
Lazy Release Consistency

for Software Distributed Shared Memory

Pete Keleher� Alan L� Cox� and Willy Zwaenepoel

Department of Computer Science

Rice University

March ��� ����

Abstract

Relaxed memory consistency models� such as release

consistency� were introduced in order to reduce the im�
pact of remote memory access latency in both software
and hardware distributed shared memory �DSM�� How�
ever� in a software DSM� it is also important to reduce
the number of messages and the amount of data ex�
changed for remote memory access� Lazy release con�

sistency is a new algorithm for implementing release
consistency that lazily pulls modi�cations across the
interconnect only when necessary� Trace�driven simula�
tion using the SPLASH benchmarks indicates that lazy
release consistency reduces both the number of mes�
sages and the amount of data transferred between pro�
cessors� These reductions are especially signi�cant for
programs that exhibit false sharing and make extensive
use of locks�

� Introduction

Over the past few years� researchers in hardware dis�
tributed shared memory �DSM� have proposed relaxed
memory consistency models to reduce the latency as�
sociated with remote memory accesses ��� �� 	�
� ����
For instance� in release consistency �RC� �	�� writes to
shared memory by processor p� need to be performed
�become visible� at another processor p� only when a
subsequent release of p� performs at p�� This relaxation
of the memory consistency model allows the DASH im�
plementation of RC ���� to combat memory latency by
pipelining writes to shared memory �see Figure ��� The
processor is stalled only when executing a release� at
which time it must wait for all its previous writes to
perform�

�This work is supported in part by NSF Grant No� CDA��������

and Texas ATP Grant No� ����������� Pete Keleher was sup�

ported by a NASA Fellowship�

w(x) w(y) w(z) rel

x y z

p1

p2

Figure � Pipelining Remote Memory
Accesses in DASH�

In software DSMs� it is also important to reduce the
number of messages exchanged� Sending a message in
a software DSM is more expensive than in a hardware
DSM� because it may involve traps into the operating
system kernel� interrupts� context switches� and the ex�
ecution of several layers of networking software� Ideally�
the number of messages exchanged in a software DSM
should equal the number of messages exchanged in a
message passing implementation of the same applica�
tion� Therefore� Munins write�shared protocol ���� a
software implementation of RC� bu�ers writes until a
release� instead of pipelining them as in the DASH im�
plementation� At the release� all writes going to the
same destination are merged into a single message �see
Figure ���
Even Munins write�shared protocol may send more

messages than a message passing implementation of the

w(x) w(y) w(z) rel

x,y,z

p1

p2

Figure � Merging of Remote Memory
Updates in Munin�

�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

same application� Consider the example of Figure ��
where processors p� through p� repeatedly acquire the
lock l� write the shared variable x� and then release l�
If an update policy is used in conjunction with Munins
write�shared protocol� and x is present in all caches�
then all of these cached copies are updated at every
release� Logically� however� it su�ces to update each
processors copy only when it acquires l� This results in
a single message exchange per acquire� as in a message
passing implementation� This problem is not peculiar
to the use of an update policy� Similar examples can
be constructed for an invalidate policy�

Lazy release consistency �LRC� is a new algorithm
for implementing RC� aimed at reducing both the num�
ber of messages and the amount of data exchanged�
Unlike eager algorithms such as Munins write�shared
protocol� lazy algorithms such as LRC do not make
modi�cations globally visible at the time of a release�
Instead� LRC guarantees only that a processor that ac�
quires a lock will see all modi�cations that �precede�
the lock acquire� The term �preceding� in this context
is to be interpreted in the transitive sense� informally�
a modi�cation precedes an acquire� if it occurs before
any release such that there is a chain of release�acquire
operations on the same lock� ending with the current
acquire �see Section � for a precise de�nition�� For in�
stance� in Figure �� all modi�cations that occur in pro�
gram order before any of the releases in p� through p�
precede the lock acquisition in p�� With LRC� modi��
cations are propagated at the time of an acquire� Only
the modi�cations that �precede� the acquire are sent to
the acquiring processor� The modi�cations can be pig�
gybacked on the message that grants the lock� further
reducing message tra�c� Figure � shows the message
tra�c in LRC for the same shared data accesses as in
Figure �� l and x are sent in a single message at each
acquire�

By not propagating modi�cations globally at the time
of the release� and by piggybacking data movement on
lock transfer messages� LRC reduces both the num�

acq r(x)

acq w(x) rel

w(x) rel

acq w(x) rel

p1

p2

p3

p4

Figure � Repeated Updates of Cached
Copies in Eager RC�

ber of messages and the amount of data exchanged�
We present the results of a simulation study� using
the SPLASH benchmarks� that con�rms this intuition�
LRC is� however� more complex to implement than ea�
ger RC because it must keep track of the �precedes�
relation� We intend to implement LRC to evaluate its
runtime cost� The message and data reductions seen in
our simulations seem to indicate that LRC will outper�
form eager RC in a software DSM environment�
The outline of the rest of this paper is as follows� In

Section �� we state the de�nition of RC� In Section ��
we present an eager implementation of RC based on
Munins write�shared protocol� In Section �� we de�ne
LRC and outline its implementation� In Section �� we
describe a comparison through simulation of eager RC
and LRC� We brie�y discuss related work in Section ��
and we draw conclusions and explore avenues for further
work in Section ��

� Release Consistency

Release consistency �RC� �	� is a form of relaxed mem�
ory consistency that allows the e�ects of shared memory
accesses to be delayed until certain specially labeled ac�
cesses occur� RC requires shared memory accesses to
be labeled as either ordinary or special � Within the
special category� accesses are divided into those labeled
sync and nsync� and sync accesses are further subdi�
vided into acquires and releases�

De�nition ��� A system is release consistent if�

�� Before an ordinary access is allowed to perform

with respect to any other processor� all previous ac�
quires must be performed�

�� Before a release is allowed to perform with respect

to any other processor� all previous ordinary reads

and writes must be performed�

�� Special accesses are sequentially consistent with re�
spect to one another�

acq r(x)

acq w(x) rel

w(x) rel

acq w(x) rel

p1

p2

p3

p4

Figure � Message Tra�c in LRC�

�

A write is performed with respect to another processor
when reads by that processor return the new writes �or
a subsequent writes� value� Reads are performed with
respect to another processor when a write issued by that
processor can no longer a�ect the value returned by the
read� Accesses are performed when they are performed
with respect to all processors in the system�
Properly labeled programs �	� produce the same re�

sults on RC memory as they would on sequentially con�
sistent memory ����� Informally� a program is properly
labeled if there are �enough� accesses labeled as ac�
quires or releases� such that� for all legal interleavings
of accesses� each pair of con�icting ordinary accesses is
separated by a release�acquire chain� Two accesses con�
�ict if they reference the same memory location� and at
least one of them is a write�
RC implementations can delay the e�ects of shared

memory accesses as long as they meet the constraints
of De�nition ����

� Eager Release Consistency

We base our eager RC algorithm on Munins write�
shared protocol ���� A processor delays propagating
its modi�cations to shared data until it comes to a re�

lease� At that time� it propagates the modi�cations to
all other processors that cache the modi�ed pages� For
an invalidate protocol� this simply entails sending inval�
idations for all modi�ed pages to the other processors
that cache these pages� In order to limit the amount of
data exchanged� an update protocol sends a di� of each
modi�ed page to other cachers� A di� describes the
modi�cations made to the page� which are then merged
in the other cached copies� In either case� the release
blocks until acknowledgments have been received from
all other cachers�
No consistency�related operations occur on an ac�

quire� The protocol locates the processor that last exe�
cuted a release on the same variable� and the resulting
value is sent from the last releaser to the current ac�
quirer�
On an access miss� a message is sent to the directory

manager for the page� The directory manager forwards
the request to the current owner� and the current owner
sends the page to the processor that incurred the access
miss�

� Lazy Release Consistency

In LRC� the propagation of modi�cations is further
postponed until the time of the acquire� At this time�
the acquiring processor determines which modi�cations
it needs to see according to the de�nition of RC� To do

so� LRC uses a representation of the happened�before�

� partial order introduced by Adve and Hill ���� The
happened�before�� partial order is a formalization of the
�preceding� relation mentioned in Section ��

��� The happened�before�� Partial Order

We summarize here the relevant aspects of the de�ni�
tions of happened�before�� ����

De�nition ��� Shared memory accesses are partially

ordered by happened�before��� denoted
hb�

�� de	ned as

follows�

� If a� and a� are accesses on the same processor�

and a� occurs before a� in program order� then

a�
hb�

� a��

� If a� is a release on processor p�� and a� is an

acquire on the same memory location on processor

p�� and a� returns the value written by a�� then

a�
hb�

� a��

� If a�
hb�

� a� and a�
hb�

� a�� then a�
hb�

� a��

RC requires that before a processor may continue
past an acquire� all shared accesses that precede the

acquire according to
hb�

� must be performed at the ac�
quiring processor� LRC guarantees that this property
holds by propagating write�notices on the message that
e�ects a release�acquire pair� A write�notice is an in�
dication that a page has been modi�ed in a particular
interval� but it does not contain the actual modi�ca�
tions� Write�notices and actual values of modi�cations
may be sent t di�erent times in di�erent messages�

��� Write�Notice Propagation

We divide the execution of each processor into distinct
intervals� a new interval beginning with each special
access executed by the processor� We de�ne a happens�
before�� partial order between intervals in the obvious
way� an interval i� precedes an interval i� according to
hb�
� � if all accesses in i� precede all accesses in i� ac�

cording to
hb�
� � An interval is said to be performed at a

processor if all modi�cations made during that interval
have been performed at that processor�
Let V p�i� be the vector timestamp ���� for interval i

of processor p� The number of elements in the vector
V p�i� is equal to the number of processors� The entry
for processor p in V p�i� is equal to i� The entry for pro�
cessor q �� p in V p�i� denotes the most recent interval
of processor q that has performed at p�
On an acquire� the acquiring processor� p� sends its

current vector timestamp V p to the previous releaser�

�

q� Processor q uses this information to send p the write�
notices for all intervals of all processors that have per�
formed at q but have not yet performed at p� Releases
are purely local operations in LRC� no messages are
exchanged�

��� Data Movement Protocols

����� Multiple Writer Protocols

Both Munin and LRC allow multiple�writer protocols�
Multiple processors can write to di�erent parts of the
same page concurrently� without intervening synchro�
nization� This is in contrast to the exclusive�writer pro�
tocol used� for instance� in DASH �	�� where a processor
must obtain exclusive access to a cache line before it
can be modi�ed� Experience with Munin ��� indicates
that multiple�writer protocols perform well in software
DSMs� because they can handle false sharing without
generating large amounts of message tra�c� Given the
large page sizes in software DSMs� false sharing is an im�
portant problem� Exclusive�writer protocols may cause
falsely shared pages to �ping�pong� back and forth be�
tween di�erent processors� Multiple�writer protocols al�
low each processor to write into a falsely shared page
without any message tra�c� The modi�cations of the
di�erent processors are later merged using the di�s de�
scribed in Section ��

����� Invalidate vs� Update

In the case of an invalidate protocol� the acquiring pro�
cessor invalidates all pages in its cache for which it re�
ceived write�notices� In the case of an update proto�
col� the acquiring processor updates those pages� Let
i be the current interval� For each page in the cache�
di�s must be obtained from all concurrent last modi�

	ers� These are all intervals j� such that j
hb�

� i� the
page was modi�ed in interval j� and there is no interval

k� such that j
hb�

� k
hb�

� i� in which the modi�cation from
interval j was overwritten�

����� Access Misses

On an access miss� a copy of the page may have to be
retrieved� as well as a number of di�s� The modi�ca�
tions summarized by the di�s are then merged into the
page before it is accessed�
On an access miss during interval i� di�s must be

obtained for all intervals j� such that j
hb�

� i� the missing
page was modi�ed in interval j� and there is no interval

k� such that j
hb�

� k
hb�

� i� in which the modi�cation from
interval j was overwritten�
If the processor still holds an �invalidated� copy of

the page� LRC does not send the entire page over the

interconnect� The write�notices contain all the infor�
mation necessary to determine which di�s need to be
applied to this copy of the page in order to bring it up�
to�date� The happened�before�� partial order speci�es
the order in which the di�s need to be applied� This
optimization reduces the amount of data sent�

� Simulation

We present the results of a simulation study based on
multiprocessor traces of �ve shared�memory application
programs from the SPLASH suite ����� We measured
the number of messages and the amount of data ex�
changed by each program for an execution using each of
four protocols� lazy update �LU�� lazy invalidate �LI��
eager update �EU�� and eager invalidate �EI�� We then
relate the communication behavior to the shared mem�
ory access patterns of the application programs�

��� Methodology

A trace was generated from a ���processor execution of
each program using the Tango multiprocessor simula�
tor ���� These traces were then fed into our protocol
simulator� We simulated page sizes from ��� to 	�
�
bytes�
We assume in�nite caches and reliable FIFO commu�

nication channels� We do not assume any broadcast or
multicast capability of the network�

��� Message Counts

The SPLASH programs use barriers and exclusive locks
for synchronization� Communication occurs on barrier
arrival and departure� on lock and unlock� and on an
access miss� Table � shows the message count for each
of these events under each of the protocols�
A miss costs either two or three messages for the

eager protocols� depending on whether or not the di�
rectory manager has a valid copy of the page �see Sec�
tion ��� For the lazy protocols� a miss requires collecting
di�s from the concurrent last modi	ers of the page �see
Section �������
For a lock operation� three messages are used by all

four protocols for �nding and transferring the lock� In
addition� in LU� the new lock holder collects all the di�s
necessary to bring its cached pages up�to�date� causing
�h additional messages� No extra messages are required
at this time for LI� because the invalidations are pig�
gybacked on the lock transfer message� Also� no addi�
tional messages are required for EU and EI�
On unlocks� the eager protocols send write�notices to

all cachers of locally modi�ed pages� using �c messages�
The lazy protocols do not communicate on unlocks�

�

Access Miss Locks Unlocks Barriers
LI �m � � ��n���
LU �m ���h � ��n�����u
EI � or � � �c ��n��� � v
EU � � �c ��n��� � �u

m � � concurrent last modi�ers for the missing page

h � � other concurrent last modi�ers for any local page

c � � other cachers of the page

n � � processors in system

p � � pages in system

u �
Pn

i���� other cachers of pages modi�ed by i�

v �
Pp

i���� excess invalidators of page i�

Table � Shared Memory Operation Message Costs

Barriers are implemented by sending an arrival mes�
sage to the barrier master and waiting for the return of
an exit message� Consequently� ��n � �� messages are
used to implement a barrier� In addition� both update
protocols require �u messages to send updates to all
processors caching modi�ed pages� The LI protocol re�
quires no additional messages� because invalidations are
piggybacked on the messages used for implementing the
barrier� The EI protocol may require a small number of
additional messages v to resolve multiple invalidations
of a single page�

��� SPLASH Program Suite

����� LocusRoute

LocusRoute is a VLSI cell router� The major data
structure is a cost grid for the cell� a cells cost being
the number of wires already running through it� Work
is allocated to processors a wire at a time� Synchro�
nization is accomplished almost entirely through locks
that protect access to a central task queue�
Data movement in LocusRoute is largely migra�

tory ����� locks dominate the synchronization� and data
moves according to lock accesses� As page size in�
creases� false sharing also becomes important� Both
of these factors favor lazy protocols�
Figures � and � show LocusRoutes performance�

The lazy protocols reduce the number of messages and
the amount of data exchanged� for all page sizes�

����� Cholesky Factorization

Cholesky performs the symbolic and numeric portions
of a Cholesky factorization of a sparse positive de�nite

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

2400000

2600000

Figure � LocusRoute Messages�

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

Figure � LocusRoute Data�

�

matrix� Locks are used to control access to a global
task queue and to arbitrate access when simultaneous
supernodal modi�cations attempt to modify the same
column� No barriers are used�

Data motion in Cholesky is largely migratory� as in
LocusRoute� The resulting performance of Cholesky is
therefore also similar to that of LocusRoute� Figures �
and 	 show that the lazy protocols reduce the number
of messages and the amount of data exchanged� for all
page sizes�

����� MP�D

MP�D simulates rare�ed hypersonic air�ow over an ob�
ject using a Monte Carlo algorithm� Each timestep in�
volves several barriers� with locks used to control access
to global event counters�

The message tra�c for MP�D is dominated by access
misses� Figures
 and �� show MP�Ds performance� The
lazy protocols exchange less data than the eager ones�
because they only need to send di�s on an access miss
and not full pages� as do the eager protocols� The up�
date protocols exchange fewer messages� because they
incur fewer access misses�

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

1600000

1700000

1800000

Figure � Cholesky Messages�

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

Figure 	 Cholesky Data�

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Figure
 MP�D Messages�

�

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

1400000

1500000

Figure �� MP�D Data�

����� Water

Water performs an N�body molecular dynamics simula�
tion� evaluating forces and potentials in a system of wa�
ter molecules in the liquid state� At each timestep� ev�
ery molecules velocity and potential is computed from
the in�uences of other molecules within a spherical cut�
o� range� Several barriers are used to synchronize each
timestep� while locks are used to control access to a
global running sum and to each molecules force sum�
Of the �ve benchmark programs� Water has the least

communication� Figures �� and �� show the message
and data tra�c for Water� While the lazy protocols
use only slightly fewer messages than eager protocols
for large page sizes� their data totals are signi�cantly
lower because they can often avoid bringing an entire
page across the network on an access miss�

����� Pthor

Pthor is a parallel logic simulator� The major data
structures represent logic elements� wires between ele�
ments� and per�processor work queues� Locks are used
to protect access to all three types of data structures�
Barriers are used only when deadlock occurs and all

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Figure �� Water Messages�

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

Figure �� Water Data�

�

task queues are empty�
In Pthor� each processor has a set of pages that it

modi�es� However� these pages are also frequently read
by the other processors� Under an invalidation protocol�
this causes a large number of invalidations and later
reloads�
Figures �� and �� show Pthors performance� Data

totals for EI are particularly high� because frequent
reloads cause the entire page to be sent� The message
count for LI is higher than for LU� because LI has more
access misses�

��� Summary

The SPLASH programs can be divided into two cate�
gories based on their synchronization and sharing be�
havior� The �rst category is characterized by heavy
use of barrier synchronization� This category includes
the MP�D and Water programs� These programs per�
formed poorly with invalidate protocols and large page
sizes� Although barriers result in nearly the same num�
ber of messages under both eager and lazy protocols�
even these programs have enough lock synchronization
for the lazy protocols to reduce the number of messages
and the amount of data exchanged�
The second category is characterized by migratory

access to data that is controlled by locks� This cat�

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

M
es

sa
ge

s

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000

Figure �� Pthor Messages�

LI LU EI EU

Page Size (bytes)

 8192 4096 2048 1024 512

D
at

a
(k

by
te

s)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

Figure �� Pthor Data�

egory includes LocusRoute� Cholesky and Pthor� In
Cholesky and Pthor� the locks protect centralized work
queues� while the locks in LocusRoute protect access to
individual cost array elements� The use of locks tends
to cause the sharing patterns to closely follow synchro�
nization� Since the lazy protocols move data according
to synchronization� they handle this type of synchro�
nization much better than eager protocols�

LU performed well for both categories of programs�
In contrast� EU often performed worse than the inval�
idate protocols� because it does not handle migratory
data very well� LU sends fewer messages than EU for
migratory data because updates are only sent to the
next processor to acquire the lock that controls access
to the data�

In all of the programs� the number of processors shar�
ing a page is increased by false sharing� Multiple�writer
RC protocols reduce the impact of false sharing by per�
mitting ordinary accesses to a page by di�erent proces�
sors to be performed concurrently� However� the eager
protocols still perform communication at synchroniza�
tion points between processors sharing a page� but not
the data within the page� Lazy protocols eliminate this
communication� because processors that falsely share
data are unlikely to be causally related� This observa�
tion is consistent with the results of our simulations�

	

� Related Work

Ivy ���� was the �rst page�based distributed shared
memory system� The shared memory implemented by
Ivy is sequentially consistent� and does not allow mul�
tiple writers�

Clouds ���� uses program�based segments rather than
pages as the granularity of consistency� In addition�
Clouds permits segments to be locked down at a single
processor to prevent �ping�ponging��

Release consistency was introduced by Gharachorloo
et al� �	�� It is a re�nement of weak consistency� de�ned
by Dubois and Scheurich ���� The DASH multiproces�
sor takes advantage of release consistency by pipelining
remote memory accesses ����� Pipelining reduces the
impact of remote memory access latency on the proces�
sor�

Munin ��� was the �rst software distributed shared
memory system to use release consistency� Munins im�
plementation of release consistency merges updates at
release time� rather than pipelining them� in order to
reduce the number of messages transferred between pro�
cessors� Munin uses multiple consistency protocols to
further reduce the number of messages�

Ahamad et al� de�ned a relaxed memory model
called causal memory ���� Causal memory di�ers from
RC because con�icting pairs of ordinary memory ac�
cesses establish causal relationships� In contrast� under
RC� only special memory accesses establish causal rela�
tionships�

Entry

consistency� de�ned by Bershad and Zekauskas ���� is
another related relaxed memorymodel� EC di�ers from
RC because it requires all shared data to be explic�
itly associated with some synchronization variable� As
a result� when a processor acquires a synchronization
variable� an EC implementation only needs to propa�
gate the shared data associated with the synchroniza�
tion variable� EC� however� requires the programmer
to insert additional synchronization in shared memory
programs� such as the SPLASH benchmarks� to exe�
cute correctly on an EC memory� Typically� RC does
not require additional synchronization�

� Conclusions

The performance of software DSMs is very sensitive to
the number of messages and the amount of data ex�
changed to create the shared memory abstraction� We
have described a new algorithm for implementing re�
lease consistency� lazy release consistency� aimed at re�
ducing both the number of messages and the amount
of data exchanged� Lazy release consistency tracks the

causal dependencies between writes� acquires� and re�
leases� allowing it to propagate writes lazily� only when
they are needed�
We have used trace�driven simulation to compare

lazy release consistency to an eager algorithm for im�
plementing release consistency� based on Munins write�
shared protocol� Traces were collected from the pro�
grams in the SPLASH benchmark suite� and both up�
date and invalidate protocols were simulated for lazy
and eager RC� The simulations con�rm that the num�
ber of messages and the amount of data exchanged are
generally smaller for the lazy algorithm� especially for
programs that exhibit false sharing and make extensive
use of locks� Further work will include an implemen�
tation of lazy release consistency to assess the runtime
cost of the algorithm�

References

��� S� Adve and M� Hill� Weak ordering� A new
de�nition� In Proceedings of the �
th Annual In�

ternational Symposium on Computer Architecture�
pages ����� May �

��

��� S� V� Adve and M� D� Hill� A uni�ed formaliza�
tion of four shared�memory models� Technical Re�
port CS������ University of Wisconsin� Madison�
September �

��

��� Mustaque Ahamad� Phillip W� Hutto� and Ranjit
John� Implementing and programming causal dis�
tributed shared memory� In Proceedings of the ��th
International Conference on Distributed Comput�

ing Systems� pages �����	�� May �

��

��� B�N� Bershad and M�J� Zekauskas� Midway�
Shared memory parallel programming with entry
consistency for distributed memory multiproces�
sors� Technical Report CMU�CS�
������ Carnegie�
Mellon University� September �

��

��� J�B� Carter� J�K� Bennett� and W� Zwaenepoel�
Implementation and performance of Munin� In
Proceedings of the ��th ACM Symposium on Oper�

ating Systems Principles� pages �������� October
�

��

��� H� Davis� S� Goldschmidt� and J� L� Hennessy�
Tango� A multiprocessor simulation and tracing
system� Technical Report CSL�TR�
����
� Stan�
ford University� �

��

��� M� Dubois and C� Scheurich� Memory access
dependencies in shared�memory multiprocessors�
IEEE Transactions on Computers� ��������������
June �

��

�	� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gib�
bons� A� Gupta� and J� Hennessy� Memory con�
sistency and event ordering in scalable shared�
memory multiprocessors� In Proceedings of the

�
th Annual International Symposium on Com�

puter Architecture� pages ������ Seattle� Washing�
ton� May �

��

�
� J�R� Goodman� Cache consistency and sequential
consistency� Technical Report Technical report no�
��� SCI Committee� March �
	
�

���� L� Lamport� How to make a multiprocessor com�
puter that correctly executes multiprocess pro�
grams� IEEE Transactions on Computers� C�
�	�
���
���
�� September �
�
�

���� D� Lenoski� J� Laudon� K� Gharachorloo�
A� Gupta� and J� Hennessy� The directory�based
cache coherence protocol for the DASH multipro�
cessor� In Proceedings of the �
th Annual In�

ternational Symposium on Computer Architecture�
pages ��	���
� May �

��

���� K� Li and P� Hudak� Memory coherence in shared
virtual memory systems� ACM Transactions on

Computer Systems� �����������
� November �
	
�

���� R�J� Lipton and J�S� Sandberg� Pram� A scalable
shared memory� Technical Report CS�TR��	��		�
Princeton University� September �
		�

���� F� Mattern� Virtual time and global states of dis�
tributed systems� In Michel Cosnard� Yves Robert�
Patrice Quinton� and Michel Raynal� editors� Par�
allel � Distributed Algorithms� pages �������� El�
sevier Science Publishers� Amsterdam� �
	
�

���� U� Ramachandran� M� Ahamad� and Y�A� Kha�
lidi� Unifying synchronization and data transfer in
maintaining coherence of distributed shared mem�
ory� Technical Report GIT�CS�		���� Georgia In�
stitute of Technology� June �
		�

���� J�P� Singh� W��D� Weber� and A� Gupta� Splash�
Stanford parallel applications for shared�memory�
Technical Report CSL�TR�
����
� Stanford Uni�
versity� April �

��

���� W��D� Weber and A� Gupta� Analysis of cache in�
validation patterns in multiprocessors� In Proceed�

ings of the �th Symposium on Architectural Sup�

port� for Programming Languages and Operating

Systems� pages �������� April �
	
�

��

