
Performance of Optimistic Make

Rick Bubenik
Willy Zwaenepoel

Department of Computer Science
Rice University
Houston, Texas

Abstract

Optinaistic make is a version of make that executes the
commands necessary to bring targets up-to-date prior
to the time the user types a make request. Side effects
of these optimistic computations (such as file or screen
updates) are concealed until the make request is issued.
If the inputs read by the optimistic computations are
identical to the inputs the computation would read at
the time the make request is issued, the results of the
optimistic computations are used immediately, resulting
in improved response time. Otherwise, the necessary
computations are reexecuted.

We have implemented optimistic make in the V-
System on a collection of SUN-3 workstations. Statistics
collected from this implementation are used to synthe-
size a workload for a discrete-event simulation and to
validate its results. The simulation shows a speedup
distribution over pessimistic make with a median of 1.72
and a mean of 8.28. The speedup distribution is strongly
dependent on the ratio between the target out-of-date
times and the command execution times. In particular,
with faster machines the median of the speedup distri-
bution grows to 5.1, and then decreases again. The ex-
tra machine resources used by optimistic make are well
within the limit of available resources, given the large
idle times observed in many workstation environments.

1 Introduction

Make is a tool used primarily for creating up-to-date
executable programs from their source files [5]. Using

This work was supported in part by the National Science Foun-
dation under Grant CCR-8716914.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1989 ACM O-89791-315-9/89/ooO5/0039 $1.50

a makefile, the user specifies a number of targets, the
sources they depend on, and the commands to be ex-
ecuted to construct the targets from the sources. A
target is said to be out-of-date if one of its sources has a
larger timestamp than the target. When the user types
make, out-of-date targets are reconstructed according to
the makefile, possibly using multiple machines if some
of the commands are independent.

Optimistic make is identical in functionality to
make, but unlike the conventional “pessimistic” imple-
mentation, optimistic make monitors the file system for
out-of-date targets, and executes the commands nec-
essary to bring the targets up-to-date before the user
types make. Outputs of these optimistic computations
are concealed until the user types make. If the in-
puts used by the optimistic computations are unchanged
when the make request is issued, their results are used
immediately. Otherwise, the necessary computations
are reexecuted.

Figure 1 shows the potential performance benefits
of optimistic make over pessimistic make. The top por-
tion of the figure depicts a pessimistic distributed make,
whereby the user edits and saves a number of files, and
then issues a make request, at which time the commands
necessary to bring the targets up-to-date are executed.
The bottom part of Figure 1 depicts the operation of
optimistic distributed make. Commands are started ss
soon as files are saved, when targets become out-of-date.
As a result, response time is significantly improved.

The outline of the rest of this paper is as follows.
Section 2 briefly discusses the notion of encapsulations,
the basic construct used in the implementation of opti-
mistic make. Section 3 describes the statistics collected
from our implementation of optimistic make. In Sec-
tion 4 we describe the simulation model used to evaluate
the performance of optimistic make. Results from this
simulation are presented in Section 5. Related work is
covered in Section 6, and conclusions are drawn in Sec-
tion 7.

39 Performance Evaluation Review Vol. 17 #l May1989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PESSIMISTIC:

OPTIMISTIC:

2 Encapsulations

file saves make
file 1 file 1

file 2 file 3 response

I v t * time

: :
, link
I

response

t * time

Figure 1 Optimistic vs. Pessimistic Distributed Make.

Encapsulations are the primary mechanism used to sup-
port optimistic make. In this section, we summarize
their functionality and those aspects of the implemen-
tation that are relevant to the performance of optimistic
computations.

2.1 Definition

Informally, an encapsulation is a computation that runs
with its outputs concealed until the computation is
mandated (requested by the user). Outputs include,
but are not limited to, file modifications and terminal
output. The following three operations are defined on
encapsulations:

eid = CreateEncapsulation() Create an encapsula-
tion with unique identifier eid. Output produced by
the encapsulation is not visible outside the encap-
sulation until it is mandated, with one exception:
it is possible to allow one encapsulation to read
the outputs of one or more input encapsulations by
specifying these. encapsulations as arguments to the
CreateEncapsulation() call.

result = MandateEncapsulation(eid) Check
whether the inputs read by the encapsulation are
identical to the inputs that the computation would
read if it were to run at this time. If so, then make
all outputs produced so far visible, stop concealing
further output, and return success. If not, abort
the computation and return failure.

AbortEncapsulation(eid) Abort the encapsulation.

Encapsulations are superficially similar to atomic
transactions in that both mechanisms hide operations
until a later time (commit time for atomic transac-
tions, mandate time for encapsulations). However, the
semantics of encapsulations differ considerably from
the semantics of transactions. Encapsulations can be
mandated before the concealed computation completes.
When mandated, side effects are made visible in steps
(in the order in which they were created) rather than
atomically. Encapsulations can be destroyed at any
time, including while concealed side effects are being
made visible. This lets the user abort unwanted com-
putations before all (unwanted) output has appeared.

2.2 Implementation and Performance

Encapsulations are completely transparent to the com-
putation. The same executable program can be run
both as a normal computation and as an encapsulation.
In particular, no recompilation or relinking of existing
programs is necessary.

Unlike client programs, the kernel and server pro-
grams require modification to support encapsulations.
The kernel tags each message from an encapsulation
with the encapsulation identifier eid. This allows servers
to determine efficiently whether a request comes from
an encapsulation. A server must log the fact that an
encapsulation reads one of its objects. This is done by
logging a logical timestamp. Furthermore, when an en-
capsulation modifies an object, this modification must
be redirected to a hidden object, not visible outside the
encapsulation. On mandate, the server checks whether
the timestamps of all objects read by the encapsula-
tion are equal to their current timestamps. If so, the
mandate is allowed to succeed, and all modifications

40 Performance Evaluation Review Vol. 17 #l My1989

are made visible by replacing the original objects with
the hidden ones produced during the encapsulation. If
not, the encapsulation is aborted and all hidden objects
are discarded.

In the case of the file server, each time an encap-
sulation opens a file for read, the file’s timestamp is
logged. When an encapsulation opens a file for write, a
hidden file is created, and the writes are redirected to
that file. Hidden files do not appear in the file system
directory structure and are only accessible through low
level identifiers. Writes to the terminal screen are also
redirected to a hidden file. Furthermore, for each en-
capsulation, a hidden file system tree is maintained to
record the modifications made by that encapsulation to
the real file system tree. The hidden file system tree
is also used to record the mapping between the names
of files modified by the encapsulation and the low level
identifiers of the corresponding hidden files.

The overhead of executing an encapsulation com-
pared to a normal computation is (roughly) propor-
tional to the number of opens, as opposed to the num-
ber of reads or writes. In our implementation, running
under the V-System on SUN-3/50 workstations, the ex-
tra overhead is 18 milliseconds per open for read, and
8 milliseconds per open for write, for the first open of
each file. The extra overhead is lower if the same file is
opened again: 10 milliseconds per open for read and 4
milliseconds per open for write. The overhead is lower
on subsequent opens since the hidden file system tree
need not be updated. In the current implementation,
encapsulations are provided by a separate encapsula-
tion server. Much of the encapsulation overhead results
from communication between the file server and the en-
capsulation server, and from the cost of maintaining the
hidden file system tree and the logging. An implemen-
tation where the encapsulation server is integrated with
the file server might be more efficient, but we prefer the
modularity of our approach.

At mandate time, overhead is minimized by exam-
ining a number of timestamps in a single operation. We
measured an overhead of 8 milliseconds per open for
read, and 31 milliseconds per open for write. These
times are limited by the time it takes our file server
to lookup and to overwrite a file, respectively. When
a computation is mandated while still executing, the
mandate can proceed in parallel with the computation,
so the overhead does not contribute to the computa-
tion’s response time. For the types of computations
considered in this paper (compilations and linkages), a
conservative estimate for the encapsulation overhead is
2 seconds during execution and 1 second at mandate
time.

2.3 Optimistic Make and Encapsulations

The optimistic make program reads the makefile and
monitors the file system. File system monitoring is
done efficiently by asking the file server for notification
if any file in a specified directory changes. This results
in shorter notification times and less overhead on the
file server than polling, while keeping the amount of
state to be maintained at the file server for this pur-
pose small. When optimistic make sees a target. in the
makefile that is out-of-date, it starts an encapsulation
to bring that target up-to-date. If two (or more) com-
putations are necessary to bring a target up-to-date (for
instance, a compilation and a linkage), the first compu-
tation is started as an encapsulation eidl without input
encapsulations. When it finishes, the second computa-
tion is started as an encapsulation eidz with the first
encapsulation eidl as an input encapsulation. This al-
lows the linker to read the output of the compiler. If
a source file changes after an encapsulation has been
started, the corresponding encapsulation is aborted, and
a new one is started. If any encapsulation in a sequence
of dependent encapsulations is aborted, all subsequent
encapsulations in the sequence are also aborted.

3 Measurements

3.1 Measurement Environment

The system used for measurement consists of from 8 to
12 diskless SUN-2/50 and SUN-3/50 workstations and
a SUN-3/160 file server connected by a 10 megabit Eth-
ernet. All machines are running the V-System [2]. Re-
mote execution of programs is transparent and incurs
only a very small performance penalty. File access is
transparent as well, and has equal cost from all diskless
machines. The status of other machines on the network
can be obtained efficiently using the V group communi-
cation mechanism [3].

The machines are used for software development by
our group, which consists of 8 graduate students and
faculty members, and for projects in a graduate dis-
tributed systems course. Most of our makefiles involve
C compilations and linkages, with a small number of
Modula-2 compilations and some ‘QX text processing.
There are typically 4 to 6 active users on the system
during the day, although commonly only 2 or 3 of these
are actually engaged in software development.

3.2 Method of Measurement

We have instrumented our make programs (both the
pessimistic and optimistic versions) to collect the fol-
lowing statistics each time a make request is executed:

l The out-of-date time for all out-of-date targets: the
difference between the current time and the largest

41 Performance Evaluation Review Vol. 17 #1 May1989

timestamp of any of the target’s sources.

l Command execution time: the sequential execution
time of each program executed as part of the make.
All times are normalized to SUN-3’s.

l The shape of the dependency graph and the num-
ber of computations executed as part of the make.

l The number of encapsulations aborted as part of
each optimistic make.

Statistics were gathered for more than 6 months. Ap-
proximately 4,000 requests were measured over this pe-
riod.

3.3 Measurement Results

Figure 2 shows the cumulative distribution of the tar-
get out-of-date times. This distribution shows a median
value of 32 seconds and a mean value of 378 seconds.
This implies that most targets are requested fairly soon
after a change to the source files is made. Occasion-
ally, however, users wait quite a while before executing
a make request. Figure 3 shows the cumulative distribu-
tion of the command execution times. The distribution
varies with the number of commands per make request,
where requests with a small number of commands have
lower command execution times. We speculate that this
is due to the fact that make requests with a small num-
ber of commands (and especially those with one com-
mand) frequently contain computations aborted due to
compilation errors.

Virtually all makefiles have a similar dependency
graph (see Figure 4): a number of independent com-
putations (usually compilations) followed by a single
computation (usually a linkage). The distribution of
the number of commands per make is given in Figure 5.
The median number of commands per make request is 2
(corresponding to a change to a single source file, result-
ing in a recompilation of that source file and a linkage).
The mean number of commands is 4.39.

3.4 Overhead Estimates

Optimistic make uses more CPU resources due to the
aborted optimistic computations and the encapsulation
overhead. Table 1 shows the measured number of com-
putations mandated and aborted with optimistic make.
For each necessary computation (i.e., each computation
that would also be necessary in pessimistic make), 1.39
optimistic computations are started on average. Hence,
aborted computations impose an average extra CPU
load of at most 39 percent. This is an upper limit on
the extra load since many of the aborted computations
do not run to completion, and thus use less CPU time.
For the computations considered here (compilations and

0.8

0.6

0.4

0.2

0.0 J
1 10 100 1000 10000

out-of-date time in seconds

Figure 2 Cumulative Distribution of Target
Out-of-date Times.

- 3 commands/request

‘1 5 commands/request

--- average

50 100 150
command execution time in seconds

Figure 3 Cumulative Distribution of
Command Execution Times.

Figure 4 Typical Makefile Dependency Structure.

42 Pelformance Evaluation Review Vol. 17 #1 May1989

0.8

0.6

0 10 20 30
jobs per request

40 50

Figure 5 Cumulative Distribution of
Number of Computations per Request.

Computations Number Percent

necessary 16634 100%
aborted 6448 39%

total 23082 139%

Table 1 Necessary and Aborted Computations.

linkages), encapsulation overhead adds less than 5 per-
cent overhead on average (see Section 2.2). Hence, we
conclude that the total extra load is at most 44 percent,
and in practice is significantly lower. This extra CPU
load is small compared to the very large idle times that
have been observed in workstation environments, even
during peak usage periods [lo].

Encapsulations use extra disk space beyond that
used by normal computations to store the hidden files.
To estimate an upper bound of how much extra space
might be used, we assume that each user has a com-
pleted optimistic make containing the measured aver-
age of 4.39 computations. These normally consist of a
link (producing an executable file) and an average of
3.39 compilations (producing object modules). Using
the average executable and object module sizes in our
system, each of these optimistic makes requires a to-
tal of 81 kilobytes. If we assume the typical file server
has at least 10 megabytes per client, this represents less
than 1 percent of the client’s disk allocation.

4 Simulation

The simulation model consists of N identical machines
and M users. Each user issues make requests, with the

think time between requests drawn from an exponen-
tial distribution. A computation may use any of the
machines, although at any time we only allow a single
computation to execute on a particular machine. A cen-
tralized allocator assigns computations to machines in a
FCFS order, preferring normal to optimistic computa-
tions. In practice, the machine where a make request is
issued chooses the machines to be used for execution of
the commands belonging to this request. While differ-
ent from centralized allocation, the individual machines
in our environment have sufficiently accurate informa-
tion about the status of other machines for centralized
allocation to be a reasonable approximation. Once a
computation is started, it runs to completion (unless
aborted), with no preemption. When all workstations
are busy, requests are queued until a computation com-
pletes.

We simulate both pessimistic and optimistic make
with identical arrivals of make requests. For each pes-
simistic make request, we draw the number of com-
mands to be executed from the empirical distribution
shown in Figure 5, and then select the command exe-
cution times from the distribution in Figure 3 for re-
quests with that number of commands. The commands
are started when the pessimistic make request arrives,
subject to the dependencies in the makefile. Only de-
pendencies of the form depicted in Figure 4 are consid-
ered. For optimistic make, we draw the command exe-
cution times and number of commands from the same
distributions as for pessimistic make, and additionally
we draw the out-of-date times for each of the sources
from the empirical distribution shown in Figure 2. The
commands for the optimistic make are started at the
time of the make minus the time drawn from the out-
of-date time distribution. In order to simulate aborted
computations in optimistic make, we introduce an ex-
tra command for P percent of the optimistic commands,
where P is normally set to the measured 39 percent. We
assume both pessimistic and optimistic make have neg-
ligible request processing overhead. In order to account
for encapsulation overhead, optimistic computations are
assessed an extra overhead of 2 seconds during execu-
tion and 1 second at mandate time.

The purpose of the simulation is to determine the
response time improvement of optimistic make over pes-
simistic distributed make. Response time is the differ-
ence between the time the make request is issued and
the time all commands corresponding to that make re-
quest are completed. Response time improvement is the
ratio of response time in pessimistic make over response
time in optimistic make. Since the improvement is de-
pendent on the particular make request and the out-of-
date times, we provide as the main result of our simu-
lations the cumulative distribution of the improvement

43 Potforrflci;ce Evaluation Review Vol. 17 #1 May1 989

of optimistic over pessimistic make. For each simulated
request, the response time improvement is computed,
and the distribution of improvements is computed from
these values. Additionally, we provide the median re
sponse times for both optimistic and pessimistic make
as an indication of the absolute difference in response
times.

We run a terminating (finite horizon) simulation for
a period of 10 simulated hours. Pessimistic and opti-
mistic results are compared by constructing a confidence
interval on the median response time improvement for
each run with a 95 percent approximate confidence and
a relative precision of f3 percent.’

5 Simulation Results

5.1 The Baseline System

Figure 6 shows a cumulative distribution for the re-
sponse time improvement in a system configured sim-
ilar to the one we are using. All simulation inputs are
drawn from the empirical distributions, the number of
machines was set to 10, the number users to 2, and the
mean think time to 6 minutes.2 The median response

1.0

0.8

0.6

0.1 0.5 1 5 10 50 100
response time improvement

Figure 6 Cumulative Distribution of
Response Time Improvement (Baseline

System).

‘In those experiments where the median pessimistic and opti-
mistic response times are also recorded, the relative precision for
all three statistics is set at f3 percent, resulting in a lower aggre-
gate precision.

2Preliminary measurements indicate the mean think time in our
environment is at least 6 minutes. Consequently, we use this value
for all simulations. We change the number of users and machines
to experiment with increased system loading.

time improvement is 1.72, and the mean is 8.28. This
reflects the fact that most make requests are issued rela-
tively shortly after changes to the source files are made.
Improvements are occasionally very high, when all op-
timistic computations have completed by the time of
the make request, and the response time for the opti-
mistic make is equal to the time necessary to mandate
the computations.

To validate the simulation model, we compare the
measured cumulative response time distribution to the
one obtained from the simulation, for both optimistic
and pessimistic make (see Figure 7). We did not com-
pare response time improvements since the improve-
ment, as it is computed in the simulator, cannot be
measured because a make request comes from either
pessimistic or optimistic make, and not from both (as
in the simulator). Hence, it is not possible to use the
response time improvement distribution for the purpose
of validation.

Response time improvement is affected mainly by
the ratio of target out-of-date times to command exe-
cution times, and by the number of machines available
for execution. The ratio of target out-of-date times to
command execution times is important because it deter-
mines the amount of optimistic computation that can
be executed before requested. To examine the effect of
changing this ratio, we initially set the number of ma
chines to infinity, then alternately vary the command
execution and out-of-date times (Sections 5.2 and 5.3).
In Section 5.4, we compare the machine utilization of
pessimistic and optimistic make, then address the effect
of limited machines in Section 5.5. Finally, the effects

1.0

0.8

0.6

0.4

0.2

0.0

- measured

simulated

0 50 100 150 200
response time (in seconds)

Figure 7 Cumulative Distributions of
Simulated and Measured Response Times.

44 Performance Evaluation Review Vol. 17 #1 May1 989

of scheduling algorithms are discussed briefly in Sec-
tion 5.6.

5.2 Increasing Machine Speed

To assess the effect of shorter command execution times
(for instance, as a result of faster machines), the number
of machines is set to infinity, and the command execu-
tion times (from Figure 3) are divided by the appro-
priate factor.3 Encapsulation overhead is also reduced
accordingly. Other inputs to the simulation (out-of-date
times and number of commands per make) are as in the
baseline model.

Figure 8 shows the cumulative distribution of re-
sponse time improvement for the original machine speed
(labeled SUN-3), and for systems 8 and 16 times faster.
Figure 9 shows the median response times for pes-
simistic and optimistic make plotted side-by-side for
several CPU speeds.4 Figure 9 shows that as machine
speed increases, the absolute difference between opti-
mistic and pessimistic make decreases. The response
time improvement, however, first grows and then de-
creases with faster machines, from a median of 1.7 in
the SUN-3 curve, to a maximum of 5.1 in the 8*SUN-3
curve, and then back down to a median of 3.3 in the
16*SUN-3 curve. As the machine speed goes from

0.0 1 I I I I.

0.1 0.5 1 5 10 50 100
response time improvement

Figure 8 Cumulative Distribution of
Response Time Improvement for Different

Machine Speeds.

3The number of users and the think time are irrelevant with an
infinite number of machines.

4The ratio of the median response times is not the same statis-
tic as the median response time ratio (the latter is computed by
selecting the median of all individual improvements).

1 4 8 12 16

cpu speedup factor

Figure 9 Median Response Times for
Different Machine Speeds.

SUN-3 to 8*SUN-3, a large number of optimistic com-
putations are completed or are near completion by the
time the make request is issued. Hence, response time
for optimistic make is drastically improved. Response
time for pessimistic make improves as well, but not as
fast, giving rise to a better response time improvement.
Beyond the point where almost all optimistic compu- _
tations are completed by the time of the make request,
there is little improvement in optimistic make’s response
time as a result of faster machines. Pessimistic make,
however, continues to improve, leading to a decreasing
response time improvement.

5.3 Changing Out-of-Date Times

When collecting statistics, we observed that the median
and mean of the out-of-date time distribution fluctuated
somewhat over different measurement periods. We sim-
ulate varying out-of-date times by using values drawn
from the empirical out-of-date time distribution multi-
plied by a scale factor of X. Other simulation inputs
are as in the baseline system, with an infinite number
of machines.

Figure 10 shows the cumulative distributions for fac-
tors of 0.25, 1, and 4. Figure 11 shows the median re-
sponse times for pessimistic and optimistic make plot-
ted side-by-side for several scale factors between 0.25
and 8. Unlike with increasing machine speed (Figures 8
and 9), larger out-of-date times increase both the re-
sponse time improvement and the absolute difference
between median response times, until virtually all op-
timistic computations are completed by mandate time.
With even larger out-of-date times, both remain con-
stant, again in contrast with Section 5.2, where faster

45 Performance Evaluation Review Vol. 17 #l May1989

0.8

0.6

0.4

0.2

0.0
0.1 0.5 1 5 10 50 100

response time improvement

Figure PO Cumulative Distribution of
Response Time Improvement for Different

Out-of-date Scale Factors.

50
r

I

; 4o

x

t 30

i

i 20

:
g 10

!
0

0.25 0.5 1.0 2.0 4.0 8.0

pessimistic

ootimistic

d

-I

1
out-of-date time scale factor

Figure 11 Median Pessimistic and
Optimistic Response Times for Different

Out-of-date Scale Factors.

machines cause pessimistic make’s response times and
hence the response time improvement to decrease.

5.4 Machine Utilization

Figure 12 shows the probability distribution for the
number of busy machines with optimistic make using
39 percent aborted computations (the percentage mea-
sured). This distribution is obtained by sampling the
number of busy machines at 1 minute intervals dur-

prob

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

r

-1
I

e

1 user

‘..,4 users

0 2 4 6 8 10 12 14 16
busy machines

Figure 12 Probability Distribution of Busy
Machines for Different Numbers of Users.

ing the simulation. In these simulations, the number of
users is varied between 1 and 16, while the think time
is kept constant at 6 minutes.’ Inputs for the simula-
tions are drawn from the empirical distributions, and
an infinite number of machines are available.

Figure 13 shows the probability distribution of the
number of busy machines for 16 users for pessimistic
make, optimistic make with no aborted computations,
optimistic make with the measured 39 percent aborted
computations, and optimistic make with 72 percent
aborted computations (where all source node compu-
tations in the makefile dependency graph are aborted
once). Figure 13 shows that optimistic make distributes
CPU load more evenly over time: it is less likely to use
very few machines or very many machines. This arises
because pessimistic make needs many machines when
the make request arrives, while optimistic make spreads
out machine usage for each request by using machines as
soon as files are saved. The aborted computations add
to the overall machine utilization of optimistic make,
but CPU usage remains less variable.

5.5 Limiting the Number of Machines

We now limit the number of machines, while fixing the
number of users at 16 and the think time at 6 min-
utes. All other simulation inputs are taken from the
empirical distributions. Figure 14 shows the speedup

‘Simulations with a constant number of users and varying think
times give similar results to those presented here for constant
think time and varying numbers of users.

46 Performance Evaluation Review Vol. 17 #1 May1989

prob

O-*O I

0.15

0.10

0.05

0.0
0 5 10 15 20 25 30 35

busy machines

Figure 13 Probability Distribution of Busy
Machines for Different Percentages of Aborted

Computations.

distribution with 8, 16, and an infinite number of ma-
chines. Figure 15 shows the median response times for
optimistic and pessimistic make for the same numbers
of machines using the three abort ratios from above.

In going from an infinite number of machines to 16,
the improvement remains approximately constant, since
neither optimistic nor pessimistic make are machine lim-
ited in these circumstances. When further decreasing

1.0

0.8

0.6

0.4

0.2

0.0

- - 8 maths

i

0 I I , c

0.1 0.5 1 5 10 50 100
response time improvement

Figure 14 Cumulative Distributions of
Response Time Improvement for Different

Numbers of Machines.

; 60-

c
i 40-
n

:
;20-

!

O-
inf 16 8

number of machines

Figure 15 Median Response Times for
Different Numbers of Machines.

the number of machines to 8 (with 2 users per machine),
the improvement declines because optimistic computa-
tions are frequently blocked while requested computa-
tions use all the resources. The roughly constant im-
provement down to 16 machines (one user per machine)
indicates optimistic make provides significant benefits
under normal circumstances. Even with unexpectedly
high loads, optimistic make still provides some improve-
ment.

5.6 ’ Effects of Scheduling Algorithms

In this section, we summarize preliminary results ob-
tained from experimenting with different scheduling al-
gorithms. The four scheduling algorithms we consider
are 1) FCFS, 2) FCFS preferring normal commands
to optimistic ones (the strategy used so far), 3) FCFS
aborting optimistic commands if the machine is needed
for a normal command, and 4) FCFS suspending op-
timistic commands if the machine is needed for a nor-
mal command. All four algorithms assume a centralized
scheduler or distributed knowledge of what machines
contain what commands. The simulation results indi-
cate that the choice of algorithm makes no noticeable
difference until the system load becomes abnormally
high (for example, a fully loaded system with 1 minute
think times). At this extreme, strict FCFS performs
slightly worse than the other three algorithms, but each
of these three perform essentially the same. Although
further work is necessary, it appears that in our environ-
ment the choice of scheduling algorithm has relatively
little impact on the improvement of optimistic make.

47 Performance Evaluation Review Vol. 17 #I May1989

6 Related Work

Optimistic computations have been incorporated into
the Integral C programming environment developed at
Tektronix [lI]. Unlike our implementation, which al-
lows optimistic execution of arbitrary programs, their
system only allows a small set of tools to be executed op-
timistically. No performance evaluation is given. There
is also no evidence that Integral C conceals the output
of optimistic computations, something we consider es-
sential.

The eager evaluation work on functional and ap-
plicative programming languages is, to a lesser extent,
related to our work [l, 7,8,9]. In these settings, with
call-by-need semantics, arguments to functions are eval-
uated before they are known to be needed. The func-
tional nature of the arguments obviates the need for
explicit concealment of side effects. Our work is dif-
ferent in that we explicitly deal with side effects, and
in that the grain of computation we consider is much
larger. We believe that with a large grain of computa-
tion, the potential for optimistic computations increases
significantly, since the overhead involved in concealing
side effects becomes relatively less important.

There are interesting similarities and differences be-
tween our work and much of the work in load shar-
ing [4,6]. Load sharing attempts to improve through-
put by spreading the workload equally over different
machines. Optimistic execution attempts to decrease
response time by spreading out the workload over time.

7 Conclusion

Optimistic make offers significant response time im-
provement under a wide variety of circumstances. The
probability distribution of the response time improve-
ment typically peaks early and then has a long tail, re-
flected in a small median and a large mean. In our cur-
rent environment, the median improvement is around
1.7 and the mean improvement around 8. If, as ex-
pected, faster machines become available, the median
improvement will grow significantly, until all optimistic
computations are completed by the time the user types
make. The amount of extra CPU and disk use result-
ing from optimistic make is limited. Given the increased
availability of machines and the observed large idle time
percentages in many workstation environments, the ex-
tra CPU utilization does not adversely affect perfor-
mance.

References

on Distributed Computing Systems, pages 453-458,
May 1985.

[2] D. R. Cheriton. The V distributed system. Com-
munications of the ACM, 31(3):314-333, March
1988.

[3] D. R. Cheriton and W. Zwaenepoel. Distributed
process groups in the V kernel. ACM Transactions
on Computer Systems, 3(2):77-107, May 1985.

[4] D.L. Eager, E.D. Lazowska, and J. Zahorjan.
Adaptive load balancing in homogenous dis-
tributed systems. IEEE 2?3-ansactions on Software
Engineering, SE12(5):662-675, May 1986.

[5] S. Feldman. Make-a computer program for main-
taining computer programs. Software Practice and
Experience, 9(4):255-265, April 1979.

[6] R. Hagmann. Process server: Sharing processing
power in a workstation environment. In Proceed-
ings of the Sixth International Conference on Dis-
tributed Computing Systems, pages 260-267, May
1986.

[7] R. H. Halstead. Parallel symbolic computing. IEEE
Computer, 19(8):35-43, August 1986.

[8] D. A. Hornig. Automatic Partitioning and Schedul-
ing on a Network of Personal Computers. PhD the-
sis, Carnegie-Mellon University, November 1984.

[9] P. Hudak and L. Smith. Pam-functional program-
ming: A paradigm for programming multiprocessor
systems. In Proceedings of the Thirteenth Annual
Symposium on Principles of Programming Lan-
guages, pages 243-254, January 1986.

[lo] M. W. Mutka and M. Livny. Scheduling remote
processing capacity in a workstation-processor
bank network. In Proceedings of the Seventh In-
ternational Conference on Distributed Computing
Systems, pages 2-9, September 1987.

[ll] G. Ross. A practical environment for C pro-
gramming. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Sympo-
sium on Practical Software Development Environ-
ments, pages 4248, January 1987. Also available
as SIGPLAN Notices 22(l), January 1987.

[l] F.W. Burton. Controlling speculative computation
in a parallel functional programming language. In
Proceedings of the Fifth International Conference

48 Performance Evaluation Review Vol. 17 #1 May1 989

