
Replicated Distributed Processes in Manetho

Elmootazbellah N� Elnozahy
Willy Zwaenepoel

Department of Computer Science
Rice University
Houston� Texas�

Abstract

This paper presents the process�replication protocol of

Manetho� a system whose goal is to provide e�cient�

application�transparent fault tolerance to long�running

distributed computations� Manetho uses a new negative�

acknowledgment multicast protocol to enforce the same

receipt order of application messages among all replicas

of a process� The protocol depends on a combination of

antecedence graph maintenance� a form of sender�based

message logging� and the fact that the receivers of each

multicast execute the same deterministic program� This

combination allows our protocol to avoid the delay in

application message delivery that is common in exist�

ing negative�acknowledgment multicast protocols� without

giving up the advantage of requiring only a small number

of control messages�

� Introduction

This paper presents the process�replication protocol of

Manetho� The goal of the Manetho system is to pro�

vide e�cient� application�transparent fault tolerance for

long�running distributed applications ����� The system

uses a combination of process�replication and rollback�

recovery� process�replication is used for server processes

that are constrained by high availability requirements� and

rollback�recovery is used for all other client processes� In

this paper� we concentrate on the process�replication as�

pects of Manetho	 the rollback�recovery protocol has been

published elsewhere �����

In Manetho� process�replication follows the leader�

cohort model �
� ��� Each application process is replicated

by a troupe ��� that consists of a leader and r � � cohorts�

where each troupe member executes the same application

�This work was supported in part by NFS Grants CDA��������
and CCR��������� and by an IBM Graduate Fellowship�

program�� Manetho assumes that the application process

is deterministic in the sense that its execution is completely

dened by its initial state and the sequence of messages it

receives� Manetho tolerates r � � fail�stop ���� failures in

each troupe�� but it does not currently tolerate network

partition�

Every application message between two application

processes is translated internally into an application�

multicast between the troupes implementing the two

processes� To maintain the consistency among the

troupe members� it is su�cient that each of them re�

ceives the same application�multicasts in the same order�

Manetho uses a new negative�acknowledgment� ordered�

multicast protocol to implement inter�troupe multicasts�

Manetho�s multicast protocol depends on a combination

of antecedence graph maintenance ����� a form of sender�

based message logging ��
� ���� and the fact that a leader

and its cohorts execute the same deterministic program�

The graph at one troupe records the receipt order of

application�multicasts in other troupes on which the local

state of the troupe depends� The message logs are used to

retransmit application�multicasts to recover from commu�

nication and processor failures� This combination allows

the protocol to avoid the delay in application message de�

livery that is common in existing negative�acknowledgment

protocols� without giving up the advantage of requiring

only a small number of control messages�

The paper is organized as follows� Section � motivates

the need for a new multicast protocol� Section � states the

assumptions about the distributed system and distributed

computations� Section 
 denes the new multicast proto�

col� Sections � and � show how the system recovers from

failures� Section � describes how the system reclaims the

storage used by the antecedence graph and message logs�

�We use the term troupe instead of group to stress that all
replicas execute the same program�
�Throughout this paper� we assume that the degree of replica�
tion r is the same for each troupe to simplify the presentation�
although the algorithms presented in this paper do not depend
on this fact�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Section � compares our system with related work� Finally�

Section � presents conclusions�

� Why a New Multicast Protocol�

To enforce consistency among troupe members in the ab�

sence of any information about the application program�

the system requires a multicast protocol that satises the

agreement and order conditions ���� ���� The former con�

dition requires that each troupe member receive the same

set of messages� while the latter requires that each troupe

member receive the messages in the same order�

Existing multicast protocols that satisfy the agreement

and order conditions trade latency in delivery of multicast

messages to the application program against the number

of control messages� In positive�acknowledgment proto�

cols� such as the original implementation of ABCAST of

ISIS ���� the receivers run an agreement protocol to deter�

mine the receipt order of each application�multicast� The

multicast can be delivered as soon as its receipt order is

agreed upon� at the expense of the overhead caused by the

control messages that are used to reach agreement� For

example� the two�phase agreement protocol of this imple�

mentation of ABCAST requires r point�to�point messages

and one overhead multicast to determine the receipt order

of an application�multicast sent to r receivers� In contrast�

negative�acknowledgment protocols ��� ��� attempt to re�

duce the number of control messages by piggybacking the

ordering information on application�multicasts� However�

reducing the number of control messages or eliminating

them altogether introduces latency in achieving agreement

on the receipt order of an application�multicast� which in

turn introduces latency in delivering the multicast to the

application program� For example� the r�resilient protocol

by Chang and Maxemchuck requires only one overhead

message per application�multicast� but it cannot deliver

a message to the application program until r � � �token

transfers� have occurred� each requiring one message ����

Realizing that satisfying the agreement and order con�

ditions is expensive� some researchers have introduced e��

cient multicast protocols that provide weaker ordering� An

example is ISIS�s CBCAST protocol which provides causal

ordering ���� However� CBCAST does not enforce identi�

cal receipt orders for two multicasts sent from two sources

that are not causally related ����� Another example is the

Psync multicast protocol based on the context order �����

Analogous to CBCAST� two multicasts that are not re�

lated by the context order may not have a unique receipt

order� To enforce such a unique order� a deterministic lter

function must be applied on top of the protocol� which de�

lays the delivery of the application�multicast until several

subsequent multicasts �����

Thus� existing multicast protocols that satisfy the agree�

ment and order conditions are expensive� and cheaper pro�

tocols based on weaker ordering do not guarantee the or�

dering required by process�replication in the absence of

information about the application program�

� Assumptions

Manetho assumes that a distributed computation con�

sists of a number of application processes that communi�

cate only through messages� The processes are determin�

istic and do not have real�time requirements�

Each application process is replicated by a troupe ��� of

r fail�stop ���� process replicas� Each replica has a dis�

tinct ordinal position within the troupe and executes the

same application program� Because each troupe member

executes the same deterministic program� it follows that if

all members receive the same set of messages in the same

order� no execution of a replica will diverge from that of

the other troupe members� In each troupe� a distinguished

member is called the leader � while the remaining r�� repli�

cas are called cohorts� Manetho tolerates r � � failures in

each troupe� but it does not currently tolerate network

partition�

Manetho assumes that each troupe has access to a lo�

cal group membership protocol that maintains a list of

the members in the troupe ��� �� ���� The group member�

ship protocol detects the changes in the troupe member�

ship �due to failures and recoveries� and reliably noties

its members of such changes�

The communication subsystem supports multicast ad�

dressing and unreliable multicast delivery� Every troupe

subscribes to a multicast address and exclusively uses mul�

ticast for inter�troupe communication� The communica�

tion subsystem may deliver a multicast message to all�

some� or none of the troupe members� and multicasts

may be arbitrarily delayed� Each multicast message has

a unique identier�

The execution of a troupe consists of a sequence of piece�

wise deterministic state intervals ��
�� each started by the

�

�

�

�
�
�
�
��

J
J
J
J
J� �

�
�
���

J
J
J
JJ�

mr
�

m
q
�m

p
�

m
q
�

r

q

p

�
q
�

�r�

�
p
�

�
q
��

q
�

�r�

�
p
�

Figure � Example Execution



receipt of an application�multicast� Figure � shows the

execution of three troupes and their state intervals� The

horizontal lines represent the execution of the troupes� and

arrows between troupes denote multicasts� For clarity�

we do not show the individual members of each troupe�

The notation �
p
i denotes the ith state interval of troupe

p� where i is referred to as the index of �pi � The notation

m
p
i denotes the i

th application�multicast sent by troupe p�

We will refer to this example throughout the paper�

� Protocol Speci�cation

��� The Antecedence Graph

The directed� acyclic antecedence graph �AG� of a state

interval �pi � AG��pi �� is dened recursively as follows �����

i � �� The graph consists of a node that repre�
sents �p� with no incoming edges� The node con�
tains the troupe identier p and the state interval
index i � ��

i �� �� Suppose �pi is created by receiving a mul�
ticast m

q

k from troupe q sent at state interval
�
q
j � AG��pi � consists of the union of AG��pi����

AG��qj �� and a node representing �pi with two in�
coming edges� one from �

p
i�� and one from �

q
j �

The node representing �
p
i contains the troupe

identier p� the state index i� and the multicast
identier k�

The graph does not contain a copy of the multicast

message itself� Figure � shows the graph AG��p�� in the

example of Figure ��

��� Sending an Application�Multicast

Each troupe member maintains a volatile copy of the

AG of its current state interval and a volatile log in which

it stores a copy of the data of each multicast the troupe

sends� When the application program sends a message

from process p to process q� the leader of the troupe im�

plementing p sends the message in an application�multicast

addressed to troupe q� The cohorts of p do not send the

f

f

f

f

f

f

f

�

�

��
��

���
�

HHHHHHj
HHHHHHj�

��
��

���

�r��r�

�
q
� �

q
� �

q
�

�
p
��

p
�

Figure � Antecedence Graph of state interval
�
p
� � AG��p���

message over the network	 they only add the message to

their volatile message logs� When a troupe leader sends a

multicast� it �conceptually� piggybacks the AG of its cur�

rent state interval on the message�

��� Receiving an Application�Multicast

When a troupe receives an application�multicast� the

leader denes the order in which it should be delivered to

the application program and sends a sequence�multicast to

its cohorts� The sequence�multicast contains the dened

receipt order� the application�multicast�s unique identier�

and the identier of the sender troupe� The leader delivers

the message to the application program without waiting

for the sequence�multicast to reach the cohorts�

After a cohort receives an application�multicast� it

expects the corresponding sequence�multicast from the

leader within a short period� When the cohort receives

the sequence�multicast� it delivers the message to the ap�

plication program� The cohort does not acknowledge the

sequence�multicast�

The leader does not acknowledge receiving the

application�multicast to the sending troupe� Manetho

only provides delivery of multicast messages subject to

the agreement and order conditions� It does not� by it�

self� ensure reliable inter�troupe communication� Reliable

FIFO inter�troupe channels can be easily provided on top

of Manetho by an end�to�end protocol that uses sequence

numbers and acknowledgments�

��� Antecedence Graph Maintenance

When a replica �leader or cohort� receives an

application�multicast and its receipt order becomes avail�

able� a new state interval starts at that replica� The replica

merges the AG piggybacked on the message with the AG

of the previous state interval� The replica then creates a

node representing the new state interval� with two incom�

ing edges as described in Section 
���

��� Cohort Synchronization

Because communication failures are possible� a co�

hort may miss an application�multicast� its corresponding

sequence�multicast� or both� To prevent a cohort from

�falling behind� the leader by missing both of these multi�

casts for several consecutive messages� the leader expects

each cohort to periodically send a one�to�one synchroniza�

tion message that shows the maximum state interval index

known to the cohort� The leader�s reply to a synchro�

nization message contains the unique identier� the sender

troupe identier� and receipt order for each application�

multicast that the cohort has missed� if any�



��� Incremental Piggybacking of the Graph

The full AG need not be appended on every application�

multicast� Instead� incremental piggybacking is used� The

operation of the protocol species two techniques for prun�

ing the graph appended to application�multicasts�

The rst technique is applicable between any pair of

troupes� As dened in Section 
��� AG��pi � is a proper

subset of AG��pi���� Thus� if the leader of a troupe p

detects that troupe q has received a prior application�

multicast that was sent from state interval �pi � then p need

not append AG��pi � on future application�multicasts sent

to troupe q� Each troupe q that communicates with p in�

cludes with each message sent to p the maximum state in�

terval index j such that the node representing �pj is present

in the AG of the current state interval of q� When p

sends an application�multicast from �
p
i � it includes only

AG��pi � �AG��pj ��

The second technique relies on cohort synchronization�

When the leader sends an application�multicast� the AG

that corresponds to the state interval of the slowest troupe

member need not be appended to the outgoing multicast�

The leader determines the slowest troupe member as the

one with the smallest state interval index as indicated in

its last synchronization message� The information in the

AG of that state interval is available to each troupe mem�

ber� since for any p and i� AG��pi � is a proper subset of

AG��pi���� This graph will be available regardless of future

failures� since Manetho assumes that no more than r � �

failures can occur in each troupe�

The period between each synchronization by a particu�

lar cohort is an implementation concern� The implementor

must weigh the overhead of processing the graph informa�

tion and the probability of failures against the overhead of

processing synchronization messages�

��� Handling Communication Failures

Manetho detects and recovers lost multicasts as follows�

� When a cohort receives a sequence�multicast for

an application�multicast that it has not received�

the sequence�multicast contains the identiers of the

application�multicast and the sender troupe� The co�

hort uses these identiers to request a retransmission

of the application�multicast from the sender troupe�s

message log�

� If a cohort receives a sequence�multicast that is out

of order� it will detect that it has missed more

than one application�multicast� In this case� the

cohort synchronizes with the leader by sending a

synchronization�message as described in Section 
���

� When a cohort receives an application�multicast�

it expects to receive the corresponding sequence�

multicast shortly thereafter� If the sequence�multicast

is not received� the cohort requests it from the leader�

The request contains the identiers of the application�

multicast and the sender troupe�

� The leader will determine that it has missed an

application�multicast if it receives from one of its co�

horts a request for a sequence�multicast corresponding

to an application�multicast that the leader has not re�

ceived� The leader requests the retransmission of the

multicast from the corresponding sender�s log�

� During cohort synchronization� a cohort determines

the set of missed application or sequence�multicasts�

if any� The leader�s reply to the synchronization�

message contains su�cient information for the cohort

to request the missing application�multicasts from

their senders and to deliver them to the application

program in the correct order�

��	 Advantages of the Protocol

Like other negative�acknowledgment multicast proto�

cols� Manetho reduces the overhead during failure�free op�

eration� In the normal case� a cohort does not acknowl�

edge receiving application�multicasts and it acknowledges

the sequence�multicasts only during synchronization� By

assuming that multicasts are seldom lost� the overhead

of the acknowledgments is eliminated� This matches well

with modern networks where communication failures are

infrequent�

Manetho�s multicast avoids the latency in message de�

livery common in negative�acknowledgment multicast pro�

tocols� The leader delivers the messages to the application

program without waiting for the corresponding sequence�

multicasts to reach every cohort� Similarly� a cohort deliv�

ers the message to the application program as soon as the

corresponding sequence�multicast is available� even if the

latter does not reach the rest of the cohorts�

� Cohort Failure and Recovery

Detecting the failure of a cohort and integrating a new

one into a troupe is done by the underlying group member�

ship protocol� The ordinal position occupied by the failed

cohort is not reused� The leader discards delayed messages

from failed cohorts by checking if the sender�s cohort iden�

tier belongs to the current troupe membership� The new

cohort starts normal processing after copying the state of

the leader�

� Leader Failure and Recovery

If the leader fails� the cohorts will need to deter�

mine whether the leader has accepted some application�

multicasts that they have missed because of combined



communication and leader failures� A troupe is considered

to have failed when its leader has failed� and a recovery

protocol must be run to bring the surviving cohorts to a

state consistent with the leader�s state before failure�

Recovery of a failed troupe takes place in two phases�

First� the troupe elects a new leader� Second� the new

leader runs a troupe recovery protocol� During this pro�

tocol� the elected leader represents the troupe in commu�

nicating with other troupes to retrieve the receipt order

information that might have been lost due to the failure�

This information is distributed across the AG�s of the other

troupes in the system� During both phases� the troupe

does not accept application�multicasts from any troupe�

The recovery protocol is complicated by the possibility

of concurrent failures and recoveries in other troupes and

that application�multicasts sent from failed troupes are not

bounded by a nite network delay�

��� Incarnation Numbers

Because application�multicasts are not bounded by a �

nite network delay� it is necessary to order the perception

of a troupe failure with application�multicasts that were

sent from that troupe� For this purpose� Manetho uses

an incarnation number for each troupe� During troupe re�

covery� the troupe increments its incarnation number and

does not resume normal processing before it reliably in�

forms all other troupes of its new incarnation number �see

Section ����� Each application�multicast is tagged with the

current incarnation number of the sending troupe� Thus�

all other troupes in the system are able to detect the mul�

ticasts that were sent before the failure of their senders

and reject them�

��� Phase One
 Leader Election

If one or more cohorts detect the leader failure� they

will use the following protocol to elect a new leader� The

protocol is an adaptation of the invitation protocol ���� in

which the winner of the election is the cohort that has the

highest state interval index�

� One cohort �or more� starts leader election by send�

ing a recovery�multicast to the troupe� The multicast

contains the cohort�s current state interval index and

ordinal position within the troupe�

� When a replica receives a recovery�multicast carrying

a state interval index larger than its own� it sends back

a leadership�acknowledgment message� and aborts its

own leadership election� if it has started one� Oth�

erwise� when a replica receives a recovery�multicast

with a state interval smaller than its own� it starts its

own leadership election� if it has not already done so�

Ties are broken in favor of the cohort with the smaller

ordinal position�

� The initiator collects the responses from every mem�

ber of the troupe� The initiator retransmits the

recovery�multicast until it receives a correspond�

ing leadership�acknowledgment from every surviving

member of the troupe� as determined by the underly�

ing troupe membership protocol�

� The new leader increments the troupe incarnation

number�

� The new leader forces each cohort to synchronize to

bring all cohorts to the most recent state interval�

The leader informs the cohorts of the new incarna�

tion number during synchronization�

Provided that there is at least one surviving troupe

member� the protocol elects a single leader and termi�

nates ����� If the initiator of the protocol fails� the protocol

is restarted�

��� Phase Two
 Troupe Recovery

The recovery protocol is based on the following obser�

vation ����� Dene a state interval �pi as visible outside

of troupe p if the AG of the current state interval of

some other troupe q contains a node that represents �pi �

Then� AG��pi � is a subgraph of the AG of the current

and all subsequent state intervals of q� If the leader of

troupe p fails� the newly elected leader negotiates with all

other troupes to determine the AG�s of its visible state

intervals� By merging these AG�s� the troupe can re�

construct the AG of the most recent visible state inter�

val� The new leader uses this AG to determine the re�

ceipt order of application�multicasts whose corresponding

sequence�multicasts were lost� Using the unique identier

of each application�multicast as indicated by the AG� the

newly elected leader requests them from their correspond�

ing senders� If the sender has also failed� its message log

will be reconstructed during its recovery� and the message

will become available� as will be shown in Section ��
� The

recovering troupe executes up to its most recent �visible�

state interval from before failure� This brings the troupe to

a state consistent ��� with the other troupes in the system��

��� Protocol Description

Figure � shows the troupe recovery protocol� The newly

elected leader starts recovery by calling the procedure

RECOVER with arguments p� S� INCNUM � AG and

STATEINDEX � The recovering troupe�s identier is p� Set

�The rollback�recovery protocol of Manetho uses the same
concepts presented here� although the replication aspects re�
quire special treatment in the recovery algorithm� This allows
Manetho to conceptually use the same recovery protocol� de�
spite whether the process is using replication or rollback�
recovery�



S contains a list of the troupes that participate in the com�

putation� INCNUM is the new incarnation number of the

recovering troupe� AG is the graph of the current state

interval of the troupe� and STATEINDEX is the index of

that state interval� The new leader of troupe p performs

a GET AG remote procedure call �RPC� at the leader of

every troupe� Messages exchanged for the purpose of re�

covery are considered out�of�band and do not carry AG in�

formation� Recovering troupes respond to GET AG calls�

In GET AG at each troupe q� the leader of troupe

q determines m� the index of the most recent state

interval �pm of troupe p in q�s AG� The leader then

procedure RECOVER	p� S� AG� INCNUM� STATEINDEX 

INCLIST �p�� INCNUM
for all q � S� q �� p� do in parallel

	QAG� QINC
� RPC at leader of q � GET AG	p

AG � AG � QAG
INCLIST �q�� QINC

for all q � S� q �� p� do in parallel

RPC at q � CONFIRM 	p� INCLIST

RPC at every cohort RECOVER COHORT 	INCLIST

v � max j such that �p

j
� AG

SI � STATEINDEX 
while SI � v do

execute up to next message receipt without
sending application�multicasts
update message log
SI � SI ��
request multicast that started interval SI from sender
receive and process application�multicast

return

procedure GET AG	p

m � max j such that �p

j
� AG

RPC at each cohort� SYNC COHORT	p�m�AG

REJECTLIST�p�� m
return 	AG	�pm
� INCNUM 


procedure CONFIRM 	p� ILIST

for all r � S � do
INCLIST �r�� max	ILIST�r�� INCLIST �r�


RPC at each cohort� UNSYNC COHORT	p� INCLIST

REJECTLIST�p���
return

procedure RECOVER COHORT 	ILIST

INCLIST � ILIST
return

procedure SYNC COHORT 	p�m�LAG

AG � LAG
discard application�multicasts with unspeci�ed receipt order
REJECTLIST�p�� m
return

procedure UNSYNC COHORT 	p� ILIST

INCLIST � ILIST
REJECTLIST�p���
return

Figure � The Troupe Recovery Protocol�

calls SYNC COHORT at each of its cohorts� In

SYNC COHORT � each cohort copies the argument LAG

into its local AG� and discards every application�multicast

whose order has not been dened in LAG� The cohort

then adds m to REJECT LIST � Until it receives an UN�

SYNC COHORT call from the leader� the cohort does

not accept any application�multicast �from any sender�

whose appended AG contains a state interval of troupe

p whose index is greater than m� While waiting for the

SYNC COHORT calls to return� the leader does not pro�

cess application�multicasts and postpones its response to

any GET AG call� When all SYNC COHORT calls re�

turn� the leader of troupe q returns its current incarna�

tion number and AG��pm� to the leader of troupe p� The

leader of troupe q adds m to REJECTLIST � Until q re�

ceives a CONFIRM call from the leader of p� q rejects

any application�multicast �from any sender� whose ap�

pended AG contains a state interval of troupe p whose

index is greater than m� The SYNC COHORT call makes

the cohorts �witness� the answer returned by q�s leader�

The REJECTLIST prevents troupe q from observing a

state of troupe p that was not re�ected in q�s response

to p�s GET AG call� The cohorts also do not retain

any application�multicast� for which the corresponding

sequence�multicast has not been received� If the current

leader of q fails� the state of each cohort will show �pm as

the most recent state interval of troupe of p in the AG of

troupe q�

When each GET AG call returns to p� it merges the

returned graph into AG and updates its list of incarna�

tion numbers INCLIST� When all GET AG calls have re�

turned� p performs a CONFIRM remote procedure call at

the leader of every troupe q� In CONFIRM � the leader of

q updates its incarnation list and updates REJECTLIST

to indicate that it no longer has any restriction on accept�

ing messages that contain state intervals of p� provided

they belong to its new incarnation� The leader of q then

calls UNSYNC COHORT at every cohort to update the

cohort�s REJECTLIST and INCLIST �

The leader of troupe p calls RECOVER COHORT at

each of its cohorts to update the cohort�s INCLIST � The

leader of troupe p determines v� the largest state inter�

val index among the troupe�s visible state intervals� It

proceeds to re�run the pre�failure execution� requesting

messages as indicated by the reconstructed AG from their

senders� which retransmit the corresponding application�

multicasts from their log to p� The leader uses the AG

to dene the receipt order of these multicasts and sends

the corresponding sequence�multicasts to the troupe� The

leader of p does not send application�multicasts while it is

recovering� but it stores these messages in its volatile log�

Throughout recovery� the troupe restarts the recovery

protocol if its leader fails� If a cohort fails� it is eliminated

from the troupe as described in Section ��



��� Correctness

De�nition � Two distributed computations are equiva�

lent if and only if the �nal state of each process is the

same in both computations�

Consider the failure and recovery of some troupe p�

De�nition � Let Gp be the graph computed by p during

RECOVER�

De�nition � All state intervals �pi � i � v� that occurred

before failure are called lost state intervals�

De�nition � A troupe q whose leader was not recover�

ing when it responded to p�s GET AG call is called a live

troupe�

Let C be the computation as executed by the system in�

cluding failures and recoveries� We show that there exists

some legal computation C � in which no failures occur� and

which starts in the same state as C� such that C and C �

are equivalent�

We rst show that the graph computed by RECOVER

is indeed AG��pv��

Lemma � Gp � AG��pv��

Proof There are two cases to consider�

Case �� v � STATEINDEX � Running RECOVER in this

case did not add to the knowledge of the new leader about

the execution of the failed leader� and AG��pv� is available

at each cohort after the end of the election protocol�

Case �� v � STATEINDEX � Let troupe q be some troupe

that returned AG��pv� in its response to p�s GET AG call�

If q has the complete subgraph representing AG��pv� in q�s

own graph� then the lemma is true� Otherwise� AG��pv�

must be missing one or more subgraphs� since some other

troupes have synchronized their cohorts before sending

the application�multicasts that should have included these

missing subgraphs� In this case� these troupes must have

the missing subgraphs available despite any failure �up to

r� � failures in each troupe�� Therefore� p will receive the

missing subgraphs of AG��pv� during the GET AG calls at

these troupes�

Lemma � After all GET AG calls return but before any

CONFIRM call is issued during p�s recovery� no lost state

interval �pi appears in the AG of any troupe q�

Proof Consider the point in RECOVER at which p

has received all the results of GET AG calls but has not

sent any CONFIRM calls� No state interval �pi that oc�

curred after �pv has a corresponding node in the AG of any

troupe q� or else� q should have returned AG��pi � during its

reply to p�s GET AG call� After returning p�s GET AG

call and before receiving the CONFIRM call� the use of

REJECTLIST prevents every member of troupe q from

accepting any application�multicast whose appended AG

carries a node that corresponds to �pi � where i � v�

Because of the unbounded network delays� there may be

some application�multicasts still in transit in the commu�

nication channels that carry a node that represents a lost

state interval in the appended AG� We show that these

multicasts will be rejected�

Lemma � A message whose appended AG carries a node

that corresponds to a lost state interval of p will be rejected

by any troupe that receives it�

Proof Assume that r sends to q an application�multicast

mr
k whose appended AG contains a node that represents a

lost state interval �pi � From Lemma �� the multicast can�

not originate from the current incarnation of r� Hence�

the multicast originates from a previous incarnation of r�

There are three cases�

Case �� mr
k arrives at troupe q before p�s GET AG call

executes at q� In this case� the leader of q did not receive

the message� while one or more cohorts did� No cohort will

retainmr
k after it synchronizes with the leader and discards

the unordered messages during the SYNC COHORT call�

Case �� mr
k arrives at troupe q after p�s GET AG call

executes at q� but before p�s CONFIRM call executes at

q� The multicast will be rejected because of the use of

REJECTLIST as in Lemma ��

Case �� mr
k arrives at troupe q after p�s CONFIRM call

executes at q� Because p broadcasts the current incar�

nation of every troupe in CONFIRM � q detects that the

incarnation of r tagging mr
k is old and rejects it�

Lemmas � and � establish a safety property of the pro�

tocol� Lost state intervals cannot a�ect the computation�

We now show that despite an arbitrary number of fail�

ures in the troupe leaders� including additional failures

during recovery� troupe p restores a state consistent with

the rest of the computation�

Lemma � �i� q such that �
q
i � Gp�AG��qi � will always be

available at q�

Proof If q was a live troupe when it returned p�s

GET AG call� then the lemma is true despite of any subse�

quent failures in p or q� because all q�s cohorts synchronize

with their leader before returning p�s call� making AG��qi �

available to all replicas of q� Subsequent failures of q will

not a�ect the availability of AG��qi ��

Otherwise� troupe q was recovering when it returned p�s

GET AG call� There are two cases�

Case �� AG��qi � is a subgraph of the AG of a state inter�

val of some troupe r� and r was live when it returned p�s

GET AG call� There are two cases�



Case i� r returned p�s GET AG call before q�s
GET AG call executed at r� Thus� troupe r�s
synchronization made AG��qi � available at each
cohort of r despite of future failures in r� AG��qi �
will be returned to q because of q�s call at r �de�
spite of any subsequent failures of r or q��

Case ii� r returned p�s GET AG call after q�s�
AG��qi � must have been returned to q�s call� since
r could not have added AG��qi � to its own AG af�
ter q�s call� because of the use of REJECTLIST �
This also holds if r fails after q�s call has returned
but before p�s call� because a recovering troupe
does not accept application�multicasts until it n�
ishes recovery�

Case �� AG��qi � is not a subgraph of the AG of the cur�

rent state interval of any live troupe� Hence� p must have

received AG��qi � from some troupe s that was recovering

and had AG��qi � as a subgraph of the AG of the state in�

terval of the new leader before it started troupe recovery�

Hence� both p and q will receive AG��qi � from s� despite

of any subsequent failures of p� q or s�

Lemma � The troupe recovery protocol restores the exe�

cution up to state interval �pv�

Proof Construct graph F p by removing from Gp the

nodes that correspond to state intervals in live troupes

or that occurred before the current state intervals of the

new leaders in recovering troupes� Every state interval in

F p will be recreated� The proof proceeds by induction on

the topological sort of F p� which must exist because F p is

acyclic�

Base case� Each node at level � of the topological sort

represents a state interval �pi such that troupe p is recover�

ing and the current state interval of p is �pi��� To recreate

�
p
i � p must receive some application�multicast m

q

k� such

that either q is a live troupe or the application�multicast

was sent from a previous state interval at some recovering

troupe� In both cases� a copy of mq

k must be available in

the volatile message log of q� Thus� p can request a replay

of mq
k�

Induction hypothesis� Assume that the lemma is true

for all nodes of topological level n�

Induction step� For each node at topological level n���

the application�multicast that created the corresponding

state interval is available either because it was recreated

and added to its sender�s log during recovery by the induc�

tion hypothesis� or was already available in the log of the

sender as in the base case�

Lemma � The protocol is deadlock�free�

Proof No deadlock can occur during the phase of collect�

ing the AG� because recovering troupes return GET AG

calls� Cohort synchronization during SYNC COHORT is

internal to the troupe and does not block� Lemma � shows

that no deadlock can occur while recreating the state in�

tervals�

Lemmas 
� � and � establish the liveness property

of the protocol� Each troupe that fails will recover to its

maximum visible state interval�

Lemma � No troupe�s state becomes inconsistent with the

rest of the system because of p�s failure�

Proof Follows immediately from Lemma 
� Lemma ��

and the denition of �pv�

Lemma � establishes the remaining safety property of

the protocol�

Theorem � Computation C is equivalent to some legal

computation C � that starts from the same initial state�

Proof Before any failure occurs in C� the state of the

system is consistent ���� After the failure of a troupe p� it

recovers to a state consistent with the rest of the system�

and no other troupe becomes inconsistent with the rest of

the system because of p�s failure� as shown by Lemma ��

Furthermore� the e�ects of lost state intervals of previous

incarnations cannot a�ect the computation� by Lemmas �

and �� Lemmas 
� �� and � establish that the recov�

ery of each troupe eventually completes� Therefore C� the

execution of the system after all failures and recoveries

have completed� is a possible execution of the system C �

in which no failures have occurred� Since all processes are

assumed to be deterministic� by executing C and C � from

the same initial state and with the same sequence of ex�

changed multicasts� C and C � must both complete in the

same nal states�

	 Garbage Collection

We state without proof the conditions for removing a

message from the message log and for removing an edge

from the AG�

Lemma 	 If the slowest member of a troupe p has al�

ready received and delivered application�multicastmq
i � then

troupe q may remove the message from its log�

Lemma 
 If the state interval of the slowest member in a

troupe p is �pi � then all nodes that correspond to �pj � where

j � i� are no longer needed for recovery�

Lemmas � and � form the basis for many possible

garbage collection protocols� For example� two troupes can



periodically exchange the information about the state in�

terval and the identiers of messages received by the slow�

est member of either troupe� Alternatively� this informa�

tion can be periodically propagated with the AG appended

on application�multicasts� The implementation must bal�

ance the frequency of exchanging garbage collection infor�

mation against the resulting overhead and the available

storage�


 Comparison with Related Work

Unlike many other multicast protocols� Manetho�s mul�

ticast is specically designed for process�replication� For

this purpose� the combination of antecedence graph main�

tenance and message logging at the sender o�ers a better

tradeo� in terms of the number of overhead messages and

the delay in message delivery than the protocols that have

been published in the literature� We restrict the com�

parison to systems that operate in environments similar

to the one assumed in this paper� namely� an unreliable

asynchronous network and applications with no real�time

requirements�

CIRCUS was one of the earlier systems to support

process�replication in an asynchronous network ���� CIR�

CUS uses replicated remote procedure calls �RPCs� to im�

plement inter�troupe communication� If no identical re�

ceipt order at each replica is required� a many�to�many

RPC incurs between r � � to �r multicasts� Identical re�

ceipt order is achieved by structuring the many�to�many

RPC as a transaction that deadlocks if two members of

the troupe receive messages in di�erent orders� Commit�

ting this transaction requires at least r additional multi�

casts� In contrast� Manetho provides ordered multicast

delivery with only one overhead multicast per application�

multicast�

The protocol of Ahamad et al� ��� uses transactions to

structure the replicas� At commit time� only one replica

succeeds while the remaining cohorts abort� This allows

non�deterministic execution in each replica� but the ap�

plication must be structured as a sequence of transac�

tions� In contrast� Manetho adds replication to determin�

istic processes in an application�transparent manner�

The idea of having a sequencer dene the receipt order

of a multicast was used in the multicast protocol of Chang

and Maxemchuck ���� the Amoeba atomic broadcast pro�

tocol ����� and the Delta�
 XPA system ���� The r�resilient

protocol of Chang and Maxemchuck relies on negative�

acknowledgment and leadership transfer to achieve reliable

total ordering� However� a multicast must be delayed for

r � � leadership transfers before it can be delivered� Like

Chang and Maxemchuck� our protocol incurs few over�

head control messages� but it avoids the delay in delivering

the multicast by using the information in the antecedence

graph�

Amoeba�s atomic broadcast protocol uses negative�

acknowledgment for the ��resilient version� and positive

acknowledgments for the r�resilient version� The Amoeba

protocol is highly tuned for the ��resilient operation mode�

The r�resilient version of Amoeba requires r � � overhead

messages for each application�multicast� Manetho does

not require such overhead messages�

The Delta�
 XPA multicast protocol uses positive ac�

knowledgments� Delta�
 XPA relies on a special network

adapter to provide the ordering and reliability� and to mask

the overhead of acknowledgment messages from the appli�

cation program� In contrast� Manetho does not depend on

special network support�

Both Manetho and the new implementation of ISIS�s

ABCAST ��� rely on a single site to dene the multicast�s

receipt order� ABCAST relies on an underlying transport

protocol that guarantees that messages are reliably deliv�

ered in FIFO order� This transport protocol is a major

source of overhead in ISIS ���� In contrast� Manetho adopts

weaker assumption about the network reliability�

The context graph of the x �kernel�s Psync protocol ����

is the basis of another general�purpose multicast protocol�

Unlike our protocol� Psync does not guarantee the identi�

cal receipt ordering required by process�replication in the

absence of information about the application�s semantics�

Such ordering can be provided in Psync by applying an

ordering lter on the context graph� which delays the de�

livery of the application�multicast at each site for several

application�multicasts �����

The atomic broadcast protocol of Melliar�Smith et

al� ���� uses no control messages during normal operation

at the expense of a large delay in message delivery� This

delay depends mainly on the rate of incoming application�

broadcasts� Manetho pays the overhead of maintaining the

graph and one overhead multicast� in return for reducing

the latency in message delivery independently of the rate

of incoming multicasts�

� Conclusion

This paper has presented the process�replication proto�

col of Manetho� a fault�tolerant distributed system whose

purpose is to provide application�transparent fault toler�

ance to long�running applications� The system uses a

new ordered�multicast protocol which is designed specif�

ically to support process�replication� The protocol re�

lies on a combination of antecedence graph maintenance�

volatile message logging at the sender� and the fact that

the receivers of the multicast execute the same determin�

istic program� Unlike many general�purpose multicast

protocols published in the literature� ours is able to use

negative acknowledgments to reduce the number of over�

head messages� and at the same time avoids the delays in



message delivery typically incurred by negative acknowl�

edgment protocols� These advantages come at the expense

of maintaining the antecedence graph and the need for

a more elaborate recovery protocol under some rare fail�

ure scenarios� Nevertheless� an implementation of the an�

tecedence graph shows that� by using incremental piggy�

backing� the cost of maintaining the graph is only a small

fraction of the cost of receiving a message ����� Further�

more� assuming that failures are rare� the recovery protocol

will seldom have to be run�

Acknowledgments

We are indebted to J� Carter� A� Cox� K� Fletcher�

P� Keleher� M� Mazina� H� Garcia�Molina� A� Scha�er�

R� Schlichting� H� Youssef and the anonymous referees

for many useful comments about earlier drafts of this

manuscript� The insightful comments of David Johnson

helped improve the clarity of the proofs and the presenta�

tion�

References

��� M� Ahamad� P� Dasgupta� and R�J� LeBlanc� Fault�
tolerant atomic computations in an object�based dis�
tributed system� Distributed Computing� �������� �����

��� P�A� Barrett� A�M� Hilborne� P� Verissimo� L� Rodrigues�

P�G� Bond� D�T� Seaton� and N�A� Speirs� The Delta�� ex�
tra performance architecture XPA� In Proceedings of the

��th International Symposium on Fault�Tolerant Comput�

ing� pages �������� June �����

��� K� Birman� A� Schiper� and P� Stephenson� Lightweight
causal and atomic group multicast� ACM Transactions on

Computer Systems� �	�
��������� August �����

��� K�P� Birman� Replication and fault�tolerance in the ISIS
system� In Proceedings of the ��th ACM Symposium

on Operating Systems Principles� pages ������ December
�����

��� K�P� Birman and T�A� Joseph� Reliable communication in
the presence of failures� ACM Transactions on Computer

Systems� �	�
������� February �����

��� K�M� Chandy and L� Lamport� Distributed snapshots�
Determining global states of distributed systems� ACM

Transactions on Computer Systems� �	�
������� February

�����

��� J� Chang and N�F� Maxemchuck� Reliable broadcast proto�
cols� ACM Transactions on Computer Systems� �	�
�����
���� August �����

��� E�C� Cooper� Replicated distributed programs� In Pro�

ceedings of the ��th ACM Symposium on Operating Sys�

tems Principles� pages ������ December �����

��� F� Cristian� Agreeing on who is present and who is absent
in a synchronous distributed system� In Proceedings of the
��th International Symposium on Fault�Tolerant Comput�

ing� pages �������� June �����

���� F� Cristian� R� Aghili� R� Strong� and D� Dolev� Atomic
broadcast� From simple message di�usion to byzantine
agreement� In Proceedings of the ��th International Sym�

posium on Fault�Tolerant Computing� June �����

���� E�N� Elnozahy and W� Zwaenepoel� Manetho� A low over�

head rollback�recovery system with fast output commit�
Technical Report TR������� Rice University� March �����

���� E�N� Elnozahy and W� Zwaenepoel� Manetho� Transpar�
ent rollback�recovery with low overhead� limited rollback�
and fast output commit� IEEE Transactions on Com�

puters Special Issue On Fault�Tolerant Computing� ��	�
�
May �����

���� H� Garcia�Molina� Elections in a distributed computing
system� IEEE Transactions on Computers� ��	�
�������

January �����

���� D�B� Johnson� Distributed System Fault Tolerance Using

Message Logging and Checkpointing� PhD thesis� Rice
University� December �����

���� D�B� Johnson and W� Zwaenepoel� Sender�based message
logging� In Proceedings of the ��th International Sym�

posium on Fault�Tolerant Computing� pages ������ June
�����

���� M�F� Kaashoek and A�S� Tanenbaum� Group communi�
cation in the Amoeba distributed operating system� In
Proceedings of the ��th International Conference on Dis�

tributed Computing Systems� pages �������� May �����

���� P� M� Melliar�Smith� L�E� Moser� and V� Agrawala� Broad�

cast protocols for distributed systems� IEEE Transactions

on Parallel and Distributed Systems� �	�
������� January
�����

���� L�E� Moser� P� M� Melliar�Smith� and V� Agrawala� Mem�
bership algorithms for asynchronous distributed systems�
In Proceedings of the ��th International Conference on

Distributed Computing Systems� pages �������� May �����

���� L�L� Peterson� N�C� Bucholz� and R�D� Schlichting� Pre�
serving and using context information in interprocess com�

munication� ACM Transactions on Computer Systems�
�	�
��������� August �����

���� R�D� Schlichting and F�B� Schneider� Fail�stop processors�
An approach to designing fault�tolerant computing sys�
tems� ACM Transactions on Computer Systems� �	�
�����
���� August �����

���� F� Schmuck� The Use of E�cient Broadcast Primitives in

Asynchronous Distributed Systems� PhD thesis� Cornell
University� �����

���� F�B� Schneider� Implementing fault�tolerant services using
the state machine approach� A tutorial� ACM Computing

Surveys� ��	�
��������� December �����


