications of this approach may

be found in [11]. The theoretical and empirical results let us to apply separate off-line and

on-line computational procedures that exploit the dimension reduction.

In an off-line stage, we find the ζ̃
n
, n = 1, . . . , N (N × Ã-solves), and form the AN q ,

0 ≤ q ≤ Q ((Q + 1)N 2 ×Ã-inner products), and FN (N × N operations). In the on-line

stage — given any new µ — we need only form AN (µ) from the ANq ((Q+ 1)N 2 operations),

find uN (µ) (O(N 3) operations), and evaluate sN (µ) (N operations). The most important

point is that the on-line complexity (and storage — O(QN 2)) is independent of the very large

dimension of the truth space Ỹh, N ; in particular, since N is typically very small (as suggested

in the previous sections), “real-time” response is obtained.

Computational Procedures for the upper bound s+
N(µ)

A computational procedure for the upper bound is very important and very useful in view

of adaptivity procedures applied to basis ζ̃
n

storage and to test results with a cheap and

fast procedure. See [118] for detailed bound conditioners presentation. We first note from

(A.3.14)–(A.3.11) that

ê(µ) =
∑

i∈I(µ)

αi(µ) Ã
−1

(θj)


F̃ −

Q∑

q=0

N∑

n=1

Θq(µ) uNn(µ) Ãq ζ̃n


 ;

recall that Θ0 = 1. It follows that we may express ê(µ) as

ê(µ) =
∑

i∈I(µ)

αj(µ)


z̃i00 +

Q∑

q=0

N∑

n=1

Θq(µ) uNn(µ) z̃iqn


 ,
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where for all i ∈ {1, . . . ,M}, Ã(θi)z̃i00 = F̃ , and Ã(θi)z̃iqn = −Ãq ζ̃n, 0 ≤ q ≤ Q, 1 ≤ n ≤ N .

We may thus express our bound gap ∆N (µ) as the following (A.3.23):

∆N (µ) = R̃
T

(µ) ê(µ)

=
∑

i∈I(µ)

αi(µ)


F̃ −

Q∑

q=0

N∑

n=1

Θq(µ) uNn(µ) Ãq ζ̃n



T


z̃i00 +

Q∑

q′=0

N∑

n′=1

Θq′(µ) uNn′(µ) z̃iq′n′




=
∑

i∈I(µ)

αi(µ)


ci +

Q∑

q=0

N∑

n=1

Θq(µ) uNn(µ) Λiqn

+

Q∑

q=0

N∑

n=1

Q∑

q′=0

N∑

n′=1

Θq(µ) Θq′(µ) uNn(µ) uNn′(µ) Γiqq′nn′


 ,(A.3.23)

where for all i ∈ {1, . . . ,M}, ci = F̃
T
z̃i00, Λiqn = F̃

T
z̃iqn− ζ̃

T

n
Ãq z̃

i
00 for 0 ≤ q ≤ Q, 1 ≤ n ≤ N ,

and Γiqq′nn′ = −ζ̃
T

n
Ãq z̃

i
q′n′ for 0 ≤ q, q′ ≤ Q, 1 ≤ n, n′ ≤ N .

The off-line/on-line decomposition is now clear. In the off-line stage we compute the z̃ i00
and z̃iqn(M((Q+ 1)N + 1) Ã-solves) and the ci, Λiqn, and Γiqq′nn′ (predominated by M ((Q+

1)2N2 + (Q+ 1)N) Ã-inner products). In the on-line stage we need “only” perform the sum

(A.3.23), which requires |I(µ)|((Q + 1)2N2 + (Q + 1)N + 1) operations. The essential point

is that the on-line complexity (and storage — O(M(Q + 1)2N2)) is independent of N .

We note that the off-line/on-line decomposition depends critically on the “separability” of C̃
−1

as a sum of products of parameter-dependent functions (the αi(µ)) and parameter-independent

operators (the Ã
−1

(θi)). In turn, it is the direct approximation of Ã
−1

(Θ(µ)) (i.e., by a convex

combination of Ã
−1

(θi)) rather than of Ã(Θ(µ)) (e.g., by a convex combination of Ã(θi)) that

permits us to achieve this separability while simultaneously pursuing a “high-order” bound

conditioner achieving some fixed (known, certain) accuracy — as measured by ∆N (µ) — at

a lower computational effort. See [119].

A.4 A priori convergence theory

We recall a priori framework for a general a priori convergence theory. Depending on the

context and application, we will either invoke the lower bound (s−N (µ)) or upper bound (s+
N (µ))

as our estimator for s̃(µ). For example, in an optimization problem in which s̃(µ) enters as

a constraint s̃(µ) ≤ smax (respectively, s̃(µ) ≥ smin), we will replace this condition with

s+N (µ) ≤ smax (respectively, s−N(µ) ≥ smin) so as to ensure satisfaction/feasibility even in the

presence of approximation errors. The rigorous bounding properties proven in Section A.3.4

provide the requisite certainty.
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But we of course also require accuracy: if, in the optimization context cited above, s+
N (µ) or

s−N (µ) is not close to s̃(µ), then our design may be seriously suboptimal . Since |s+
N (µ)−s̃(µ)| ≤

|s+N (µ)−s−N (µ)| = ∆N (µ) and |s̃(µ)−s−N (µ)| ≤ |s+N (µ)−s−N(µ)| = ∆N (µ), it is the convergence

of ∆N (µ) as a function of N that we must understand. In particular, from (A.3.19) and

(A.3.15) we may write

∆N (µ) = s+N (µ) − s−N(µ) = (s̃(µ) − sN (µ))

(
s+N (µ) − s−N (µ)

s̃(µ) − sN (µ)

)

= 〈A(Θ(µ)) ẽ(µ), ẽ(µ)〉 ηN (µ),

where ẽ(µ) = ũ(µ)−uN (µ). In some sense, the first factor, 〈A(Θ(µ))ẽ(µ), ẽ(µ)〉, measures the

error in the solution ũ(µ) − uN (µ), while the second factor, the effectivity ηN (µ), measures

the ratio of the actual and estimated errors; the former should be small, while the latter

should be close to unity. As we shall see, this two-step factorization is important not only

as a theoretical construct: it is this factorization which permits us to achieve high accuracy

while simultaneously honoring our bound requirements. We would thus like to understand

the convergence of ∆N (µ) to zero as a function of N . In particular, we consider the case in

which A(µ) = A0 +µA1 (and hence Θ1(µ) = µ), and µ ∈ Dµ ≡ [0, µmax]. From our continuity

and coercivity assumptions, there exists a positive real constant γ1 such that

〈A1v, v〉 ≤ γ1〈A0v, v〉; (A.4.1)

it thus follows that 〈A(µ)v, v〉 ≤ (1 +µmaxγ1) 〈A0v, v〉. Defining ‖ · ‖2 ≡ 〈A0·, ·〉, we may thus

write

∆N (µ) ≤ (1 + µmaxγ1) ‖ũ(µ) − uN (µ)‖2 ηN (µ). (A.4.2)

A.4.1 Best approximation

It remains to bound ‖ũ(µ) − uN (µ)‖ and ηN (µ); and, in particular, to understand the con-

vergence rate of ‖ũ(µ) − uN (µ)‖ → 0 and ηN (µ) → 1 (or at least a constant) as N increases.

The proofs for both ‖ũ(µ)−uN (µ)‖ [91] and ηN (µ) implicate a particular “optimal” logarith-

mic point distribution which we thus impose a priori . In particular, we introduce an upper

bound for γ1, γ, and a “log increment” δN = (ln(γµmax + 1))/(N − 1); we then define

µn = exp{− ln γ + (n− 1)δN} − γ−1, 1 ≤ n ≤ N ,

and take SµN = {µ1, . . . , µN}. Clearly, ln(µn + γ−1) is uniformly distributed. Note that for

N ≥ Ncrit ≡ 1 + e ln(γµmax + 1), δN ≤ e−1 < 1. We remind to the main result in [91, 92]: for

N ≥ Ncrit ≡ 1 + e ln(γµmax + 1) and all µ ∈ Dµ we find:

‖ũ(µ) − uN (µ)‖ ≤ (1 + µmaxγ1)1/2 ‖ũ(0)‖ e
−( N

Ncrit
)
.

See Theorem 3 of [91] (for c∗ = 1). We see that we obtain exponential convergence, uniformly

for all µ in Dµ. Furthermore, our convergence threshold parameter Ncrit = 1+e ln(γµmax+1),

and exponential convergence rate 1/Ncrit, depend only weakly — logarithmically — on γ1 and
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µmax (which together comprise the continuity-coercivity ratio). In short, we expect extremely

rapid convergence even for large parameter ranges. To obtain a bound for ηN (µ) (limited and

close to unity) see [157].

A.5 Adaptive procedure for basis construction

Given the higher powers of N that appear in our complexity estimates, it is crucial (both as

regards online and offline effort) to control N more tightly. To this end, we may gainfully

apply our a posteriori error bounds adaptively. We first construct, offline, an approximation

that, over most of the domain, exhibits an error (in the H 1-norm) less than εpriord : we begin

with a first point µ1(SN ′=1 = {µ1}); we next (inexpensively) evaluate ∆N ′=1(µ) over a large

test sample of parameter points in Dµ,Σprior; we then choose for µ2 (and hence SN ′=2 =

{µ1, µ2}) the maximizer of ∆N ′=1(µ) over Σprior. We repeat this process until the maximum of

∆N ′=Nprior(µ) over Σprior is less than εpriord . Then, online, given a new value of the parameter,

µ, and an error tolerance εpostd (µ), we essentially repeat this adaptive process - but now our

sample points are drawn from SNprior , and the test sample is a singleton - µ. Typically we

choose εpriord � εpostd (µ) since our test is not exhaustive; and therefore, typically, N post(µ) �

Nprior. With the adaptive process we get higher accuracy at lower N : modest reductions in N

can translate into measurable performance improvements. This procedure is very important

not only to get a computationally cheaper and faster method but also to avoid ill-conditioning

in matrix assembling procedures.

A.6 A multi-parameter application

We consider a physical domain Ω̂ ⊂ R
2 is divided in four subdomains Ω̂r, r = 1, ..., 4, a “T”-

shaped region with boundary Γ̂, divided in Γ̂D and Γ̂N and associated, respectively, Dirichlet

or Neumann condition. See Figures A.1 and A.2.

A.6.1 Geometrical model

The geometrical model is based on a simple and standard configuration made up of four

square subdomains parametrized in their dimensions (lengths and angles). This is a first

example towards a more relevant one concerning bypass anastomosis used in Chapters 6 and

7. We have chosen five geometrical parameters.

• The angle θ for the incoming branch of the bypass.

• The diameters t and D, respectively, of the bypass and the artery.

• The lengths L and S, respectively, the outflow length and the distance between the

incoming new branch and the occlusion caused by a stenosis. See Figure A.1.

We underline that this is a macro geometrical structure, useful to study with low computa-

tional cost and sharp error bounds a possible configuration to be optimized by optimal shape
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Figure A.1: Scheme for the reduced-basis multi-parameter problem.

design and control tools. This test case is studied to validate a methodological approach and

to get a deep understanding of reduced-basis methodologies. The method is based on the

affine mapping procedures from a sub-domain of reference (square) to the true one (Ω → Ω̂).

Preliminary tests were made studying a simpler case based only on a square domain.

A.6.2 Formulation

We present the strong form of the equations governing our preliminary problem (in Ω̂), from

which we derive the weak statement; we then reformulate the problem in terms of a reference

(parameter-independent) domain (Ω), thus recovering the abstract formulation of Section

A.2. We consider an elliptic equation, for example the equation of steady heat transfer with

symmetric thermal diffusivity tensor k̂ij (Poisson equation when k̂ij = 1) in Ω̂r ⊂ R
d, for

r = 1, . . . , 4 with boundary Γ̂. The field û (i.e for example temperature) satisfies the partial

differential equation

−
∂

∂x̂i

(
k̂ij

∂û

∂x̂j

)
= f̂ in Ω̂, (A.6.1)

where 1 ≤ i, j ≤ 2 and with boundary conditions (see Figure A.1)

û = 0 on Γ̂D, k̂ij
∂û

∂x̂j
n̂i = b̂ on Γ̂N , (A.6.2)

where f̂ can be seen as the rate of heat generated per unit volume, b̂ is the prescribed heat

flux input on the surface Γ̂N , and n̂i is the i− th component of the unit outward normal. We

now derive the weak form of the governing equations. We introduce the function space:

Ŷ = {v̂ ∈ H1(Ω̂)|v̂ = 0 on Γ̂D}, (A.6.3)
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Figure A.2: Mesh for the reduced-basis problem (normalized domain).

and the associated norm

||v̂||Ŷ =
( ∫

Ω̂

d∑

i=1

( ∂v̂
∂x̂i

)2
dΩ̂
)1/2

. (A.6.4)

Multiplying (A.6.1) by a test function v̂ ∈ Ŷ , integrating over Ω̂ by parts and applying the

divergence theorem we have for 1 ≤ i, j ≤ 2:

−

∫

Ω̂
v̂
∂

∂x̂i

(
k̂ij

∂û

∂x̂j

)
dΩ̂ = −

∫

Γ̂
v̂k̂ij

∂û

∂x̂j
n̂idΓ̂+

∫

Ω̂

∂v̂

∂x̂i
k̂ij

∂û

∂x̂j
dΩ̂ =

∫

Ω̂
f̂ v̂dΩ̂ ∀v̂ ∈ Ŷ . (A.6.5)

Substituting boundary condition and by the fact that v̂ = 0 on Γ̂D, we obtain as our weak

statement

〈Âû, v̂〉 = 〈F̂ , v̂〉, ∀v̂ ∈ Ŷ , (A.6.6)

where

〈Âŵ, v̂〉 =

∫

Ω̂

∂v̂

∂x̂i
k̂ij

∂ŵ

∂x̂j
dΩ̂, (A.6.7)

〈F̂ , v̂〉 = 〈F̂f , v̂〉 + 〈F̂b, v̂〉, (A.6.8)

here,

〈F̂f , v̂〉 =

∫

Ω̂
f̂ v̂dΩ̂, 〈F̂b, v̂〉 =

∫

Γ̂N

b̂v̂dΓ̂. (A.6.9)

In our case Ω̂ =
⋃R
r=1 Ω̂r, R = 4, so that the weak statement takes the form A.6.6 where

〈Âŵ, v̂〉 =

R∑

r=1

∫

Ω̂r

∂v̂

∂x̂i
k̂rij

∂ŵ

∂x̂j
dΩ̂, (A.6.10)

〈F̂ , v̂〉 = 〈F̂f , v̂〉 + 〈F̂b, v̂〉, (A.6.11)
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and

〈F̂f , v̂〉 =

R∑

r=1

∫

Ω̂r

f̂ rv̂dΩ̂, 〈F̂b, v̂〉 =

R∑

r=1

∫

Γ̂r
N

b̂rv̂dΓ̂. (A.6.12)

A.6.3 Affine mapping

The partition in subdomains Ω̂r is done such that there exists a reference domain Ω where,

for any x̂ ∈ Ω̂r, r = 1, . . . , R, its image x ∈ Ωr is given by

x = Gr(µ; x̂) = Gr(µ)x̂+ gr, 1 ≤ r ≤ R; (A.6.13)

we thus write
∂

∂x̂i
=
∂xj
∂x̂i

∂

∂xj
= Gji(µ)

∂

∂xj
, (A.6.14)

where x ∈ Ω, x̂ ∈ Ω̂, Gr(µ) ∈ R
d×d is a piecewise-constant matrix, gr(µ) ∈ R

d is a piecewise-

constant vector, and G(µ) : Ω̂ → Ω is a piecewise-affine geometric mapping. We then denote

the boundary of Ω as Γ, where Γ(µ,Γ). We now define the function space Y as Y (Ω) =

Y (G−1(µ; Ω)) = Y (Ω) such that

Y = {v ∈ H1(Ω)|v = 0 on ΓD}, (A.6.15)

and for any function w ∈ Y , we define w ∈ Y such that w(x) = w(G−1(µ;x)). Furthermore,

we have

dΩ̂ = detG−1(µ)dΩ, dΓ̂ = |G−1(µ)t̂|dΓ, (A.6.16)

where t̂ is the unit vector tangent to the boundary Γ, and

|G−1t̂| =
( d∑

i=1

(Gij t̂j)
2
)1/2

. (A.6.17)

It then follows that 〈A(µ)w, v〉 = 〈Âŵ, v̂〉 and A(µ) given by

〈Aw, v〉 =

R∑

r=1

∫

Ωr

(
Grii′(µ)

∂w

∂xi

)
k̂ri′j′

(
Grjj′(µ)

∂v

∂xj

)
det(Gr(µ))−1dΩ, (A.6.18)

or

〈Aw, v〉 =

R∑

r=1

∫

Ωr

∂w

∂xi

(
Grii′(µ)k̂ri′j′G

r
jj′(µ)det(Gr(µ))−1

) ∂v
∂xj

dΩ ∀w, v ∈ Y, (A.6.19)

and 〈F (µ)w, v〉 = 〈F̂ ŵ, v̂〉 and F (µ) given by

〈F (µ), v〉 = 〈Ff , v〉 + 〈Fb, v〉, (A.6.20)

where

〈Ff , v〉 =

R∑

r=1

∫

Ωr

(
f̂ rdet(Gr(µ))−1

)
vdΩ, 〈Fb, v〉 =

R∑

r=1

∫

ΓN
r

(
b̂r|(Gr(µ))−1t̂|

)
vdΓ. (A.6.21)
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The abstract problem is then recovered for

〈Aw, v〉 =
R∑

r=1

∫

Ωr

∂w

∂xi
krij

∂v

∂xj
dΩ ∀w, v ∈ Y, (A.6.22)

〈F (µ), v〉 = 〈Ff (µ), v〉 + 〈Fb(µ), v〉, (A.6.23)

〈Ff , v〉 =

R∑

r=1

∫

Ωr

f rvdΩ, 〈Fb, v〉 =

R∑

r=1

∫

ΓN
r

brvdΓ. (A.6.24)

Here krij(µ) is given by

krij = Grii′(µ)k̂ri′j′G
r
jj′(µ)det(Gr(µ))−1, (A.6.25)

and br(µ), f r(µ) are given by

f r(µ) = f̂ rdet(Gr(µ))−1, br(µ) = b̂r|(Gr(µ))−1t̂|. (A.6.26)

Furthermore, we may define

Θq(i,j,r)(µ) = krij(µ), 〈Aq(i,j,r)w, v〉 =

∫

Ωr

∂v

∂xi

∂w

∂xj
dΩ, (A.6.27)

for 1 ≤ r ≤ R, 1 ≤ i, j ≤ d.

A.6.4 Model problem

We now consider our model problem in detail. As already said the problem can be seen as a

problem involving the flow of heat in a T-shaped region containing an internal heat source as

shown in Figure A.2. Our output of interest is

s(µ) =

R∑

r=1

1

ξr

∫

Ω̂r

ûdΩ̂, (A.6.28)

for µ = {t,D,L, S, θ} ∈ Dµ ⊂ R
P , where ξr is a normalizing factor (related to geometrical

quantities in the subdomains Ω̂r). Our problem can then be formulated as: given a µ ∈ Dµ ⊂

R
P , find s(µ) = 〈L̂, û〉 where û ∈ Ŷ is the solution to:

〈Âŵ, v̂〉 = 〈F̂ , v̂〉,∀v̂ ∈ Ŷ ; (A.6.29)

here, 〈L̂, v̂〉 = 〈F̂ , v̂〉, ∀v̂ ∈ Ŷ . In our case Dµ is given by [tmin, tmax] × [Dmin, Dmax] ×

[Lmin, Lmax]×[Smin, Smax]×[θmin, θmax], i.e: [0.1, 1.5]×[0.1, 1.5]×[0.1, 5.0]×[0.1, 5.0]×[0o , 60o].

We have b̂ = 0, f̂ = { 1
ξr
} defined on Ω̂r, so that:

ξ1 = t, ξ2 = SD, ξ3 = tD, ξ4 = LD. (A.6.30)

The affine mapping G(x̂)(µ) : Ω̂ → Ω is given by (A.6.13) and we have

G1(µ) =

(
1 − tan(θ)

0 1

)(
1 0

0 1
t

)
, G2(µ) =

(
1
D 0

0 1
S

)
, (A.6.31)
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G3(µ) =

(
1
D 0

0 1
t

)
, G4(µ) =

(
1
D 0

0 1
L

)
. (A.6.32)

Each mapping function is defined in Ω̂r, furthermore gr = 0 ∀r. We have

dΩ̂1 = det(G1)−1(µ)dΩ1 = tdΩ, dΓ̂1 = |det(G1)−1(µ)t̂|dΓ1 = tdΓ, (A.6.33)

dΩ̂2 = det(G2)−1(µ)dΩ2 = LDdΩ, dΓ̂2 = |det(G2)−1(µ)t̂|dΓ2 = LDdΓ, (A.6.34)

dΩ̂3 = det(G3)−1(µ)dΩ3 = tDdΩ, dΓ̂3 = |det(G3)−1(µ)t̂|dΓ3 = tDdΓ, (A.6.35)

dΩ̂4 = det(G4)−1(µ)dΩ4 = SDdΩ, dΓ̂4 = |det(G4)−1(µ)t̂|dΓ4 = SDdΓ, (A.6.36)

Figures A.3 and A.4 show the affine mapping procedures on two subdomains (Ω1 and Ω3 for

example).
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Figure A.3: Scheme of parameter-dependent domain Ω1 undergoing vertical shear and rota-

tion.

We may now re-formulate our problem in terms of our reference domain: find s(µ) = 〈L, u〉

where u ∈ Y is the solution to:

〈Aw, v〉 = 〈F, v〉,∀v ∈ Y, (A.6.37)

where 〈L, v〉 = 〈F, v〉 ∀v ∈ Y and

〈Aw, v〉 =

R∑

r=1

〈Arw, v〉 = 〈F, v〉,∀v ∈ Y, (A.6.38)

〈F, v〉 =

R∑

r=1

∫

Ωr

vdΩ, ∀v ∈ Y, (A.6.39)
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Figure A.4: Scheme for parameter-dependent domain Ω3 and reference domain undergoing

both stretch and shear.

〈Arw, v〉 =

∫

Ωr

∂v

∂xi
krij

∂w

∂xj
dΩ, ∀w, v ∈ Y, (A.6.40)

and the effective diffusivity tensors krij(µ) = Gii′(µ)k̂ri′j′Gjj′(µ)detG−1(µ) are given by:

k1 =
[ t − tan θ

− tan θ 1+tan2 θ
t

]
; (A.6.41)

k2 =
[ S

D 0

0 D
S

]
; (A.6.42)

k3 =
[ t

D 0

0 D
t

]
; (A.6.43)

k4 =
[ L

D 0

0 D
L

]
. (A.6.44)

The abstract problem formulation is then given for P = 5 (number of parameters), R = 4

(subdomains) and Q = 9 (different bilinear forms contributes to A over different portions of

domain).

A.7 Some numerical results

In this section we present some numerical results obtained with the configuration previously

described. We used a posteriori error bounds and adaptive procedures in basis-building

process. Table A.1 shows a preliminary test based on two-parameters configuration and

adaptivity procedures. We can see that the dimension of N is very small in reduced-basis
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model. With adaptive procedures we get a 60% saving in computational cost related to off-

line procedures using a triangulation with O(103) elements. The information about the error

bound is provided by ∆N . Table A.2 gives us information about convergence (∆N ), varying N ,

N ∆N

7 0.1

9 0.01

13 0.001

20 0.0001

Table A.1: ∆N and N using two-parameters configuration (L and D) and adaptive procedure

(Section A.5). Without adaptive procedure we would need N = 50 to get a ∆N < 10−3, we

reach a consistent computational load reduction.

and about the effectivity ηN , studying a complete five-parameters configuration. With N =

45, for example, we get ∆N ≤ 10−4 = εpriord . Effectivity is near unity (always ≥ 1). The results

are obtained testing at least 1000 different configurations Σprior and different parameters

combinations (see Section A.5), the ones in the table are the worst gotten testing all the

random configurations considered. It’s important to underline that the adaptive procedure

tested in the reduced-basis off-line building phase has permitted us to keep under control the

condition number of the reduced-basis matrix, avoiding ill-conditioning problems caused by

the random choice of parameters.

Figure A.5 shows the solution of the problem given by finite element method and by reduced

basis for a certain combination of parameters (i.e L = 1.0, D = 1.5, S = 1.0, t = 1.31, θ =

16o). Figure A.6 shows the distribution of the error ẽ in Ω (difference between uN and ũ)

using N = 60 basis. This is not the error over the output s(µ) calculated by a posteriori error

bounds, but it can be considered as a good indication how reduced-basis method is able to

provide results close to the Finite-Elements solution. Figure A.7 shows the convergence of the

method used in logarithmic scale increasing N , while Figure A.8 shows the upper and lower

bound error estimator and their convergence to the true value of the output quantity of inter-

est. Figures A.9 and A.10 represent effectivity ηN and the upper (ηmax) and lower limit (ηmin,

i.e. unity). Figures A.11 and A.12 show parameters distribution in the parameters spaces

during the off-line reduced-basis matrix construction. The former shows a two-parameters

distribution region (Dµ ⊂ R
2) around the first couple of parameters chosen in the centre

of the region. Note that the parameters are distributed around the original starting point.

The latter is a possible five-parameters distribution in the case studied applying the adaptive

procedure.
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N ηN ∆Nmax N ηN ∆Nmax

1 3.1438 0.064589558 31 1.2802 0.000234237

2 4.4864 0.051445346 32 1.4427 0.000220116

3 4.6687 0.052944041 33 1.4321 0.000192997

4 4.5023 0.050876316 34 1.3848 0.000171898

5 4.0258 0.043368854 35 1.6566 0.000189594

6 2.9801 0.025041318 36 1.651 0.000176161

7 2.521 0.019830625 37 1.814 0.000185761

8 2.3531 0.018128973 38 1.8877 0.000192532

9 1.8848 0.012419358 39 1.9003 0.000187474

10 1.7454 0.010821934 40 1.8567 0.000179674

11 1.5322 0.008960269 41 1.6172 0.000140013

12 1.5339 0.008963254 42 1.6207 0.000139235

13 1.5327 0.008874298 43 1.6361 0.000140171

14 1.5052 0.008636955 44 1.7266 0.000146752

15 2.2945 0.008465466 45 1.6297 0.000101771

16 2.1233 0.008245741 46 1.6366 9.74091E − 05

17 2.0121 0.007101543 47 1.6187 9.63095E − 05

18 1.9571 0.005058438 48 1.6283 9.64255E − 05

19 2.2285 0.003577518 49 1.481 8.87554E − 05

20 2.3294 0.003595009 50 1.4757 8.78055E − 05

21 1.9196 0.001392253 51 1.4802 8.46522E − 05

22 1.882 0.00132827 52 2.8702 8.46041E − 05

23 1.673 0.000950676 53 2.9196 8.46041E − 05

24 1.6219 0.000783639 54 2.8235 8.46041E − 05

25 1.655 0.000795108 55 2.6366 8.47554E − 05

26 1.2313 0.000360924 56 2.7151 7.8055E − 05

27 1.1243 0.000301648 57 2.6354 7.65224E − 05

28 1.1096 0.000269211 58 2.6772 7.46041E − 05

29 1.108 0.000268716 59 2.3726 4.26101E − 05

30 1.1698 0.000275998 60 2.4882 4.45111E − 05

Table A.2: ∆Nmax and N using five-parameters configuration and adaptivity procedure to

get a ∆Nmax < 10−4 = εpriord in the worst case. Note values of the effectivity ηN .
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Figure A.5: Solution using FEM-Galerkin method for a 5-parameters configuration (left) and

solution using reduced basis method with N = 60.
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A.8 Developments on reduced basis

In Chapters 5, 6 and 7 we extend the reduced basis technique to Stokes and Navier-Stokes

equations and to problems involving also non-affine mapping (i.e. shape design). See also

Grepl [44] and Solodukhov [145]. We are interested in studying a complete coarse config-

uration for the problem of aorto-coronaric bypass optimization but the procedures can be

generalized for other design problems in engineering.

A.8.1 Reduced basis for the study of a complete geometrical configuration

The first step concerns the replacement of the elliptic state equation with Stokes equation

(with Dirichlet in-flow condition and Neumann out-flow condition), see also Rovas [134]. The

main steps are the following.

• Reformulation of the problem (new state equations, new bilinear forms) with the same

geometry (4 subdomains) described in this appendix.

• Test of the bypass model with “macro” parameters in the haemodynamics background (5

macro-parameters) and a preliminary geometrical sensitivity analysis (diameter, stenosis

lentgh, bypass angle,...).

• Test on a possible starting configuration to apply the tools of shape optimization and

flow control (see Chapter 2-4 and [123]) with a more complex output of interest (e.g.

vorticity).

• At the end of the study we get an optimized bridge configuration and useful indication

for bypass construction. See Chapter 5.

A.8.2 Reduced basis for pre-process optimization

The problem can be studied at an intermediate level with an approach verified by feed-back

procedures (a shell model).

• We use reduced-basis techniques to get a preliminary configuration for the bypass prob-

lem (coarse configuration) in a pre-process procedure for optimization.

• We apply tools for optimization based on flow control and optimal shape design tech-

nique, introduced in Chapter 2-4, using the starting configuration gotten from reduced

basis model application. We use steady and unsteady Stokes equations.

• We take the new configuration (the local configuration optimized by shape design tools)

for a further feedback using unsteady Navier-Stokes equations and other output of

interest (such as unsteady quadratic functionals related to wall shear stress oscillations).

In conclusion at this step we have a “shell” model with three inner feedback procedure (see

Figure A.13):
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• Reduced-Basis method on a coarse “bridge” configuration.

• Optimal Shape design and Flow Control on fine configuration.

• Unsteady quantities and Navier Stokes equations as a feedback test for the final config-

uration.
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Figure A.13: “Shell” model scheme made up by consecutive steps.

A.8.3 Reduced basis for a shape optimization problem

The last step is the full extension of reduced basis model using more than five parameters

and modelling the (curved) wall using non-affine mapping on reference domain. In this case
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reduced basis can be used not only in the framework of a pre-process for optimization but as a

shape optimization tool in itself. This aspect is considered in chapter 6. Then the introduction

of non-linearities with the convective term allows us to study Navier-Stokes equation using

reduced basis in parametrized domains. At this stage we can also carry out a comparison

between the low fidelity fluid model based on the Stokes equation and the high fidelity one

based on the Navier-Stokes equations. This aspect is developed in Chapter 7.

A.8.4 Reduced basis for optimal flow control

An other step to complete the present work is the creation of a link between optimal control

(based on adjoint formulation) and reduced basis used to solve both state and adjoint problem

with geometrical shape parameters. In this last case optimization would be driven by optimal

control tools, while approximation by reduced-basis model. See Table A.3. This aspect is

developed in Chapter 8.

Step First Option Second Option

Problem Approximation Galerkin-Finite Element and Galerkin-Finite Element and

Reduced-basis for state Reduced-basis for state and

equation adjoint equation

Optimization Sensitivity Analysis Optimal Control

(adjoint formulation)

Table A.3: Third step future developments options.

It is evident that to expand and apply reduced-basis theory on biomechanics problems (i.e.

biomedical devices such as bypass) the two most important phases are the use of a great num-

ber of geometrical parameters (non-affine mapping) and the use of Navier-Stokes equations

to model fluid flow.

A.9 The model-order reduction

We give at the end of this appendix some relevant background (and historical) information

on model-order reduction. The issue of reducing complexity while preserving all relevant

information, has been a very active research area in many disciplines. A characteristic of

systems whose behavior is governed by partial differential equations is that the resulting state

models, obtained by a discretization procedure, are of very high-dimension. Therefore some

of the existing methods developed, for example in control systems theory, are not directly

applicable. In the last period the problem of model-order reduction is becoming more and

more relevant due to the versatility that it allows in the parametrization of the problem. See

for example the recent review work in SIAM News [51] by Gunzburger and Willcox. We
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summarize in Section A.9.1 recent developments and relevant approaches. The references

provided, although by no means exhaustive, should cover most of the recent work. As model-

order reduction methods are by definition pre-asymptotic, validation of the obtained results

has been recognized to be a critical ingredient. Even though residual-based error measures

have been suggested, rigorous a posteriori error estimation procedures have been developed

in the last years. In other contexts, like estimation of the discretization error in finite-element

analysis, a plethora of a posteriori error estimation methods had already been existent for

years. Some of these methods are relevant for our problems; we discuss in section A.9.2 the

connection and differences between them.

A.9.1 Earlier Work

Proper Orthogonal Decomposition

We start our discussion with the proper orthogonal decomposition method, probably the

most popular model-order reduction technique. Underlying this method is the solution of

the following approximation problem: given a (possibly large) set of vectors, identify the best

approximating N -dimensional plane (subspace) such that the root-mean square L2-projection

error is minimized. A solution to this problem can be obtained using the singular value (or

Karhunen-Loève) decomposition [86].

The proper orthogonal decomposition has been applied and (re-)discovered in many different

areas: system dynamics, stochastic processes, image processing, to name a few. For reduction

of physical systems, it has been extensively applied to time-dependent problems. In this

case, time is considered as the varying parameter, and “snapshots” of the field variable (e.g.

temperature, displacement) at different times — parameter points — are obtained using

numerical or experimental procedures. The optimal N -dimensional approximation space (for

N small) is constructed by applying the singular-value decomposition to these vectors, and

keeping only the N singular vectors corresponding to the largest singular values. As the

singular values are related to the total “energy” of the approximation, these modes can be

identified as the ones preserving most of the energy. The reduced model is then obtained by

using a Galerkin projection to the space spanned by these vectors. More precisely, the POD

algorithm is built as follows (see, for example, [50] and [132]):

• we start from a reduced basis {φ1, ..., φ OM}, a basis of finite element solutions associated

to some “snapshots” (chosen parameters), where M̃ is usually O(100), and we compute

the mean value

φ̄ =
1

M̃

O
M∑

j=1

φj.

We assume that φi, i = 1, ..., M̃ has been computed by finite element method: φi ∈ R
N ,

dove N � 1 is the finite element space dimension.

• We build a correlation matrix C : M̃ × M̃ (symmetric and positive semidefinite), whose

elements are Ci,j = 1
O
M

(φi − φ̄)T (φj − φ̄), i, j = 1, ..., M̃ .
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• We compute eigenvalues {λ1, ..., λ OM} and the corresponding eigenvectors {v1, ..., v OM} of

C, ordering the eigenvalues by decreasing size.

• We choose M :

M = min
m∈[1,

O
M ]

such that

∑m
j=1 λj

∑M̃
j=1 λj

≥ γ,

where 0 ≤ γ ≤ 1 is a fixed tolerance.

• We set Φi =
∑ OM

j=1(vi)j(φj − φ̄), for i = 1, ...,M . (vi)j is the j-th component of the i-th

eigenvector.

• We normalize Φ̂i = Φi

|Φi|
, where |Φi|

2 = ΦT
i Φi.

The set B = span{Φ̂1, ..., Φ̂M} is the POD basis (orthonormal, i.e. ΦT
i Φj = δij); the POD

approximation is: find uM (µ) ∈ B so that

a(uM (µ), v;µ) = f(v), ∀v ∈ B. (A.9.1)

The optimality property and generality of these ideas, has led to the successful application

of the method in many areas: turbulent flows [89], fluid structure-interaction [34], non-linear

structural mechanics [73], turbo-machinery flows [166]. Extension of these methods to general

multi-parameter problems has been quite limited. The problem is that the singular values

are not system invariants as they depend on the choice of “snapshots” and the particular

configuration in consideration. It has been observed that reduced-order models obtained for

one configuration were not optimal for other configurations; using such models often lead

to inaccurate or, even worse, incorrect results. It has been suggested in [24] to give more

weight or preselect some of the vectors in the starting basis, leading to “weighted-POD”

or “predefined-POD” methods, but the selection of the required weights is not automatic

limiting the generality of such approaches.

An analysis of the model-truncation error suggests that the error can be attributed to two

sources: first in the inability of the low-order model to reproduce the exact loading; and

second, for the approximated loading, in the inability of the low-order model to recover the

exact solution [72] (see also [114] for similar ideas). Using terms from control-systems theory,

the first error is related to the controllability (primal) and the second to the observability

(dual) of the low-order model. In a similar manner, for our methods, we introduce at the end

of Chapter 5 a combined primal-dual approach to estimate both of these errors. The notion

that a truncation of the model should balance both of these errors, led to balanced-truncation

methods [98].

Reduced Basis Methods

We turn now to reduced-basis approaches, upon which our method is also based. The reduced-

basis method has been proposed in [8, 102] for the non-linear analysis of structures. In these

approaches, only single-parameter problems were considered and the method was viewed
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as a continuation procedure. The method has been further investigated and extended by

Noor [105, 106], who realized that the method could be applied for general multi-parameter

problems. Much of the earlier work focused: first, on the selection and efficient computation

of basis functions; and second, on validation of the efficiency and accuracy of reduced-basis

approaches in a number of test problems.

As seen in the introduction of this appendix the reduced-basis method recognizes that the field

variable is not, in fact, some arbitrary member of the infinite-dimensional solution space asso-

ciated with the partial differential equation; rather, it resides, or “evolves”, on a much lower-

dimensional manifold induced by the parametric dependence. In these earlier approaches,

the approximation spaces for the low-dimensional manifold were typically defined “locally”

— relative to a particular parameter point. Fink and Rheinboldt [37] placed the method in

this geometric setting and carried out an error analysis for a general class of single-parameter

problems. Porsching [117] considered Lagrangian, Taylor and discrete least squares approx-

imation spaces, and extended some of the a priori analysis. In [38] a general local error

estimation theory for single-parameter problems was developed containing the earlier esti-

mates as special cases. The extension of the error analysis to multi-parameter problems was

presented in [133]. Finally, evaluation of the constants that appear on the error bounds was

considered in [13]. The a priori theory as developed in the works above concludes that, close

to the parameter point selected for the construction of the reduced-basis spaces, the error

converges to zero exponentially fast with the number of basis functions used.

Reduced basis approaches have been subsequently developed in many other areas. Peterson

[113] applied it to fluid flow problems and the Navier-Stokes equations, and in [65, 64] it

was used for control of fluid problems. The reduced-basis approach as earlier articulated

was local in parameter space in both practice and theory. As a result, the computational

improvements — relative to conventional (say) finite-element approximation — were often

quite modest [117]. Balmes [11], was the first to consider general multi-parameter problems.

In his approach he suggests choosing the basis functions by sampling globally in parameter

space. The importance of error estimation has always been emphasized in the literature and

rigorous validation methods have been developed by Patera, Maday et al. in [91], [92] and

[134] and since then the range of reduced basis applications has increased a lot.

Other Methods

Krylov-subspace techniques like the Arnoldi or the Lanczos methods and their variants, have

traditionally been used for the calculation of a small set of the extremal eigenvalues and

eigenvectors for large-scale eigenproblems. But these are precisely the eigenvalues and eigen-

vectors of interest for model reduction. Many reduction approaches based on Krylov-subspace

techniques have been developed; for an overview see [69] and the references contained therein.

The iterative nature of the algorithms, makes it difficult to develop error bounds; moreover

and the stability of the reduced-order problem is not always guaranteed.
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A.9.2 Remarks on a posteriori error estimation

The issue of a posteriori error estimation and, more generally, validation of the numerical

predictions has received considerable attention in the finite-element literature. The problem

of interest is related to the choice of mesh to be used for the definition of the finite-element

spaces. It is understood that there are certain trade-offs associated with the choice of the

finite-element mesh: on one hand, a conservative choice, ensures high accuracy but also the

computational costs become formidable; on the other hand, the choice of a relatively coarse

mesh ensures efficiency but the accuracy is dubious. More to that, for a specific choice of

mesh, the obtained accuracy is not easy to calculate as it depends on the topology of the

mesh, the particular problem in consideration, the choice of finite-element spaces, or even the

way we choose to measure the error. We can also relate a number of other problems like, for

example, the choice of elements to be refined in adaptive refinement or, more generally the

choice of “optimal” meshes (i.e. meshes which for a given accuracy minimize computational

cost). For all these problems, the ability to estimate and therefore control, the discretization

error is critical.

The extensive a priori theory can not be used as the provided error bounds depend on norms

of the exact solution which, in general, is not known. Rather, the a posteriori error estimators

give bounds which depend on computable quantities, like residuals. The study of these types

of error estimators started in the 70s with the first paper by Babuska and Rheinboldt [10],

and since then the literature has grown appreciably; a review can be found in [7]. Most error

estimators developed give bounds for abstract norms of the error. Relevant to this thesis are

a posteriori error estimators directly for outputs of interest; see for example [109, 110] for

relevant work.

For the reduced-basis method instead of the finite-element mesh and the discretization error,

we have the parameter space “discretization”, and the reduced-basis approximation error;

refinement of the mesh, corresponds to adding more basis-functions in the definition of the

reduced basis global approximation space WN . But there are also differences, the most

important being the parameter-dependence of the operator, consideration of which is not

required in the finite-element case. Even though the methodologies are distinctively different;

some of the general ideas [110] for a posteriori error estimation are common.
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son travail sur l’optimization en mecanique des fluides. Il a participé à plusieurs conférences
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