
Parallel Attribute Grammar Evaluation

Hans�Juergen Boehm
Willy Zwaenepoel

Department of Computer Science

Rice University

Houston� Texas

Abstract

This paper reports on experiments with parallel compila�
tion of programming languages� In order to take advantage
of the potential parallelism� we express the language trans�
lation process as an attribute grammar evaluation problem�
We see three primary bene�ts to using attribute grammars�
First� since attribute grammars provide a functional speci�
�cation of the language translation process� they are easily
amenable to parallel implementation� with relatively little
synchronization overhead� Second� as a high�level speci��
cation of the language� they allow parallel translators to be
produced automatically� relieving the compiler writer from
the burden of dealing with parallelism� Third� they provide
a basis for a wide variety of language translation problems�
ranging from traditional programming language compila�
tion to more ambitious problems such as proof checking�
text formatting� etc�

We study the e�ciency and the potential for parallelism
of various attribute grammar evaluation methods and we
present the design of a �combined� evaluator� which seeks
to combine the potential for concurrency of dynamic eval�
uators and the �sequential	 e�ciency of static evaluators�
We have used our methods to generate a parallel compiler
for a large Pascal subset� Measurements on a network
multiprocessor consisting of up to 
 SUN�� workstations
connected by an Ethernet network indicate that the par�
allel compiler outperforms its sequential counterpart by a
factor of up to �� with sequential compilation times and
quality of produced code comparable to commonly avail�
able compilers�

� Introduction

We are interested in speeding up the language translation
process by exploiting parallelism� We take a fairly broad
view of the phrase �language translation� to include not
only traditional programming language compilation but

This research was supported in part by the National Science

Foundation under grants DCR�������� and DCR�����	�� and

by an IBM Faculty Development Award


also text formatting� proof checking ��� assembling� and
various other software tools that can be viewed as imple�
menting the translation of a context free language� We
are concentrating on the �semantic� phase of the transla�
tion process� rather than on scanning and parsing� since
most modern compilers �should	 spend relatively little
time parsing ����

In order to take advantage of the potential parallelism�
we express the language translation process as an attribute

grammar evaluation problem �see Section �	� We see three
primary bene�ts to using attribute grammars� First� since
attribute grammars provide a functional speci�cation of
the language translation process� they are relatively eas�
ily amenable to parallel implementation� Second� as a
high�level speci�cation of the language� they allow paral�
lel translators to be produced automatically� relieving the
compiler writer from much of the burden of dealing with
parallelism� Finally� they allow a wide variety of language
translation problems to be speci�ed�

Broadly speaking� traditional attribute grammar evalu�
ation methods can be divided in two categories� dynamic
and static evaluation� In essence� static evaluators are
more e�cient on a sequential machine� both in terms of
CPU time as well as memory utilization� while dynamic
evaluators have a higher potential for concurrency� We
present the design of a combined static�dynamic evalua�
tor which seeks to combine the potential for concurrency of
dynamic evaluators with the sequential e�ciency of static
evaluators�

We have measured the performance of parallel evalua�
tors on a network multiprocessor �both combined evalua�
tors as well as purely dynamic ones	 and compared their
performance to sequential evaluators� The parallel com�
bined evaluator outperforms the sequential evaluator by a
factor of up to �� and consistently outperforms the parallel
dynamic evaluator� The sequential compilation speeds and
quality of the produced code are comparable to commonly
available Pascal compilers� Good sequential and parallel
performance is achieved through several optimizations� in�
cluding very fast memory allocation� e�cient applicative
symbol table updates� and the use of a string librarian for
e�cient distributed string handling�

The outline of the rest of the paper is as follows� In Sec�
tion � we detail our approach� including a short introduc�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tion to attribute grammars and attribute grammar evalu�
ation methods� Section � describes the experimental set�
ting� Section � presents a detailed account of our current
measurement results and discusses some of the e�ciency
techniques used in our implementation� Related work is
covered in Section �� Finally� in Section 
 we draw some
conclusions and explore some avenues for further work�

� Approach

��� Structure of the Parallel Compiler

Our parallel compiler consists of a sequential parser and
of a number of attribute evaluators executing in parallel
on di�erent machines� The parser builds the syntax tree�
divides it into subtrees� and sends them to the attribute
evaluators� The attribute evaluators then proceed with
the actual translation by evaluating attributes belonging
to the symbols in their subtree� In the process some at�
tribute values are communicated to other evaluators� The
evaluators may have to wait to receive attribute values
from other evaluators before they can proceed� We now
brie�y describe the nature of the attribute evaluation pro�
cess�

��� Attribute Grammars

Attribute grammars were introduced by Knuth to spec�
ify semantics of context free languages ���� Each node
in the parse tree of a sentence has a collection of associ�
ated attribute values� Semantic rules associated with each
production specify the values of the attributes of nontermi�
nals in a given production in terms of the values of other
attributes of symbols in the same production� Together
these semantic rules de�ne the values of the attributes of
all symbols in the parse tree� � The process of computing
all attribute values associated with a parse tree is referred
to as attribute evaluation� This is normally performed by
an attribute evaluator which can be constructed automat�
ically from the attribute grammar speci�cation� The ap�
pendix gives a simple attribute grammar that de�nes the
value of arithmetic expressions augmented with constant
declarations�

If an attribute grammar is used to specify a compiler�
only the attribute values at the root of the parse tree are
of interest� The root attributes normally include the ma�
chine language code for the program� as well as a list of
any �semantic� errors encountered in the translation pro�
cess� The attributes of other nodes represent intermediate
results used in the computation of the root attributes� For
instance� the code attribute of the root is produced by
properly concatenating the code attributes of its children
in the parse tree�

�Attributes of terminals are normally prede�ned by the lexical

analyzer� though this is not part of Knuths original formalism


Several conventional �sequential	 compilers have been
constructed using attribute grammars ��� Probably a
more common use has been in conjunction with syntax di�
rected editors ���� The applicative �functional	 nature of
an attribute grammar speci�cation �i�e�� the fact that the
semantic rules mentioned above must be pure functions
with no visible side�e�ects	 minimizes the constraints on
the evaluation order of individual attributes� The remain�
ing constraints are readily apparent to an evaluator gen�
erator� This makes it feasible to construct the incremen�
tal evaluators necessary in an editing environment� It is
this same observation that makes attribute grammars par�
ticularly well suited to e�cient parallel evaluation� The
relatively unconstrained evaluation order keeps synchro�
nization overhead to a minimum�

We now describe two kinds of evaluation methods� dy�
namic and static evaluation �for a more detailed survey�
see 
�	�

��� Dynamic and Static Attribute Evalu�

ation

Given a parse tree� a dynamic evaluator �rst computes the
dependency graph between the attributes of all symbols in
the tree� This dependency graph is constructed by making
the attribute appearing on the left hand side of a semantic
rule dependent on the attributes on the right hand side
necessary for its evaluation� As is conventional� we re�
strict our attention to grammars for which the resulting
dependency graph is acyclic� The graph is topologically
sorted� and attributes are evaluated as they become ready
in the topological sort� until all attributes are evaluated
�see Figure �	�

Parallelizing this scheme is rather straightforward� Each
of the evaluators builds the dependency graph for its sub�
tree� marking attributes to be computed in other evalu�
ators as unavailable� does a topological sort� and starts
evaluation� In doing so� it may have to wait for some of
the remotely computed attributes� When they arrive� the
dependency graph is updated as appropriate� In addition�
each of the parallel evaluators must communicate some of
the locally computed attributes to other evaluators� While
this method achieves a high degree of concurrency� it is ex�
pensive in terms of space and CPU usage because of the
time and the storage necessary to compute and store the

parse tree

dependency

analysis

dependency

graph
evaluation

output

Figure �� Operation of Dynamic Evaluator



dependency information�

State�of�the�art sequential evaluators normally avoid
these problems by the use of �static� evaluation tech�
niques� With these techniques a prepass is made over
the grammar� whereby an order is computed in which at�
tributes �of any parse tree	 can be evaluated consistent
with the dependencies of the grammar �see Figure �	� At
evaluation time� attributes are evaluated in this precom�
puted order� without having to perform any dependency
analysis at evaluation time �see Figure �	� Such an evalua�
tor usually takes the form of a collection of mutually recur�
sive visit procedures� one per production� which are used to
walk the parse tree according to the precomputed order�
We use Kastens� ordered evaluation method throughout
this paper as the example of a static evaluator� as it is
fairly e�cient and capable of dealing with a large class of
grammars ���

Unfortunately� since these static evaluators rely on a
predetermined order of computing the di�erent attributes�
and since this order has been determined under the as�
sumption that the entire parse tree can be visited by the
evaluator� it is much less obvious how to adapt a static
evaluator to a parallel environment� where only part of
the parse tree is available to any evaluator� While such
an adaptation is perhaps feasible� we have chosen to con�
struct a combined static�dynamic evaluator which tries to
combine the potential for concurrency in the dynamic eval�
uator with the lower CPU and memory usage of the static
ordered evaluator�

��� The Combined Evaluator

The basic idea is to perform dynamic evaluation only for
those attributes belonging to tree nodes on the path from
a remotely evaluated leaf to the root of the local subtree�
and to use static evaluators for all other attributes �see
Figure �	� During the reconstruction of the syntax sub�
tree from the linearized form received over the network� we
determine for each node N whether it is on a path from
the root to a separately processed subtree� If not� N is to
be evaluated statically and no dependency information is
computed� Otherwise� we inspect N �s children to see if any
of them should be evaluated statically� If so� we enter the
�transitive	 dependencies between the child�s attributes �as
precomputed by the static evaluator generator	 into the
dynamic dependency graph� We then add the dependen�
cies generated by the semantic rules of the production at
node N to the dependency graph� as for dynamic evalu�
ation� When the tree construction is completed� evalua�
tion starts in topological order� as for dynamic evaluators�
When all predecessors for a statically evaluated attribute

grammar generation
evaluation

order

Figure �� Construction of Static Evaluator

parse tree evaluation output

evaluation

order

Figure �� Operation of Static Evaluator

to remote
evaluatorstatic subtree static subtree

local subtree

Figure �� Operation of Combined Evaluator

become available� the appropriate static visit procedure is
invoked�

As will be seen in the Section �� this results in the vast
majority of attributes being evaluated statically� In par�
ticular� all �bottom� subtrees are evaluated entirely stati�
cally� There is however some loss of concurrency because
static evaluation� by preselecting an evaluation order� ef�
fectively introduces additional dependencies not inherent
in the grammar�

��� The Compiler Generator

Both the parser and the parallel evaluators are generated
automatically from a single attribute grammar speci�ca�
tion� The attribute grammar is speci�ed in a conventional
manner� except that we require the following additional
information �see also the appendix for an example	�

�� The attribute grammar speci�es at which nontermi�
nals the syntax tree may be split� and the minimum
size of the subtree to be evaluated separately� This
size can be scaled by a runtime argument to the
parser� to allow for easy experimentation with decom�
positions with di�erent granularities�

�� For attributes of tree nodes at which the tree can con�
ceivably be split� conversion functions must be spec�
i�ed� These convert between the internal representa�
tion of the attribute and a contiguous representation
suitable for transmission over a network�



� Experiments

We have generated sequential and parallel evaluators for a
sizable Pascal subset� All control constructs except with
statement and goto statements are included� as are value
and reference parameters and most standard data types�
Variant records� enumerated types� sets� �oating point�
�le I�O� and functions and procedures as parameters are
omitted or severely restricted� VAX assembly language is
produced� A limited amount of local optimization is per�
formed� The overall code quality is at least comparable
to that produced by the Berkeley UNIX Pascal compiler�
The attribute grammar currently contains ��� context�
productions and ���� semantic rules� Parse trees can be
split at statement nodes� statement list nodes� procedure
declaration nodes� and lists of procedure declarations�

The experiments are run on a collection of SUN�� work�
stations connected by a �� megabit Ethernet� During the
experiments the machines are exclusively used by the pro�
grams involved in the experiment� The machines are run�
ning the V�System� an experimental message�based oper�
ating system developed at Stanford University ��� Inter�
process communication is by means of messages and is
transparent �i�e�� independent of the location in the net�
work of the communicating processes	�

� Measurements

We have compiled and measured several programs using
the dynamic and the combined evaluators� both sequen�
tially and in parallel �The sequential combined evaluator
is essentially identical to a purely static sequential evalua�
tor� since the entire tree is processed locally	� Here� we give
measurements for compiling a compiler and interpreter for
a simple language used in our compiler course� The pro�
gram is about ����� lines long� contains �� procedures� �
of which are at a nesting level deeper than �� The assem�
bly language program is 
� kilobytes long� These results
reported here are typical for compilations of programs of
that size�

��� Running Time

Figure � shows the running times of the dynamic and the
combined evaluators� when using from � up to 
 machines�
Running time is measured from the time the parser initi�
ates evaluation until it receives back the root attributes�
The parallel combined evaluator running on � machines
is approximately � times faster than the sequential ver�
sion� The parallel dynamic evaluator running on � ma�
chines is achieves a speedup factor of � over the sequen�
tial version� Within the bounds of these experiments� the
combined evaluator performs consistently better than the
purely dynamic evaluator� although the di�erences become
less outspoken as the number of machines increases� De�
tailed analysis of the behavior of the combined evaluator
reveals that on average less then ��� percent of the at�
tributes are evaluated dynamically� Hence� the superior

number of machines

� � � � � �

running time
�seconds�

�

��

��

��

��

dynamic

combined

Figure �� Evaluator Running Times

e�ciency of static evaluation � without any need for dy�
namic dependency analysis � supersedes the increased po�
tential for concurrency in dynamic evaluators� especially
for small numbers of machines� A caveat needs to be added
here� Although static evaluators of the type used here can
accommodate most common programming language con�
structs� dynamic evaluators can handle a wider variety of
languages� Hence� in some circumstances it might be nec�
essary to resort to a dynamic evaluator� regardless of per�
formance considerations�

The sequential running time of both evaluators com�
pares favorably to the running time of commonly available
Pascal compilers running on identical hardware� with com�
parable code quality being produced� Compilation of the
example program on a SUN�� using the vendor supplied
compiler takes �� seconds without assembly and �� sec�
onds including assembly� For proper comparison� parsing
time must be added to the running time of our evaluators�
Our parser takes about � seconds for the above program�
A more e�cient implementation could reduce parsing time
signi�cantly� for instance by using the techniques described
in ���� It must also be taken into consideration that our
compiler only implements a subset of Pascal� although only
two currently unimplemented language constructs appear
to contribute to compilation time� namely operator over�
loading and proper treatment of write� writeln� and the
like� which are currently treated as keywords�

The current attribute grammar speci�es translation
from Pascal to VAX assembly language� Assembly can
be speci�ed as a separate attribute grammar� which can
be run as a separate parallel pass after compilation� Al�
ternatively� assembly can be integrated into the current



grammar� with the assembly process being decomposed in
the same way as compilation and with a linking phase at
the end� This approach has the additional advantage that
machine language is much more compact than assembly
language� resulting in smaller attributes being transmit�
ted over the network� Given the relative importance of
assembly in the aforementioned compilation and assembly
times for the SUN Unix Pascal compiler� it seems highly
desirable to include assembly into a parallel compiler�

The running time of the parallel evaluator does not de�
crease monotonically with increasing number of machines�
The �best� performance is obtained by using �ve ma�
chines� The decomposition obtained for �ve machines re�
sults in subtrees of about equal size being passed to the
evaluators� This intuitively results in good concurrent be�
havior since all evaluators run �in parallel	 for approxi�
mately the same amount of time� Using six machines re�
sults in a more uneven decomposition with little increased
concurrency� but with additional overhead involved in us�
ing the sixth machine� We now study the behavior of the
parallel combined evaluator in more detail�

��� Behavior of the Parallel Evaluator

Figure 
 shows the behavior of the parallel combined eval�
uator when running on � machines� The source program is
decomposed into subtrees for separate evaluation as shown
in Figure �� In Figure 
 horizontal lines represent the ac�
tivity of the individual evaluators and the string librarian
�see Section ���	� with thin lines indicating idle periods
and thick lines indicating active periods� The time axis
runs from left to right� and the arrows indicate communi�
cation of attributes between the corresponding evaluators�
As can be seen clearly from Figure 
� symbol table gener�
ation and propagation is essentially sequential� while good
concurrency is achieved during the code generation phase�
The �nal phase� result propagation� during which the eval�
uators propagate their result attributes back to the parser�
is discussed in more detail in the next section�

��� E�ciency Techniques

Major concern has been devoted to the e�ciency of the
sequential code� Symbol tables are implemented as binary
search trees� making applicative updates simple and fast�
Symbol table entries map the hash table index of an iden�
ti�er to the information associated with that identi�er�
This insures that key values are essentially uniformly dis�
tributed� and thus symbol table trees stay balanced �see
also �� for an alternative technique	� Strings are imple�
mented as binary trees� with the actual text residing in
the leaves� Thus� string concatenation is a constant time
operation� Storage allocation is extremely fast throughout�
since we make no provision for reusing memory�

In order to achieve good performance during the result
propagation phase of parallel compilation� we introduce
the concept of a string librarian process� When an eval�
uator computes its �nal code attribute� it sends the code

a

b

c

d

e

string
librarian

time

symbol

table

code

generation

result

propagation

Figure �� Behavior of Combined Evaluator

a

b c

d

e

Figure �� Source Program Decomposition



string to the string librarian process� and a string descrip�
tor to its ancestor� The descriptors are combined appro�
priately by every process in the process tree and �nally
passed up from the root evaluator to the string librarian�
which combines the code attributes according to the infor�
mation in the descriptors� This technique results in a single
network transmission of the code attribute resulting from
each evaluator� Additionally� these transmissions proceed
largely in parallel� thereby reducing their e�ect on run�
ning time even further� A naive implementation� whereby
each evaluator passes up the entire code string to its an�
cestor� leads to major ine�ciency� When the �bottom�
evaluator computes its �nal code attribute� it is trans�
mitted to its ancestor process� where it is concatenated
with the code produced there� transmitted again to that
process� ancestor� and the same scenario is repeated until
the code attribute �nally reaches the root evaluator� This
results in �large	 code attributes being transmitted over
the network as many times as the depth of the process
tree� Additionally� since at every stage the locally gen�
erated code is concatenated with the code received from
�below�� this process is strictly sequential� The use of a
string librarian process results in approximately � second
improvement in running time �or approximately �� per�
cent	� Note that this optimization can be done without
changing the grammar or the evaluator generator� All that
needs to be changed is the implementation of the �stan�
dard� string data type used for code attributes or� more
precisely� the conversion function for the root node�s code
attribute �see Section ���	�

A similar but less substantial ine�ciency exists with the
propagation of the global symbol table at the end of the
�rst phase of execution� Construction of the symbol table
currently involves sequential propagation of several ver�
sions of the symbol table up and down the tree� This
could be improved substantially by tuning the grammar�

We allow certain attributes can be marked as �prior�
ity� attributes �such as the global symbol table	� These
attributes are evaluated as soon as they are available�
This guarantees that these attributes become available
quickly and are propagated immediately to other evalu�
ators� Without priority attribute speci�cations� patho�
logical situations can occur whereby local attributes are
computed ahead of attributes that are required globally�

It is often necessary to generate unique identi�ers� for
instance for use as labels in a program� In a sequential at�
tribute grammar� this is often done by propagating a single
attribute throughout the tree whose value is then incre�
mented each time a new unique identi�er is required� If
this technique were used in the parallel evaluator� it would
require virtually all evaluators to wait for the value of this
attribute to be propagated� Instead� a unique value is
communicated by the parser to each evaluator� and unique
identi�ers within that evaluator are then generated rela�
tive to this base value�

� Related Work

Some work has been done on parallel compilation �cf� ���	�
However� many approaches su�er from the lack of a solid
formal underpinning as provided by attribute grammars�
Also� much work has concentrated on parallel parsing
�cf� ��	� We believe that in most environments� the cost of
parsing is less signi�cant than the cost of the latter phases
of compilation� Presumably� some of the parallel parsing
methods can be used in conjunction with the techniques
presented here� if parsing time does become a signi�cant
factor�

An alternative approach to parallelizing compilation
consists of pipelining the compilation process �� �� ����
While this approach is appealing in that many exist�
ing compilers are written as a pipeline of processes� the
speedup that can be achieved by executing di�erent stages
in parallel is limited by the number of stages in the pipeline
�which is usually rather small	 and by dependencies be�
tween the data produced by the di�erent stages� Our
attempt at parallelizing the portable C compiler in this
way shows speedups limited to ��� ��� Baer and Ellis� and
Miller and Leblanc report projected or measured speedups
in the range of � to � for a more �ne�grained pipeline� Par�
allelizing several compilations can be done by using a par�
allel version of the Unix make facility� If the compilations
are su�ciently independent� this can potentially lead to
signi�cant speedups� However� the approach su�ers from
di�erences in size between compilations� and from a se�
quential linking phase at the end�

A distributed incremental parallel attribute grammar
evaluator is proposed by Kaplan and Kaiser ���� In
essence� they propose to evaluate in parallel all attributes
that become �ready� at any time during the evaluation�
No implementation or performance results are reported�
We believe their approach is more appropriate in an envi�
ronment where communication is very cheap and individ�
ual attribute evaluations are very expensive� This is not
the case for our prototype system�

Unlike much of the recent work in attribute grammars�
we have chosen to look initially at complete evaluation of
all attribute instances in a tree� as opposed to incremental
reevaluation of a few attributes after a change to the tree�
There are three reasons for this� First� we hope the trade�
o�s will be clearer by �rst focusing on the simpler problem�
Second� the incremental algorithms are easily applicable
only in the context of a structure editor� and it is not yet
clear that this will be the preferred editing environment
for a parallel compiler� Finally� experience with structure
editors tends to indicate that fully attributed parse trees
are too big to store over long periods� Unfortunately� sec�
ondary storage costs have not decreased su�ciently to ex�
pect this problem to disappear� Thus� even a structure
editor based� highly incremental environment is likely to
require a fast �batch� evaluator�



� Conclusion and Avenues for

Further Work

Attribute grammars are an appealing paradigm for speci�
fying languages in a way that is amenable to parallel trans�
lation� They allow e�cient parallel evaluators to be gen�
erated automatically� for a variety of languages� thereby
relieving the compiler writer from the burden of dealing
with parallelism� The functional nature of attribute gram�
mars intuitively lends itself well to parallel implementa�
tion� since it reduces the amount of synchronization over�
head�

We have detailed the design of a combined evaluator
which seems to combine sequential e�ciency with a high
potential for concurrency� In our experiments so far� such
a combined evaluator has proven to have performance su�
perior to purely dynamic parallel evaluators as well as se�
quential static evaluators� We have also pointed some of
the possible pitfalls resulting from a straightforward par�
allel implementation of attribute grammars� In particular�
optimizations are needed to prevent long chains of trans�
missions of large attributes� such as the generated code�

Besides further experimentation with the current lan�
guage� we have two longer term goals� First� we intend to
study the integration of substantial �global	 optimization
techniques in the compiler� since they tend to be com�
putationally expensive� The challenge is to specify those
techniques in an attribute grammar framework without
performing all computation at the root of the tree �and
hence not gaining any concurrency	� Second� we intend to
port some of the attribute grammars available as part of
the Cornell Program Synthesizer to our system� We are
particularly interested in grammars in which the evalua�
tion of individual attributes is very expensive relative to
the cost of communicating attribute values between ma�
chines �such as for instance the proof checker described
in ��	� Such grammars should derive most bene�t from
parallel evaluation�

A Appendix

The following attribute grammar speci�es the value of ex�
pressions involving addition and multiplication� An iden�
ti�er can be introduced and bound to a constant by means
of the let construct� The expression

let x � � in � � � � x ni

can be read as �the sum of � and � times x� where x � ���
The value of the expression is ���

The syntax used for the grammar below is exactly the
one used by our evaluator generator� �The syntax is based
on that of YACC� The approach to semantic speci�cation
however is completely di�erent� We do use YACC to pro�
duce the parser for our system�	

�name IDENTIFIER NUMBER � terminals

�keyword LET IN NI � keywords

�nosplit �value� �stab� expr � nonterminals

�nosplit �value� �� main�expr

�split �� �value� �stab�st�put st�get�� block

�start printn main�expr � start symbol

�left 	
	 � associativity

�left 	�	

��

main�expr� expr

���value � ���value�

���stab � st�create���

expr� expr 	
	 expr

���value � ���value 
 ���value�

���stab � ���stab�

���stab � ���stab�

expr� expr 	�	 expr

���value � ���value � ���value�

���stab � ���stab�

���stab � ���stab�

expr� IDENTIFIER

���value � st�lookup����stab� ���string��

expr� block

���value � ���value�

���stab � ���stab�

block� LET IDENTIFIER 	�	 expr IN expr NI

���value � ���value�

���stab � ���stab�

���stab

� st�add����stab� ���string� ���value��

expr� NUMBER

���value � ���string�

Declarations precede the ����� We distinguish between
� kinds of tokens� and � kinds of nonterminals� A ��key�
word� declaration declares tokens with no further associ�
ated information� Tokens declared using ��name� have an
associated attribute value that is calculated by the scan�
ner�

The nonterminal �block� is declared to have a single syn�
thesized attribute �value� and a single inherited attribute
�stab�� Instances of the �stab� attribute can be �attened
to a sequential representation �for transmission over the
network	 by the �st put� function� The function �st get�
performs the inverse operation� Subtrees of the parse tree
headed by a �block� nonterminal may be split o� and pro�
cessed separately if their representation is at least �� bytes
long�

The other two nonterminals �expr� and �main expr� are
declared using ��nosplit� indicating that they should not
serve as the root of a separately processed subtree� The
��start� declaration speci�es the start symbol of the con�
text free grammar� as well as a function to be called with
the �nal attribute values of the root node� �In this case
the function �printn� would presumably just print its ar�



gument� namely the value of the entire expression	� The
��left� declarations are passed through to the parser gen�
erator to indicate the precedence and associativity of ���
and ����

The main part of the speci�cation follows the �����
Each group of lines consists of a context�free production
and some associated semantic rules� The left side of a
context�free production is separated from the right side by
a ���� The notation ��i�x� denotes the attribute x of the
ith symbol on the right side of the production� To refer to
an attribute of the nonterminal on the left� we use ����x��
For example� the rule

�
�stab � st add����stab� ���string� ���value	

following the production

block� LET IDENTIFIER ��� expr IN expr NI�

states that the symbol table attribute of the second �expr�
nonterminal �the body of the block	 is the value obtained
by applying the �st add� function to the symbol table as�
sociated with the left side �i�e� the parent in the parse
tree	� the �string� attribute of the identi�er �computed by
the scanner	� and the value attribute of the �rst �expr�
nonterminal�

The �st add� function is expected to return a symbol
table identical to its �rst argument� except that the identi�
�er speci�ed as the second argument is bound to the value
speci�ed by the third argument� The function �st lookup�
returns the binding of an identi�er in a symbol table�
�St create� returns an empty symbol table� These func�
tions might be supplied by a standard library of symbol
table routines� as might �st put� and �st get�� They are
written in a standard programming language and trusted
not to produce any visible side e�ects� Aside from these
function de�nitions� the attribute grammar is complete�
and has been used to generate parallel expression evalua�
tors�

References

�� B� Alpern and T� Reps� �Interactive Proof Checking��
Proceedings of the Eleventh Annual ACM Symposium

on Principles of Programming Languages� �����

�� J��L� Baer and C� S� Ellis� �Model� Design� and Evalu�
ation of a Compiler for a Parallel Processing Environ�
ment�� IEEE Transactions on Software Engineering

SE��� 
� pp� ������� �����	

�� D� R� Cheriton and W� Zwaenepoel� �The Distributed
V Kernel and its Performance on Diskless Worksta�
tions�� Proceedings of the Ninth ACM Symposium on

Operating System Principles� pp� ������� �����	�

�� J� Cohen and S� Kolodner� �Estimating the Speedup
of Parallel Parsing�� IEEE Transactions on Software

Engineering� SE���� �� pp� ������� �����	�

�� J� R� Driscoll� N� Sarnak� D� D� Sleator� and R�E�
Tarjan� �Making Data Structures Persistent�� Pro�

ceedings of the Eighteenth Annual ACM Symposium

on Theory of Computing ����
	�


� J� Engelfriet� �Attribute evaluation methods�� Meth�

ods and Tools for Compiler Construction� B� Lorho�
Cambridge University Press� pp� ������� �����	�

�� R� Farrow� �Experience with an Attribute Grammar
Based Compiler�� Proceedings of the Ninth Annual

ACM Symposium on Principles of Programming Lan�

guages� pp� ������ �����	�

�� D� B� Johnson and W� Zwaenepoel� �Macropipelines
on a Network of Workstations�� unpublished�

�� U� Kastens� �Ordered Attribute Grammars�� Acta In�
formatica ��� pp� �����
� �����	�

��� S� M� Kaplan and G� E� Kaiser� �Incremental At�
tribute Evaluation in Distributed Language�Based
Environments�� Proceedings of the Fifth Annual ACM
Symposium on the Principles of Distributed Comput�

ing� pp� ������� ����
	�

��� D� E� Knuth� �Semantics of Context�Free Languages��
Mathematical Systems Theory �� pp� ������� ���
�	�

��� D� E� Lipkie� �A Compiler Design for a Multiple In�
dependent Processor Computer�� Ph� D� Dissertation�
University of Washington� Seattle �����	�

��� J� A� Miller and R� J� Leblanc� �Distributed Compila�
tion� A Case Study�� Proceedings of the Third Inter�

national Conference on Distributed Computing Sys�

tems� pp� ������� �����	�

��� T� J� Pennello� �Very Fast LR Parsing�� Proceedings
of the SIGPLAN ��� Symposium on Compiler Con�

struction� pp� ������� ����
	�

��� T� Reps� T� Teitelbaum� and A� Demers� �Incremen�
tal Context Dependent Analysis for Language Based
Editors�� TOPLAS � � �� pp� ������� �����	�


