P4
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Parallel Attribute Grammar Evaluation

Hans-Juergen Boehm
Willy Zwaenepoel

Department of Computer Science
Rice University
Houston, Texas

Abstract

This paper reports on experiments with parallel compila-
tion of programming languages. In order to take advantage
of the potential parallelism, we express the language trans-
lation process as an attribute grammar evaluation problem.
We see three primary benefits to using attribute grammars:
First, since attribute grammars provide a functional speci-
fication of the language translation process, they are easily
amenable to parallel implementation, with relatively little
synchronization overhead. Second, as a high-level specifi-
cation of the language, they allow parallel translators to be
produced automatically, relieving the compiler writer from
the burden of dealing with parallelism. Third, they provide
a basis for a wide variety of language translation problems,
ranging from traditional programming language compila-
tion to more ambitious problems such as proof checking,
text formatting, etc.

We study the efficiency and the potential for parallelism
of various attribute grammar evaluation methods and we
present the design of a “combined” evaluator, which seeks
to combine the potential for concurrency of dynamic eval-
uators and the (sequential) efficiency of static evaluators.
We have used our methods to generate a parallel compiler
for a large Pascal subset. Measurements on a network
multiprocessor consisting of up to 6 SUN-2 workstations
connected by an Ethernet network indicate that the par-
allel compiler outperforms its sequential counterpart by a
factor of up to 3, with sequential compilation times and
quality of produced code comparable to commonly avail-
able compilers.

1 Introduction

We are interested in speeding up the language translation
process by exploiting parallelism. We take a fairly broad
view of the phrase “language translation” to include not
only traditional programming language compilation but

This research was supported in part by the National Science
Foundation under grants DCR-8511436 and DCR-8607200 and
by an IBM Faculty Development Award.

also text formatting, proof checking [1], assembling, and
various other software tools that can be viewed as imple-
menting the translation of a context free language. We
are concentrating on the “semantic” phase of the transla-
tion process, rather than on scanning and parsing, since
most modern compilers (should) spend relatively little
time parsing [14].

In order to take advantage of the potential parallelism,
we express the language translation process as an attribute
grammar evaluation problem (see Section 2). We see three
primary benefits to using attribute grammars: First, since
attribute grammars provide a functional specification of
the language translation process, they are relatively eas-
ily amenable to parallel implementation. Second, as a
high-level specification of the language, they allow paral-
lel translators to be produced automatically, relieving the
compiler writer from much of the burden of dealing with
parallelism. Finally, they allow a wide variety of language
translation problems to be specified.

Broadly speaking, traditional attribute grammar evalu-
ation methods can be divided in two categories: dynamic
and static evaluation. In essence, static evaluators are
more efficient on a sequential machine, both in terms of
CPU time as well as memory utilization, while dynamic
evaluators have a higher potential for concurrency. We
present the design of a combined static/dynamic evalua-
tor which seeks to combine the potential for concurrency of
dynamic evaluators with the sequential efficiency of static
evaluators.

We have measured the performance of parallel evalua-
tors on a network multiprocessor (both combined evalua-
tors as well as purely dynamic ones) and compared their
performance to sequential evaluators. The parallel com-
bined evaluator outperforms the sequential evaluator by a
factor of up to 3, and consistently outperforms the parallel
dynamic evaluator. The sequential compilation speeds and
quality of the produced code are comparable to commonly
available Pascal compilers. Good sequential and parallel
performance is achieved through several optimizations, in-
cluding very fast memory allocation, efficient applicative
symbol table updates, and the use of a string librarian for
efficient distributed string handling.

The outline of the rest of the paper is as follows. In Sec-
tion 2 we detail our approach, including a short introduc-

https://core.ac.uk/display/147905468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tion to attribute grammars and attribute grammar evalu-
ation methods. Section 3 describes the experimental set-
ting. Section 4 presents a detailed account of our current
measurement results and discusses some of the efficiency
techniques used in our implementation. Related work is
covered in Section 5. Finally, in Section 6 we draw some
conclusions and explore some avenues for further work.

2 Approach

2.1 Structure of the Parallel Compiler

Our parallel compiler consists of a sequential parser and
of a number of attribute evaluators executing in parallel
on different machines. The parser builds the syntax tree,
divides it into subtrees, and sends them to the attribute
evaluators. The attribute evaluators then proceed with
the actual translation by evaluating attributes belonging
to the symbols in their subtree. In the process some at-
tribute values are communicated to other evaluators. The
evaluators may have to wait to receive attribute values
from other evaluators before they can proceed. We now
briefly describe the nature of the attribute evaluation pro-
cess.

2.2 Attribute Grammars

Attribute grammars were introduced by Knuth to spec-
ify semantics of context free languages [11]. Each node
in the parse tree of a sentence has a collection of associ-
ated attribute values. Semantic rules associated with each
production specify the values of the attributes of nontermi-
nals in a given production in terms of the values of other
attributes of symbols in the same production. Together
these semantic rules define the values of the attributes of
all symbols in the parse tree. ! The process of computing
all attribute values associated with a parse tree is referred
to as attribute evaluation. This is normally performed by
an attribute evaluator which can be constructed automat-
ically from the attribute grammar specification. The ap-
pendix gives a simple attribute grammar that defines the
value of arithmetic expressions augmented with constant
declarations.

If an attribute grammar is used to specify a compiler,
only the attribute values at the root of the parse tree are
of interest. The root attributes normally include the ma-
chine language code for the program, as well as a list of
any “semantic” errors encountered in the translation pro-
cess. The attributes of other nodes represent intermediate
results used in the computation of the root attributes. For
instance, the code attribute of the root is produced by
properly concatenating the code attributes of its children
in the parse tree.

1 Attributes of terminals are normally predefined by the lexical
analyzer, though this is not part of Knuth’s original formalism.

Several conventional (sequential) compilers have been
constructed using attribute grammars [7]. Probably a
more common use has been in conjunction with syntax di-
rected editors [15]. The applicative (functional) nature of
an attribute grammar specification (i.e., the fact that the
semantic rules mentioned above must be pure functions
with no visible side-effects) minimizes the constraints on
the evaluation order of individual attributes. The remain-
ing constraints are readily apparent to an evaluator gen-
erator. This makes it feasible to construct the incremen-
tal evaluators necessary in an editing environment. It is
this same observation that makes attribute grammars par-
ticularly well suited to efficient parallel evaluation. The
relatively unconstrained evaluation order keeps synchro-
nization overhead to a minimum.

We now describe two kinds of evaluation methods, dy-
namic and static evaluation (for a more detailed survey,
see [6]).

2.3 Dynamic and Static Attribute Evalu-
ation

Given a parse tree, a dynamic evaluator first computes the
dependency graph between the attributes of all symbols in
the tree. This dependency graph is constructed by making
the attribute appearing on the left hand side of a semantic
rule dependent on the attributes on the right hand side
necessary for its evaluation. As is conventional, we re-
strict our attention to grammars for which the resulting
dependency graph is acyclic. The graph is topologically
sorted, and attributes are evaluated as they become ready
in the topological sort, until all attributes are evaluated
(see Figure 1).

Parallelizing this scheme is rather straightforward. Each
of the evaluators builds the dependency graph for its sub-
tree, marking attributes to be computed in other evalu-
ators as unavailable, does a topological sort, and starts
evaluation. In doing so, it may have to wait for some of
the remotely computed attributes. When they arrive, the
dependency graph is updated as appropriate. In addition,
each of the parallel evaluators must communicate some of
the locally computed attributes to other evaluators. While
this method achieves a high degree of concurrency, it is ex-
pensive in terms of space and CPU usage because of the
time and the storage necessary to compute and store the

parse tree

dependency .
. evaluation
analysis

FiGURE 1: Operation of Dynamic Evaluator

dependency information.

State-of-the-art sequential evaluators normally avoid
these problems by the use of “static” evaluation tech-
niques. With these techniques a prepass is made over
the grammar, whereby an order is computed in which at-
tributes (of any parse tree) can be evaluated consistent
with the dependencies of the grammar (see Figure 2). At
evaluation time, attributes are evaluated in this precom-
puted order; without having to perform any dependency
analysis at evaluation time (see Figure 3). Such an evalua-
tor usually takes the form of a collection of mutually recur-
sive vesit procedures, one per production, which are used to
walk the parse tree according to the precomputed order.
We use Kastens’ ordered evaluation method throughout
this paper as the example of a static evaluator, as it is
fairly efficient and capable of dealing with a large class of
grammars [9].

Unfortunately, since these static evaluators rely on a
predetermined order of computing the different attributes,
and since this order has been determined under the as-
sumption that the entire parse tree can be visited by the
evaluator, it is much less obvious how to adapt a static
evaluator to a parallel environment, where only part of
While such

an adaptation is perhaps feasible, we have chosen to con-

the parse tree is available to any evaluator.

struct a combined static/dynamic evaluator which tries to
combine the potential for concurrency in the dynamic eval-
uator with the lower CPU and memory usage of the static
ordered evaluator.

2.4 The Combined Evaluator

The basic idea is to perform dynamic evaluation only for
those attributes belonging to tree nodes on the path from
a remotely evaluated leaf to the root of the local subtree,
and to use static evaluators for all other attributes (see
Figure 4). During the reconstruction of the syntax sub-
tree from the linearized form received over the network, we
determine for each node N whether it is on a path from
the root to a separately processed subtree. If not, N is to
be evaluated statically and no dependency information is
computed. Otherwise, we inspect N’s children to see if any
of them should be evaluated statically. If so, we enter the
(transitive) dependencies between the child’s attributes (as
precomputed by the static evaluator generator) into the
dynamic dependency graph. We then add the dependen-
cies generated by the semantic rules of the production at
node N to the dependency graph, as for dynamic evalu-
ation. When the tree construction is completed, evalua-
tion starts in topological order, as for dynamic evaluators.
When all predecessors for a statically evaluated attribute

evaluation

grammar generation

order

FiGure 2: Construction of Static Evaluator

evaluation
order

evaluation

parse tree

Fi1GURE 3: Operation of Static Evaluator

e N
> J to remote
static subtree static subtree evaluato

local subtree

F1GURE 4: Operation of Combined Evaluator

become available, the appropriate static visit procedure is
invoked.

As will be seen in the Section 4, this results in the vast
majority of attributes being evaluated statically. In par-
ticular, all “bottom” subtrees are evaluated entirely stati-
cally. There is however some loss of concurrency because
static evaluation, by preselecting an evaluation order, ef-
fectively introduces additional dependencies not inherent
in the grammar.

2.5 The Compiler Generator

Both the parser and the parallel evaluators are generated
automatically from a single attribute grammar specifica-
tion. The attribute grammar is specified in a conventional
manner, except that we require the following additional
information (see also the appendix for an example):

1. The attribute grammar specifies at which nontermi-
nals the syntax tree may be split, and the minimum
size of the subtree to be evaluated separately. This
size can be scaled by a runtime argument to the
parser, to allow for easy experimentation with decom-
positions with different granularities.

2. For attributes of tree nodes at which the tree can con-
ceivably be split, conversion functions must be spec-
ified. These convert between the internal representa-
tion of the attribute and a contiguous representation
suitable for transmission over a network.

3 Experiments

We have generated sequential and parallel evaluators for a
sizable Pascal subset. All control constructs except with
statement and goto statements are included, as are value
and reference parameters and most standard data types.
Variant records, enumerated types, sets, floating point,
file 1/O, and functions and procedures as parameters are
omitted or severely restricted. VAX assembly language is
produced. A limited amount of local optimization is per-
formed. The overall code quality is at least comparable
to that produced by the Berkeley UNIX Pascal compiler.
The attribute grammar currently contains 131 context-
productions and 1117 semantic rules. Parse trees can be
split at statement nodes, statement list nodes, procedure
declaration nodes, and lists of procedure declarations.

The experiments are run on a collection of SUN-2 work-
stations connected by a 10 megabit Ethernet. During the
experiments the machines are exclusively used by the pro-
grams involved in the experiment. The machines are run-
ning the V-System, an experimental message-based oper-
ating system developed at Stanford University [3]. Inter-
process communication is by means of messages and is
transparent (i.e., independent of the location in the net-
work of the communicating processes).

4 Measurements

We have compiled and measured several programs using
the dynamic and the combined evaluators, both sequen-
tially and in parallel (The sequential combined evaluator
is essentially identical to a purely static sequential evalua-
tor, since the entire tree is processed locally). Here, we give
measurements for compiling a compiler and interpreter for
a simple language used in our compiler course. The pro-
gram is about 1,000 lines long, contains 33 procedures, 5
of which are at a nesting level deeper than 1. The assem-
bly language program is 60 kilobytes long. These results
reported here are typical for compilations of programs of
that size.

4.1 Running Time

Figure 5 shows the running times of the dynamic and the
combined evaluators, when using from 1 up to 6 machines.
Running time is measured from the time the parser initi-
ates evaluation until it receives back the root attributes.
The parallel combined evaluator running on 5 machines
is approximately 3 times faster than the sequential ver-
sion. The parallel dynamic evaluator running on 5 ma-
chines is achieves a speedup factor of 4 over the sequen-
tial version. Within the bounds of these experiments, the
combined evaluator performs consistently better than the
purely dynamic evaluator, although the differences become
less outspoken as the number of machines increases. De-
tailed analysis of the behavior of the combined evaluator
reveals that on average less then 0.1 percent of the at-
tributes are evaluated dynamically. Hence, the superior

running time
(]secognds)

25—
20—
15—
10— dynamic
T
5+ e -0
combined
| | | | | |
[[[[[[
1 2 3 4 5 6
number of machines
FIiGURE 5: Evaluator Running Times
efficiency of static evaluation — without any need for dy-

namic dependency analysis — supersedes the increased po-
tential for concurrency in dynamic evaluators, especially
for small numbers of machines. A caveat needs to be added
here: Although static evaluators of the type used here can
accommodate most common programming language con-
structs, dynamic evaluators can handle a wider variety of
languages. Hence, in some circumstances it might be nec-
essary to resort to a dynamic evaluator, regardless of per-
formance considerations.

The sequential running time of both evaluators com-
pares favorably to the running time of commonly available
Pascal compilers running on identical hardware, with com-
parable code quality being produced. Compilation of the
example program on a SUN-2 using the vendor supplied
compiler takes 34 seconds without assembly and 57 sec-
onds including assembly. For proper comparison, parsing
time must be added to the running time of our evaluators.
Our parser takes about 3 seconds for the above program.
A more efficient implementation could reduce parsing time
significantly, for instance by using the techniques described
n [14]. It must also be taken into consideration that our
compiler only implements a subset of Pascal, although only
two currently unimplemented language constructs appear
to contribute to compilation time, namely operator over-
loading and proper treatment of write, writeln, and the
like, which are currently treated as keywords.

The current attribute grammar specifies translation
from Pascal to VAX assembly language. Assembly can
be specified as a separate attribute grammar, which can
be run as a separate parallel pass after compilation. Al-
ternatively, assembly can be integrated into the current

grammar, with the assembly process being decomposed in
the same way as compilation and with a linking phase at
the end. This approach has the additional advantage that
machine language is much more compact than assembly
language, resulting in smaller attributes being transmit-
ted over the network. Given the relative importance of
assembly in the aforementioned compilation and assembly
times for the SUN Unix Pascal compiler, it seems highly
desirable to include assembly into a parallel compiler.

The running time of the parallel evaluator does not de-
crease monotonically with increasing number of machines.
The “best” performance is obtained by using five ma-
chines. The decomposition obtained for five machines re-
sults in subtrees of about equal size being passed to the
evaluators. This intuitively results in good concurrent be-
havior since all evaluators run (in parallel) for approxi-
mately the same amount of time. Using six machines re-
sults in a more uneven decomposition with little increased
concurrency, but with additional overhead involved in us-
ing the sixth machine. We now study the behavior of the
parallel combined evaluator in more detail.

4.2 Behavior of the Parallel Evaluator

Figure 6 shows the behavior of the parallel combined eval-
uator when running on 5 machines. The source program is
decomposed into subtrees for separate evaluation as shown
in Figure 7. In Figure 6 horizontal lines represent the ac-
tivity of the individual evaluators and the string librarian
(see Section 4.3), with thin lines indicating idle periods
and thick lines indicating active periods. The time axis
runs from left to right, and the arrows indicate communi-
cation of attributes between the corresponding evaluators.
As can be seen clearly from Figure 6, symbol table gener-
ation and propagation is essentially sequential, while good
concurrency is achieved during the code generation phase.
The final phase, result propagation, during which the eval-
uators propagate their result attributes back to the parser,
is discussed in more detail in the next section.

4.3 Efficiency Techniques

Major concern has been devoted to the efficiency of the
sequential code. Symbol tables are implemented as binary
search trees, making applicative updates simple and fast.
Symbol table entries map the hash table index of an iden-
tifier to the information associated with that identifier.
This insures that key values are essentially uniformly dis-
tributed, and thus symbol table trees stay balanced (see
also [5] for an alternative technique). Strings are imple-
mented as binary trees, with the actual text residing in
the leaves. Thus, string concatenation is a constant time
operation. Storage allocation is extremely fast throughout,
since we make no provision for reusing memory.

In order to achieve good performance during the result
propagation phase of parallel compilation, we introduce
the concept of a string librarian process. When an eval-
uator computes its final code attribute, it sends the code

symbol code result

string

table generation propagation

libraria

; i

time

F1GURE 6: Behavior of Combined Evaluator

FIGURE 7: Source Program Decomposition

string to the string librarian process, and a string descrip-
tor to its ancestor. The descriptors are combined appro-
priately by every process in the process tree and finally
passed up from the root evaluator to the string librarian,
which combines the code attributes according to the infor-
mation in the descriptors. This technique results in a single
network transmission of the code attribute resulting from
each evaluator. Additionally, these transmissions proceed
largely in parallel, thereby reducing their effect on run-
ning time even further. A naive implementation, whereby
each evaluator passes up the entire code string to its an-
cestor, leads to major inefficiency. When the “bottom”
evaluator computes its final code attribute, it is trans-
mitted to its ancestor process, where it is concatenated
with the code produced there, transmitted again to that
process’ ancestor, and the same scenario is repeated until
the code attribute finally reaches the root evaluator. This
results in (large) code attributes being transmitted over
the network as many times as the depth of the process
tree. Additionally, since at every stage the locally gen-
erated code is concatenated with the code received from
“below”, this process is strictly sequential. The use of a
string librarian process results in approximately 1 second
improvement in running time (or approximately 20 per-
cent). Note that this optimization can be done without
changing the grammar or the evaluator generator. All that
needs to be changed is the implementation of the “stan-
dard” string data type used for code attributes or, more
precisely, the conversion function for the root node’s code
attribute (see Section 2.5).

A similar but less substantial inefficiency exists with the
propagation of the global symbol table at the end of the
first phase of execution. Construction of the symbol table
currently involves sequential propagation of several ver-
sions of the symbol table up and down the tree. This
could be improved substantially by tuning the grammar.

We allow certain attributes can be marked as “prior-
ity” attributes (such as the global symbol table). These
attributes are evaluated as soon as they are available.
This guarantees that these attributes become available
quickly and are propagated immediately to other evalu-
ators. Without priority attribute specifications, patho-
logical situations can occur whereby local attributes are
computed ahead of attributes that are required globally.

It 1s often necessary to generate unique identifiers, for
instance for use as labels in a program. In a sequential at-
tribute grammar, this is often done by propagating a single
attribute throughout the tree whose value is then incre-
mented each time a new unique identifier is required. If
this technique were used in the parallel evaluator, it would
require virtually all evaluators to wait for the value of this
attribute to be propagated. Instead, a unique value is
communicated by the parser to each evaluator, and unique
identifiers within that evaluator are then generated rela-
tive to this base value.

5 Related Work

Some work has been done on parallel compilation (cf. [12]).
However, many approaches suffer from the lack of a solid
formal underpinning as provided by attribute grammars.
Also, much work has concentrated on parallel parsing
(cf. [4]). We believe that in most environments, the cost of
parsing is less significant than the cost of the latter phases
of compilation. Presumably, some of the parallel parsing
methods can be used in conjunction with the techniques
presented here, if parsing time does become a significant
factor.

An alternative approach to parallelizing compilation
consists of pipelining the compilation process [2, 8, 13].
While this approach is appealing in that many exist-
ing compilers are written as a pipeline of processes, the
speedup that can be achieved by executing different stages
in parallel is limited by the number of stages in the pipeline
(which is usually rather small) and by dependencies be-
tween the data produced by the different stages. Our
attempt at parallelizing the portable C compiler in this
way shows speedups limited to 1.3 [8]. Baer and Ellis, and
Miller and Leblanc report projected or measured speedups
in the range of 2 to 3 for a more fine-grained pipeline. Par-
allelizing several compilations can be done by using a par-
allel version of the Unix make facility. If the compilations
are sufficiently independent, this can potentially lead to
significant speedups. However, the approach suffers from
differences in size between compilations, and from a se-
quential linking phase at the end.

A distributed incremental parallel attribute grammar
evaluator is proposed by Kaplan and Kaiser [10]. In
essence, they propose to evaluate in parallel all attributes
that become “ready” at any time during the evaluation.
No implementation or performance results are reported.
We believe their approach is more appropriate in an envi-
ronment where communication is very cheap and individ-
ual attribute evaluations are very expensive. This is not
the case for our prototype system.

Unlike much of the recent work in attribute grammars,
we have chosen to look initially at complete evaluation of
all attribute instances in a tree, as opposed to incremental
reevaluation of a few attributes after a change to the tree.
There are three reasons for this. First, we hope the trade-
offs will be clearer by first focusing on the simpler problem.
Second, the incremental algorithms are easily applicable
only in the context of a structure editor, and it is not yet
clear that this will be the preferred editing environment
for a parallel compiler. Finally, experience with structure
editors tends to indicate that fully attributed parse trees
are too big to store over long periods. Unfortunately, sec-
ondary storage costs have not decreased sufficiently to ex-
pect this problem to disappear. Thus, even a structure
editor based, highly incremental environment is likely to
require a fast “batch” evaluator.

6 Conclusion and Avenues for
Further Work

Attribute grammars are an appealing paradigm for speci-
fying languages in a way that is amenable to parallel trans-
lation. They allow efficient parallel evaluators to be gen-
erated automatically, for a variety of languages, thereby
relieving the compiler writer from the burden of dealing
with parallelism. The functional nature of attribute gram-
mars intuitively lends itself well to parallel implementa-
tion, since it reduces the amount of synchronization over-
head.

We have detailed the design of a combined evaluator
which seems to combine sequential efficiency with a high
potential for concurrency. In our experiments so far, such
a combined evaluator has proven to have performance su-
perior to purely dynamic parallel evaluators as well as se-
quential static evaluators. We have also pointed some of
the possible pitfalls resulting from a straightforward par-
allel implementation of attribute grammars. In particular,
optimizations are needed to prevent long chains of trans-
missions of large attributes, such as the generated code.

Besides further experimentation with the current lan-
guage, we have two longer term goals. First, we intend to
study the integration of substantial (global) optimization
techniques in the compiler, since they tend to be com-
putationally expensive. The challenge is to specify those
techniques in an attribute grammar framework without
performing all computation at the root of the tree (and
hence not gaining any concurrency). Second, we intend to
port some of the attribute grammars available as part of
the Cornell Program Synthesizer to our system. We are
particularly interested in grammars in which the evalua-
tion of individual attributes is very expensive relative to
the cost of communicating attribute values between ma-
chines (such as for instance the proof checker described
in [1]).

parallel evaluation.

Such grammars should derive most benefit from

A Appendix

The following attribute grammar specifies the value of ex-
pressions involving addition and multiplication. An iden-
tifier can be introduced and bound to a constant by means
of the let construct. The expression

let x=3in2 4+ 4 *xni

can be read as “the sum of 2 and 4 times x, where x = 3”.
The value of the expression is 14.

The syntax used for the grammar below is exactly the
one used by our evaluator generator. (The syntax is based
on that of YACC. The approach to semantic specification
however is completely different. We do use YACC to pro-
duce the parser for our system.)

terminals
keywords

%name IDENTIFIER NUMBER
%keyword LET IN NI

%nosplit [value] [stab] expr # nonterminals
%nosplit [value] [] main_expr
%split 10 [value] [stab(st_put st_get)] block
%start printn main_expr # start symbol
%left '+ # associativity
%left %
o
main_expr: expr;

$$.value = $1.value,

$1.stab = st_create().

expr: expr ’+’ expr;
$$.value = $1.value + $3.value,
$1.stab = $$.stab,
$3.stab = $$.stab.

expr: expr ’*’ expr;
$$.value = $1.value * $3.value,
$1.stab = $$.stab,
$3.stab = $$.stab.

expr: IDENTIFIER;
$$.value = st_lookup($$.stab, $1.string).

expr: block;
$$.value = $1.value,
$1.stab = $$.stab.

block: LET IDENTIFIER ’=’ expr IN expr NI;
$$.value = $6.value,
$4.stab = $$.stab,
$6.stab
= st_add($$.stab, $2.string, $4.value).

expr: NUMBER;
$$.value = $1.string.

Declarations precede the “%%”. We distinguish between
2 kinds of tokens, and 2 kinds of nonterminals. A “%key-
word” declaration declares tokens with no further associ-
ated information. Tokens declared using “%mname” have an
associated attribute value that is calculated by the scan-
ner.

The nonterminal “block” is declared to have a single syn-
thesized attribute “value” and a single inherited attribute
“stab”. Instances of the “stab” attribute can be flattened
to a sequential representation (for transmission over the
network) by the “st_put” function. The function “st_get”
performs the inverse operation. Subtrees of the parse tree
headed by a “block” nonterminal may be split off and pro-
cessed separately if their representation is at least 10 bytes
long.

The other two nonterminals “expr” and “main_expr” are
declared using “%mosplit” indicating that they should not
serve as the root of a separately processed subtree. The
“%start” declaration specifies the start symbol of the con-
text free grammar, as well as a function to be called with
the final attribute values of the root node. (In this case
the function “printn” would presumably just print its ar-

gument, namely the value of the entire expression). The
“%left” declarations are passed through to the parser gen-
erator to indicate the precedence and associativity of “47”
and “x”.

The main part of the specification follows the “%%”.
Each group of lines consists of a context-free production
The left side of a
context-free production is separated from the right side by
a “”. The notation “$:s.x” denotes the attribute x of the
ith symbol on the right side of the production. To refer to
an attribute of the nonterminal on the left, we use “$$.x”.
For example, the rule

and some associated semantic rules.

$6.stab = st_add($$.stab, $2.string, $4.value)
following the production
block: LET IDENTIFIER ’=’ expr IN expr NI;

states that the symbol table attribute of the second “expr”
nonterminal (the body of the block) is the value obtained
by applying the “st_add” function to the symbol table as-
sociated with the left side (i.e. the parent in the parse
tree), the “string” attribute of the identifier (computed by
the scanner), and the value attribute of the first “expr”
nonterminal.

The “st_add” function is expected to return a symbol
table identical to its first argument, except that the identi-
fier specified as the second argument is bound to the value
specified by the third argument. The function “st_lookup”
returns the binding of an identifier in a symbol table.
“St_create” returns an empty symbol table. These func-
tions might be supplied by a standard library of symbol
table routines, as might “st_put” and “st_get”. They are
written in a standard programming language and trusted
not to produce any visible side effects. Aside from these
function definitions, the attribute grammar is complete,
and has been used to generate parallel expression evalua-
tors.

References

[1] B. Alpern and T. Reps, “Interactive Proof Checking”,
Proceedings of the Eleventh Annual ACM Symposium
on Principles of Programming Languages, 1984.

[2] J.-L. Baer and C. S. Ellis, “Model, Design, and Evalu-
ation of a Compiler for a Parallel Processing Environ-
ment”, IFEE Transactions on Software Engineering
SE-3, 6, pp. 394-405 (1977)

[3] D. R. Cheriton and W. Zwaenepoel, “The Distributed
V Kernel and its Performance on Diskless Worksta-
tions”, Proceedings of the Ninth ACM Symposium on
Operating System Principles, pp. 128-140 (1983).

[4] J. Cohen and S. Kolodner, “Estimating the Speedup
of Parallel Parsing”, IFEFE Transactions on Software
Engineering, SE-11, 1, pp. 114-124 (1985).

[5] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R.E.

Tarjan. “Making Data Structures Persistent”, Pro-

[9]

[10]

[11]

[12]

[13]

[14]

[15]

ceedings of the Fighteenth Annual ACM Symposium
on Theory of Computing (1986).

J. Engelfriet, “Attribute evaluation methods”, Meth-
ods and Tools for Compiler Construction, B. Lorho,
Cambridge University Press, pp. 103-138 (1984).

R. Farrow, “Experience with an Attribute Grammar
Based Compiler”, Proceedings of the Ninth Annual
ACM Symposium on Principles of Programming Lan-
guages, pp. 95-107 (1982).

D. B. Johnson and W. Zwaenepoel, “Macropipelines
on a Network of Workstations”, unpublished.

U. Kastens, “Ordered Attribute Grammars”, Acta In-
formatica 13, pp. 257-268 (1980).

S. M. Kaplan and G. E. Kaiser, “Incremental At-
tribute Evaluation in Distributed Language-Based
Environments”, Proceedings of the Fifth Annual ACM
Symposium on the Principles of Distributed Comput-
ing, pp. 121-131 (1986).

D. E. Knuth, “Semantics of Context-Free Languages”,
Mathematical Systems Theory 2, pp. 127-145 (1968).

D. E. Lipkie, “A Compiler Design for a Multiple In-
dependent Processor Computer”, Ph. D. Dissertation,
University of Washington, Seattle (1979).

J. A. Miller and R. J. Leblanc, “Distributed Compila-
tion: A Case Study”, Proceedings of the Third Inter-
national Conference on Distributed Computing Sys-
tems, pp. 548-553 (1982).

T. J. Pennello, “Very Fast LR Parsing”, Proceedings
of the SIGPLAN ’86 Symposium on Compiler Con-
struction, pp. 145-151 (1986).

T. Reps, T. Teitelbaum, and A. Demers, “Incremen-
tal Context Dependent Analysis for Language Based
Editors”, TOPLAS 5, 3, pp. 449-477 (1983).

