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Abstract

We compare the performance of software�supported
shared memory on a general�purpose network to
hardware�supported shared memory on a dedicated
interconnect�

Up to eight processors� our results are based on
the execution of a set of application programs on a
SGI �D���� multiprocessor and on TreadMarks� a dis�
tributed shared memory system that runs on a Fore
ATM LAN of DECstation���������s� Since the DEC�
station and the �D���� use the same processor� pri�
mary cache� and compiler� the shared�memory imple�
mentation is the principal di	erence between the sys�
tems� Our results show that TreadMarks performs
comparably to the �D���� for applications with mod�
erate amounts of synchronization� but the di	erence
in performance grows as the synchronization frequency
increases� For applications that require a large amount
of memory bandwidth� TreadMarks can perform bet�
ter than the SGI �D�����

Beyond eight processors� our results are based on
execution�driven simulation� Speci
cally� we compare
a software implementation on a general�purpose net�
work of uniprocessor nodes� a hardware implementa�
tion using a directory�based protocol on a dedicated
interconnect� and a combined implementation using
software to provide shared memory between multi�
processor nodes with hardware implementing shared
memory within a node� For the modest size of the
problems that we can simulate� the hardware imple�
mentation scales well and the software implementation
scales poorly� The combined approach delivers perfor�
mance close to that of the hardware implementation
for applications with small to moderate synchroniza�
tion rates and good locality� Reductions in communi�
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cation overhead improve the performance of the soft�
ware and the combined approach� but synchronization
remains a bottleneck�

� Introduction

Over the last decade� considerable e	ort has been
spent on software implementations of shared memory
on general�purpose networks� e�g�� ��� �� ��
� We are�
however� unaware of any study comparing the perfor�
mance of any of these systems to the performance of
a hardware implementation of shared memory on a
dedicated interconnect� e�g�� ���� ��
� Several studies
have compared software to hardware cache coherence
mechanisms ���� ��
� but these systems still rely on
hardware initiated data movement and a dedicated
interconnect� In this paper� we compare a shared�
memory implementation that runs entirely in software
on a general�purpose network of computers to a hard�
ware implementation on a dedicated interconnect�

Up to eight processors� our results are based on an
experimental comparison of a software and a hardware
implementation� Speci
cally� we compare the Tread�
Marks software distributed shared memory system ���

running on a ���Mbit�second ATM network connect�
ing � DECstation���������s to an ��processor Silicon
Graphics �D����� These con
gurations have identical
processors� clock speeds� primary caches� compilers�
and parallel programming interfaces �the ANL PAR�
MACS macros ���
�� The similarity between the two
platforms �from the neck up� avoids many distinc�
tions that often blur comparative studies� and allows
us to focus on the di	erences caused by the shared�
memory implementation� TreadMarks supports lazy

release consistency ���
 and is implemented as a user�
level library on top of Ultrix ���
� The SGI �D����
provides processor consistency� using a bus snooping
protocol ���
�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147905452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We use four applications in our comparison �ILINK�
SOR� TSP� and Water�� TSP uses only locks for syn�
chronization� SOR and ILINK use only barriers� and
Water uses both� For ILINK� SOR� and TSP� we
present results for two di	erent sets of input data� For
Water� the results are largely independent of the in�
put� Instead� we present the results for a modi
ed ver�
sion �M�Water� that reduces the amount of synchro�
nization� With the exception of SOR� better speedups
are obtained on the �D����� There is a strong cor�
relation between the synchronization frequency of the
application and the di	erence in speedup between the
�D���� and TreadMarks� With higher synchroniza�
tion frequencies� the large latencies of the software im�
plementation become more of a limiting factor� SOR�
however� gets better speedup on TreadMarks than on
the �D����� because this application requires large
memory bandwidths�

Beyond eight processors� our results are based on
execution�driven simulations of systems with up to ��
processors� We compare three alternative designs� �i�
an all�software �AS� approach connecting �� unipro�
cessor machines with a general�purpose network� �ii�
an all�hardware �AH� approach connecting �� unipro�
cessor nodes with a crossbar network and using a
directory�based hardware cache coherence protocol�
and �iii� a hardware�software �HS� approach connect�
ing � bus�based multiprocessor nodes with a general�
purpose network and using the TreadMarks software
DSM system� The HS approach is appealing from a
cost standpoint because small bus�based shared mem�
ory workstations are likely to become cheaper than a
set of uniprocessor workstations with an equal num�
ber of processors� The HS approach also avoids the
complexity of directory�based cache controllers�

We use SOR� TSP� and M�Water in our compari�
son� Simulation times for available ILINK inputs were
prohibitively high� For all three applications� the AS
approach scales poorly compared to the other two� For
SOR and TSP� performance of AH and HS is com�
parable� For M�Water� the AH approach performs
signi
cantly better because each processor accesses a
majority of the shared data during each step of the
computation and because of the frequency of synchro�
nization� Anticipated improvements in network inter�
face technology and attendant decreases in communi�
cation software overhead reduce the performance gap
between the di	erent implementations�

The rest of this paper is organized as follows� Sec�
tion � details the comparison between the SGI �D����
and TreadMarks� Section � presents simulation re�
sults comparing the AS� AH� and HS architectures for

a larger number of processors� Section � examines re�
lated work� Section � presents our conclusions�

� SGI �D���� versus TreadMarks

��� TreadMarks

In this section we brie�y describe the release consis�

tency �RC� model ���
 and the lazy release consistency

�LRC� implementation ���
 used by TreadMarks� Fur�
ther details on TreadMarks may be found in Keleher
et al� ���
�

RC is a relaxed memory consistency model� In RC�
ordinary shared memory accesses are distinguished
from synchronization accesses� with the latter cate�
gory subdivided into acquire and release accesses� Ac�
quire and release accesses correspond roughly to the
conventional synchronization operations on a lock� but
other synchronization mechanisms can be built on this
model as well� Essentially� RC allows the e	ects of or�
dinary shared memory accesses to be delayed until a
subsequent release by the same processor is performed�

The LRC algorithm used by TreadMarks delays the
propagation of modi
cations to a processor until that
processor executes an acquire� To do so� LRC uses
the happened�before�� partial order ��
� The happened�
before�� partial order is the union of the total pro�
cessor order of the memory accesses on each individ�
ual processor and the partial order of release�acquire
pairs� Vector timestamps are used to represent the
partial order ���
� When a processor executes an ac�
quire� it sends its current vector timestamp in the ac�
quire message� The last releaser then piggybacks on
its response a set of write notices� These write notices
describe the shared data modi
cations that precede
the acquire according to the partial order� The ac�
quiring processor then determines the pages for which
the incoming write notices contain vector timestamps
larger than the timestamp of its copy of that page in
memory� For these pages� the shared data modi
ca�
tions described in the write notices must be re�ected in
the acquirer�s copy� To accomplish this� TreadMarks
invalidates the copies�

On an access fault� a page is validated by bringing
in the necessary modi
cations to the local copy in the
form of di�s� A di	 is a run�length encoding of the
changes made to a single virtual memory page� The
faulting processor uses the vector timestamps associ�
ated with its copy of the page and the write notices it
received for that page to identify the necessary di	s�



��� Experimental Platform

The system used to evaluate TreadMarks consists
of � DECstation��������� workstations� each with a
��Mhz MIPS R���� processor� a �� Kbyte primary
instruction cache� a �� Kbyte primary data cache�
and �� Mbytes of memory� The data cache is write�
through with a write bu	er connecting it to main
memory� The workstations are connected to a high�
speed ATM network using a Fore Systems TCA����
network adapter card supporting communication at
��� Mbits�second� In practice� however� user�to�user
bandwidth is limited to �� Mbits�second� The ATM
interface connects point�to�point to a Fore Systems
ASX���� ATM switch� providing a high aggregate
bandwidth because of the capability for simultaneous�
full�speed communication between disjoint worksta�
tion pairs� The workstations run the Ultrix version
��� operating system� TreadMarks is implemented as
a user�level library linked in with the application pro�
gram� No kernel modi
cations are necessary� Tread�
Marks uses conventional Unix socket� mprotect� and
signal handling interfaces to implement communica�
tion and memory management� The minimum time
for a remote lock acquisition is ���� milliseconds� the
time for an ��processor barrier is ���� milliseconds�

The shared�memory multiprocessor used in the
comparison is a Silicon Graphics �D���� with �
��Mhz MIPS R���� processors� Each processor has
a �� Kbyte primary instruction cache and a �� Kbyte
primary data cache� The primary data cache imple�
ments a write�through policy to a write bu	er� In ad�
dition� each processor has a � Mbyte secondary cache
implementing a write back policy� The secondary
caches and the main memory ���� Mbytes� are con�
nected via a �� Mhz ���bit wide shared bus� Cache
coherence between the secondary caches is maintained
using the Illinois protocol� The presence of the write
bu	er between the primary and the secondary cache�
however� makes the memory processor consistent� The
SGI runs the IRIX Release ����� System V operating
system�

An important aspect of our evaluation is that the
DECstation��������� and the SGI �D���� have the
same type of processor running at the same clock
speed� the same size primary instruction and data
caches� and a write bu	er from the primary cache to
the next level in the memory hierarchy �main memory
on the DECstation� the secondary cache on the SGI��
For both machines� we use the same compiler� gcc �����
with �O optimization� and the program sources are
identical �using the PARMACSmacros�� The only sig�
ni
cant di	erence between the two parallel computers

is the method used to implement shared memory� ded�
icated hardware versus software on message�passing
hardware�

Single processor performance on the two machines
depends on the size of the program�s working set�
Both machines are the same speed when execut�
ing entirely in the primary cache� If the working
set 
ts in the secondary cache on the �D����� a
single �D���� processor is �� to �� slower than
a DECstation��������� because the main memory
of the DECstation��������� is slightly faster than
the secondary cache of the �D���� processor� �The
�D�����s secondary cache is clocked at the same speed
as the backplane bus� �� MHz�� If the working set is
larger than the secondary cache size� the �D���� slows
down signi
cantly�

��� Application Suite

We used four programs for our comparison� ILINK�
SOR� TSP� and Water�

ILINK ��
 is a widely used genetic linkage analysis
program that locates speci
c disease genes on chromo�
somes� We ran ILINK with two di	erent inputs� CLP
and BAD� both corresponding to real data sets used
in disease gene location� The CLP and BAD inputs
show the best and the worst speedups� respectively�
among the inputs that are available to us�

Red�Black Successive Over�Relaxation �SOR� is a
method for solving partial di	erential equations� The
SOR program divides the matrix into roughly equal
size bands of consecutive rows� assigning each band to
a di	erent processor� Communication occurs across
the boundary between bands� We ran SOR for a ���
iterations on a ����� ���� and a ����� ���� matrix�
We chose the ��������� problem size because it does
not cause paging on a single DECstation� and it 
ts
within the secondary cache of the �D���� when run�
ning on � processors� The ����� ���� run is included
to assess the e	ect of changing the communication to
computation ratio�

TSP solves the traveling salesman problem using
a branch�and�bound algorithm� The program has a
shared� global queue of partial tours� Each process
gets a partial tour from the queue� extends the tour�
and returns the results back to the queue� We use
��� and ���city problems as input� Although the pro�
gram exhibits nondeterministic behavior� occasionally
resulting in super�linear speedup� executions with the
same input produce repeatable results�

Water� from the SPLASH suite ���
� is a molecular
dynamics simulation� The original Water program ob�
tains a lock on the record representing a molecule each



Program DEC TreadMarks SGI
ILINK�CLP ������ ������ ������
ILINK�BAD ����� ����� �����
SOR ����� ���� ����� ����� �����
SOR ����� ���� ����� ����� �����
TSP��� ����� ����� �����
TSP��� ���� ���� ����
Water������ ���� ���� ����
M�Water������ ���� ���� ����

Table �� Single processor execution times

time it updates the contents of the record� We modi�

ed Water such that each processor instead uses a lo�
cal variable to accumulate its updates to a molecule�s
record during an iteration� At the end of the itera�
tion� it then acquires a lock on each molecule that it
needs to update and applies the accumulated updates
at once� The number of lock acquires and releases
for each processor in M�Water is thus equal to the
number of molecules that processor updates� In the
original program� it is equal to the number of updates
that processor performs� a much larger quantity� We
present the results for Water and M�Water for a run
with ��� molecules for � time steps� The results for
Water were largely independent of the data set chosen�

��� Results

Figures � to � present the speedups achieved
for ILINK� SOR� TSP� Water and M�Water� both
on TreadMarks and the �D����� The TreadMarks
speedups are relative to the single processor DECsta�
tion run times without TreadMarks� Table � presents
the single processor execution times on both machines�
including the DECstation with and without Tread�
Marks� As can be seen from this table� the presence of
TreadMarks has almost no e	ect on single processor
execution times� Finally� Table � details the o	�node
synchronization rates� the number of messages and
the amount of data movement per second on Tread�
Marks for each of the applications on � processors�
Sections ����� to ����� discuss the results for each ap�
plication in detail�

����� ILINK

Figures � and � show ILINK�s speedup for the CLP
and BAD inputs� Among the inputs that are available
to us� the CLP and BAD inputs show the best and the
worst speedups� and the smallest and largest di	erence

TreadMarks SGI 4D/480
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Figure �� ILINK� CLP
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Figure �� ILINK� BAD
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Figure �� SOR� ����� ���� matrix



ILINK SOR TSP Water M�Water
BAD CLP ����� ���� ����� ���� ���city ���city ����� �����

Barriers�second ����� ���� ���� ���� � � ���� ����
Remote locks�second � � � � ���� ���� ������ �����
Messages�second ���� ��� ��� ��� ��� ��� ���� ����
Kbytes�second ��� ��� �� �� ��� ��� ��� ���

Table �� ��processor TreadMarks execution statistics

Treadmarks SGI 4D/480
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Figure �� SOR� ����� ���� matrix
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Figure �� TSP� �� cities
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Figure �� TSP� �� cities
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Figure �� Water� ��� molecules and � steps
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Figure �� M�Water� ��� molecules and � steps

in speedup between the �D���� and TreadMarks �����
vs� ���� and ���� vs� ������

ILINK achieves less than linear speedup on both the
�D���� and TreadMarks because of a load balancing
problem inherent to the nature of the algorithm ��
� It
is not possible to predict in advance whether the set
of iterations distributed to the processors will result in
the same amount of work on each processor� without
signi
cant computation and communication�

The �D���� outperforms TreadMarks because of
the large amount of communication� The communica�
tion rate for the CLP input set is ��� Kbytes�second
and ��� messages�second on � processors� compared
to ��� Kbytes�second and ����� messages�second for
the BAD input set� hence the better speedups achieved
for CLP�

����� SOR

Figures � and � show SOR�s speedup for ��� itera�
tions of ���� � ���� and ���� � ���� problems� We
excluded the 
rst iteration of SOR from the data and
message rates in order to avoid having the initial data
distribution skew our results� Of the four applications
used� SOR is the only one for which there is a sizable
di	erence in single processor execution time between
TreadMarks and the �D����� TreadMarks is approxi�
mately ��� faster on a single processor� because both
problem sizes exceed the size of the secondary cache
on the SGI�

In addition to lower single processor execution
times� better speedups are achieved on TreadMarks�
The di	erence is partly due to the way in which
TreadMarks communicates updates to shared mem�
ory� Points at the edge of the matrix are initialized to

values that remain 
xed throughout the computation�
Points in the interior of the matrix default to �� Dur�
ing the early iterations� the points at the interior of
the array are recomputed �and stored to memory� but
their value remains the same� Only the points near
the edge change value� On the �D���� the hardware
cache coherence protocol updates the memory regard�
less of the fact that the values remain the same� Tread�
Marks� however� only communicates the points that
have changed value because di� s �see Section ���� are
computed from the contents of a page� Consequently�
the amount of data movement by TreadMarks is sig�
ni
cantly less than the amount of data movement by
the �D����� The estimated data movement for � pro�
cessors by the �D���� after the initial data migration
between processors is ���� Kbytes� whereas the actual
data movement by TreadMarks is ���� Kbytes�

To eliminate this e	ect� we initialized the matrix
such that every point changes value at every itera�
tion� equalizing the data movement by the �D����
and TreadMarks� Even in this modi
ed version� the
speedup is better on TreadMarks than on the �D�����
We attribute this result to the fact that most commu�
nication in SOR occurs at the barriers and between
neighbors� On the ATM network� this communica�
tion can occur in parallel� On the �D����� it causes
contention for the cache tags and the bus�

����� TSP

Figures � and � show TSP�s speedup for solving a ���
city and an ���city problem� Branch�and�bound algo�
rithms can achieve super�linear speedup if the parallel
version 
nds a good approximation early on� allowing
it to prune more of the search tree than the sequential
version� An example of such super�linear speedup can
be seen on the �D���� for the ���city problem� More
important than the absolute values of the speedups
is the comparison between the speedups achieved on
the two systems� We see better performance on the
�D���� than on TreadMarks ����� vs� ���� for the ���
city problem and ���� vs� ���� for the ���city prob�
lem�� The di	erence is slightly larger for the ���city
problem because of the increased synchronization and
communication rates �see Table ���

The performance on TreadMarks su	ers from the
fact that TSP is not a properly labeled ���
 program�
Although updates to the current minimumtour length
are synchronized� read accesses are not� Since Tread�
Marks updates cached values only on an acquire� a
processor may read an old value of the current min�
imum� The execution remains correct� but the work
performed by the processor may be redundant since



a better tour has already been found elsewhere� On
the �D����� this is unlikely to occur since the cache
consistency mechanism invalidates cached copies of
the minimum when it is updated� By propagating
the bound earlier� the �D���� reduces the amount
of work each processor performs� leading to a better
speedup� Adding synchronization around the read ac�
cesses would hurt performance� given the large number
of such accesses�

To eliminate this e	ect� we modi
ed TSP to per�
form an eager lock release instead of a lazy lock release
after updating the lower bound value� With an eager
release� the modi
ed values are updated at the release�
rather than at a subsequent acquire� The speedup
of TSP improved from ���� to ���� on � processors�
vs� ���� on the �D����� The remaining di	erences
between the DSM and the SGI performance can be
explained by faster lock acquisition on the SGI� com�
pounded with the nondeterministic e	ect of picking up
redundant work due to the slight delay in propagating
the bound�

����� Water

Figure � shows Water�s speedup executing � steps on
��� molecules� TreadMarks gets no speedup� except
on � processors� because the high rate of synchroniza�
tion ������ remote lock acquires�second� causes many
messages ������ messages�second��

Figure � shows M�Water�s speedup executing �
steps on ��� molecules� On the �D����� M�Water�s
speedup is virtually identical to Water� On Tread�
Marks� however� there is a marked performance im�
provement� We obtain a speedup of ���� using �
processors� Compared to Water� the number of mes�
sages�second drops from ����� to ������

Part of the high cost of message transmission is due
to the user�level implementation of TreadMarks� in
particular� the need to trap into the kernel to send and
receive messages� We have implemented TreadMarks
inside the Ultrix kernel in order to assess the trade�
o	s between a user�level and a kernel�level implemen�
tation� In comparison� the minimum time to acquire
a lock drops from ���� to ���� milliseconds� and the
time for an ��processor barrier drops from ���� to
���� milliseconds� For ILINK� SOR and TSP� the dif�
ferences between the kernel and user level implemen�
tations are minimal� re�ecting the low communication
rates in these applications� For M�Water� however� the
di	erences are substantial� Speedup on � processors
increases from ���� for the user�level implementation
to ���� for the kernel�level implementation� compared
to ���� for the �D�����

��� Summary

The relative magnitude of the di	erences in
speedup between TreadMarks and the �D���� for
ILINK� TSP� Water and M�Water roughly correlate to
the di	erences in the synchronization rates� For TSP�
Water and M�Water� which are primarily lock based�
the di	erence in speedup is closely related to the fre�
quency with which o	�node locks are acquired� On �
processors� the di	erence in speedup is ��� for Water
�with ���� remote lock accesses per second�� ��� for M�
Water ������ ��� for the ���city TSP ����� and ��� for
the ���city TSP ����� In addition� for TSP� the �D����
performs better because the eager nature of the cache
consistency protocol reduces the amount of redundant
work performed by individual processors� For ILINK�
which uses barriers� the di	erence in speedup can be
explained by the barrier synchronization frequency� a
di	erence of ��� for the BAD data set with ����� bar�
riers per second� vs� a di	erence of ��� for CLP with
���� barriers per second� For SOR� the larger memory
bandwidth available in TreadMarks results in better
speedups� Dual cache tags and a faster bus� relative
to the speed of the processors� are necessary to over�
come the bandwidth limitation on the SGI�

The ATM LAN�s longer latency makes synchro�
nization more expensive on TreadMarks than on the
�D����� Moving the implementation inside the kernel�
as we did� is only one of several mechanisms that can
be used to reduce message latency� Our results for
M�Water demonstrate the possible performance im�
provement�

� Comparison of Larger Systems

In this section� we extend our results to larger num�
bers of processors� The software approach scales� at
least conceptually� to a larger number of processors
without modi
cation� The hardware approach� how�
ever� becomes more complex once the number of pro�
cessors exceeds what can reasonably be supported by
a single bus� The processor interconnect instead be�
comes a mesh or a crossbar with one or more proces�
sors at the nodes� and the cache controllers implement
a directory�based cache coherence protocol� We also
model a third architecture that consists of a number
of bus�based multiprocessors connected by a general�
purpose network� Each node has su�cient bus band�
width to avoid contention� Conventional bus snooping
hardware enforces coherence between the processors
within a node� Coherence between di	erent nodes is
implemented in software� We will refer to these three



architectures as the All Software �AS�� All Hardware
�AH�� and Hardware�Software �HS� approaches�

The HS approach appears promising both in terms
of cost and complexity� Compared to the AS ap�
proach� bus�based multiprocessors with a small num�
ber of processors �N � are cheaper than N comparable
uniprocessor workstations� Furthermore� the cost of
the interconnection hardware is reduced by roughly a
factor of N � Compared to the AH approach� commod�
ity parts can be used� reducing the cost and complex�
ity of the design�

��� Simulation Models

We simulated the three architectures using an
execution�driven simulator ��
� Instead of the
DECstation��������� and SGI �D����� we base our
models on leading�edge technology� All of the archi�
tectural models use RISC processors with a ��� Mhz
clock� �� Kbyte direct�mapped caches with a block
size of �� bytes� and main memory su�cient to hold
the simulated problem without paging� We simulate
up to �� processors for each architecture�

In both the AH and the AS models� each node has
one processor and a local memory module� A cache
miss satis
ed by local memory takes �� processor cy�
cles� In the HS model� each node has � processors
connected by a ����bit wide split transaction bus op�
erating at �� MHz� A cache miss satis
ed by local
memory takes �� processor cycles� slightly longer than
the AH and the AS models because of bus overhead�

In the AH model� the nodes are connected by a
crossbar network with point�to�point bandwidth of
��� Mbytes�second and a latency of ��� nanoseconds�
We used a crossbar in order to minimize the e	ect of
network contention on our results� The point�to�point
bandwidth is the same as the Intel Paragon�s network�
Cache coherence is maintained using a directory�based
protocol� A cache miss satis
ed by remote memory
takes �� to ��� processor cycles� depending on the
block�s location and whether it has been modi
ed�
These cycle counts are similar to those for the Stan�
ford DASH ���
 and FLASH ���
 multiprocessors�

In both the AS and the HS models� the general�
purpose network is an ATM switch with a point�to�
point bandwidth of ��� Mbit�second and a latency
of � microsecond� Memory consistency between the
nodes is maintained using the TreadMarks LRC in�
validate protocol �see Section ����� The simulations
account for the wire time� contention for the network
links� and the software overhead of entering the ker�
nel to send or receive messages� including data copying
����� � ���message size in words processor cycles��

calling a user�level handler for page faults and incom�
ing messages ����� processor cycles�� and creating a
di	 ���words per page processor cycles�� The values
are based on measurements of the TreadMarks imple�
mentation on the DECstation��������� described in
Section ��

For the HS approach� all of the processors within a
node are treated as one by the DSM system� We as�
sume that cache and TLB coherency mechanisms will
ensure that processors within a node see up�to�date
values� Multiple faults to the same page are merged
by the DSM system� Similarly� modi
cations to the
same page made by processors on the same node are
merged into a single di	� Synchronization is imple�
mented through a combination of shared memory and
message passing� re�ecting the hierarchical structure
of the machine� For barriers� each processor updates
a local counter until the last processor on the node
has reached the barrier� The last processor sends the
arrival message to the manager� When the last ar�
rival message arrives at the manager� it issues a de�
parture message to each node� Similarly� locks are
implemented using a token� The token is held at one
node at a time� In order to acquire a lock� a processor
must 
rst bring the token to its node� If the token
already resides at the node� no messages are required�

��� Results

We simulated SOR� TSP� and M�Water� Exces�
sively long simulation times prevented us from includ�
ing simulation results for ILINK� Figures � to �� re�
port the speedups achieved on the three di	erent ar�
chitectures� Since the uniprocessor execution times
are roughly identical for all three architectures� the ex�
ecution times are omitted� Figures �� and �� present
the message and data movement totals for AS and
AH� The totals are presented relative to the AS num�
bers� The message totals are broken down into miss
and synchronization messages� and the data totals are
broken down into miss� consistency� and header data
�see Section ����� Sections ����� to ����� discuss the
observed performance of the individual applications�
Section ����� discusses the e	ect of reducing the soft�
ware overhead for the AS and HS architectures�

����� SOR

Figure � presents speedups for the SOR program for
a ����� ���� matrix� Since we only simulate a small
number of iterations� we begin collecting statistics
from the second iteration in order to prevent cold start
misses from dominating our results� Linear speedup is
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Figure ��� TSP� �� cities
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Figure ��� M�Water� ��� molecules and � steps
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Figure ��� Varying software overheads for AS� M�
Water� ��� molecules and � steps

achieved on AH and HS� while the performance of AS
is sub�linear due to the high communication cost� SOR
performs mainly nearest neighbor communication and
thus takes advantage of the hierarchical nature of the
HS architecture� The only processors to incur a high
penalty for misses are the edge processors that share
data with processors that are o	�node� and hence this
program incurs little extra overhead on HS in com�
parison to AH� This conclusion is supported by the
observation that the number of messages for the ���
processor execution on HS is ��� of the number of
messages for the ���processor AS execution �see Fig�
ure ����

����� TSP

Figure �� presents speedups for the TSP programwith
a ���city input� This program has a very high compu�
tation to communication ratio� However� as the num�
ber of processors increases� this ratio decreases enough
for the high latency of communication in the AS archi�
tecture to become a bottleneck� Figure �� shows that
the number of messages for the HS architecture is less
than ��� that for the AS architecture� The reduction
is not ��fold because the next processor to access the
queue is more likely to be from another node� Fig�
ure �� shows that the amount of data movement by
HS is about ��� that for AS� The ��fold reduction in
data movement is a result of HS coalescing changes
from di	erent processors on a node into a single di	
�see Section �����

����� M�Water

Figure �� presents speedups for M�Water running �
time steps on ��� molecules� Beyond �� processors�
AH is the only architecture whose speedup improves�
AS obtains a peak speedup of ���� at �� processors�
and HS reaches its peak speedup of ����� at �� pro�
cessors� The performance is poor for the AS architec�
ture because of the large number of synchronization
operations as well as the large amount of data com�
municated� The HS approach gets better performance
primarily because of the reduction in the number of
messages� Also� less data is sent because of the co�
alescing of di	s and the reduction in the amount of
consistency data� Although HS gets a ��fold decrease
in the overall number of messages and a ���fold de�
crease in the amount of data movement compared to
the AS architecture� its performance does not match
AH because the number of synchronization messages
and the wait time to acquire the locks remain high
�see Figure ����

����� Reduced Software Overhead

By optimizing the software structure� as in Pere�
grine ���
� or a user�level hardware interface� as
in SHRIMP ��
� lower software overheads can be
achieved� In this section� we examine the e	ect of re�
ducing both the �xed and per word overheads� Specif�
ically� we examine the e	ect of reducing the 
xed cost
from ���� processor cycles to ��� �as in Peregrine��
and �� �as in SHRIMP�� and the per word cost from
�� processor cycles to �� one bcopy to the interface�

Figures �� and �� present the speedups for SOR
and M�Water on the AS architecture� These show
the smallest and the largest e	ects for reducing the
software overhead� For SOR� the 
xed cost has the
largest e	ect on performance� The resulting speedup
approaches that of the other two architectures� For M�
Water� both the 
xed and per word cost have equal
e	ects on performance�

Figure �� presents the speedups for M�Water on
the HS architecture� Because HS reduces the amount
of data movement more than the number of messages
�compared to AS�� the 
xed cost has a more signi
cant
e	ect than it did for AS�

��� Summary

We conclude that the AS approach does not scale
well for the applications and problem sizes that we
simulated� unless the software overheads are signi
�
cantly reduced� For SOR and TSP� the HS perfor�
mance is almost identical to the AH approach� For
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Water� the frequent synchronization results in inferior
performance for HS compared to AH� Our results are�
of course� limited by the applications we simulated�
Due to simulation time constraints� the problem sizes
are small� The e	ect of larger applications remains to
be investigated�

� Related Work

TreadMarks implements shared memory entirely in
software� Both data movement and memory coherence
are performed by software using the message passing
and virtual memory management hardware� Previous
evaluations of such systems� for example� Carter et

al� ��
 have compared their performance to hand�coded
message passing�

Other related studies have examined software ver�
sus hardware cache coherence� In these studies� the
hardware is responsible for performing the data move�
ment� Upon access� the hardware automatically loads
invalid cache lines from memory� To maintain co�
herency� these schemes require the placement of cache
�ush�invalidation instructions by the compiler or the
programmer at the end of critical sections� Cytron
et al� ��
 and Cheong and Veidenbaum ��
 describe al�
gorithms for compiler�based software cache coherence�
Owicki and Agarwal compare analytically the perfor�
mance of such a scheme to snoopy cache coherence
hardware ���
� Petersen� on the other hand� describes
a software cache coherence scheme using the virtual
memory management hardware ���
� This scheme is
transparent to the programmer� It does not require
the programmer or compiler to insert cache �ush in�

structions� Using trace�driven simulation� she com�
pared the performance of her software scheme on a
shared�bus to snoopy cache hardware�

A few implementations using both hardware and
software have been proposed� Both Chaiken et al� ��

and Hill et al� ���
 describe shared memory implemen�
tations that handle the most common cache coherence
operations in hardware and the most unusual opera�
tions in software� thereby reducing the complexity of
the hardware without signi
cantly impacting the per�
formance�

� Conclusions

In this paper we have assessed the performance
tradeo	s between hardware and software implemen�
tations of shared memory�

For small numbers of processors we have compared
a bus�based shared memory multiprocessor� the SGI
�D����� to a network of workstations running a soft�
ware DSM system� speci
cally the TreadMarks DSM
system running on an ATM network of DECStation�
��������s� An important aspect of this comparison is
the similarity between the two platforms in all aspects
�processor� cache� compiler� parallel programming in�
terface� except the shared memory implementation�

For the applications with moderate synchronization
and communication demands� the two con
gurations
perform comparably� When these demands increase�
the communication latency and the software overhead
of TreadMarks causes it to fall o	 in performance� For
applications with high memory bandwidth require�
ments� the network of workstations can perform better
because it provides the processor with a private path
to memory�

We use simulation to extend our results to larger
numbers of processors� For the sizes of the applica�
tions we considered� a straightforward extension of
the software DSM system scales poorly unless soft�
ware overheads re�ect recent advances in communi�
cation software and hardware� We investigated an
intermediate approach� using a general purpose net�
work and software DSM to interconnect hardware bus�
based multiprocessor nodes� Such a con
guration can
be constructed with commodity parts� resulting in
cost and complexity gains over a hardware approach
that uses a dedicated interconnect and a directory�
based cache controller� For applications with good
locality and moderate synchronization rates� the com�
bined hardware�software approach results in perfor�
mance comparable to that obtained using a pure hard�
ware approach�
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