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Abstract

This thesis deals with the numerical modeling and simulation of granular media with
large populations of non-spherical particles. Granular media are highly pervasive in
nature and play an important role in technology. They are present in fields as diverse
as civil engineering, food processing, and the pharmaceutical industry. For the physi-
cist, they raise many challenging questions. They can behave like solids, as well as
liquids or even gases and at times as none of these. Indeed, phenomena like granular
segregation, arching effects or pattern formation are specific to granular media, hence
often they are considered as a fourth state of matter.

Around the turn of the century, the increasing availability of large computers made it
possible to start investigating granular matter by using numerical modeling and simu-
lation. Most numerical models were originally designed to handle spherical particles.
However, making it possible to process non-spherical particles has turned out to be
of utmost importance. Indeed, it is such grains that one finds in nature and many
important phenomena cannot be reproduced just using spherical grains. This is the
motivation for the research of the present thesis.

Subjects in several fields are involved. The geometrical modeling of the particles and
the simulation methods require discrete geometry results. A wide range of particle
shapes is proposed. Those shapes, spheropolyhedra, are Minkowski sums of polyhe-
dra and spheres and can be seen as smoothed polyhedra. Next, a contact detection
algorithm is proposed that uses triangulations. This algorithm is a generalization of a
method already available for spheres. It turns out that this algorithm relies on a pos-
itive answer to an open problem of computational geometry, the connectivity of the
flip-graph of all triangulations. In this thesis it has been shown that the flip-graph of
regular triangulations that share a same vertex set is connected.

The modeling of contacts requires physics. Again the contact model we propose is
based on the existing molecular dynamics model for contacts between spheres. Those
models turn out to be easily generalizable to smoothed polyhedra, which further mo-
tivates this choice of particle shape.

The implementation of those methods requires computer science. An implementation
of this simulation methods for granular media composed of non-spherical particles
was carried out based on the existing C++ code by J.-A. Ferrez that originally handled
spherical particles.

The resulting simulation code was used to gain insight into the behavior of granular
matter. Three experiments are presented that have been numerically carried out with
our models. The first of these experiments deals with the flowability (i. e. the abil-
ity to flow) of powders. The flowability of bidisperse bead assemblies was found to
depend only on their mass-average diameters. Next, an experiment of vibrating rods
inside a cylindrical container shows that under appropriate conditions they will or-
der vertically. Finally, experiments investigating the shape segregation of sheres and
spherotetrahedra are perfomed. Unexpectedly they are found to mix.
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Résumé

Le sujet de cette thèse est la modélisation et la simulation numérique de milieux gran-
ulaires composés de grains non sphériques. Les matériaux granulaires abondent dans
la nature et ont une place importante dans la technologie. On les trouve dans des do-
maines aussi divers que le génie civil, l’industrie agro-alimentaire ou l’industrie phar-
maceutique. Pour le physicien, ils sont d’autre part la source de nombreuses questions.

A la fin du siècle dernier, l’augmentation de la puissance de calcul des ordinateurs a
rendu possible l’utilisation de la simulation numérique pour l’étude les milieux gran-
ulaires. Au départ, la plupart des modèles numériques etaient développés pour traiter
des particules sphériques. Pouvoir simuler des grains non-sphériques s’est révélé étre
d’une importance cruciale. En effet, les particules que l’on trouve dans la nature sont
non-sphériques et un grand nombre de phénomènes importants ne peuvent pas êtres
reproduits avec des grains spheriques. Ceci constitue la motivation de la recherche
présentée dans cette thèse.

Il s’agit d’un travail pluridisciplinaire. La modélisation géométrique des particules et
les méthodes de simulation se basent sur des résultats de géométrie algorithmique.
Une grande variété de formes de particules est proposée. Ces formes ou spheropolyè-
dres, sont des sommes de Minkowski de polyèdres et de spheres et peuvent être vues
comme des polyèdres lissés. Ensuite, un algorithme de détection des contacts utilisant
des triangulations est proposée. Cet algorithme est la généralisation d’une méthode
déjà implémentée pour les sphères. Il se trouve que la convergence de cet algorithme
dépend de la réponse à un problème ouvert en géométrie algorithmique, la connex-
ité du graphe des flips de toutes les triangulations. Dans cette thèse, la connexité du
graphe des flips des triangulations régulières qui ont en commun leur ensemble de
sommets a été démontrée.

La modélisation des contacts s’appuie sur la physique. Le modèle que nous pro-
posons est basé sur les modèles de type dynamique moléculaire pour les contacts entre
sphères. Ces modèles se généralisent facilement à nos polyèdres lissés, ce qui constitue
une motivation de plus pour choisir cette famille de formes.

L’implémentation de ces méthodes pour des milieux granulaires composés de partic-
ules non-sphériques a été faite à partir du programme écrit en C++ par J.-A. Ferrez
pour la simulation numérique de grains sphériques.

Ce programme a ensuite été utilisé pour étudier certains phénomènes liés aux milieux
granulaires. Trois expériences ont été conduites numériquement avec nos modèles.
Avec la première de ces expériences, la coulabilité des poudres, c’est-à-dire la facilité
avec laquelle elles peuvent couler, a été étudiée. Il s’est trouvé que la coulabilité des en-
sembles de sphères bidisperses ne dépend que de leur diamètre moyen en masse. En-
suite, une expérience consistant a faire vibrer des particules alongées dans un container
cylindrique montre que sous certaines conditions ces particules vont s’ordonner verti-
calement. Enfin, des expériences de ségrégation par formes de sphères et de sphéroté-
traèdres montrent que ces deux formes vont avoir tendance à se mélanger.
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Introduction

This thesis deals with the numerical modeling and simulation of granular media with
large populations of non-spherical particles. Granular materials are constituted of solid
bodies that are large enough for mutual microscopical interactions to be negligible.
They can behave like solids, as well as liquids or even gases and at times as none of
these. Granular media are therefore said by some to constitute a fourth state of matter.
Indeed, a grain assembly will undergo anisotropic stresses at rest, flow when submit-
ted to external forces and fill all available volume under sufficient agitation. However,
the stresses inside a granular piling are far from homogeneous [LNS+95], granular
flows will be confined to a boundary layer at the free surface of a sand pile [AD99]
and granular gases can show clustering [MY96]. One of the major concerns of mate-
rial engineers is to link microscopic and macroscopic scales, in order to understand
how observable macroscopic behaviors derive from microscopic phenomena. While
this link is quite well understood and described for solids, liquids and gases, nothing
comparable exists for granular matter so far. This alone is more than enough to arouse
the interest of scientists. What is further appealing in their study is that granular me-
dia constitute a good portion of all materials handled by man, in factories for example.
The need to understand the physics of granular matter is therefore not only due to the
curiosity natural to scientific minds but also comes from the industrial world.

Around the turn of the century, the increasing availability of large computers made it
possible to start investigating granular matter by using numerical modeling and sim-
ulation. Among many other advantages, this technique allows to check the validity of
microscopic granular interaction models using macroscopical experiments. Another
advantage is that some of the limitations particular to usual real-world experiments
disappear. Indeed, almost any experiment is feasible and any parameter can be mea-
sured in a numerical framework. However, numerical simulation methods suffer from
the limitation of computing power. Their main drawback though, is that they strongly
rely on the model chosen for grain-grain interactions, which most of the time shows
strong inaccuracies in given situations [MY92; LCB+94]. Most numerical models were
originally designed to handle spherical particles. However, making it possible to pro-
cess non-spherical particles has turned out to be of utmost importance. Indeed, it is
such grains that one finds in nature and many important phenomena cannot be repro-
duced just using spherical grains.

This thesis is organized in two parts. The first one describes the tools and methods that
we use to model non-spherical grains and to handle them numerically (chapters 1, 2,
3, 4). The second part features three experiments that have been carried out with our
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models. Those experiments investigate some quite unexpected phenomena related to
granular matter (chapters 5, 6, 7).

Inter-particulate contact modeling

Among the available methods for contact modeling, one finds event-driven (ED) meth-
ods, molecular dynamics (MD) and contact dynamics (CD) as sub-categories of the distinct
element method (DEM). While the medium is treated as a sequence of instantaneous col-
lisions in event driven methods, with methods using molecular dynamics, the system
is driven by explicit inter-particulate forces. On the contrary, the explicit parameter in
contact dynamics is displacement. In this thesis, we focus exclusively on the molecular
dynamics method. This method was originally designed to handle spherical particles.
In chapter 2, the reader will find a generalization of the distinct element method to
a wide range of non-spherical particles. This is a subject to which researchers have
been showing a growing interest over the past few years. Alternate ways to handle
non-spherical particles can be found in [O’C96; MLH00; MMEL04; MEL05].

Collision detection

Granular media simulation does not only require realistic physical contact modeling
but also efficient contact detection algorithms. Indeed, in order to apply contact mod-
els, one first needs to determine which are the pairs of contacting particles. The com-
plexity of naive contact detection methods is quadratic. This becomes quickly pro-
hibitive when large populations of particles need to be simulated. The question of
detecting contacting objects is not specific to numerical simulation. Geometric mod-
eling, computer graphics and robotics require efficient contact detection methods as
well for their own purposes. Most contact detection methods are found in [AT87]. The
most widely used among those are spacial subdivision methods. The idea underly-
ing to those methods is to cut space into cells and to check for contact inside each cell
and between neighboring cells. The way the cells should be laid out and handled (cell
size, adaptive subdivision) leads to a wide range of algorithms [SSW00; Sam84]. Other
methods keep track of neighbors lying inside a bounded area surrounding each par-
ticle [Sch99; MMEL04; MEL05]. The contact detection method we use here was first
implemented by D. Müller [ML95; Mül96a] for discs and polygons in two dimensions
and extended to three dimensional spheres by J. A. Ferrez [Fer01; FL02]. The method
relies on constrained triangulations for polygonal particles and weighted Delaunay trian-
gulations (otherwise called regular triangulations) for discs and spheres. Those triangu-
lations have the nice property that they provide informations about inter-particle dis-
tances among a set of spheres. The reader will find an extension of this triangulation-
based algorithm to non-spherical particles in chapter 3. The proof that this method
theoretically works, either for spheres and non spherical particles is presented in chap-
ter 1. A discussion of the practical complexity of the method will be found in chapter
4.
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Is the flip-graph of regular triangulation connected ?

By its very nature, our triangulation-based contact detection method heavily uses re-
sults from computational geometry. It turns out that some of the regularization algo-
rithms presented in chapters 3 and 4 rely on a positive answer to an open problem
(see [DMO05]). The general question is : is it possible to transform a triangulation of
a given point set into another triangulation of the same point set by only using local
transformations (called flips) that do not add or delete vertices ? This question is usu-
ally formulated in terms of a particular graph called flip-graph. While the general case
remains open, the answer is yes in two dimensions [Law77], no in dimensions above
six [San00a]. Moreover, if has been shown in [GZK90] that all regular triangulations are
connected by flips, if we allow for the deletion and addition of vertices. In the context,
the contribution of this thesis is the proof that two regular triangulations sharing the
same vertex set are connected by flips that do not add nor delete vertices (chapter 1) so
that all the intermediate triangulations are regular.

Granular matter and numerical simulation

The second part of this thesis is devoted to experiments on granular media that have
been carried out numerically. Chapter 5 presents a study of the ability of bead as-
semblies to flow. Chapter 6, reports on granular crystallization of elongated particles
submitted to vertical vibrations. This numerical findings correspond to experimental
observations from [VLMJ00] and constitutes a validation of our simulation techniques.
The reader will finally find a study of the shape-segregation of mixtures of spheres and
tetrahedra in chapter 7. We observe that spheres and tetrahedra with same volume and
density tend to mix which is not what one would have expected from granular mate-
rials.
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Chapter 1

Mathematical preliminaries

The particular simulation method for granular media proposed in this thesis relies
on the properties of simple geometrical objects as polyhedra and triangulations. In-
deed, the particle shapes this method handles can be described as smoothed poly-
hedra. Moreover, the method to detect the pairs of contacting particles will use the
regularity properties of a particular class of triangulations, known as either “weighted
Delaunay triangulations” or “regular triangulations”.

The reader will find the definitions of those geometrical objects in this chapter, as well
as those properties that are useful for contact modeling (chapter 2) and contact de-
tection algorithms (chapter 3). Sections 1.1 and 1.3 introduce the formalism in Rd for
d ∈N, since all definitions can be stated in any dimension. Still our natural framework
is R3 and this chapter also can be read replacing d by 3. Section 1.2 presents theoretical
results about a geometrical problem that happen to be crucial for the regularization of
the triangulations used in the contact detection method (chapter 3).

1.1 Polyhedra and complexes

We denote conv(p) the convex hull of a subset p of Rd and aff(p) its affine hull. If A
and B are collections of subsets of Rd, the set {conv(p ∪ q) : (p, q) ∈ A× B} is denoted
by A ? B. We denote by x.y the Euclidean scalar product of two vectors x and y, by ‖x‖
the Euclidean norm of a vector x and by |λ| the absolute value of a scalar λ.

A polyhedron is the intersection of finitely many closed affine halfspaces. The dimen-
sion of a polyhedron p, denoted by dim(p) is the dimension of its affine hull. A face
of p either is the empty set, p itself, or its intersection with a supporting hyperplane
[BY95]. Observe that faces of a polyhedron are polyhedra. We call dimension of a face
its dimension as a polyhedron. The faces of a polyhedron p of dimension dim(p)− 1
will be called facets and those of dimension 0 will be called vertices. The vertex set of a
polyhedron p will be denoted by V(p).
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A cone is the intersection of finitely many closed linear halfspaces and as such it is
a particular case of polyhedron. A polytope is a bounded polyhedron. A simplex s is
a polytope whose vertex set is affinely independent. It proceeds from the following
proposition that a polytope is the convex hull of its vertex set. This is a classical result
in geometry, which detailed proof can be found in [BY95].

Proposition 1. A polytope is the convex hull of finitely many points.

Polyhedra will be the basic elements constituting polyhedral complexes, according to
the following definition :

Definition 1. We call polyhedral complex in Rd a set C of polyhedra of Rd so that all pairs
(p, q) ∈ C2 satisfy the two following statements :

i) p ∩ q belongs to C.

ii) p ∩ q is a common face of p and q.

The elements of a polyhedral complex C will be called faces of C. We call underlying
space of C and denote by dom(C) the pointwise union of its faces. We call dimension
of C and denote by dim(C) the dimension of its underlying space’s affine hull. A face
whose dimension is that of C is called a cell of C, a face whose dimension is dim(C)− 1
is called a facet of C and a face of dimension 0 is called a vertex of C. We denote by VC
the set of all vertices of the polyhedral complex C.

We call fan in Rd a polyhedral complex in Rd whose faces are cones. A fan in Rd is com-
plete if its underlying space is Rd. Now we introduce particular polyhedral complexes
related to finite point sets. We call point configuration any finite subset A of Rd. The set
of all polytopes whose vertices are in A is denoted by PA.

Definition 2. A polyhedral subdivision of a point configuration A is a subset of PA which is
a polyhedral complex and whose underlying space is conv(A).

We call triangulation of a point configuration A any polyhedral subdivision T of A
whose faces are simplices. As an example, figure 1.1 shows a point configuration and
two of its triangulations.

A face f of T is called interior if it intersects the relative interior of dom(T). For a
face s of a triangulation T, we call star of s in T the set {p ∈ T : conv(s ∪ p) ∈ T} and
link of s in T the set {p ∈ T : conv(s ∪ p) ∈ T, s 6⊂ p}. Let A be a point configuration
of Rd. A height function on A is any function w : A → R. Height functions induce
particular polyhedral subdivisions of their underlying point configurations according
to the following proposition :

Proposition 2. Let A be a point configuration of Rd and w a height function on A. There is
a unique polyhedral subdivision T(A, w) of A so that for all p ∈ T(A, w), there exists y ∈ Rd

satisfying the following two statements :
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A T1 T2

Figure 1.1: A point set A in the plane and two of its triangulations T1 and T2.

i) For all a ∈ V(p), a.y = w(a).

ii) For all a ∈ A \ V(p), a.y < w(a).

For all a ∈ A, call aw the point (a, w(a)) ∈ Rd+1. The faces of T(A, w) can actually
be obtained by projecting the lower faces of the polytope conv({aw : a ∈ A}) back
on Rd. Polyhedral subdivisions that can be constructed in this way exhibit particular
regularity properties [dLRS04], which earns them to be denominated accordingly :

Definition 3. A polyhedral subdivision T of a point configuration A is called regular if there
exists a height function w so that T = T(A, w). In this case we say that w realizes T.

Observe that not all subdivisions of a point configuration are regular. The usual ex-
ample of a triangulation that is not regular is shown on figure 1.2. This particular
triangulation is actually what one can see when looking at Schönhardt’s polyhedron
[Sch28; Ramar] from the top.

a

b

c

b'

c'

a'

Figure 1.2: A non-regular triangulation, commonly referred to as “mother of all exam-
ples”.
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1.2 On the flip-graph of regular triangulations

In the method described in chapter 3, a way to regularize triangulations will be needed.
The problem can be stated as follows. Let (Si)1≤i≤n be a set of spheres with centers
(Ri)1≤i≤n. Provided a triangulation T of the point configuration A= {xi : 1≤ i ≤ n} is
known, one needs to transform T into the weighted Delaunay triangulation generated
by (Si)1≤i≤n at the lowest possible cost.

In order to proceed to this regularization, we will use local transformations called ge-
ometric bistellar flips, or simply flips, as shown on figure 1.4. The two dimensional
flip of figure 1.4a) amounts to exchange the diagonals of a convex quadrilateral. The
analogous tridimensional flip is that of figure 1.4d) and exchanges 1 edge, 3 triangles
and 3 tetrahedra for 1 triangle and 2 tetrahedra. Locally performing those flips within
a triangulation will produce different triangulations of a given point configuration. As
an example, figure 1.3 shows a way to obtain one triangulation of figure 1.1 from the
other by successive flips. This problem of changing a triangulation into another by per-
forming flips can be formulated for point sets in any dimensions. This demands proper
definitions of both triangulations and flips which will be given in the following.

A crucial object here is the flip-graph of all triangulations of a point configuration A.
This graph has the triangulations of A as vertices and the flips between those triangu-
lations as edges. It is connected if it is possible to change a triangulation into any other
one by performing flips. It has been shown [Law77] that two dimensional point con-
figurations are always linked by a succession of flips. However, according to [San00a],
there are six-dimensional point configurations whose flip-graph is disconnected. For
point sets in dimensions three to five, the connectivity of this graph is still subject
to investigations, though there are some results bounding the degree of its vertices
[dLSU99; San00a; San00b].

Figure 1.3: A sequence a flips connecting triangulations T1 and T2 of figure 1.1. Dashed
lines show the edges that are flipped out and bold ones show the edges that are flipped
in.

The subgraph induced by regular triangulations in the flip-graph is the 1-skeleton of
the secondary polytope introduced in [GZK90]. As such, the flip-graph of regular
triangulations exhibits a very nice intuitive structure. In particular, it is connected
[GZK90; GKZ94]. The reader should refer to [dLRS04] for a comprehensive explana-
tion on the subject.

This section report results about particular paths in the flip-graph of regular triangula-
tions. Those results can also be found in [PL05b]. As follows from the above definition
of triangulations, not all points in a point configuration A need be vertices of a tri-
angulation of A. Moreover, figures 1.4b) and 1.4c) show that some flips make points
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appear or disappear in the triangulation. It is possible to flip a triangulation of a point
configuration to another by going through triangulations whose vertex sets are quite
different. Indeed, the only points strictly required as vertices for any triangulation of
A are the extreme points of the convex hull of A. Theorem 3 states that when flipping
a regular triangulation into another whose vertex set is a subset of the first, it is possi-
ble to keep monotone the number of vertices of the triangulations met in the process.
As a corollary, the flip-graph of regular triangulations whose vertex sets are identical
is connected. This connectivity property actually reveals crucial for our contact detec-
tion method (see chapter 3), where the vertices of the triangulation represent particles.
Deleting those vertices while a simulation proccesses is therefore inappropriate in this
case.

1.2.1 Geometric bistellar operations

The notion of flip has been illustrated in the introduction by the two dimensional exam-
ple of figure 1.4a) that consists in exchanging the diagonals of a convex quadrilateral.
Observe that the flip shown in figure 1.4b) exhibits a different structure, as it makes a
vertex appear or disappear. Degenerate cases may occur as well, like the flip of figure
1.4c) where five vertices are involved, three of them being aligned, and one of them ap-
pearing or disappearing depending on the triangulation in which the flip is performed.
The simplest three-dimensional flip, shown in figure 1.4d) consists in exchanging two
tetrahedra and a triangle for three tetrahedra, three triangles and an edge. Of course,
flips analogous to those of figures 1.4b) and 1.4c) also exist in three dimensions. In this
section, we give a definition in any dimension of those geometric bistellar operations,
thus gathering the flips of figure 1.4 into one unique description.
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Figure 1.4: Some flips

We call circuit any minimal affinely dependent subset Z of Rd and for a point config-
uration A, we denote by CA the set of all circuits Z ⊂ A. The set {a, b, c, d} is a circuit
in figures 1.4a) and 1.4b) and {b, d, e} is one in figure 1.4c). A circuit admits exactly
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two triangulations. This comes from the existence of the so-called Radon partition of
circuits, according to the following theorem :

Theorem 1. Let Z ⊂ Rd be a circuit. There exists a unique partition (Z−, Z+) of Z so that
conv(Z−) ∩ conv(Z+) 6= ∅.

Let (Z−, Z+) be the Radon partition of a circuit Z and consider the two subsets of PZ
defined by T− = {s ∈ PZ : Z− 6⊂ s} and T+ = {s ∈ PZ : Z+ 6⊂ s}. Every simplex in
PZ either belongs to T− or to T+. Moreover, one can check that both T− and T+ are
triangulations by using the unicity of (Z−, Z+) as a partition of Z so that conv(Z−) ∩
conv(Z+) 6= ∅. This proves that Z admits T− and T+ as its only two triangulations.
While knowing that a circuit admits exactly two triangulations is not strictly required
to proceed with the definition of flips, it helps to understand the structure of circuits,
which are the minimal point configurations admitting more than one triangulation.

Definition 4. Let T be a triangulation of a point configuration A. Suppose the two following
statements are satisfied by some circuit Z ⊂A :

i) Some triangulation T− of Z is a subcomplex of T.

ii) All cells of T− have the same link L in T.

Then, we say that Z is a flippable circuit in T. Moreover, a triangulation T′ ofA can be obtained
by replacing T− ? L by T+ ? L in T. This operation is called a geometric bistellar flip and we
say that T and T′ are geometric bistellar neighbors.

Observe on figures 1.4a) and 1.4b) that {a, b, c, d} are flippable circuits, the link L stated
in ii) being empty. On figure 1.4c), however, {b, d, e} is a flippable circuit with L =
{a, c}. Actually, statement ii) will only be useful when the circuit to be flipped is not
full-dimensional, the flip itself being degenerate as that of figure 1.4c).

1.2.2 Monotone connectivity of the graph of regular triangulations

Let A be a configuration of n points in Rd. Since the space of height functions on A is
a vector space of dimension n, we will identify it with Rn from now on. For a given
regular polyhedral subdivision T of A, we denote by CA(T) the set {w ∈ Rn : T =
T(A, w)} of all height functions realizing T. We further denote by CA the collection of
the CA(T) over all regular polyhedral subdivisions T of A. The following proposition
is proven in [GZK90] :

Proposition 3. The set CA is a complete polyhedral fan. Moreover, for a regular polyhedral
subdivision T of A, the polyhedral cone CA(T) is full-dimensional if and only if T is a trian-
gulation.

The fan CA is called secondary fan of A, and for a regular polyhedral subdivision T of
A, the cone CA(T) is referred to as secondary cone of T. The following theorem states a
crucial property of the secondary fan. Its proof can be found in [dLRS04] :
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Theorem 2. Two regular triangulations T and T′ of a point configuration A are geometric
bistellar neighbors if and only if their secondary cones share a common facet.

To these results, we now add another one which will be used in the proof of theorem
3 to make sure that the sequence of triangulations we search for is monotone. For any
point a ∈ A we call KA(a) the set {w ∈ Rn : a ∈ T(A, w)} of all height functions whose
induced polyhedral subdivisions of A admit a as a vertex.

Lemma 1. Let A⊂ Rd be a point configuration. For all a ∈ A, the set KA(a) is convex.

Proof. Let w and w′ be two elements of KA(a) and λ an element of [0, 1]. We will show
that w′′ = λw + (1− λ)w′ still belongs toKA(a). According to proposition 2, there exist
two vectors y and y′ in Rd so that y.a = w(a) and y′.a = w′(a) while for all v ∈ A \ {a},
y.v < w(v) and y′.v < w′(v). Call y′′ the vector λy + (1 − λ)y′ ∈ Rd. By linearity of
the scalar product, one finds y′′.a = w′′(a) while for all v ∈ A \ {a}, y′′.v < w′′(v). It
follows from proposition 2 that a is a vertex of T(A, w′′), which proves that KA(a) is
convex.

Actually, for a ∈A the setKA(a) is a full-dimensional open polyhedral cone. However,
we only need its convexity here which explains the way lemma 1 has been stated. We
are now ready to prove our main result :

Theorem 3. LetA⊂Rd be a point configuration. Let T and T′ be regular triangulations ofA
so that V(T′) ⊂ V(T). Then there exists a finite sequence T0, ..., Tn of regular triangulations
of A so that T = T0, T′ = Tn and for any i ∈ {0, ..., n− 1},

i) Ti and Ti+1 are geometric bistellar neighbors.

ii) VTi+1 ⊂ VTi .

Proof. Observe that any regular triangulation of V(T) is a regular triangulation of A.
We can therefore assume without loss of generality that A = V(T).

According to proposition 3, the cones CA(T) and CA(T′) are full dimensional and as
such, their interiors are not empty. Observe that it is then possible to choose two height
functions w and w′ in the interiors of CA(T) and CA(T′) respectively so that all faces of
CA intercepted by segment conv(w, w′) either are facets or cells. Let (w, w′) be such a
pair of height functions.

We denote by T0, ...., Tn the sequence of regular triangulations of A so that CA(T0), ...,
CA(Tn) are those cells of CA successively met when conv(w, w′) is traversed from w to
w′. Observe that T0 = T and Tn = T′. For any i ∈ {0, ..., n− 1}, according to the way
(w, w′) was chosen, the secondary cones CA(Ti) and CA(Ti+1) share a common facet.
Theorem 2 then makes sure that triangulations T0, ...., Tn satisfy statement i).

For any i ∈ {0, ..., n− 1}, let a be a vertex of Ti+1. Since a is a vertex of T0 as well, the
convexity of {w ∈ Rn : a ∈ T(A, w)} provided by lemma 1 implies that a is a vertex of
Ti. Triangulations T0, ...., Tn then satisfy statement ii) and the theorem is proven.
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While theorem 3 is the main result of this section, we now state a corollary that may be
more appealing for it asserts the connectivity of some subgraphs of the flip-graph of
regular triangulations. This result is particularly interesting for practical applications,
and in particular for the contact detection method described in chapter 3. Indeed, the
vertices of a triangulation represent the particles, therefore deleting them in the course
of the simulation is inappropriate.

Corollary 1. Let A be a point configuration in Rd. The flip-graph of those regular triangula-
tions of A that share A as a common vertex set is connected.

1.3 Weighted Delaunay triangulations and power diagrams

Previous sections introduce regular triangulations by using height functions. This sec-
tion presents another way to look at that particular class of triangulations, using the
formalism of power diagrams. This formalism makes it possible to derive some of their
properties that will be used in chapter 3, such as their ability to evaluate distances be-
tween neighbors among an assembly of spheres.

Assume (Si)1≤i≤n is an assembly of n spheres in Rd whith centers (xi)1≤i≤n and radii
(Ri)1≤i≤n. Consider the power distance πi to the sphere Si defined on Rd by :

πi : Rd → R,
x 7→ ‖x− xi‖2 − R2

i .
(1.1)

When x lies outside Si, πi(x) is the square of the distance between point x and sphere
Si measured along a line tangent to Si, as figure 1.5 suggests. Now, call pi the subset
of Rd constituted by points x so that for all j 6= i, πi(x) ≤ π j(x). The (pi)1≤i≤n happen
to be polyhedra which are the cells of a polyhedral complex C called power diagram or
sometimes Laguerre complex generated by the spheres S1, ..., Sn. Such a power diagram
is shown on figure 1.6 in two dimensions. More details about power diagrams, and
particularly proofs of above assertions can be found in [BY95].

The power diagram C generated by spheres (Si)1≤i≤n happens to be a geometrical dual
of a particular regular triangulation of the point configuration A = {xi : 1 ≤ i ≤ n}.
Indeed, for each face p of C((Si)1≤i≤n), consider the polyhedron p∗ whose vertices are
those xi so that p is a face of Ci. The set {p∗ : p ∈ C} is then a polyhedral subdivision
of A (see [BY95] for proofs). Moreover, this subdivision is realized by the following
height function :

w :
A → R,
xi 7→ ‖xi‖2 − R2

i .
(1.2)

Thus, {p∗ : p ∈ C} is a regular subdivision of A. When w is in general position,
{p∗ : p ∈ C} is a regular triangulation called weighted Delaunay triangulation generated
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Figure 1.5: The power distance of point x with respect to sphere Si.

by the spheres (Si)1≤i≤n. We say that the spheres (Si)1≤i≤n are in general position when-
ever the height function (1.2) they provide is in general position. Figure 1.6 depicts the
weighted Delaunay triangulation corresponding to the power diagram already men-
tioned above in two dimensions.

We say that two spheres Si and S j are less than orthogonal if ‖x j − xi‖2 > R2
i + R2

j . This
condition, forbids spheres Si and S j to overlap too much. More precisely, their overlap
should be strictly lower than in the case where they are orthogonal. We call orthogonal-
ity condition the following condition on the spheres (Si)1≤i≤n :

∀ (i, j) ∈ {1, ..., n}2, i 6= j⇒ ‖x j − xi‖2 > R2
i + R2

j . (1.3)

Whenever this condition is satisfied, the weighted Delaunay triangulation generated
by the spheres (Si)1≤i≤n is able to provide all the intersecting pairs among those spheres,
according to the following theorem :

Theorem 4. Let (Si)1≤i≤n be a set of spheres in general position that satisfy the orthogonality
condition (1.3). For any i 6= j, if spheres Si and S j intersect then conv({xi, x j}) is a face of the
weighted Delaunay triangulation generated by (Si)1≤i≤n.

Proof. Suppose that Si and S j intersect and consider k ∈ {1, ..., n} \ {i, j}. Call x the
point in conv({xi, x j}) so that πi(x) = π j(x). As the pair (Si, Sk) is less than orthogonal,
we have ‖xk − xi‖2 > R2

i + R2
k . Introducing x in the left hand side of this inequation

and developing the scalar product, one finds πk(x) + πi(x) > 2(xk − x).(xi − x). The
same arguments hold for the pair (S j, Sk) and we obtain the following system :

{
πi(x) + πk(x) > 2(xk − x).(xi − x)
π j(x) + πk(x) > 2(xk − x).(x j − x) (1.4)

Since spheres Si and S j intersect, x lies inside both of them, which implies that πi(x)≤ 0
and π j(x) ≤ 0. From inequations (1.4), πk(x) is then strictly greater than both 2(xk −
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Figure 1.6: The weighted Delaunay triangulation (solid lines) and the power diagram
(dashed lines) generated by a set of circles in the plane.

x).(xi − x) and 2(xk − x).(x j − x). Since those two quantities have opposite signs, we
obtain πk(x) > 0. As a consequence, πk(x) is strictly greater than both πi(x) and π j(x),
and this for all k 6∈ {i, j}. This means that x lies in the relative interior of a common
facet of Ci and C j. According to the way the weighted Delaunay triangulation is de-
duced from the power diagram, conv({xi, x j}) then is a face of the weighted Delaunay
triangulation generated by spheres (Si)1≤i≤n.

Assuming that the spheres (Si)1≤i≤n are spherical grains constituting a granular medium,
they should physically satisfy the orthogonality condition and theorem 4 makes sure
that all interparticle contacts will be found among the edges of the weighted Delaunay
triangulation they generate. This property has already been used in the theses of D.
Müller [Mül96a] and J.-A. Ferrez [Fer01] (see also [FL02]) in order to detect contacts
between spherical grains in two and three dimensions respectively.

Theorem 4 can be generalized by appropriately relaxing the orthogonality condition.
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Consider the following condition on spheres (Si)1≤i≤n, called overlapping condition :

∀ (i, j) ∈ {1, ..., n}2, i 6= j⇒ ‖x j − xi‖2 > |R2
j − R2

i |. (1.5)

Observe that if spheres (Si)1≤i≤n satisfy this overlapping condition, all the xi are ver-
tices of the weighted Delaunay triangulation they generate. Assume spheres (Si)1≤i≤n
satisfy the overlapping condition, and let I be a subset of {1, ..., n}. We say that spheres
(Si)i∈I are congruous if they satisfy the following statement :

∀ (i, j) ∈ I × Ī,‖x j − xi‖2 > R2
i + R2

j , (1.6)

where Ī = {1, ..., n} \ I. The weighted Delaunay triangulation generated by (Si)1≤i≤n
can be used to detect whether two congruous sets of spheres overlap, according to the
following theorem :

Theorem 5. Let (Si)1≤i≤n be a set of spheres in general position that satisfy the overlapping
condition (1.5) and let (Si)i∈I and (Si)i∈J be two distinct congruous subsets of (Si)1≤i≤n. If
∪i∈Iconv(Si) and ∪ j∈Jconv(S j) intersect, there exist i ∈ I and j ∈ J so that conv({xi, x j}) is
a face of the weighted Delaunay triangulation generated by (Si)1≤i≤n.

Proof. Among those pairs (i, j) ∈ I × J for which conv(Si) and conv(S j) intersect, take
one that minimizes ‖x j − xi‖2 − R2

i − R2
j . Call x the point in conv({xi, x j}) so that

πi(x) = π j(x). Let k ∈ {1, ..., n} \ {i, j}.

If k 6∈ I ∩ J, pairs (Si, Sk) and (S j, Sk) are less than orthogonal and using the same
arguments as in the proof of theorem , we find that πk(x) is strictly greater than both
πi(x) and π j(x).

Now assume that k is in I∩ J. The situation is symmetric in I and J and we can therefore
assume without loss of generality that k ∈ J. Using (1.1), we have :

πk(xi)− π j(xi) = ‖xk − xi‖2 − R2
k − R2

i − ‖x j − xi‖2 + R2
j + R2

i . (1.7)

From the way (i, j) was chosen, ‖x j − xi‖2 − R2
i − R2

j is not greater than ‖xk − xi‖2 −
R2

i − R2
k and equation (1.7) gives πk(xi) ≤ π j(xi), that is x j lies in the affine half-space

E defined by πk − π j ≥ 0..

Now observe that the overlapping condition (1.5) implies πk(x j) > π j(x j). Point xk
therefore lies in the interior of E and by convexity of E, so does the relative interior of
the line segment conv({x j, xk}). In particular, x lies in the interior of E which reads
πk(x) > π j(x).

We have shown that for all k ∈ {1, ..., n} \ {i, j}, πk(x) is strictly greater than both πi(x)
and π j(x). Point x therefore lies in the relative interior of a common facet of Ci and C j.
According to the way the weighted Delaunay triangulation is deduced from the power
diagram, conv({xi, x j}) is a face of the weighted Delaunay triangulation generated by
spheres (Si)1≤i≤n.
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Theorem 5 will be used in chapter 3 for the detection of contacts between non-spherical
grains. We will now give a local characterization of weighted Delaunay triangulations
as well as a property that will turn out to be crucial for the regularization algorithm of
section 3.3.

Assume (Si)1≤i≤n is an assembly of n spheres in general position in Rd with centers
(xi)1≤i≤n and radii (Ri)1≤i≤n and let T be a triangulation of the point configuration
{xi : 1 ≤ i ≤ n}. Let f be an interior facet of T, and (a, b) the pair of vertices of T so
that conv({a} ∪ f ) and conv({b} ∪ f ) are maximal faces of T. Let x be the center of the
circumsphere S of conv({b} ∪ f ) and R its radius. According to (1.1), the power of a
with respect to sphere S reads ‖x− a‖2 − R2. We say that f is legal if ‖x− a‖2 − R2 > 0
and illegal if ‖x − a‖2 − R2 < 0. Since spheres (Si)1≤i≤n are in general positions, the
case ‖x − a‖2 = R2 does not occur. We say that a facet f is flippable if its vertex set
together with {a, b} is a flippable circuit. The following theorem is a classical result of
computational geometry and its proof can be found in [BY95] or in [ES96]:

Theorem 6. A triangulation of {xi : 1 ≤ i ≤ n} is the weighted Delaunay triangulation D
generated by spheres (Si)1≤i≤n if and only if its vertex set contains that of D and all its interior
facets are legal.

This theorem provides a way to check whether a triangulation is the weighted De-
launay triangulation generated by spheres (Si)1≤i≤n by performing one local test for
each of its interior facets. Intuition suggests that we can obtain the weighted Delaunay
triangulation generated by spheres (Si)1≤i≤n by successively flipping illegal flippable
facets in a triangulation T. We can formulate the following theorem:

Theorem 7. Any triangulation of {xi : 1≤ i≤ n} can be flipped to a triangulation that admits
no facet simultaneously illegal and flippable.

Proof. We will only sketch the proof of theorem 7 here. Let T be a triangulation of
{xi : 1≤ i ≤ n}. Observe that lifting the vertices of T to Rd+1 using the height function
(1.2) allows to represent T as a polyhedral surface Σ in Rd+1. Assume that T admits
illegal flippable facets. It turns out that the illegal facets of T correspond to the non-
convexities of Σ. Therefore if f is an illegal flippable facet of T, flipping it will produce
a triangulation T′ whose associated polyhedral surface Σ′ lies strictly below Σ (which
can also be formulated as : the volume below Σ′ is strictly smaller than the volume
below Σ). By strictly below, we mean that Σ′ is below Σ, while it is not identical to
Σ. This means that it is impossible to cycle by successively flipping illegal flippable
facets. Since the number of triangulations of {xi : 1≤ i≤ n} is finite, a triangulation that
admits no facet simultaneously illegal and flippable will eventually be reached.

Observe that the triangulation T′ eventually reached by successively flipping illegal
flippable facets from a triangulation T of {xi : 1 ≤ i ≤ n} may not be the weighted De-
launay triangulation D generated by spheres (Si)1≤i≤n. It can be proven that when
flipping illegal flippable facets, vertices of the weighted Delaunay triangulation gen-
erated by spheres (Si)1≤i≤n will never appear or disappear. Therefore if the vertex set
of T does not contain that of D, triangulation T′ cannot be equal to D. If VD ⊂ VT then
VD ⊂ VT′ as well but T′ still may admit illegal facets. According to theorem 6, T′ will
be equal to D if and only if VD ⊂ VT and T′ has no illegal facet.



Chapter 2

The Distinct Element Method

The distinct element method is widely used to simulate phenomena involving grains.
It allows to simulate on a computer the time evolution of a set of particles submitted to
forces such as interparticle contact forces and gravity. Suppose P1, ..., Pk are particles in
a three dimensional space evolving between a time t0 and a time t f . What the distinct
element method needs to proceed are the spacial configuration of P1, ..., Pk a time t0
and a way to compute the forces acting on P1, ..., Pk at a time t ∈ [t0, t f ], from the only
knowledge of their spacial configuration. Several methods can be used to integrate the
motion of the particles. Here, we consider the simplest one: Euler’s integration scheme.
A time step ∆t =

t f−t0
N is used to discretize [t0, t f ] in a number N ∈N∗ of time intervals

[t0 + i∆t, t0 + (i + 1)∆t] for i ∈ {0, ..., N − 1}. This method further assumes that all the
forces the particles are submitted to are constant within each of those time intervals of
duration ∆t. Therefore, by integrating the motion equations, the spacial configuration
of P1, ..., Pk at time t0 + (i + 1)∆t is easily deducible from that at time t0 + i∆t. The
overall process can be summarized as follows :

1. From the configuration of P1, ..., Pk at time t0 + i∆t, compute the forces acting on
P1, ..., Pk.

2. Assuming the forces acting on the particles are constant within [t0 + i∆t, t0 +
(i + 1)∆t], solve the motion equation for each individual particle inside the time
interval [t0 + i∆t, t0 + (i + 1)∆t] and find its position at time t0 + (i + 1)∆t.

3. set i + 1→ i and return to 1.

Though this general description gives an overall idea of the DEM framework, some
of its key components need to be further described in order for any implementation
to be possible. In particular, a way to compute the forces acting on the particles from
the sole knowledge of their spacial configuration still has to be practically formulated.
This requires to model contacts between particles together with contact forces, but also
the very shapes of the particles. These few issues are discussed in the remaining of this
chapter.
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2.1 A model for particle shapes

Let S be the pointwise union of a finite number of simplices of R3 and r > 0 a real
number. The particle Π(S, r) consists of the points x ∈ R3 whose euclidean distance to
S is not greater than r. This amounts to taking the Minkowski sum of the set S with
the ball of R3 of radius r centered at point 0. The set S is called skeleton of Π(S, r) and
the real number r is called radius of Π(S, r). If S is a point, Π(S, r) is the ball of R3 of
radius r centered at point S. If S is a line segment, Π(S, r) is called spherosegment, or
more usually spherocylinder. If S is a triangle, Π(S, r) is called spherotriangle and if it is a
tetrahedron, Π(S, r) is called spherotetrahedron. Balls, spherosegments, spherotriangles
and spherotetrahedra are what we call spherosimplices (figure 2.1). When S is a poly-
hedron, Π(S, r) is a spheropolyhedron. Let s1, ..., sk be the simplices whose pointwise
union is the set S. The particle Π(S, r) is then exactly the union ∪k

i=1Π(si, r) of basic
spherosimplices.

Figure 2.1: The Minkowski sums of a sphere with a line segment, a triangle and a
tetrahedron. These particular shapes, called spherosimplices are some of the basic
objects constituting the general particle model used in this work.

Actually, some skeletons may contain superfluous information as sketched in figure
2.2. Indeed, if p is a point in S whose distance to the boundary of Π(S \ {p}, r) is
strictly greater than r, then Π(S, r) = Π(S \ {p}, r). Using particles so that the distance
of any point p ∈ S to the boundary of Π(S \ {p}, r) is r will simplify their handling,
avoiding useless calculations due to unnecessarily complex skeletons.

Observe that this geometrical description of the particle shapes assumes that they have
a given position in space. Upon introduction of the time variable, the particles will be
allowed to move accordingly to the rules underlying to the DEM framework. The
particles will therefore be allowed to translate and rotate as a response to the physical
constraints they will be subject to, but their shapes will remain unchanged. It follows
that the skeleton S of a particle will be a function S(t) of time whose values will be
deducible one from the other by a translation and a rotation. While P will then be the
function of time P(t) = Π(S(t), r), P and its incarnation P(t) at different times t will be
used indifferently whenever t does not need to be specified.
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Figure 2.2: A two-dimensional particle P = Π(S, r) obtained as the Minkowski sum of
a set of simplices S with a ball of radius r. The skeleton S contains a line segment σ

whose Minkowski sum Π(σ , r) with the same ball is sketched as a dashed line. The set
Π(σ , r) strictly lies in the interior of P and therefore removing σ from S will not change
P

2.1.1 Contacts and overlaps between particles

Two particles P1 and P2 are said to be in contact if they overlap, that is if P1 ∩ P2 6= ∅.
This simple notion may seem shockingly unrealistic as two distinct solids will never
simultaneously occupy the same portion of space. However, this model does have a
physical interpretation and turns out to be very convenient for quantifying the geo-
metrical properties of a contact when attempting to decide of a model for its physical
behaviour.

Indeed, two particles experiencing a contact slightly deform at the contact point. In-
stead of using an explicit model for the deformation of the grain shapes, which would
demand forbiddingly large computational efforts anyway, the shapes of the particles
will remain unchanged and the deformation of the contact area will be modeled by the
an overlapping between the particles, as sketched in figure 2.3.

The idea is that the relative position between the two undeformed particles in contact
should be that they would have if they could deform. The amplitude of the overlap
will then model the amount of deformation deformable particles would show in the
same contact conditions. Observe that from the definition of a particle, two particles
P1 = Π(S1, r1) and P2 = Π(S2, r2) overlap if and only if there exist two points x1 ∈
S1 and x2 ∈ S2 so that ‖x1 − x2‖ < r1 + r2. If two particles P1 and P2 are in contact
and at least one of them is non-convex, the overlapping area P1 ∩ P2 is not necessarily
connected, that is P1 and P2 have several contacting areas as shown on figure 2.4.

This case shows that the above definition of a contact needs to be further refined. To
this end, advantage can be taken of the way the particles have been defined and the
following distance function can be introduced :
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P1

contact overlap

P2

P1

P2
v22

v1

Figure 2.3: The deformation at the contact point is modeled by an overlapping of un-
deformed particles. The dashed line on the right-hand side sketches the deformation
the contacting particles would experience if they were deformable

P1

P2

S1

S2

r1

r2

Figure 2.4: Two particles experiencing several simultaneous contacts because one of
them is non-convex.

d : S1 × S2 → R+

(y1, y2) 7→ ‖y2 − y1‖
(2.1)

Contacts between P1 and P2 will each be identified with a local minimum of function
d. This function therefore separates the individual contact areas. Still not all among
the local minima of function d will correspond to a contact. As an example, figure 2.5
shows a local minimum of function d where no overlapping occurs between P1 and P2.
It follows that the local minima (x1, x2) of function d such that r1 + r2 − ‖x2 − x1‖ < 0
will not provide any contact point between P1 and P2.

Given a local minimum (x1, x2) of function d, the distance between point x1 and the
boundary of P1 along segment x1x2 reads :
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S1

S2

P2

P1

r2

r1

x2

x1

Figure 2.5: Some local minima of function d may not correpond to overlapping areas

δ(x1, x2) = d(x1, x1x2 ∩ {R3 P) (2.2)

The case may arise where a local minimum (x1, x2) of d satisfies r1 + r2−‖x2− x1‖> 0
but is so that either δ(x1, x2) > r1 or δ(x2, x1) > r2. Such a case is shown on figure 2.6.
This kind of case provides an imaginary contact point. Moreover, there is always an-
other local minimum (y1, y2) of d corresponding to the same contact area and simulta-
neously verifying the following three constraints called contact conditions :

r1 + r2 − ‖y2 − y1‖ > 0
δ(y1, y2) = r1
δ(y2, y1) = r2

(2.3)

In order to avoid both imaginary contacts and non-overlapping areas, contacts will be
identified with those local minima of function d that satisfy the contact conditions (3.2).
The contact detection method of chapter 3 will naturally sort out those situations.

Observe that if a contact occurs between two spherical particles, points x1 and x2 sim-
ply are the centers of those spheres. Using the couple (x1, x2), we single out a point
xc, called contact point and to which we will suppose contact forces are applied, as
will be explained in the following. The point xc is located on segment x1x2 at distance

d = d(x1 ,x2)
2 − r2

1−r2
2

2d(x1 ,x2)
of x1 (see figure 2.7). We call contact plane C the plane containing

point xc which is orthogonal to segment x1x2.

Aside from the location of the contacts, points x1 and x2 also provide a model for the
geometry of those contacts. By geometry, we mean the orientation of the contact (given
by the vector n normal to the contact area) and the amplitude of the overlap between
the two particles at the contact point along the normal to the contact area, or normal
overlap. The vector n is simply defined as n = x2−x1

d(x1 ,x2)
and the normal overlap ξn(xc)
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S1

S2

P2

P1

x2

y2

y1x1

xc
yc

r2

r1

r2

Figure 2.6: A contact between particles P1 = Π(S1, r1) and P2 = Π(S2, r2). The local
minima of d are (x1, x2) and (y1, y2) and they both satisfy the first contact condition as
r1 + r2 − ‖x2 − x1‖ > 0 and r1 + r2 − ‖y2 − y1‖ > 0. However, P1 and P2 only admit
one contact point given by the local minimum (y1, y2). In order to avoid processing
local minima such as (x1, x2) which provide imaginary contact points, one should only
consider such local minima (z1, z2) of d so that δ(z1, z2) = r1 and δ(z1, z2) = r2

d

ξn
P1

P2

r2

r1

x2

x1

xc

Figure 2.7: Geometrical modeling of a contact point

at the contact point reads ξn(xc) = r1 + r2 − d(x1, x2). The quantities xc, n and ξn(xc)
can be easily computed anytime a local minimum (x1, x2) of function d is found that
satisfies the contact conditions and will be useful in the following to model the contact
forces. Observe that the geometry of a contact has been reduced here to its normal
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components. Though a tangential overlap will be defined in the following section,
it will not depend on the geometrical shape of the contact area. Therefore, whether
the projection of the contact area on the plane tangential to the contact is isotropic or
strongly anisotropic will make no difference on the behaviour of the contact except for
its implicit correlation with xc, n and ξn(xc) (see figure 2.8). This clear choice keeps the
model simple, while leaving room for improvements.

P2 P’2

P’1P1

xc

x’cxc

x’ci
j

k

i
k

j

i
j

k

i
k

j

Figure 2.8: Isotropic (left) and anisotropic (right) contact areas in three-dimensional
situations. A side view of the two contacting particles is sketched (top) as well as a
view from above of the contact area (bottom). The contact force will be applied to
points xc and x′c respectively.

2.2 Contact force modeling

When a contact is detected between two particles P1(S1, r1) and P2(S2, r2), a contact
model is needed which exhibits the following two properties :

i) A contact has to be repulsive. The kinetic energy brought to the contact should be
totally or partly stored and a part of it should be used to limit the penetration of
the grains and eventually to be released as kinetic energy in order for the grains
to separate.

ii) A contact has to be dissipative. The kinetic energy brought to the contact should
be partly lost.

With such a physical contact model, we may obtain modeled granular media approx-
imating real ones. In order to formulate such a model, we introduce repulsive forces
f P2→P1

and f P1→P2
acting respectively on P1 and P2 at the contact point xc introduced

in section 2.1.1 and depending on the geometrical and dynamical conditions the con-
tact area is submitted to. The third Newton law allows us to simplify things a little
bit as it reads f = f P1→P2

= − f P2→P1
. Still the dependence of the contact force f on
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the geometrical and dynamical conditions the contact area is submitted to has to be
defined. The geometry of the contact area will be modeled by the overlap ξn and the
unitary vector n normal to the contact surface already introduced in section 2.1.1 (see
also figure 2.7), while the relative velocity vr(xc) of P1 and P2 at point xc will model its
dynamics. Calling ω1 and ω2 the spin vectors of P1 and P2, vr(xc) reads :

vr(xc) = ẋ2 − ẋ1 + n ∧ (r1ω1 + r2ω2) (2.4)

One can easily check that the primitive of vr(xc).n which is zero when the contact
begins is exactly ξn. Actually vr(xc) can also be used to define a tangential overlap.
Consider the following differential equation :

ξ̇ = (n ∧ ṅ) ∧ξ − vr(xc) (2.5)

We define the vector overlap ξ as the solution of equation (2.5) which is zero when the
contact begins. The normal and tangential overlaps are then given by :

ξn = ξ .n
ξs = ξ − (ξ .n)n (2.6)

Practically, ξn is given by ξn = r1 + r2 − ‖x2 − x1‖ and under the assumption that the
contact plane does not move much, ξs is given by the following simpler equation :

ξs =
∫ t

t0

vr(xc)du, (2.7)

where t0 is the instant the contact begins. The tangential deformation ξs gives the dis-
tance between the current position of the contact point and the contact point at instant
t0 in a referential attached to the contact plane and accounts for the amount of tan-
gential deformation at the contact point in the case of a pure sticky contact. However,
a contact may also slip, in which case the tangential deformation either remains con-
stant or decreases. A slipping behaviour will be made possible by using Coulombian
friction to limit the magnitude of ξs.

In the molecular dynamics procedure, the contact forces are computed as functions of
the overlaps ξn and ξs and their time derivatives ξ̇n and ξ̇s :

f = φn(ξn,ξ̇n)n +φs(ξs,ξ̇s) (2.8)

where φs is a vector quantity parallel to the contact plane C. Assuming that the tangen-
tial force φs(ξs,ξ̇s) does not already take into account the Coulomb friction, one has to
replace it in (2.8) by :

φC
s (ξs,ξ̇s) = min(µφn(ξn,ξ̇n),‖φs(ξs,ξ̇s) ‖)us (2.9)

Where µ is the friction coefficient, and

us =

 φs(ξ s ,ξ̇ s)
‖φs(ξ s ,ξ̇ s)‖

if φs(ξs,ξ̇s) 6= 0

0 if φs(ξs,ξ̇s) = 0
(2.10)

Observe that Coulomb law (2.9) should be implemented by bounding ξs when needed.
Here are two examples of force models, which are the most frequently used ones for
practical simulations. We describe those models without the Coulomb friction, which
has to be added afterwards according to (2.9).
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• Viscoelastic force : this force, proposed by Cundall and Strack [CS79] is a linear
combination of elastic and viscous terms. Energy is dissipated at the contact point
by the viscous term. We give the linear expression of this force, but non-linear
versions have been proposed and investigated (see [KK87])

φn(ξn,ξ̇n) = knξn + cnξ̇n (2.11)

φt(ξ t,ξ̇ t) = ktξ t + ctξ̇ t (2.12)

• Walton force : this force, which models the elastoplastic behaviour of the grains
at the contact point was proposed by Walton and Braun [WB86]. The energy is
dissipated at a contact as plastic deformation. The loading is assumed elastoplas-
tic and the unloading elastic. In either loading and unloading phases, the force is
taken as a linear function of the overlap. As the force only depends on the over-
lap, the loading-unloading paths obtained with the Walton force model can be
drawn on a force-overlap diagram, as sketched on figure 2.9, left. In order to take
into account the elastoplastic loading, the loading slope k(1) has to be lower than
the purely elastic unloading slope k(2a). If a reloading takes place, the force fol-
lows a purely elastic slope until it reaches the first loading path (this corresponds
to part (3) on the left diagram of figure 2.9). It would have been more realis-
tic to model the loading phase as a first purely elastic part followed by a plastic
part, and to take into account the 3/2 exponent given by the Hertz theory for the
elastic part, but this simple model contains the overall behaviour of elastoplastic
materials and is therefore sufficient for a first approximation. The normal force
reads

φn(ξn,ξ̇n) =

{
min(k(2a)

n (ξn −ξm
n ) +φm

n , k(1)
n ξn) (for ξ̇n > 0)

max(k(2a)
n (ξn −ξM

n ) +φM
n , 0) (for ξ̇n < 0)

(2.13)

where ξM
n and φM

n (resp. ξm
n and φm

n ) are the values of ξ and φ at the beginning of
the current unloading (resp. loading) phase (see figure 2.9, left diagram). A sim-
ple expression for the tangential Walton force roughly takes on the same features
as the normal Walton force :

φs(ξs,ξ̇s) =

{
min(k(2a)

t (ξs −ξm
s ) +φm

s , k(1)
s ξs)us (for ξ̇s > 0)

max(k(2a)
t (ξs −ξM

s ) +φM
s , 0)us (for ξ̇s < 0)

(2.14)

Where us is the unit vector defined when ξs 6= 0 by us = ξs/ξs. Both φn and
‖ φs ‖ may be drawn as functions of the overlaps (respectively ξn or ξs) on a
force-overlap diagram as the left one of figure 2.9.

2.3 Tuning molecular dynamics models with real experi-
ments

The molecular dynamics models described in section 2.2 are technically operational,
but the parameters of the force models (kn, ks, cn, cs or the viscoelastic model and k(1)

n ,
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Figure 2.9: Behaviour of force-overlap path for Walton force model. The diagram can
be used either for a normal or a tangential force. The path divide in (1) : loading, (2a,
2b) : unloading, (3) : reloading

k(1)
s , k(2a)

n , k(2a)
s for the Walton model) do not have a true physical reality, which means

they have no a priori expressions for which the modeled behaviour will be realistic.
Those parameters then have to be set empirically, so that the model quantitatively
reproduces some real and well-known experiment. Experiments which involve more
than one contact at a time usually do not provide measures which allow any analytic
linking between the experiment and the model parameters, the number of cases to
investigate for the resolution would be too high, and numerical implementation would
be very heavy. We are left with single contact experiments to set our parameters, with
no guarantee that situations which involve several simultaneous contacts will then be
realistically modeled.

The experiment we will work with is the collision of two grains P1 and P2 having no
initial spin. Three key quantities can be measured : the duration of the contact tc and
the normal and tangential restitution coefficients en and es, defined as follows using
the notations of section 2.2 :  en = − ξ̇

f
n

ξ̇ i
n

es = − ξ̇
f
s

ξ̇ i
s

(2.15)

Where i and f as exponents refer to quantities immediately before and immediately
after the collision. Note that es depends on the impact angle when the contact is slip-
pery but is constant for a sticky contact. In this section, we assume the contact is and
remains sticky. The tangential restitution coefficient then has a fixed value. This also
allows us to use directly equation (2.8), without Coulomb friction for the analytic reso-
lutions. The slippery behaviour of the contact, together with the subsequent alteration
of es will be provided afterwards trough equation (2.9). We will find here the analytic
expressions for tc, en and es for the modelled contact as functions of the model param-
eters. By inverting those expressions we will be able to set the model parameters so
that en, es and tc are controlled for single contact situations. The motion equations for
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the grains P1 and P2 read : 
m1 ẍ1 = − f
m2 ẍ2 = f
I1ω̇1 = −R1n ∧ f
I2ω̇2 = −R2n ∧ f

(2.16)

As the two grains experience the collision, plane C will not move much, which allows
us to assume n is a constant. (2.5) then simplifies to ξ̇ = −vc and equation (2.4) gives :

ξ̈ = ẍ1 − ẍ2 − n ∧ (r1ω̇1 + r2ω̇2) (2.17)

From (2.16) and (2.17) one finds :

ξ̈ = − 1
me f f

f − (
r2

1
I1

+
r2

2
I2

)φs(ξs,ξ̇s) (2.18)

Where 1/me f f = 1/m1 + 1/m2 As the grains have no initial spin, the centers of the
grains will move in a plane. Calling u⊥ a unit vector normal to that plane, we define
a unit vector tangential to the contact by us = n ∧ u⊥. Equation (2.18) then projects on
un and ut as follows :  ξ̈n = − 1

me f f
φn(ξn,ξ̇n)

ξ̈s = −( 1
me f f

+ r2
1

I1
+ r2

2
I2

)φs(ξs,ξ̇s).us
(2.19)

Where ξs = ξs.us. Those differential equations can be solved for ξn and ξs, provided
expressions for φn and φs such as (2.11, 2.12) or (2.13, 2.14). For those two cases, we
have the following solutions :

• Viscoelastic force : from (2.11), (2.12) and (2.19) we find the following set of
differential equations : ξ̈n + cn

me f f
ξ̇n + kn

me f f
ξn = 0

ξ̈s + cs( 1
me f f

+ R2
1

I1
+ R2

2
I2

)ξ̇s + ks( 1
me f f

+ R2
1

I1
+ R2

2
I2

)ξs = 0
(2.20)

Solving (2.20) provides expressions for en, es and tc according to (2.15) as func-
tions of kn, cn, ks and cs. Inverting those expressions we find :

kn =
me f f

t2
c

(π2 + ln (en)
2)

cn = − 2me f f
tc

ln (en)
ks = 1

t2
c ( 1

me f f
+

R2
1

I1
+

R2
2

I2
)
(π2 + ln (es)

2)

cs = − 1

tc( 1
me f f

+
R2

1
I1

+
R2

2
I2

)
ln (es)

(2.21)

The set of equations (2.21) allows to derive the contact parameters from the val-
ues of en, es and tc for single sticky contacts situations with the viscoelastic force
model.
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• Walton force : from (2.13), (2.14) and (2.19) we find the following differential
equations :

ξ̈n + k(1)
n

me f f
ξn = 0 (for ξ̇n > 0)

ξ̈s + k(1)
s ( 1

me f f
+ R2

1
I1

+ R2
2

I2
)ξs = 0 (for ξ̇s > 0)

ξ̈n + k(2a)
n

me f f
ξn = k(2a)

n −k(1)
n

me f f
ξM

n (for ξ̇n < 0)

ξ̈s + ( 1
me f f

+ R2
1

I1
+ R2

2
I2

)k(2a)
s ξs

= ( 1
me f f

+ R2
1

I1
+ R2

2
I2

)(k(2a)
s − k(1)

s )ξM
s

(for ξ̇s < 0)

(2.22)

Where the quantities ξM
n and ξM

s refer to the values of ξn and ξs at the end of the
loading phases. Solving (2.22) for solutions with continuous derivatives gives
expressions for en, es and tc according to (2.15) as functions of kn, cn, ks and cs.
Inverting those expressions we find :

k(1)
n = me f f (

π(1+en)
2tc

)2

k(2a)
n = me f f (

π(1+en)
2tcen

)2

k(1)
s = 1

1
me f f

+
R2

1
I1

+
R2

2
I2

(π(1+es)
2tc

)2

k(2a)
s = 1

1
me f f

+
R2

1
I1

+
R2

2
I2

(π(1+es)
2tces

)2

(2.23)

Equations (2.23) allow to control the values of en, es and tc for single sticky con-
tacts situations with the Walton force model.

By expressing the coefficients of the force models as shown in this section, we know
that any single sticking contact situation will be realistically modelled. However we
have no guarantee that situations involving several simultaneous contacts will be real-
istic.



Chapter 3

A triangulation-based contact detection
method

This chapter describes a method based on triangulations for detecting contacts be-
tween particles in the DEM framework. This method, first imagined and implemented
in the two dimensional case by D. Müller [Mül96a] was extended for tridimensional
spherical particles by J.-A. Ferrez [Fer01]. While D. Müller designed two versions of
the code, one that could handle spheres and one that could handle polygonal parti-
cles, this last version could not be naturally extended to polyhedra due to theoretical
limitations. Indeed, the twodimensional code for polygonal grains uses constrained tri-
angulations whose conditions of existence in dimensions higher than two [She05] are
too restrictive for the algorithm to work. Still an adaptation to the non-spherical par-
ticles introduced in chapter 2 of the tridimensional algorithm for spherical particles
is possible, and this is the main subject of this chapter. The first section describes the
original method for spheres and the second one its generalization to non-spherical par-
ticles. The third section is about the handling of the weighted Delaunay triangulations
used in the contact detection method.

3.1 Spherical particles

We are given a finite number of spheres (Pi)1≤i≤n. Naively testing all the pairs for
contact requires O(n2) time. This becomes prohibitive as n grows, typically in practice
103 < n < 105. Others have proposed using spacial decompositions to overcome this
difficulty [AT87]. Here we use the weighted Delaunay triangulation generated by the
family spheres (Pi)1≤i≤n as already proposed in [Mül96a; Fer01; FL02]. A long series
of computational experiments has shown that with this approach, one can reduce the
computational effort of contact detection from O(n2) to O(n) (see chapter 4).

Observe first that since spheres (Pi)1≤i≤n model physical particles, their mutual over-
laps should be rather small. It is therefore justified to assume that orthogonality con-
dition (1.3) is satisfied. In this case, theorem 4 makes sure that all interparticle contacts
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among spheres (Pi)1≤i≤n are identified by exactly one edge of the weighted Delaunay
triangulation T generated by spheres (Pi)1≤i≤n. Provided this triangulation is known,
contact detection can therefore be restricted to those pairs of spheres whose centers are
linked by one of its edges.

Two problems have to be solved in order to make sure this method is efficient. The
building and handling the weighted Delaunay triangulation along with the particle’s
motion, will be adressed in section 3.3. The second problem is a nice combinatorial one.
Indeed, there exist weighted Delaunay triangulations that admit a quadratic number of
edges [BY95]. In order to know whether or not those quadratic cases arise in practical
situations, numerical investigations have been conducted whose complexity results are
reported in chapter 4.

3.2 Non-spherical particles

In this section, we assume that (Pi)1≤i≤n are particles that are not necessarily spherical,
yet their shapes can be described using the model of chapter 2. In order to detect
all contacts occuring among those particles, it is possible to generalize the approach
described in the preceding section.

Each particle Pi will be associated with a set of spheres Si. We impose Pi to lie inside
∪S∈Siconv(S). This restriction will be called covering condition. The weighted Delaunay
triangulation T generated by the set of all covering spheres S = ∪n

i=1Si will be used to
detect interparticle contacts, provided that the set of covering spheres S satisfies the
overlapping condition (1.5) and that the spheres Si associated to a particle are congru-
ous (that is, satisfy (1.6)). Indeed, if two particles Pi and Pj intercept, sets ∪S∈Siconv(S)
and ∪S∈S jconv(S) are bound to intercept as well according to the covering condition.
Since the overlapping condition is satisfied and since Si and Si are congruous sets of
spheres, theorem 5 then ensures that there exist Si ∈ Si and S j ∈ S j whose centers are
linked by an edge of T. By successively testing all the edges of T, particle pairs candi-
date for contact can thus be detected.

As for the spherical case, this method requires building and updating the weighted
Delaunay triangulation. This will be adressed in section 3.3. Of course the problem of
knowing whether or not the number of edges of T is quadratic or not in practical cases
remains and one can refer to chapter 4 for numerical complexity tests. Two further
problems arise in this non-spherical case. For one, covering each particle with spheres
that satisfy the conditions stated above is required, which will be adressed in section
3.2.1. The other problem specific to non-spherical particles is that of finding actual
contact points once a pair of particles has been selected using the triangulation.

Recall from chapter 2 that a contact between particles P = Π(SP, rP) and Q = Π(SQ, rQ)
will be identified by a pair (xP, xQ) ∈ SP × SQ chosen among the local minima of func-
tion (2.1). If P and Q are two contacting spheres xP and xQ will always be the centers
of those spheres. If P and Q are non-spherical particles however, xP and xQ depend on
the relative position of the particles. Moreover if either P or Q are non-convex, there
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may be several contact points between them, corresponding to different local minima
of function (2.1). Observe that SP and SQ are the pointwise union of basic simplices,
that is SP = ∪s∈SP s and SQ = ∪s∈SQ s. For the non-spherical cases, we propose to com-
pute the distance between every pair (s, s′) ∈ SP × SQ. The arrangement of simplices
in each skeleton will immediately provide the local minima of function (2.1). Observe
that the number of local minima may be infinite (think of parallel spherotriangles). In
this case, the values for xP and xQ should be chosen as the barycenters of the possible
candidates for minimization in SP and SQ respectively. Only those local minima that
satisfy the contact condition will identify actual contacts.

The method proposed above to find the local minima of (2.1) that consists in computing
the distance between all the pairs of simplices constituting SP and SQ proves useful in
simple cases, when the skeletons are simplices for example. If the skeletons are consti-
tuted by many simplices, though, this process may be unnecessarily time consuming
and one can think of better procedures depending on the situation at hand. In the
case of convex skeletons, there only is one contact possible between two particles. The
global minimum of function (2.1) then is its only local minimum, if we except the de-
generate case of parallel simplices. The problem then amounts to minimize a quadratic
function under linear constraints which can be done in a variety of ways.

Moreover, theorem 5 only states that a contact will for sure be identified by at least one
edge of T. Depending on the way each particle is covered by its associated spheres, T
may give information on the localization of contacts. However, if this can be achieved,
this has to be properly described and stated as a theorem analogous to theorems 4 and
5.

3.2.1 Covering the particles with spheres

The method described in section 3.2 that detects contacts between non-spherical parti-
cles requires particles to be covered with spheres. Those spheres are required to satisfy
the overlapping condition (1.5) and spheres associated to a particle have to be congru-
ous (according to statement (1.6)). In order for contact detection to be possible through
all the simulation process, the set of spheres should keep those properties with the
motion of the particles.

Provided those conditions remain satisfied, one can imagine adding covering spheres,
deleting others, moving their centers with respect to their associated particles or chang-
ing their radii. Using all those degrees of freedom may provide a placement of covering
spheres that is optimal for contact detection purposes. Observe though that finding
such optimal placements requires that extensive information about the relative posi-
tions of the particles be known a priori. While a part of that information may be easily
available, making it possible to enhance the quality of contact detection at low cost by
proceeding to such modifications, we will not address this subject here and will only
consider the coverings so that:

• no sphere is added or deleted,
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• the centers of the spheres are motionless with respect to their associated particles,

• the radii of the spheres do not change while the particles move.

Still, the positions and radii of the covering spheres need to be defined. Observe that
in order for the spheres associated to a particle to stay congruous while the particles
move, one has to guarantee that any pair of spheres associated to different particles
be less than orthogonal regardless of their relative positions. In order to characterize
this, we assume in the following that the overlaps experienced by contacting particles
will never exceed a quantity ξm ≥ 0 called maximal overlap. As the overlap reflects the
amount of deformation a particle would experience at a contact point, any realistic
simulation will lead to small values for ξm. However, far away from any physical
consideration, an upper bound will be provided later for ξm which is only due to the
contact detection method.

r

xP

S

δ(S,P)

Figure 3.1: The distance δ(S, P) between the center x of ball S and the boundary its
associated particle P sketched in a particular case.

We also introduce the distance δ(S, P) sketched in figure 3.1 between the center x of
the covering sphere S and the boundary of its associated particle P as :

δ(S, P) = d(x,{R3 P). (3.1)

Using this notation, the distance between the centers of two spheres SP and SQ as-
sociated to different particles P and Q will always be greater or equal to δ(SP, P) +
δ(SQ, Q)−ξm. Call (R1

P, d1
P), ..., (RkP

P , dkP
P ) the different values that a sphere SP associ-

ated to a particle P may admit for the pair (RSP ,δ(SP, P)) and consider the following
system of inequations :

{
(di

P + d j
Q −ξm)2 ≥ Ri

P
2 + R j

Q
2
, ∀P 6= Q, ∀ (i, j) ∈ {1, ..., kP} × {1, ..., kQ},

Ri
P ≥ di

P, ∀P, ∀ i ∈ {1, ..., kP}.
(3.2)
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Following above remarks, admissible solutions of the system (3.2) of inequations pro-
vide values for the radii of the covering spheres and distances to the boundary of their
associated particles that make sure that spheres associated to a particle are congruous
independently of the relative positions of the particles. Moreover, this system requires
the radii of covering spheres to be greater than the distance to the boundary of their
associated particle, making it possible to actually cover the particles. While this system
is not linear, fixing the values of the di

P, i ∈ {1, ..., kP} for all particles P will make it so.
Choosing in addition kP = 1 for all particles P will provide the following simpler linear
system, where the exponents have been dropped for obvious reasons :

{
R2

P + R2
Q ≤ (dP + dQ −ξm)2, ∀P 6= Q,

R2
P ≥ d2

P ∀P.
(3.3)

Calling n the number of particles, this last system is left with n(n−1)
2 + n inequations.

Once an admissible solution for either system (3.2) or system (3.3) has been found, it
remains to cover the particles with spheres dimensioned accordingly, keeping in mind
that the overlapping condition (1.5) has to be fulfilled. This constitutes an interesting
optimization problem. It is not necessary to find a set of covering spheres which is
minimal. It is sufficient that all particles be covered by their associated spheres while
the overlapping condition is satisfied. However, in order for the complexity of the
contact detection procedure to remain reasonable, it is of course better to keep the sets
of covering spheres as small as possible.

There can be many ways to cover particles with spheres of given sizes. In the following,
we propose some simple coverings in particular cases with given particle shapes.

3.2.1.1 Spherocylinders

We assume that all particles to be simulated are spherocylinders with equal radii r.
Observe that we do not impose any condition on the length of the particles. We fur-
ther assume that all covering spheres will have same radii R and that for all particles,
dP = r. Observe that, due to this last assumption, the overlapping condition (1.5) is au-
tomatically satisfied. In this framework, system (3.3) reduces to the pair of inequations
r ≤ R ≤

√
2r − ξm/

√
2. This means that covering all spherocylinders with spheres

of radii R =
√

2r − ξm/
√

2 centered on their skeletons will provide a set of covering
spheres with the required properties, i.e. satisfying the overlapping condition and so
that spheres associated to a particle stay congruous independently of the relative posi-
tions of the particles.

Now consider one such spherocylinder P of radius r and call σ the single line segment
composing its skeleton. We denote λ the length of σ . In order to cover it with spheres
of radii R centered on σ , one can place d(λ− 2(R− r))/(2

√
R2 − r2)e+ 1 spheres. This

result is optimal, which can easily be proven. Indeed, if fewer spheres are used, then
there exists two spheres Si and Si+1 consecutive along σ whose centers xi and xi+1
have a distance greater than 2

√
R2 − r2. In this case the circle of radius r centered on
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dimension of the skeleton d
0 r0
1 r1
2 r2

3 r3 + l3
3

Table 3.1: Values of d for a sphere, a spherocylinder, a spherotriangle and a spherote-
trahedron.

σ that lies in the mediating plane of conv({xi, xi+1}) happen to lie in P while being
outside of all covering spheres, which contradicts the covering condition.

3.2.1.2 Spherosimplices with only one covering sphere

In this section, we adress the inverse problem of dimensioning the particles, in order
for one only covering sphere to be needed for each of them. We restrict to symetrical
particles. While spheres and spherocylinders always are symetrical, spherotriangles
and sherotetrahedra will be symetrical if their skeletons are regular triangles and tetra-
hedra respectively. For such a symetrical spherosimplex, we call r its radius, x its mass
center, l the distance between x and any vertex of its skeleton and d the distance be-
tween x and its boundary. We further impose spherosimplices of a same kind to be
identical, which will allow to index all those dimensions when needed by the affine
dimension of the spherosimplex’s skeleton (0 for a sphere, 1 for a spherocylinder, 2 for
a spherotriangle and 3 for a spherotetrahedron). We center a unique covering sphere
at point x, and in order for the covering condition to be optimally satisfied, the radius
of this covering sphere will be l + r. Observe that the triple (r, l, d) is redundant since
d is a function of l and r. The values of d for each kind of spherosimplex are shown in
table 3.2.1.2.

What we need to find are the values of l and r. Observe first that if all particles are
identical spheres, there is no bound on r0. Now if all particles are identical sphero-
cylinders, system (3.2) reduces to l1 ≤ (

√
2− 1)r1− ξm√

2
since the radius of the covering

sphere (l + r) is greater by definition to the radius of the spherocylinder. Bounding ξm
by r1/8, one then obtains that with any ratio l1/r1 lower than ( 15

8
√

2
− 1) ≈ 0.325 the

conditions our contact detection method requires are satisfied.

If all particles are identical spherotriangles, one can see that the same constraints apply
to (r2, l2) than to (r1, l1) in the case of spherocylinders and we conclude as well that
with any ratio l2/r2 lower than ( 15

8
√

2
− 1) ≈ 0.325 the contact detection method will

work in this case of one covering sphere per particle (provided ξm does not exceed
r2/8).

Now if all particles are identical spherotetrahedra, system (3.2) reduces to l3≤ 3
√

2−1
3−
√

2
r3−

3ξm
3
√

2−2
. Bounding ξm by r3/8, we find that for any value of l3/r3 lower than 45−24

√
2

24
√

2−16
≈

0.616, our contact detection method will work with one covering sphere per particle.
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Let us address a simple bidisperse case. By bidisperse we mean that two kinds of
spherosimplices are present in the system, the particles within each species being ge-
ometrically identical. If those two kinds of spherosimplices are spheres and sphero-
cylinders, system (3.2) reads:


(r0 + r1 −ξm)2 ≥ r2

0 + (r1 + l1)2,
r0 ≥ ξm

2−
√

2
,

r1 ≥ l1√
2−1

+ ξm
2−
√

2
,

(3.4)

Observe that the second inequation of system (3.4) will be satisfied as soon as r0 is
greater than ξm

2−
√

2
, which is not really constraining since ξm should be small compared

to the radii of the particles. The last inequation of system (3.4) provides the same upper
bound for l1 as that found above in the monodisperse case. Replacing l1 by this bound
in the first inequation of system (3.4) gives an inequality that is more constraining and
admissible solutions of the following system therefore are admissible for system (3.4):


r2

1 − r0r1 + ξ2
m
4 + r0ξm ≤ 0,

r0 ≥ ξm
2−
√

2
,

r1 ≥ l1√
2−1

+ ξm
2−
√

2
,

(3.5)

Observe that in order for the first inequation of system (3.5) to have a solution in
r1, one should impose r2

0 − 4ξmr0 − ξ2
m ≥ 0, that is r0 ≥ (2 +

√
5)ξm. We replace the

second inequality of system (3.5) by this more constraining inequation. Solving the

first inequation of system (3.5) for r1 gives 0.5(r0 −
√

r2
0 − 4r0ξm −ξ2

m)≤ r1 ≤ 0.5(r0 +√
r2

0 − 4r0ξm −ξ2
m), which provides the following even more constraining system:


r1 ≥ 0.5(r0 −

√
r2

0 − 4r0ξm −ξ2
m),

r1 ≤ 0.5(r0 +
√

r2
0 − 4r0ξm −ξ2

m),

r0 ≥ (2 +
√

5)ξm,
r1 ≥ l1√

2−1
+ ξm

2−
√

2
,

(3.6)

Assuming that r0 is given and satisfies the third inequation of system (3.6), one can find
values for r1 (given by the first two inequations of system (3.6)) and l1 (last inequation
of system (3.6)) so that our contact detection method applies. Assuming that ξm ≤
r0/8, we deduce from system (3.6) that any choice within the following bounds will be
admissible for our contact detection method :


l1/r1 ≤ 15

8
√

2
− 1(≈ 0.325),

r1/r0 ≤ 1
2 +

√
31

16 (≈ 0.847),
r1/r0 ≥ 1

2 −
√

31
16 (≈ 0.152).

(3.7)
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Of course, such bounds can be found for other bidisperse systems, or for more com-
plicated polydisperse systems but in those cases it is strongly advised to solve system
(3.7) using adequate numerical methods.

3.3 Building and handling the triangulation

The weighted Delaunay triangulation used in the contact detection method provides
a way to select pairs of particles that may experience a contact, which reduces the
number of contacts to be tested from O(n2) to O(m) (n being the number of particles
and m being the number of edges in the triangulation). It will be shown in chapter 4
that for bounded particle shape complexities, in practical cases m = O(n). This means
that our contact detection method reduces the number of pairs to be tested from O(n2)
to O(n). In order to achieve this complexity, special attention has to be given to the way
the triangulation used in the contact detection method is built and handled through
the simulation process. Indeed, this maintenance contributes to the complexity of the
method. In this section we describe the way this triangulation is built and handled
with the motion of the grains.

For the sake of simplicity we deal here with triangulations which have exactly 4 ex-
terior vertices constituting a tetrahedron T. This simplifies the implementation of the
method, ensuring that the number of exterior vertices remains constant. Though the
interior points of the triangulations dealt with here will be free to move, T itself re-
mains motionless. Moreover, no interior point is allowed to escape from T.

3.3.1 Building the initial triangulation

Assume we have a set of spheres S−3, ..., Sn with centers x−3, ..., xn so that S−3, S−2,
S−1 and S0 are the spheres of radii 0 whose centers are the vertices of tetrahedron T. In
order to build the weighted Delaunay triangulation generated by spheres (Si)−3≤i≤n,
we use the incremental method first introduced in [Joe89] for Delaunay triangulations
and generalized in [ES96] to weighted Delaunay triangulations. The method starts
with the weighted Delaunay triangulation T0 generated by the four spheres S−3, ...,
S0. This is the only triangulation that admits T as its unique maximal face. At this
point, vertices x1, ..., xn are still missing in the triangulation. The method consists in
inserting x1, ..., xn in this sequence by performing flips. This will successively produce
the weighted Delaunay triangulations Ti generated by spheres S−3, ..., Si for 1≤ i ≤ n.

Assume that triangulation Ti has been built and call f the face of Ti that contains xi+1
and whose dimension is minimal. We can deduce from the structure of Ti as a trian-
gulation that the vertex set of f together with xi+1 is a flippable circuit in Ti. More-
over, flipping this circuit in Ti produces a triangulation T′i of the point configuration
{x−3, ..., xi+1}. It is shown in [ES96] that one can successively perform flips supported
by circuits containing xi+1 from T′i to the weighted Delaunay triangulation generated
by spheres S−3, ..., Si+1, that is Ti+1. The circuits Z to be flipped will be those that
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successively minimize the power distance of xi+1 with respect to the circumsphere S
of Z \ {xi+1} that is ‖xi+1 − c‖2 − R2 where R is the radius of S and c its center. We
will not go into further details, but the reader can refer to [ES96] for formal proofs.

It is possible to build the weighted Delaunay triangulation from scratch whenever
needed using the above algorithm. Still, one can use the motion of the particle to
design a faster procedure. Indeed, the topology of a weighted Delaunay triangulation
generated by a set of spheres will change little if those spheres move a little. Since the
contact detection will be made at frequencies of the order of 1/∆t where ∆t is the time-
step of the integration, the motion of the spheres between two detections should be
limited and only minor topological changes should be needed between a triangulation
and the next one.

3.3.2 Triangulation Maintenance

We introduce the time-dependence of the geometrical system in the form of a func-
tional notation. Call xi(t) the center of sphere Si and T(t) is the weighted Delau-
nay triangulation generated by spheres S−3, ..., Sn at time t. For t′ ≥ t, call T(t, t′)
the set obtained from triangulation T(t) if one moves its vertices from their posi-
tions at time t to their position at time t′ without changing its topology. Formally,
T(t, t′) = {conv({xi(t′) : i ∈ I}) : conv({xi(t) : i ∈ I} ∈ T(t)}. Three cases can occur :

• T(t, t′) and T(t′) are identical,

• T(t, t′) and T(t′) are different but T(t, t′) still is a triangulation,

• T(t, t′) is not a triangulation any more.

In the first of above cases, no change need be done to the topology of T(t) between
times t and t′. In the second case, topological changes are needed to obtain T(t) from
T(t′), but those changes can directly be made on T(t, t′) whose geometrical structure
can be taken advantage of. This is the case we address in this section. The last of above
cases where T(t, t′) is not a triangulation any more requires that a particular version of
the regularization algorithm be implemented which will be addressed in chapter 4.

Observe that the vertex sets of T(t, t′) and T(t′) are identical. According to theorem 7
we can then hope that starting with T(t, t′) and successively flipping illegal flippable
facets, we will eventually reach T(t′). Unless we get stuck with a triangulation that
still admits illegal facets, none of which is flippable. Our regularization algorithm 1
bets that T(t, t′) can be flipped to T(t′) anyway.

Many hundreds of simulation runs have been carried out. Within each of these, the
above algorithm has been performed millions of times. It never failed. This means that
all triangulations met in the course of the flipping process either were the expected
weighted Delaunay triangulation or had facets simultaneously illegal and flippable.
As a reason for this, one could invoke the proximity of T(t, t′) and T(t). Indeed, since
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Algorithm 1 Regularization algorithm
T← T(t, t′)
while T contains an illegal facet do

if T admits a facet f that simultaneously is illegal and flippable then
flip f in T

else {no facet of T is simultaneously illegal and flippable}
return failure statement

end if
end while

it is close to T(t), triangulation T(t, t′) could still be regular. Corollary 1 then predicts
that there is a way to flip T(t, t′) into T(t′). Though, finding the succession of flips to
perform requires that a height function realizing T(t, t′) be known which is not the case.
However, one can show that all facets that will be flipped out in the sequence exhibited
by corollary 1 are illegal, which means that, provided t and t′ are close enough, a
succession of illegal flippable facets exists between T(t, t′) and T(t′). But the fact that
our algorithm never fails further suggests that any triangulation can be transformed
into a weighted Delaunay triangulation by only flipping illegal facets as soon as their
vertex sets are identical.



Chapter 4

Some implementation details

4.1 Intoduction

This chapter is dedicated to the implementation of a DEM simulation code using the
method introduced in chapters 2 and 3. The DEM code of J.-A. Ferrez [Fer01; FL02]
served as a basis for our implementation. This code was written in C++, a language
which has the advantages to be widely available, to include built-in data structures
through the Standard Template Library (STL) and to allow object oriented program-
ming. The code by J.-A. Ferrez was originally designed to handle spherical particle
and featured a number of functionalities such as a save and restore ability, exact float-
ing point geometrical computations and a parallelized version.

The contact detection method between spheres already used weighted Delaunay trian-
gulations as described in section 3.1 of chapter 3 (see also [Fer01] for further details),
and all the structure to build and handle them, in particular data structures, were al-
ready implemented. A contact detection method using spacial sorting techniques was
implemented later by M. Weber in the code of J.-A. Ferrez. At the time, a problem of
degeneracies in the triangulations used for the detection of contacts was found to oc-
cur with setups involving particularly large scale differences. However, this was not a
structural default of the implementation, nor was it a theoretical failure of the contact
detection method (one could have thought about algorithm 1 failing to regularize a tri-
angulation to the expected weighted Delaunay triangulation). This actually was due
to the geometrical object to be regularized by algorithm 1 to be geometrically too far
from a triangulation. This topic is addressed in section 4.3 below, where we propose a
solution to this degeneracy problem.

In this chapter we only describe the differences between the original code and its mod-
ified version that handles non-spherical particles. For more details about the original
code by J.-A. Ferrez, we encourage the reader to refer to [Fer01; FL02].
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4.2 Structure of the simulation environment

The original structure of the code by J.-A. Ferrez was organized as shown in figure
4.1. There are a module for DEM that deals with the physical model for grains and
contacts, a geometrical module that handles the dynamic weighted Delaunay triangu-
lations and a container module responsible for the management of the data that either
provides access of every element of the simulation to other elements and undertakes
the exporting of data and statistics. On top of this, one finds the two kinds of simu-
lation loops that can be used: one for single processor computations and the other for
shared memory parallel computing. The nice thing there is the natural correspondence
between the geometrical object and the physical ones. Indeed, spherical particles are
in one-to-one correspondence with their centers, i.e. the vertices of the triangulation
and the sphere-sphere contacts will be found among the edges of this triangulation.
This coherence explains the choice of a dependence between physical and geometrical
classes as shown in figure 4.1. As one can see in figure 4.1, force models, wall shapes
or exporters can be added easily in the code. A description of the force model refered
to as Pournin’s can be found in [PLM02].
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Figure 4.1: Original structure of the simulation environment by J.-A. Ferrez (Figure
taken from [Fer01])

However, this nice correspondence does not exist any more with our non-spherical
particles. Each particle is associated with those vertices of the triangulation that are
the centers of its covering spheres and there may be several of them. Because of this,
a pair of particles may have several edges of the triangulation between them that do
not necessarily correspond to contacts. Therefore, we had to modify the class depen-
dences as shown in figure 4.2. Both particle and contact classes now depend directly
on bigtetra, where they used to depend on vertex and edge respectively. The link be-
tween particles and their covering spheres is now undertaken by a list of pointers on



4.2. STRUCTURE OF THE SIMULATION ENVIRONMENT 43

the vertices of the triangulation. So far only spherosimplices (spheres, spherocylinders,
spherotriangles and spherothetrahedra) have been implemented.

The class particle defines the mass center c of a particle and three vectors v1, v2 and
v3 so that the vertices of the particle’s skeleton will be found among c + v1, c + v2,
c + v3 and c − v1 − v2 − v3. For a sphere, v1 = v2 = v3 = 0. For a spherocylinder,
v2 = v3 = 0 and the vertices of its skeleton are c ± v1. For a spherotriangle, v3 = 0
and the vertices of its skeleton are c + v1, c + v2 and c − v1 − v2. The vertices of a
spherotetrahedron’s skeleton are c + v1, c + v2, c + v3 and c− v1 − v2 − v3. A further
step in the development of the code is to split this class into classes that correspond
to each particle shapes, including more complex shapes (convex ones to begin with,
like spherocubes). This would allow to save memory by avoiding the storage of useless
information.
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Figure 4.2: Modified structure with implementation of non-spherical particles.

In our implementation, all particles are convex and only one contact per particle pair
is possible. Knowing the two contacting particles, one can define a contact entirely.
However, in the case of non-convex particles, several contacts may occur between the
same particle pair and tracking them between time steps is required. Indeed, some of
the quantities used to compute contact forces, such as the tangential overlap need to be
remembered from one time step to the next. If several contacts are possible, one has to
be able to find which is the contact this information belongs to. The handling of non-
convex particles requires that such tracking procedures be available, which requires
further implementation work.
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4.3 Enhancing the robustness of triangulation maintenance

The original implementation implicitly assumed that when moving the vertices of a
triangulation between times t and t′ without changing its topology, the resulting col-
lection T(t, t′) of simplices still was a triangulation. This assumption is indeed valid
when t and t′ are close enough. In practical cases though the time step ∆t = t′ − t
used for the integration of the motion equations is limited by the available computing
power and some experiments with particularly large setups caused the regularization
algorithm to fail, even with time steps less than 10−6 s. This failure was not a theo-
retical failure of the regularization algorithm. The set T(t, t′) could not be regularized
because it was geometrically too far from a triangulation. Observe though, that for
limited degeneracies, algorithm 1 would still be able to repair T(t, t′). The first solu-
tion was to decrease the value of ∆t, which would solve the problem in most practical
cases, but would not guarantee the robustness of the algorithm. Further, this assumes
that such small time steps are computationally affordable.

We chose instead to implement a tracking algorithm that detects the degeneracies that
occur in the triangulation when its vertices move. Observe first that within a time step
of the integration process, accelerations are kept constant, meaning that the positions
of the spheres can be easily known. Assume that some spheres move with constant
accelerations between times t and t′. Call T(u) the weighted Delaunay triangulation
generated by those spheres at time u ∈ [t, t′]. Let f (u) be an interior facet of T(u), a(u),
b(u), c(u) its vertices and d(u) and e(u) the vertices of T(u) so that conv( f (u)∪{d(u)})
and conv( f (u) ∪ {e(u)}) are maximal faces of T(u). At time t, f is legal according to
theorem 6. When the vertices of f move with time, f may become illegal. From the
definition of legality, and from equation (1.1), the time when f becomes illegal is the
smallest zero in [t, t′] of the following determinant taken as a function of u:

D f (u) =

∣∣∣∣∣∣∣∣∣∣
ax(u) ay(u) az(u) ‖a(u)‖2 − R2

a 1
bx(u) by(u) bz(u) ‖b(u)‖2 − R2

b 1
cx(u) cy(u) cz(u) ‖c(u)‖2 − R2

c 1
dx(u) dy(u) dz(u) ‖d(u)‖2 − R2

d 1
ex(u) ey(u) ez(u) ‖e(u)‖2 − R2

e 1

∣∣∣∣∣∣∣∣∣∣
, (4.1)

where Rp is the radius of the sphere centered at vertex p, and px(u), py(u) and pz(u)
its coordinates along each axis at time u. If determinant taken as a function of u does
not have a zero in [t, t′], f will remain legal in this time interval. The overall idea of
our tracking algorithm is the following. Solving D f (u) = 0 for u provides the time
u f ∈ [t, t′] when f becomes illegal, if there is one. Doing this for every interior facet
of T(t), one obtains the list of facets to be flipped to obtain the weighted Delaunay
triangulations generated by our spheres at time t′, but also the order in which they
should be flipped. Indeed, if u f < u f ′ , f should be flipped before f ′. Performing those
flips topologically in this sequence from T(t, t′) produces successive sets of simplices.
Those sets of simplices will be topologically identical to the weighted Delaunay tri-
angulations successively generated by our spheres while their centers move between
times t and t′. As a consequence, the collection of simplices eventually obtained is the
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expected weighted Delaunay triangulation generated by our set of spheres at time t′.
Of course, each time a facet is flipped, one needs to update the value of u f for the facets
f topologically affected by this flip (including the facets created by this flip).

Observe that the algorithm which we have just sketched requires that D f (u) = 0 be
solved. Since the vertices of triangulation T have constant accelerations between times
t and t′, their coordinates are quadratic functions of time. According to equation (4.3),
D f (u) is therefore a polynomial of degree 10. In our regularization context though,
only positions at times t and t′ matter. In between, the trajectories of the triangulation’s
vertices are only required to be continuous and we can simplify the physical quadratic
motions to abstract linear ones between times t and t′. The position of a vertex p of T
at time u ∈ [t, t′] will then read:

p(u) = (1− u)p(t) + up(t′). (4.2)

Using equation (4.2), D f (u) simplifies to a polynomial of degree 5. Observe that this
polynomial has no analytical expression for its roots, and solving D f (u) = 0 for u then
requires that some numerical method be used. Following the above observations, we
propose algorithm 2 for the regularization of our triangulations.

Algorithm 2 Robust regularization algorithm
L← ∅
for all facet f interior to T do

compute the roots of D f (u)
if D f (u) admits a root in [t, t′] then

u f ← the smallest root of D f (u) in [t, t′]
insert f in L in increasing order of u f

end if
end for
while L 6= ∅ do

flip the first element g of L
for all facets f affected by the flip do

if f is in L then
remove f from L

end if
compute the roots of D f (u)
if D f (u) admits a root in ]ug, t′] then

u f ← the smallest root of D f (u) in ]ug, t′]
insert f in L in increasing order of u f

end if
end for

end while

Algorithm 2 has three advantages over algorithm 1. According to the above discus-
sion, the first of these advantages is that its convergence is guaranteed even if the flip-
graph is not connected. Its second advantage is that the sequence of flips it performs is



46 CHAPTER 4. SOME IMPLEMENTATION DETAILS

uniquely determined, which was not the case for algorithm 1. The third advantage of
algorithm 2 over algorithm 1 is that it handles the case of degenerated triangulations,
which is the reason why we designed it.

We now propose an alternate robust regularization algorithm. Again, let f (u) be an
interior facet of T(u), a(u), b(u), c(u) its vertices and d(u) one of the vertices of T(u)
so that conv( f (u) ∪ {d(u)}) is a maximal face of T(u). Call α(u) the vector product
(b(u)− a(u)) ∧ (c(u)− a(u)). When the spheres move with time, conv( f ∪ {d}) may
become flat. The time when simplex conv( f ∪ {d}) becomes flat is the smallest zero in
[t, t′] of the following expression taken as a function of u:

H f (u) = [(c(u)− a(u)) ∧ (b(u)− a(u))] . [d(u)− a(u)] . (4.3)

using linear motions for the spheres according to equation (4.2), H f (u) is a polynomial
of degree 3. Before any interior facet of T(u) becomes flat, T(u) is a triangulation that
can be successfully regularized by algorithm 1. Following this observation, we propose
algorithm 3 as an alternative to algorithm 2.

The integer k used as a parameter of this algorithm must be strictly positive. It reflects
the number of local degeneracies of T algorithm 1 is able to bear. Taking k = 1 means
that the regularizations carried out in algorithm 3 will only process triangulations. As
a consequence, this algorithm prevents the failures of algorithm 1 caused by degenera-
cies of the triangulation. The other parameter of algorithm 3 is the real number ε that
should be strictly positive, yet small enough for the regularization to happen around
the expected value of u.

While algorithm 3 solves the degeneracy problems that caused algorithm 1 to fail, it
still relies on it for the regularization of a number of triangulations. Therefore, its
theoretical convergence is not guaranteed since it depends on the connectivity of the
flip-graph. Again, since this theoretical failure never occurred in practical cases, this
does not seem to be much of a threat. Observe though that algorithm 3 has the advan-
tage over algorithm 2 that analytical expressions exist for the roots of H f (u) since they
are polynomials of degree 3.

4.4 Experimental complexity analysis

As already mentioned in chapter 3, the complexity of our triangulation-based contact
detection method is proportional to the number of edges of the involved triangula-
tions. There exist weighted Delaunay triangulations in three dimensions whose num-
ber of edges are quadratic functions of their number of vertices. Following this, the
theoretical upper bound for the complexity of our contact detection method is O(n2).
Since the computational cost of managing the triangulation is high, this suggests that
our contact detection algorithm is slower than the naive quadratic algorithm ! How-
ever, the examples of quadratic Delaunay triangulations involve degenerate situations
where most vertices lie on few line segments. Intuition suggests that the probability
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Algorithm 3 Alternative robust regularization algorithm
L← ∅
for all facet f interior to T do

compute the roots of H f (u)
if H f (u) admits a root in [t, t′] then

u f ← the smallest root of H f (u) in [t, t′]
insert f in L sorted in increasing order of u f

end if
end for
while L 6= ∅ do

if L admits more than k elements then
g← the kth element of L.

else {L has less than k elements}
g← the last element of L

end if
move the vertices of T to their position at ug −ε

regularize T using algorithm 1
for all interior facets f affected by the regularization do

if f is in L then
remove f from L

end if
compute the roots of H f (u)
if H f (u) admits a root in ]ug, t′] then

u f ← the smallest root of H f (u) in ]ug, t′]
insert f in L in increasing order of u f

end if
end for

end while
move the vertices of T to their position at t′

regularize T using algorithm 1
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of such events is small, and the bet of J.-A. Ferrez was that in all practical cases the
number of edges of the triangulation is a linear number of its vertices. In this section
we present results on the overall complexity of the simulation process, obtained from a
set of simulations and corresponding measures of the number of edges of the weighted
Delaunay triangulation.

Figure 4.3: Snapshots of final states of numerical experiments. Left : experiment 1,
right : experiment 3.

Snapshots of simulations performed with the non-spherical version of our code are
shown in figure 4.3. Those experiments consist in pouring particles into a cylindrical
container of diameter 20 mm. This means that the number of particles gradually in-
creases while the simulation proceeds. All particles have eight times the volume of a
sphere of diameter 1 mm, independently of their shape. Experiment 1 involves 250
spherosimplices of each kind. Experiment 2 involves 500 spheres and 500 spherotetra-
hedra, and experiments 3 and 4, 1000 spherocylinders each.

For the first two experiments, each particle only uses only one covering sphere for con-
tact detection. This is achieved by calibrating every shape the same way the spherote-
trahedra have been calibrated at the end of chapter 3. This constraint actually limits the
particle’s sharpness. Still, those particles are far from spherical and this way, the com-
plexity of contact detection is the same as if all particles were spheres. In experiment
3, spherocylinders have an elongation coefficient l/r of 3, where l is half the length
of the segment constituting their skeletons and r is their radius. With such elongated
shapes, 5 covering spheres per particle are needed. In experiment 4, the elongation co-
efficient l/r is 6, and 9 covering spheres are needed for a particle. In every experiment,
ξm = 5× 10−5 m.

The computing time of the DEM process, including contact detection, is plotted in
figure 4.4 against the number of simulated particles. In all cases it is almost linear.
Observe that the slope of this linearity increases with particle elongation, naturally re-
flecting that the number of possible contacts is higher for elongated particles. The inset
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shows the number of edges of the triangulation, plotted against the number of cover-
ing spheres and the four cases turn out to be identically linear. The slope of around 7 is
close to the coordination number of random close-packed spheres, indicating that our
method appropriately identifies the pairs of particles to be tested for contact.
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Figure 4.4: Actual computing time of the DEM process plotted against the number of
simulated particles for all four experiments. The time index is normalized to 1 for 1000
of the last experiment’s spherosegments. Each point is averaged over 400 DEM itera-
tions. Inset : number ε of edges in the triangulation versus the number σ of covering
spheres for the same experiments.

4.5 Some inertia matrices

Let P be a homogeneous particle, G its mass center and ω its spin vector. If P is sub-
mitted to a total force f and a total momentum MG( f ) at point G, the motion equations
read:

{
mG̈ = f
IGω̇ = MG( f ) . (4.4)

where m is the mass of the particle and IG its inertia matrix at point G. One sees that IG
is required when integrating the motion equations. Let (G, x, y, z) be an orthonormal
referential centered at point G. In this referential, the inertia moments of P read:
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

Ixx = ρ

∫
P

y2 + z2dxdydz

Iyy = ρ

∫
P

x2 + z2dxdydz

Izz = ρ

∫
P

x2 + y2dxdydz

Ixy = −ρ

∫
P

xydxdydz

Ixz = −ρ

∫
P

xzdxdydz

Iyz = −ρ

∫
P

yzdxdydz

, (4.5)

where ρ is the density of P. Using equations (4.5.1), IG reads:

IG =

 Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 . (4.6)

In order to apply the DEM process, it is required that IG be known. If P is a sphere
with radius r, IG simply is the diagonal matrix whose diagonal elements are identically
equal to 2

5 mr2. However, analytical expressions of the inertia matrices of more complex
shapes may be difficult to find. In this section we describe the methods we use to esti-
mate integrals (4.5.1) and give analytical expressions of IG for regular spherosimplices.

4.5.1 Inertia matrix estimation

The inertia moments of a particle P with any shape can be statistically estimated using
a reject method. Let V be the random variable uniform on P. Calling v the volume of
P, the density of V reads:

fV =
1
v
1P. (4.7)

Let X, Y and Z be the margins of V. According to equation (4.7), their variances and
covariances read: 

var(X) = ρ
m

∫
P

x2dxdydz

var(Y) = ρ
m

∫
P

y2dxdydz

var(Z) = ρ
m

∫
P

z2dxdydz

cov(X,Y) = ρ
m

∫
P

xydxdydz

cov(X, Z) = ρ
m

∫
P

xzdxdydz

cov(Y, Z) = ρ
m

∫
P

yzdxdydz

. (4.8)
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Comparing the inertia moments and products of P with those variances and covari-
ances we obtain the following expression for the inertia matrix:

IG = m

 var(Y) + var(Z) −cov(X,Y) −cov(X,Y)
−cov(X,Y) var(X) + var(Z) −cov(Y, Z)
−cov(X, Z) −cov(Y, Z) var(X) + var(Y)

 . (4.9)

A convenient way to estimate IG is therefore to estimate the variances and covariances
of the margins of V. This can be done by using an accept-reject method to simulate V
and by building the covariance matrix of the obtained data.

This method is convenient since it allows to compute the inertia matrix of any kind
of shapes. The following subsection gives exact expressions of this matrix for sphero-
cylinders and regular spherotetrahedra.

4.5.2 Exact inertia matrices of some spherosimplices

Let P be a spherocylinder with mass center G in the referential (G, x, y, z) as that shown
in figure 4.5.

l

σ

x

G

y

z

r

Figure 4.5: A spherocylinder of radius r and skeleton σ of length l in the referential
(G, x, y, z).

The integrals (4.5.1) then express as follow:
Ixx = Iyy =

1
3
πρr3l2 +

1
12

πρr2l3 +
3
4
πρr4l +

8
15

πρr5

Izz =
1
2
πρr4l +

8
15

πρr5

Ixy = Ixz = Iyz = 0

. (4.10)

Now assume that P is a regular spherotetrahedron with mass center G and radius r.

Calling A, B, C and D the vertices of P’s skeleton, and l the distance between G and
any of those vertices. Let (G, x, y, z) be the referential shown in figure 4.5 in which the
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Figure 4.6: The skeleton of a regular spherotetrahedron of mass center G and its asso-
ciated referential (G, x, y, z). Right : view from above.

coordinates of A, B, C and D are:

A = (−
√

2
3

l,−
√

2
3

l,−1
3

l)

B = (
2
√

2
3

l, 0,−1
3

l)

C = (−
√

2
3

l,

√
2
3

l,−1
3

l)

D = (0, 0, l)

. (4.11)

The spherotetrahedron P is composed of the tetrahedron ABCD (figure 4.6), four prisms
with thickness r and triangles ABC, ABD, ACD and BCD as bases, six portions of a
cylinder of radius r corresponding to the edges of ABCD and four portions of a sphere
of radius r corresponding to the vertices of ABCD. The last three basic shapes are
shown on figure 4.7 with the referentials we use to represent them.
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Figure 4.7: The three basic shapes that constitute a spherotetrahedron in addition to
its skeleton. The referentials used to represent them are shown as well. Bottom : view
from above.

In order to find IG, we first calculate integrals (4.5.1) for each of the four basic shapes.
By using Huygens theorem to translate the inertia moments and products, and rotating
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them appropriately, one obtains the inertia matrices of each basic part constituting our
spherotetrahedron. We then find the inertia matrix of P by simply summing those
matrices.

First of all, the angle α shown on the middle and right parts of figure 4.7 is the comple-
mentary to π of the inner angle between two adjacent facets of a regular tetrahedron:

α = π − atan(2
√

2). (4.12)

Integrating expressions (4.5.1) over tetrahedron ABCD in the referential (G, x, y, z), one
obtains a diagonal inertia matrix whose diagonal elements are identically equal to:

Itetrahedron = ρ
16

135
√

3
l5. (4.13)

This means that a regular tetrahedron has the same inertial behavior than a sphere.
The inertia moments and products of the triangular shape EFHH′F′E′ left of figure 4.7
in the referential (M, x, y, z) are:

Ixx = Iyy =
1

6
√

3
ρr3l2 +

2
9
√

3
ρrl4

Izz =
4

9
√

3
ρrl4

Ixy = Ixz = Iyz = 0

. (4.14)

The inertia moments and products of the third shape JKLL′K′ J′ in the middle of figure
4.7 in the referential (N, x, y, z) are:

Ixx = Izz =
1

36
√

3
ρ

(
−4r2 +

√
2
(

8l2 + 9r2
)
α

)
r2l

Iyy =
1√
6
ραrl4

Ixz =
2
√

2
9
√

3
ρr4l

Ixy = Iyz = 0

. (4.15)

The total inertia matrix of the four sphere portions OPQR (right of figure 4.7) can be
deduced from the inertia matrix of a sphere of radius r and from the center of mass of
OPQR by using Huygens theorem and rotating the resulting matrices appropriately.
The distance dv between O and the mass center of OPQR is:

dv =
3
√

6
8π

rα (4.16)

One then finds that the total inertia matrix of the four parts OPQR in referential (G, x, y, z)
of figure 4.6 is diagonal with its diagonal elements identically equal to:

Ivertices = ρ
2

405

(
108πr5 + 135

√
6αr4l + 180πr3l2

)
. (4.17)
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The total inertia matrix of the four cylinder portions JKLL′K′ J′ (middle of figure 4.7)
can be deduced from equations (4.15) and from the center of mass of JKLL′K′ J′ by us-
ing Huygens theorem and rotating the resulting matrices appropriately. The distance
de between N and the mass center of JKLL′K′ J′ reads:

de =
4
√

2r
3
√

3α
(4.18)

The total inertia matrix of the six parts JKLL′K′ J′ in referential (G, x, y, z) of figure 4.6
is diagonal with its diagonal elements identically equal to:

Iedges = ρ
2

9
√

3

(
32rl +

√
2
(

9r2 + 10l2
)
α

)
r2l. (4.19)

The total inertia matrix of the four triangular portions EFHH′F′E′ (left of figure 4.7) can
be deduced from equations (4.14) by using Huygens theorem and rotating the resulting
matrices appropriately. This total inertia matrix, expressed in the referential (G, x, y, z)
of figure 4.6 is diagonal with its diagonal elements identically equal to:

Itriangles = ρ
16

9
√

3

(
r2 + rl + l2

)
rl2. (4.20)

According to expressions (4.13), (4.20), (4.19), (4.17), IG is diagonal with its diagonal
elements identically equal to:

IP = 4
3ρ

(
2
5πr5 +

√
6αr4l + 2

3

(
π + 10√

3

)
r3l2 + 1

3
√

3

(
4 + 5

√
2α

)
r2l3 + 4

3
√

3
rl4 + 4

45
√

3
l5

)
.

(4.21)
This means that the inertia matrix of P is that of a sphere.



Part II

Applications





Chapter 5

A Study of Arching Effects and
Flowability

Confined granular flows are known to arch suddenly about their confining bounar-
ies under certain circumstances. As an effect, this causes jamming, i.e. prevents any
further flowing motion of the medium. While this phenomenon may be due to mi-
croscopic interactions in fine powders, it also occurs with large grains in the form of
mechanical equilibria induced by macroscopic forces. This phenomenon, refered to
as “arching effect” is still little understood. It is a limiting cause for the flowability of
powders, i.e. their ability to flow.

While the arching effect itself is difficult to encompass as a complex collective be-
haviour, flowability is a simple property that can be measured in a variety of ways
and may provide insights into the mechanisms underlying the formation of arches.
We choose here to investigate the flowability experiment that consists in opening a
hole at the bottom of a grain-filled container and to check whether or not the medium
flows.

The probability for such an assembly of beads of given granulometry and surface prop-
erties to flow in this experiment will be estimated as a function of the opening hole’s
diameter D. This will allow to determine the opening hole’s diameter for which the
probability for this medium to flow is 0.5, which we call its mean critical diameter D̄c.
This diameter is the quantity we use to characterize the flowability of an assembly of
beads.

Surface properties of the involved beads will be characterized with their mutual stat-
ical friction coefficient µ. Numerical trials have been conducted with monodisperse
bead assemblies and several friction coefficients. Experiments performed on the same
monodisperse assemblies composed of steel beads show that those numerical models
provide realistic values for D̄c.

Finally, measures of D̄c for bidisperse assemblies of beads are obtained from numeri-
cally simulated trials of our flowability experiment. Those results show that for a given
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friction coefficient, D̄c only depends on the bead’s mass-average diameter, which sug-
gests that a law be formulated about the flowability of polydisperse bead assemblies.

5.1 The flowability experiment

In order to measure the flowability of a powder, we proceed with the following exper-
iment. The setup used is a plexiglas cylinder with interchangeable aluminum discs at
the bottom that feature circular holes in their centers. The inner diameter of the cylin-
der is 5 cm and the bottom discs have various diameters D for their central holes. The
hole of the bottom disc can be obturated using a shutter in aluminum as shown on the
left side of figure 5.1.

pierced
disc

shutter

plexiglas cylinder

D D

5 cm 5 cm

Figure 5.1: The experimental setup we use to measure the flowability of a bead as-
sembly (left) and its numerical model (right). The shutter and the pierced disc of the
experimental setup are numerically modeled by a circular hole sketched as a dotted
line that can either be opened or closed.

The experiment proceeds as follows : the beads are poured into the cylinder while the
hole of the bottom disc is obturated by the shutter. The granular piling to be processed
is then obtained when a mechanical equilibrium is reached, all the beads being at rest.
Finally the shutter is suddenly pulled out and the medium either flows through the
hole of the bottom disc or blocks which is the result of the experiment. For our experi-
mental trials, we used steel beads of diameters 1.0 mm, 4.0 mm, 5.0 mm and 7.0 mm.
All trials were carried out with as close as possible to 0.575 kg of those steel beads, re-
sulting in a filling height of around 6.5 cm independently of the bead diameters. When
processing fine powders, a funnel is used to pour the medium into the cylinder. In our
case of large beads however, this is superfluous. Indeed, using a funnel with a large
enough opening for our beads to flow freely through it actually amounts to use no
funnel at all.

Our flowability experiment were numerically reproduced with the Distinct Elements
Method. Contacts will be modeled with a contact time of tc = 6.10−4 s and a restitu-
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tion coefficient of en = 0.4 respectively quantifying the duration and the energy loss of
simple contacts. Our numerical beads have a density of 7.8, which is that of our steel
beads. The numerical setup is shown on the right part of figure 5.1.

Of course, numerical and experimental trials will not be carried out exactly the same
way, due to their specific frameworks. Observe first that the combination of the pierced
disc with the shutter acts as a slightly uneven bottom in the experimental setup while
its numerical counterpart is perfectly flat. Then, removing the shutter in experimental
trials applies a shear at the bottom of the granular piling. This is not the case in nu-
merical trials where the area of the opening hole instantaneously disappears together
with the contacting forces acting on it. The numerical bead-wall friction coefficients
will be identical to the bead-bead friction coefficient, unlike in our experiments where
friction occurs between steel, plexiglas and aluminum bodies. Finally, the initial pour-
ing of the beads in the numerical framework and in the experimental one are quite
different. Several methods exist to prepare numerical pilings [Bag05]. Those methods
will produce initial situations that are often difficult to achieve in experimental prepa-
rations like homogeneous polydisperse pilings. This is our reason to use a simplified
version of the sedimentation technique [Bag05] : we generate the beads randomly in-
side the containing cylinder, and we lower them vertically as densely as possible and
as low as possible above the bottom plate which provides a preliminary state. Then,
we simply let the beads fall under the action of gravity from this state which is already
dense enough such that only few rearrangements are needed to producing the initial
piling. In particular those rearrangements will not significantly disturb the homogene-
ity of the preliminary state in the case of bidisperse assemblies. It is noteworthy that
in the experimental procedure, the pouring is from above the cylinder instead, which
produces segregation in the case of bidisperse media. In the following, we assume
that the effects of those differences between numerical and experimental trials can be
neglected.

5.2 The mean critical diameter of a granular piling

The result of a flowability experiment will either be the observation “the medium
blocks” or “the medium flows”. We will say that the medium flows if at the end of
the experiment, no bead remains above the hole. Observe that this almost never corre-
sponds to all beads flowing through the hole, as figure 5.2 suggests.

One could think of other ways to quantify the results of flowability trials. Call mi the
mass of beads lying above the opening hole in the initial piling and m f the same mass
taken at the end of the experiment. Then, the result of a flowability trial could be the
ratio m f /mi. Figure 5.3 features a bar plot where the probability function P(m f /mi)
has been estimated over around 6000 numerical trials. As one can see, the probability
for m f /mi to lie between 0.01 and 0.99 is around 0.17. This shows that most of the
arches occur immediately after the hole has been opened, which justifies our choice of
a binary quantification of the experiment’s results.

By repeating the flowability experiment several times using assemblies of the same
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Figure 5.2: Top view of the final situations for four flowability experiments where the
medium flowed. A photo of a real-world experiment is shown bottom-right while the
three others are snapshots of the simulated setup.
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Figure 5.3: The probability function P(m f /mi) of the ratio of the masses lying above
the opening hole after (m f ) and before (mi) the hole has been opened, estimated over
6246 monodisperse numerical trials.

beads, one can estimate the probability for them to flow through a hole of given di-
ameter D. This allows in particular to find the statistical diameter D̄c of the opening
hole for which the probability for a medium to flow is 0.5. This diameter, called mean
critical diameter is the quantity we choose to characterize the flowability of bead assem-
blies. In order to estimate D̄c, we process the flowability results using a generalized
linear model [DH97]. An example of estimation this statistical model provides for D̄c
is shown on figure 5.4. All the confidence intervals we provide for D̄c were found by
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applying a bootstrap method [DH97] on the flowability results.
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Figure 5.4: The proportion of flowing trials as a function of the diameter of the opening
hole obtained from 510 numerical trials with monodisperse assemblies of beads of
diameter 6 mm and mutual friction coefficient of µ = 0.8. The raw results are indicated
as small circles of coordinates (D, r) where D is the opening diameter and r is 1 when
the medium flows and 0 instead. The dots show the proportion of flowing trials in
windows 0.4 mm large. The solid line shows the fit of the raw data obtained with an
appropriate generalized linear model.

Intuition suggests that for a large enough number of flowability trials, the proportion
of flowing trials will be an increasing function of the diameter of the opening hole.
While it seems relevant to assume it, this property still needs to be checked. Indeed,
we made at most 990 trials per medium with same granulometry and mutual friction
coefficient. If ever this property turns out to be false, our mean critical diameter would
be of a purely statistical nature but still could be defined as the diameter D̄c for which
the probability for the opening diameter of a flowing trial to be inferior to D̄c is 0.5.
Thus, our statistical measure keeps its intrinsic physical meaning.

Now consider some granular piling obtained prior to the hole opening. Our numerical
framework makes it possible to try several diameters for the hole opening under this
particular piling. One may wonder if a critical diameter exists for the hole, above which
this piling will flow and below which an arch will form. Observe that this question can-
not be answered by performing trials in our experimental framework. A same piling,
prepared with beads of diameter 6 mm and mutual friction coefficient of µ = 0.8, was
subject to a set of 5000 flowability experiments with different diameters. The results
of those trials, depicted in figure 5.5 clearly show that the answer to the above ques-
tion is no. There are values D− and D+ so that arching always occurs for D < D− and
never for D > D+, but the interval [D−, D+] is significantly wide. This phenomenon
could be further investigated, for example by finding how D+−D− depends on beads’
diameters and mutual friction coefficients.
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Figure 5.5: The proportion of flowing trials in windows 0.1 mm large obtained by
submitting a given monodisperse piling of beads to a series of 5000 flowability tries
with opening diameters ranging from 23.0 mm to 28.0 mm. The diameter of the beads
is 6 mm and their mutual friction coefficient is µ = 0.8.

5.3 The influence of friction

The flowability of a powder is known [Gio80] to reflect the friction coefficient of its
constituting particles. In our macroscopic framework, this is still the case as shown
in figure 5.6 for monodisperse sets of beads with diameters 4 mm, 5 mm and 7 mm.
In particular, the mean critical diameter is a globally increasing function of the inter-
particulate friction coefficient. Observe also that the influence of friction on the mean
critical diameter is well marked for low values of the friction coefficient while it can
practically be neglected for high ones.

Φ (mm) D̄c (mm)
1.0 3.88± 0.15
4.0 14.92± 0.23
5.0 17.46± 0.37
7.0 21.85± 1.24

Table 5.1: Results of experimental trials on monodisperse sets of steel beads.

The mean critical diameters measured from our experiments with steel beads are shown
in table 5.1 and reported on figure 5.6 for Φ = 4.0 mm, Φ = 5.0 mm and Φ = 7.0 mm.
One can see that numerical and experimental trials show good agreement even though
their respective frameworks are different. Observe that the differences between exper-
imental values of D̄c are qualitatively identical to the differences between numerical
curves. This shows that the numerical model is coherent in the way it handles friction,
and proves appropriate in the framework of flowability experiments.

Mean critical diameters were measured for monodisperse media with various bead
diameters and friction coefficients. All those monodisperse results are shown on figure
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Figure 5.6: The mean critical diameter obtained from numerical trials as a function of
the friction coefficient for beads of diameter 4 mm, 5 mm and 7 mm. Experimental
values of table 5.1 together with their confidence intervals are reported on the graph
respectively as dashed lines and greyed zones.

5.7. Observe that except for µ = 0.0, the mean critical diameters are increasing, nearly
affine functions of the beads diameters. The ratio of the mean critical diameter and the
diameter of the beads lies between 3 and 4 for high friction coefficients.
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Figure 5.7: Results of experimental and numerical trials for monodisperse assemblies
of beads with diameters ranging from 1.0 mm to 7.0 mm and mutual friction coeffi-
cients between 0.0 and 0.8.

Those results for monodisperse assemblies of beads will be used as a reference in
the next section, where the behavior of bidisperse media will be compared to that of
monodiperse ones.



64 CHAPTER 5. A STUDY OF ARCHING EFFECTS AND FLOWABILITY

5.4 Flowability of bidisperse granular media

While physical monodisperse experiments are easy to carry out, bidisperse ones turn
out to be a lot trickier. Indeed, strong segregation occurs when pouring beads of two
distinct diameters into the initial piling of a flowability trial. In the course of the experi-
ment the medium therefore behaves like a succession of monodisperse media. In order
to overcome these difficulties, the numerical framework is quite convenient, since the
bidisperse pilings obtained with our preparation method are homogeneous, as already
discussed above. All our bidisperse trials have therefore been performed numerically.
The friction coefficient was kept constant at µ = 0.2.

In the case of monodisperse media, the mean critical diameter can be plotted against
the bead’s diameters as in figure 5.7. Bidisperse media, though are characterized by
two distinct bead diameters Φ1 and Φ2 and in order to plot bidisperse results in a
similar way as monodisperse ones, we choose to use the mass-average diameter of the
beads Φ̄ :

Φ̄ =
Φ4

1 + Φ4
2

Φ3
1 + Φ3

2
(5.1)

Observe that expression (5.1) is valid under the assumption that all beads have the
same densities, which is the case here. Measures of the mean critical diameter have
been performed for bead assemblies with mass-average diameters Φ̄ ranging from 3.0
mm to 6.0 mm. The resulting mean critical diameters are plotted against Φ̄ on figure
5.8 together with the monodisperse results obtained with µ = 0.2.
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Figure 5.8: The mean critical diameters of monodisperse and bidisperse bead assem-
blies with µ = 0.2 and Φ̄ ranging from 3 mm to 6 mm.

In this representation, bidisperse measures collapse on the monodisperse curve with
very good accuracy. This observation has to be slightly relativized though, for bidis-
perse media with Φ1 significantly smaller than Φ2, yet close enough to Φ̄. In those
cases, the mean critical diameters are statistically greater for bidisperse media than
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for monodisperse ones. This can be explained in terms of segregation. Indeed, such
granular assemblies feature a small number of large beads that are significantly larger
than the others. This leads to a strong tendency to segregate. Large beads actually
migrate to the top and remain there while small beads flow through the hole. When
the large beads finally reach the hole, most of the time they gather in an arch such as
those shown in figure 5.9.

Figure 5.9: Top view of two arches involving mostly big beads that segregated during
the flow.

Apart from this, bidisperse and monodisperse results fit very well. Moreover, one may
observe that two bidisperse media with same Φ̄ but different diameters for their con-
stituting beads will have the same mean critical diameter. Those observations lead
us to formulate the following tentative law : for fixed interparticulate friction, mean crit-
ical diameters of homogeneous bidisperse bead assemblies only depend on their mass-average
diameters.

For low friction coefficients, the dependence of flowability on the diameter of the beads
is more erratic than for high frictions (figure 5.7). A further question is the validity of
the above law for such frictions, which would allow to decide whether it is intrinsic to
bead assemblies or only a linear dependance between the set of involved bead diam-
eters. Figure 5.10 reports results of either monodisperse and bidisperse tries obtained
with µ = 0.0 and Φ̄ ranging from 5.0 mm to 7.0 mm. Observe that the monodisperse
curve is strongly increasing for Φ < 5.5 and Φ > 6.5 and approximately constant in
between. One can see that bidisperse results collapse well on this highly non-linear
curve, which further validates our flowability law.

Observe that this law was checked for bidisperse and monodisperse bead sets with
µ = 0.0 and µ = 0.2. Polydisperse media with wider ranges of diameters still have to
be investigated, though.

5.5 Conclusions

By performing both experimental and numerical trials, we have shown that distinct
element methods are appropriate to evaluate the flowability of monodisperse bead as-
semblies. Once again, this suggests that those numerical models successfully capture
the behavior of statical granular media. It has also been observed that the dependence
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Figure 5.10: The mean critical diameters of monodisperse and bidisperse bead assem-
blies with µ = 0.0 and Φ̄ ranging from 5 mm to 7 mm.

of flowability on friction decreases with increasing friction coefficients. Then, numer-
ical trials suggested that the flowability of homogeneous bidisperse bead assemblies
only depend on their mass-average diameters, leading to the formulation of a law.
Further work include the validation of this law on bead assemblies with higher poly-
dispersity, using a wider range of friction coefficients.



Chapter 6

Spherocylinder Crystallization

For our first numerical experiments with non-spherical particles, we use spherocylin-
ders, and shake them in a cylindrical container. As a result, we observe them crystallize
vertically and faithfully reproduce the corresponding results of physical experiments
from the literature [VLMJ00].

We discuss the mechanisms underlying to this phenomenon that recalls of a crystalline
growth germinating about the boundaries of the container. Note that while this crys-
tallization is catalyzed by the boundaries in our setup, there actually are several causes
for this phenomenon. It has been suggested [BNK03; RPL05b] that the void-filling
process is another mechanism leading to spherocylinder crystallization. Moreover, it
has been shown [RPL05b] that vertical ordering also happens without the influence of
walls.

6.1 The Experiments

We simulate the rearrangement of mono-disperse populations of spherocylinders en-
closed within a cylindrical container subject to vertical tapping. In order to do this,
we use a cylindrical container of base diameter D, which is sufficiently high so that
the particles cannot escape from it. Its base is mobile and can be subject to a 30 Hz
sinusoidal vertical oscillation whose amplitude a can be chosen, whereas its vertical
wall remains motionless. The grains used for the rearrangement are spherocylinders
of diameter δ and elongation parameter φ = λ/δ. Population size is Np. Simulation
processes are initialized by randomly placing the particles within the cylinder, the di-
rections of their shafts being uniformly distributed, and letting them settle under the
action of gravity. Once the kinetic energy has dropped to zero, we start the vibrations.

We monitor the intensity of the vibrations via the ratio Γ = a(2πν)2

g , that is the maximal
acceleration brought by the bottom plane to the granular packing. Individual grains
have density ρ and we further define the medium’s volumetric density ρm as the ra-
tio of the total volume occupied by the grains divided by the volume of the enclosing
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truncated cylinder (upon elimination of outliers). In order to capture the reordering
behavior as a function of the height of the enclosing cylinder, the latter is subdivided
into four horizontal layers of equal thickness h = 4 mm, numbered in increasing order
from bottom to top. In other words, layer i is lying between heights (i− 1).h and i.h.

We monitor the behavior of the medium in terms of the mean angle between the grain
shafts and the bottom plane as well as its volumetric density ρm, both globally and
layer by layer. Experiments an3, ..., an9 were designed to investigate the way elongated
grains rearrange, and in particular to observe possible re-orderings which would recall
a phase transition. Among those seven experiments, the main one is an6. Experiment
an9 involves shorter grains in order to show how the elongation parameter φ changes
the rearrangement behavior. In this experiment, the number of grains is chosen so that
the initial filling height is closest possible to that of an6. The other five experiments
were carried out to investigate possible influence of the restitution coefficient en and
the vibration intensity Γ on the results.

The parameter values for the various simulations we carried out are given in table 6.1

∆t (s) tc (s) en Γ φ δ (m) D (m) Np
an3 2× 10−5 6× 10−4 0.1 2.0 4.00 0.523× 10−3 8× 10−3 1000
an4 2× 10−5 6× 10−4 0.2 2.0 4.00 0.523× 10−3 8× 10−3 1000
an5 2× 10−5 6× 10−4 0.4 1.5 4.00 0.523× 10−3 8× 10−3 1000
an6 2× 10−5 6× 10−4 0.4 2.0 4.00 0.523× 10−3 8× 10−3 1000
an7 2× 10−5 6× 10−4 0.4 2.5 4.00 0.523× 10−3 8× 10−3 1000
an8 2× 10−5 6× 10−4 0.8 2.0 4.00 0.523× 10−3 8× 10−3 1000
an9 2× 10−5 6× 10−4 0.4 2.0 2.83 0.523× 10−3 8× 10−3 1414

Table 6.1: Experiments of vibrating mono-disperse media

6.2 Crystallization mechanisms

Lateral snapshots of experiment an6 at various evolution stages are given in figure 6.1.
In a qualitative way, we see that the spherocylinders rearrange vertically to a highly
ordered state, at least along the cylinder boundary. The cuts of the cylinder with a
plane through its axis shown in figure 6.1 further show that this particular rearrange-
ment also occurs in the middle of the container. Obviously the concurring shapes and
sizes of both container and grains play a decisive role on crystallization processes. In
particular, this is why the spherocylinders tend to crystallize vertically, achieving a
high volumetric density. The final arrangements reported in [ATC03] for Metropolis-
Monte-Carlo simulations of spherocylindric populations are not crystalline. For obvi-
ous reasons one can not draw any conclusions about the dynamic behavior of real grain
rearrangements from the Monte-Carlo process. Furthermore, the final density attained
in [ATC03] corresponds to a metastable state of significantly lower volumetric density
than that of the crystallized medium. This does not come as a surprise since such a
metastable state is very hard to escape, the crystallization process certainly having a
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Figure 6.1: Snapshots and cuts of experiment an6. Upper line : lateral snapshots.
Lower line : corresponding cuts by a vertical plane containing the cylinder axis. From
left to right : initial situation, after 300 tapping steps, after 900 tapping steps, after 4134
tapping steps

logarithmic behavior also in the Metropolis-Monte-Carlo simulations. The transfor-
mations in that model only allowing for rearrangements of individual grains one at a
time, crystallization becomes extremely unlikely. Moreover, many of the experiments
in [ATC03] are carried out on the periodic boundary conditions, hence there are no
crystalline nucleation sites, which further slows down crystallization.

We measured the volumetric density ρm of the considered medium. The inset in Figure
6.3 shows its graph against the number of tapping steps. As can be seen, the density



70 CHAPTER 6. SPHEROCYLINDER CRYSTALLIZATION

Figure 6.2: Snapshots and cuts of experiment an9. Upper line : lateral snapshots.
Lower line : corresponding cuts by a vertical plane containing the cylinder axis. From
left to right : initial situation, after 300 tapping steps, after 900 tapping steps, after 4134
tapping steps

plot shows quite strong oscillations which can be explained by the effect of the sinu-
soidal tapping, the overall medium behaving like an elastic spring. In order to filter
out this effect we smoothen the curve with a moving average as shown on the inset of
Figure 6.3 for experiment an6. The smoothed version of the volumetric density ρm is
given in figure 6.3 for the whole set of experiments.

In figure 6.4 we plot the mean angle between the grain shafts and the bottom plane
against the number of tapping steps. Figure 6.5 depicts the mean angle within several
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Figure 6.3: Smoothed density ρm plotted versus the number of tapping steps t for ex-
periments an3-an9. Inset : oscillations of the measured density and its moving average
smoothed version for experiment an6

horizontal subdivisions of the container. The mean angle does not show the same
oscillatory behavior as the volumetric density. A possible explanation might be that
during a tapping oscillation, the angle variations tend to average out. We see that the
beginning of a phase transition with respect to the angle takes place at approximately
constant density (between 10 and 100 tapings). Observe that the crystallization process
as measured by the volumetric density starts after about 100 tapping steps, behaving
logarithmically from there on until it reaches a value of ρm = 0.75 for the highest after
about 2000 tapings. This value is not very far from the maximum possible density
of tightly packed spherocylinders in an unbounded three-dimensional space, which
equals ρmax

m = π
6

3φ+2√
3φ+
√

2
, that is ρmax

m = 0.8787 when φ = 4.0.

Measured by the mean angle, the crystallization process starts after 10 tapings already
and behaves logarithmically until it saturates after approximately 1000 tapings for ex-
periments an3, an5 and an9. Experiments an3 and an5 do not show a logarithmic behav-
ior during the re-ordering process. The restitution coefficient used in experiment an3 is
much lower than that used in the other experiments. This causes the energy reaching
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Figure 6.4: Mean angle between the particles shafts and the bottom plane versus the
number t of tapping steps for several experiments

the grains to be small, which limits their motion. However, we see no dependence on
en for en ≥ 0.2 (experiments an4, an6, an8). This would mean that in experiment an3
the energy available to the system is too small for it to reach the dynamical regime
found in experiments an4, an6 and an8. For experiment an5, the value of Γ is pretty
low, which means that little energy is brought to the system. In this case also, the other
experiments (an6, an7) show there is no dependence on Γ for Γ ≥ 2.0. Again, this sug-
gests that the energy available to the system is not sufficient to reach the dynamics of
experiments an4, an6 and an8. While experiment an9 exhibits the same logarithmic re-
ordering as experiments an4, an6, an7 and an8, figure 6.4 shows that this logarithmic
part is shorter and that the saturation takes place at a lower value of the mean angle.
This shows that while the dynamics of the re-ordering seems not to be dependent of
the elongation parameter, the saturation process is. It might be that with small values
of Φ, the grains have more freedom to arrange in a disordered state, and the transition
to a crystalline ordering is less probable.

Another possibility is that the cylinder shape has less influence on short grains than
on long ones. Indeed when a slanted particle touches a cylindrical wall at two points,
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a torque develops that tends to erect it. The magnitude of this torque increases with
particle lenght. It can be observed that the logarithmic stage of reordering is mainly
due to global rearrangement processes (convection), whereas the saturation stage is
ruled by local rearrangements. The logarithmic rearrangement behavior corresponds
to that observed for media composed of identical spherical grains.

Figure 6.5 shows that excepting top and bottom layers, the mean angle increases mono-
tonically to eventually stay between 80 and 90 degrees for experiments an3, an4, an6,
an8 and between 60 and 80 degrees for experiments an5, an7, and an9. This means
that the crystallization does not only occur along the container wall but involves all
grains in those layers. Figure 6.5 also shows that in the logarithmic re-ordering stage,
layers seem to reorder from the top to the bottom as the mean angle in a layer is al-
ways lower than that of the higher layers. In the saturation stage, this behavior inverts
for the two central layers while the mean angle still increases in the lowest layer and
drops in the topmost layer as it gradually empties. Again, this suggests that the nature
of rearrangement processes in the logarithmic and saturation phases is not the same,
the former being essentially due to global phenomena and the latter involving local
rearrangements in a mostly static medium. This behavior matches that observed in
[VLMJ00] on experiments with real elongated grains. Quantitatively, the dynamics of
our simulated media fits well that reported there. In particular, the time slots for both
reordering processes match. The reordering is logarithmic in both cases, and the initial
and final volumetric densities also agree.
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Figure 6.5: Mean angle between particle shafts and the bottom plane plotted versus the
number of tapping steps t in four horizontal layers. Layers are numbered in increasing
order from bottom to top and their thickness is h = 4 mm, that is layer i is lying between
heights (i− 1).h and i.h.



Chapter 7

On the segregation of spheres and
tetrahedra

Granular media can behave like solids, liquids and also gas depending on the con-
ditions they are submitted to. Some of their behaviors though, cannot be classified
in any of these three states of matter. Granular segregation, also known as Brazil nut
effect belongs to this range of behavior that escapes usual classifications. The Brazil
nut effect is observed in particular when particles of different sizes are shaken. Par-
ticles with same sizes will gather, producing size inhomogeneities that contradict the
intuition whereby diffusion should occur. It was first observed that large particles
would migrate upwards under vibrations [MLNJ01; KJN93; DRC93; RSPS87]. Particle
density was found to play a role too, though less important than particle size in seg-
regation phenomena [SM98] as well as interstitial gas [RTLM03; NSK03]. The Brazil
nut effect also occurs in a reverse way, large particles migrating to the bottom of the
mixture [Shi04; BEKR03; HQL01]. Recently the phenomenon of size segregation was
addressed [RPL05a; ATC03; Mak97]. Particles with same mass and volume, but with
different shapes were found to segregate. Up to now, these studies were mostly con-
ducted on mixtures of spheres and spherocylinders [RPL05a; ATC03]. Experimental
trials have shown that DEM simulations were able to capture this behavior [RPL05a].

In general, particles that differ in size, density, shape or other materials properties will
most of the time tend to segregate under dynamical regimes like vibration. While
mixing particles with different properties is needed for many industrial applications,
spontaneous homogenization will not take place, except under very special conditions
[RPL05a; ATC03].

Thus, it is interesting to study granular segregation in mixtures involving more com-
plicated shapes. This chapter addresses granular segregation of mixtures of spheres
and regular spherotetrahedra submitted to vertical vibrations.
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7.1 The experiments

The first set of experiments takes place in a cylindrical container of diameter D = 8 mm.
The base of this container is mobile and can be subject to a 30 Hz sinusoidal vertical
oscillation whose amplitude a can be chosen. The vertical walls remain motionless.
The intensity of the vibrations is monitored using the maximal acceleration Γ brought
by the bottom disc to the medium:

Γ =
a(2πν)2

g
. (7.1)

We use spheres with diameter 1 mm and density 1910 kg.m−3 and regular spherote-
trahedra of same volume and density whose sphericity ratio is l/r = 0.616, where r is
the radius of a particle and l is the distance between its mass center and any vertex of
its skeleton. In each simulation, 250 spheres and 250 spherotetrahedra are poured in
the container. The spheres can either be poured on top of the spherotetrahedra (sph↑)
or inversely (tet↑) which produces initially unmixed states. Of course one can choose
to pour the two species together in order to produce a mixed initial state. Once a me-
chanical equilibrium is reached, the vibrations begin.

The behavior of the medium is monitored in terms of the ratio R between the height
ht of the mass center of the spherotetrahedra and the height hs of the mass center of
the spheres. For the simulations we chose a friction coefficient of µ = 0.2, a restitution
coefficient of en = 0.4, a contact time of tc = 6 10−4 s and a time step of ∆t = 2 10−5 s
for the integration of the motion equations.

A second set of experiments is performed under periodic boundary condition affecting
the two directions orthogonal to gravitation. The period p is equal in both directions
and chosen so that the basis surface of the periodic square is equal to the basis surface
of the cylindrical container. A simple calculation provides p = 7.09 mm. Table 7.1
shows the parameter values for the various simulations we carried out.

exp. Γ initial mix. boundaries
1 2.0 sph↑ periodic
2 2.0 tet↑ periodic
3 2.0 mixed periodic
4 2.0 sph↑ cylinder
5 2.0 tet↑ cylinder
6 2.0 mixed cylinder
1 3.0 sph↑ periodic
2 3.0 tet↑ periodic
3 3.0 mixed periodic
4 3.0 sph↑ cylinder
5 3.0 tet↑ cylinder
6 3.0 mixed cylinder

Table 7.1: Experiments of vibrating mixtures of spheres and spherotetrahedra.
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Figure 7.1: . Lateral Snapshots of the initial (top row) and final (bottom row) situations
for experiments 4, 5 and 6 (from left to right).

7.2 Results and discussion

Figure 7.2 shows the ratio R drawn against time for experiments 4, 5 and 6. One can
see that the initially homogeneously mixed state (experiment 6) does not segregate. As
a possible cause for this, one could invoke the intensity of the vibrations which is not
sufficient to produce rearrangements. It is clear, however, that the initially unmixed
states (experiments 4 and 5) are unstable under those vibrations, meaning that the
rearrangements actually occur with this acceleration. Moreover, those rearrangements
tend to mix spheres and spherotetrahedra.

Looking at figure 7.3, one can see that at the end of the experiments, most of the par-
ticles about the cylinder boundary are spheres. This suggests that segregation indeed
occurs with mixtures of spheres and spherotetrahedra but in a radial way. Indeed, fig-
ure 7.3 shows the proportion P of spheres among all the particles whose centers are
at a distance less than l + r of the boundary. The proportion P of spheres reaches 0.8
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Figure 7.2: . The ratio R drawn against time for experiments 4 (sph↑), 5 (tet↑) and 6
(initially mixed) carried out with cylindrical boundaries and Γ = 2.0.

meaning that segregation occurs radially. Intuition suggests that this may be due to
the curvature of the spheres which is closer to that of the cylinder than the curvature
of spherotetrahedra.
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Figure 7.3: . The proportion P of sphere about the boundary for experiments 4 (sph↑),
5 (tet↑) and 6 (initially mixed) carried out with Γ = 2.0.
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Experiments with periodic boundary conditions have the nice property that radial seg-
regation will not occur in such setups. This allows to separate vertical mixing and ra-
dial segregation. Figure 7.4 shows the ratio R drawn against time for experiments 1,
2 and 3. As one can see, nothing happens. The initially mixed medium (experiment
3), and the initially unmixed ones (experiments 1 and 2) remain unmixed. One would
expect that either mixing or segregation would occur under vibrations. This suggests
that our vibrations are not strong enough to allow the medium to rearrange. With pe-
riodic boundary conditions there will be no convection. The rearrangements then only
rely on the size of the voids created by the agitation of the medium.
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Figure 7.4: . The ratio R drawn against time for experiments 1 (sph↑), 2 (tet↑) and 3
(initially mixed) carried out with periodic boundary conditions and Γ = 2.0.

The ratio R is drawn against time for experiments 7, 8 and 9 in figure 7.5. Those exper-
iments are identical to experiments 1, 2, and 3 but with Γ = 3.0 instead of Γ = 2.0. One
can see that the medium not only rearranges but also converges to a final state that is
identical in terms of mixing for all three experiments. This means that our spheres and
spherotetrahedra have a clear affinity for mixing.

The ratio R is shown in figure 7.6 for experiments 10, 11 and 12 identical to experiments
7, 8 and 9 except that the periodic boundary has been replaced with cylindrical ones.
One can see that the grains mix as well. Again, the final situation do not depend on the
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Figure 7.5: . The ratio R drawn against time for experiments 7 (sph↑), 8 (tet↑) and 9
(initially mixed) carried out with periodic boundary conditions and Γ = 3.0.

initial states. This homogenization is spectacular, since less than five seconds suffice
to reach the final mixed state. One sees on figure 7.2 that the homogenization was not
as perfect in experiments 4, 5 and 6 as it is in experiments 10, 11 and 12. It seems that
with Γ = 2.0, the agitation is not sufficient for a strong mixing to occur.

One can see that the final mix of experiments 7-12 is obtained with R slightly lower
than 1. This means that the average height of spherotetrahedra is lower than that
of spheres in the final mixed situation. This may be caused by a greater geometrical
affinity of spherotetrahedra with the bottom plane. Indeed spherotetrahedra have flat
surfaces corresponding to the facet of their skeletons. Those flat surfaces may lie more
easily on the bottom plane than spherical ones, just in the same way spheres gather
about cylindrical boundaries in experiments 4, 5 and 6. Figure 7.7 shows the propor-
tion P of spheres about the boundary of the cylinder for experiments 10, 11 and 12.
One can see that the radial segregation is dramatically less marked than with lower
agitation.
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Figure 7.6: . The ratio R drawn against time for experiments 10 (sph↑), 11 (tet↑) and 12
(initially mixed) carried out with cylindrical boundaries and Γ = 3.0.
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Figure 7.7: . The proportion P of sphere about the boundary for experiments 10 (sph↑),
11 (tet↑) and 12 (initially mixed) carried out with Γ = 3.0.
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7.3 Conclusion

We have shown that spheres and spherotetrahedra with same volume and density tend
to mix under sufficiently strong vibrations. This constitutes a rather unexpected result
since grains with different properties most of the time segregate when submitted to
vibrations. Still these conclusions need to be further validated. In particular the sensi-
bility of the process to the sphericity ratio l/r should be investigated as well as the dy-
namics of the mixing in function of the agitation intensity. We suggest that this mixing
behavior may be linked to the fact that the inertia matrix of regular spherotetrahedra
is that of a sphere, which has to be validated as well, for example with experiments
involving several other shapes (spherocylinders or spherotriangles to begin with). The
other interesting effect reported in this chapter is the radial segregation occuring in
cylinders. Spheres seem to have a greater affinity with the cylindrical boundaries than
spherotetrahedra. This may be due to the curvature of the spheres that is closer to the
curvature of the cylinder than that of the spherotetrahedra, which is still to be checked
by trying mixtures between particles with different curvatures like spherocylinders
and spherotriangles.



Conclusion

The central result of this thesis is the generalization to non-spherical particles of the
simulation techniques developed by D. Müller [ML95; Mül96a] for discs and polygons
and J.-A. Ferrez [Fer01; FL02] for spheres. In particular, a description of a wide range
of particle shapes was proposed, as well as an extension of molecular dynamics con-
tact models to such particles. The other important issue that was addressed is that of
contact detection between bodies with those shapes. A generalization of triangulation-
based contact detection methods to non-spherical particles was proposed. The case of
convex particle shapes was fully covered, while for non-convex particles a method for
tracking contacts between two time steps still needs to be worked out. Finally, three
experiments were investigated numerically that provide validations of the numerical
model as well as new insights on the behavior of granular media. Below we sum up
what has been achieved in each direction addressed in this thesis and propose possible
future developments.

The implementation was based on the existing code by J.-A. Ferrez whose evolution-
ary structure showed to be convenient. The simulation code can now handle mixed
populations of spherosimplices using generalized contact models and our linear com-
plexity triangulation-based contact detection method. Developing the code to be able
to handle more general spheropolyhedra represents a challenge for future work. This
will involve redesigning the simulation environment as well as finding solutions to
store such shapes in all their generality.

The contact detection algorithm was mathematically proven to work in a wide range
of situations. The particular cases of one covering sphere per particle and that of sphe-
rocylinders covered by many spheres were especially addressed. In the former case,
detecting contacts between arbitrary shaped bodies or between spheres has the same
complexity. In numerical trials, the actual complexity was found to be nearly linear
in the number of particles with a slope that increases with particle elongation. This
reflects the fact that the number of possible contacts is higher for elongated particles
than for round ones.

In addition to the original algorithm 1, the robust regularization algorithm 3 has been
implemented that fixes a problem occurring in some practical cases. While the theo-
retical convergence of this last algorithm is not proven, up to now, no case was ever
encountered in practice where the algorithm failed to converge. Hence it might always
be the case that changing a non-regular triangulation into a regular one with the same
vertex set can be done by only flipping illegal facets.
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In this thesis it has been shown that the flip-graph of regular triangulations that share a
same vertex set is connected. The general case that also includes non-regular triangu-
lations in three dimensions remains open, though. The behavior of our regularization
algorithm may point to a direction for further investigating the connectivity of the flip-
graph in three dimensions.

With the help of the simulation code, several phenomena concerning various forms of
behavior of granular media were studied. A first experiment about the flowability of
bead assemblies was performed both with real-world setups and numerical simula-
tion. The results of those trials indicate that the distinct element method is appropriate
to measure the flowability of monodisperse bead assemblies, thus that the proposed
numerical models successfully capture the behavior of statical granular media. The
dependence of flowability on friction was investigated and found to decrease with in-
creasing friction coefficients. Finally, according to numerical trials, the flowability of
homogeneous bidisperse bead assemblies was found to depend only on their mass-
average diameters. It is expected that future work on the influence of particle shape on
flowability using our tools will disclose interesting features.

The second set of experiments was carried out with spherocylinders. Monodisperse
assemblies of such particles were vibrated vertically inside a cylindrical container. A
vertical reordering recalling a crystallization was observed that agrees with experi-
mental observations. The reasons for this behavior have been discussed and while our
cylindrical boundaries probably play an important role, it is however very likely that
other causes are also responsible for this verticalization phenomenon.

The last set of experiments was designed to investigate the shape segregation in mix-
tures of spheres and spherotetrahedra with same volume and density. Such mixtures
were vibrated in cylindrical containers and also with periodic boundary conditions.
With cylindrical boundaries, radial segregation was found to occur while unexpect-
edly, no vertical segregation was observed neither with cylindrical containers, nor
with periodic boundaries. Starting from completely unmixed situations, spheres and
spherotetrahedra would even mix and reach an homogeneous state that turns out to
be independent of the initial situation.

Such experiments with non-spherical particles should be followed by others, for we
believe that the behavior of granular media composed of non-spherical particles will
lead to more interesting and unexpected findings. For shape-segregation alone, with
the current version of our simulation code, investigating other kinds of mixtures still
needs to be done. The influence of boundary conditions is another field with many
open questions. Radial segregation should be investigated with a larger range of par-
ticle shapes and the boundary-driven shape-segregation may be related to the curva-
ture of the confining boundaries. Observations on such experiments should lead to
gain precious insights on the behavior of granular media composed of particles with
arbitrary shapes.
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