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Abstract 
The Collaborative Concept Mapping project is a joint research project between IMD and 
EPFL. The goal of the project is to create a collaborative tool that helps managers to define 
business strategies in the face of complex situations. Addressing complex problems requires 
collaboration on models in order to integrate multiple views and create shared understanding. 
Because of the rapidly changing nature of the business world, models have a short life 
expectancy. Managers cannot wait for the creation of the ultimate models before testing them 
in the real world. In order for models to be created and shared by people, a method and a tool 
for building them are needed. In this article we propose a method and a tool that integrate 
systems theory, management learning, and software engineering practices for addressing 
complex problems. 
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Introduction 
“Man's population and gross product are increasing at a considerable rate, but the 
complexity of his problems grows still faster, and the urgency with which solutions must be 
found becomes steadily greater in response to the increased rate of activity and the 
increasingly global nature of that activity. Augmenting man's intellect, in the sense defined 
above, would warrant full pursuit by an enlightened society if there could be shown a 
reasonable approach and some plausible benefits.” (Douglas Engelbart, 1962) 
 
Most real world problems are complex. The rate of complexity tends to accelerate as we put 
together more complex systems. When considering business strategies or new system 
developments, managers and engineers often face complex problems. We need methods and 
tools to approach this complexity but these should be lightweight so that they can be used in 
an action oriented business environment. 
 
In this article we will briefly review the nature of complex problems and ways to address 
them. We will show the need for collaboration and explain our approach, which brings 
together systems theory, management learning, and software engineering. We will then 
shortly describe the collaborative tool we are developing to support our approach. 
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Addressing Complex Problems 
Most real world problems are complex problems. Complex (or wicked) problems have 
several characteristics of which the most important for, our discussion, are: the fact that they 
involve multiple stakeholders who generally do not agree on the problem to solve; they 
require iteration; they “require complex judgments about the level of abstraction at which to 
define the problem,” (Buckingham Shum et al, 1996). 
 
Morin (Morin and Le Moigne 1999) defines the 7 principles of complex thinking. In this 
discussion, we will consider a subset of these principles that describes systems in terms of 
structure and behavior. 
 
Morin describes behavior in terms of feedback and recursive loops. Feedback loops can either 
be negative, moving towards stability, or be positive, moving towards amplification. 
Recursive loops are responsible for the auto-production and auto-organization of the system 
(Morin and Le Moigne 1999, pp. 262, 263). 
 
Morin explains the need for distinguishing and linking. Distinguishing is the act of describing 
the different elements of a system. Linking is the act of describing the relationships that exist 
between the elements. Another principle of complexity is that the whole is more than the 
parts. In other words, we can see things in the system when we have an overview of the 
whole that we cannot see when we consider the parts in isolation (Morin and Le Moigne 
1999, p. 261). These properties of the system are sometime called emergent properties. 
Seeing the whole constituted by the different parts and their relationships is thus necessary. 
 
Weinberg links emergent properties with observers (Weinberg 1975, p. 60): “Properties 
“emerge” for a particular observer when he could not or did not predict their appearance. We 
can always find cases in which a property will be “emergent” to one observer and 
“predictable” to another.” What is obvious for one person is not obvious to another. By 
taking into account the multiple views or perspectives that different people have we are less 
likely to miss important factors. 
 
Thus we can see that collaboration is necessary in order to integrate multiple views. It is also 
necessary for reasons of appropriation. Appropriation is needed because, to define and 
implement a business strategy, teams need to agree on what is to be achieved and how it is to 
be achieved. By participating in the definition of the strategy, people “appropriate” this 
strategy to themselves. They will be more likely to carry out its implementation. 
 
We very often confuse collaboration with communication. Schrage (Schrage 1995) describes 
how collaboration is different from communication. His main thesis is that collaboration 
requires more than just fast and efficient communication. 

The Need for a Shared Space to Support Collaboration 
Schrage shows that the single most important element needed for collaboration is a shared 
space (Schrage 1995, p. 94): “Shared space literally adds a new dimension to conversation, a 
dimension embracing symbolic representation, manipulation, and memory.”…“It takes a 
shared space to create shared understandings.”  A shared space enables several people to 
share a set of artifacts and so to build a model that is an externalization of their shared 
understanding. Thus, the important aspects of a shared space are the symbolic representation, 
the manipulation of this representation, and the ability to memorize and recall it. The 



symbolic representation can be simply text but in order to “distinguish and link” we usually 
resort to spatial, graphical representations. 
 
Economic and environmental constraints encourage people to move to so called distance 
collaboration where collaboration does not happen at the same time and same place but at 
different times and different places (i.e. asynchronously). This places more constraints on the 
shared space required to support collaboration. Whiteboards and notebooks are not sufficient 
anymore. We need tools that enable anytime, anyplace collaboration. 

The Need for an Approach 
Collaboration and its benefits - creativity, shared understanding, shared learning – is not an 
effortless process. It is time-consuming and requires thought before and after action. In 
business settings, we often strive for immediate benefits, which places us in a mode that we 
can call the bias for action. Missing from the bias for action is the need for modeling before 
and debriefing after action. Shared understanding and dealing with complexity will not 
emerge magically out of mere action. At this point, it is useful to introduce the experiential 
model of learning (figure 1) developed at IMD (Gilbert 2000, Strebel et al. 2000, Marchand 
et al. 2000) that can be used to understand how action needs to be complemented to generate 
learning. We generally start by gathering information from our environment. This is followed 
by a conceptualization phase in which we create theories and models, and define a learning 
agenda to confirm or improve our models; this gives us a plan for action. It is followed by 
action and then reflection in which we review our actions with regard to our models and plans 
and learn from them. This kind of reflection is extremely critical to learning. 
 
While there’s no doubt that focusing too much on information gathering, conceptualization, 
and reflection and doing little action is not a good strategy in today’s economy, it is also true 
that only action with none of the other activities may be equally harmful. In fact, what is 
needed is to achieve a balance between information gathering, action, conceptualization, and 
reflection. 
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igure 1. IMD’s experiential learning model 

he experiential learning cycle assumes that each of these learning steps is merely “work-in-
rocess”: information keeps flowing, models pre-exist in the minds of experienced managers 
nd embed hypotheses concerning the effects of future actions, action retains a share of 
xperimenting, and debriefing draws tentative conclusions to be recycled.  
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The experiential learning model should be seen as occurring repeatedly in small iterations 
within the scope of one project or one activity. As we will see later, this leads us to propose 
extreme modeling as a way of rapidly creating models and testing them. 

The Need for a Modeling Technique 
Externalizing one’s knowledge so that it can be shared with others is described by Nonaka 
and Takeuchi (Nonaka et al. 1995) as transforming tacit knowledge into explicit knowledge. 
It is generally believed to be impossible to make all tacit knowledge explicit. Creating models 
is an act of externalizing (or formalizing) knowledge. Shipman and McCall (Shipman and 
McCall 1999) defined a formalization scale. In their model, free text is at the bottom of the 
scale, requiring the least amount of formalization and formal modeling languages are at the 
top of the scale. The difficulty in externalizing knowledge increases, as the tool we use is 
higher on the formalization scale. Not only do we have difficulties in creating models, we 
also have difficulties making our models understandable by other people because of, at least, 
the following reasons: 

•= People externalize knowledge in different abstraction levels. This corresponds to 
Lakoff’s basic level categorization (Lakoff 1987, p. 32). People are generally 
unaware of the basic level at which they operate. While it is fairly easy to externalize 
knowledge at our basic level, it requires much effort to externalize knowledge above 
or below this level (i.e. by generalizing or specializing). 

•= People externalize knowledge in different contexts. The context in which 
knowledge is externalized is very often automatic. People are generally unaware of 
the context in which they externalize knowledge. 

•= People use different words when they refer to the same entity 
•= People use the same words when they refer to different entities 

Our modeling techniques need to have some semantics in them that help people explicit their 
abstraction level and context but these semantics should not make the technique too formal. 
We will need to agree on some form of common vocabulary (i.e. a thesaurus). The discussion 
of a thesaurus is out of the scope of this paper so we will concentrate on the 2 other reasons. 

Concept Maps 
Our first attempt at modeling was based on the creation of concept maps. Joseph Novak 
(Novak and Gowin1984, Novak 1998) and his team developed the concept mapping 
technique in the 1970’s as an aid for science education in schools. Concept mapping is the act 
of creating networks or maps of concepts and describing their relationships. Novak defines 
the term concept as being “A perceived regularity in events or objects, or records of events or 
objects designated by a label” (Novak 1998 p. 22). This definition has the advantage of being 
very general and is thus supposed to enable people to create concept maps with relative ease. 
This apparent simplicity leads to three main problems: 

•= People get stuck in the process of creating a concept map, usually at the beginning or 
after a certain number of concepts were created because of this apparent freedom. 

•= People tend to create shallow concept maps that either describe too little or too much 
and in which the relationships between concepts are rarely named, making it difficult 
to understand their nature. 

•= Concept maps normally describe the state of a system at a certain time but the concept 
mapping technique does not address this subject. Systems are thought of as static 
entities. This is understandable when we remember that concept maps were originally 
designed to convey teachers and students’ understanding of natural science systems, 
which, as they are taught in schools tend to be of fairly static nature. Business 



systems, on the other hand, are highly dynamic thus requiring more than just concept 
mapping techniques to be described. 

•= After a while, the produced concept map tends to be highly complex and frequently 
not understandable by other people. 

System Diagrams 
System diagrams (Senge et al. 1999, Risch et al. 1995) were defined in the field of systems 
thinking. System diagrams were designed to describe behavior rather than structure. They 
show entities linked by events to form negative or positive feedback loops. The structure, 
then, is an implicit property of a system diagram. While they are very useful for modeling 
behavior and for simulation, system diagrams suffer from the very same ills that concept 
maps do, as it is unclear what is a good entity to describe and what are the events that should 
link the entities. 

Argumentation Diagrams 
Argumentation diagrams were designed to help teams to address complex problems by 
making the decision-making process explicit (Buckingham Shum et al, 1996, Conklin and 
Begeman 1988). Argumentation diagrams such as IBIS (Conklin and Begeman 1988) and 
QOC (Buckingham Shum et al, 1996) generally describe problems, ideas with their plus and 
minuses or options, and criteria for selecting between these ideas. While very effective in 
capturing and documenting the decision-making process, argumentation diagrams, do not 
model the structure and behavior of the system.  

Software Engineering Diagrams 
Software engineers have always been preoccupied with the modeling of reality in order to 
produce programs. Recently attempts have been made to move towards a standard modeling 
language which could support business as well as program modeling. This language is called 
the Unified Modeling Language (UML). UML is the standard notation of the Object 
Management Group (OMG 2000), an influential consortium of software engineering 
companies. For our purposes, however, UML has a syntax that is too rich – there are too 
many different kinds of symbols and diagrams and even though it is supposed to be able to 
represent business level diagrams it is too focused on software engineering. This makes it 
very much unusable to non-software engineers. 

Our Approach 
We have shown the need for an approach, a tool supporting the approach, and a modeling 
technique to be supported by the tool. In this section, we present our approach, which is 
based on: 

•= Extreme modeling 
•= Modeling structure and behavior 
•= A collaborative shared space 

Extreme Modeling 
Extreme Programming (Beck 1999) is a software development process that emphasizes, 
among others, the following practices: short development cycles with concrete deliveries to 
clients, pair programming where two developers collaborate side by side to create a program, 
heavy reliance on testing to make sure that the program runs correctly and that new bugs are 
not introduced during changes. 
 



Extreme programming was developed to counter the software development methodologies 
developed during the 1970’s that emphasized the completeness of the analysis and design 
phases before action could be taken - in this instance, programming, testing, and deployment. 
These methodologies are known today as adhering to the waterfall model that is known to 
lead to long development cycles (i.e. inaction) and to produce systems that are not usable and 
do not meet customer expectations and requirements. 
 
As an analogy to Extreme Programming we can say that our approach can be called Extreme 
Modeling. We want to create models that describe useful aspects of the business but we 
cannot take forever to create them, making sure that every little detail is correct before we use 
them. One of the principles of Extreme Programming is that: “Preproduction is an unnatural 
state for a system and should be gotten out of the way as quickly as possible.” (Beck 2000 p. 
131). Similarly, we can say that a model that is not applied or shared is in an unnatural state. 
Our goal, then, is to rapidly create models that can be shared with others, so that they can be 
refined and quite rapidly tested in the real world; thus providing feedback and enabling 
further refinements. 
 
Extreme Programming was designed to address the rapidly changing nature of system 
requirements, which leaves no place for long phases of analysis and design. In our case 
Extreme Modeling is designed to deal with the rapidly changing nature of our business world 
that shortens the useful life expectancy of our models and the potential incorrectness of the 
models we produce. This requires us to continuously test and rework our models in order to 
reflect the changing nature of the reality we observe. 
 
Extreme programming is meant to provide learning as a more adequate solution develops 
(double-loop learning). Extreme modeling, by following the experiential learning approach 
described before, is meant to provide learning as we implement our work-in-progress models. 

Modeling Structure and Behavior 
To avoid the problem of confusion between abstraction levels and contexts, we propose to 
guide people through the model creation process using a framework inherited from system 
science. The advantage in, to our thinking, is that a framework with clearly defined semantics 
will enable people to create models where their abstraction levels and contexts are explicit.  
 
The thought framework we propose is based on the modeling of structure and behavior. 
System theorists generally define a system as a set of objects with interrelations between 
these objects (Von Bertalanffy 1968, p. 55). These relations change over time and thus 
constitute the behavior of the system. We can model the behavior of the system by creating 
models that represent the state of the system in different instants in time. Borrowing a 
definition from the field of software engineering we can say that a state is (ISO/IEC ITU-T, 
1995): “At a given instant in time, the condition of an object or an actor that determines the 
set of all sequences of actions in which the object can take part.” We can understand this as 
the potentiality for action. In order for this potential to exist, an object must know the other 
objects it may interact with. Or to say it in a simpler way (D’Souza and Wills, 1999, p. 50): 
The state of an object is “the information that is encapsulated in it” 
 
We can represent the state of the system with a series of snapshots (D’Souza and Wills, 1999, 
p. 50) each snapshot describing the state of the system at a given instant in time. A snapshot 
will show the set of objects comprising the system and their relationships at that instant.  
 



While it is useful to consider a number of states that are representative of the behavior we are 
trying to model, in most real world settings it is highly impractical to describe all states. The 
states we choose to represent depend on what is important to us. As Weinberg put it “The 
states and structures we choose to observe are purely pragmatic” (Weinberg 1975 p. 61). 
 
Putting together a set of states will give us a view of the activities the objects should engage 
in, in order to move from one state to the next. This description is either a historical account 
of what has happened in the system, or a plan for moving the system to a new state. In the 
latter case, the activities can be viewed as our strategy. Once we have the names of the 
activities, we can define them by describing their pre-conditions and post-conditions. Pre-
conditions are the conditions that must prevail before the activity can be started. Pre-
conditions can be seen as the conditions necessary for the post-conditions to be materialized. 
The pre-conditions of an activity are a subset of the state of the system at the time the activity 
begins and hence are a subset of post-conditions created by past activities. The post-
conditions completely define the state of the system after the activity has taken place. 
Our framework requires 3 modeling entities: 
 

•= A concept is a representation of a real life object. A concept is displayed as a rounded 
rectangle 

•= An activity represents a real world activity involving one or multiple objects. An 
activity is represented as an ellipse. The pre- and post-conditions that define them can 
be attached to them. 

•= A link represents a relationship between two concepts and/or an activity. Links can be 
named to better convey their meaning. 

 
Figure 2 shows a simple example of a problem. We distinguish between objects and 
activities. Objects exist in different states. Let’s consider an extremely simple example of 3 
objects. Object 1 (O1) knows object 3 (O3) and tells object 2 (O2) that O3 exists. We define 
t1 as the time before O1 tells O2 about O3 and t2 after O1 tells O2 about O3. Figure 2 shows 
the resulting model. 
 

     
 
 

 

    
Figure 2. Objects and states 

Based on these snapshots, we can describe the activity that must take place in order for object 
2 to know object 3. Activity A1 is described by its pre and post conditions, which are in a 
document attached to the A1 symbol. 



     
Figure 3. Activities 
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Further Research 
Our next step is to apply our approach to the business system approach to industry analysis so 
as to provide a framework that is more specialized for managers. We will then test our 
framework and tool with EPFL and IMD students in order to draw conclusion as to its 
usefulness and in order to refine it.  

Conclusion 
Our approach is inspired by best practices from systems theory, management learning 
theories, and software engineering. It involves a Web based collaborative-shared space, a 
lightweight method that we call extreme modeling, and a lightweight framework for 
modeling structure and behavior. 
 
The collaboration aspects of our tool are very important. As we have showed earlier, different 
people have different views; they see and model different things. No one can be what 
Weinberg (Weinberg, 1975) calls the super observer: The observer who sees everything and 
who is able to arbitrate between the other views. Hence, all our views are necessarily partial. 
Even combining different views will always yield another partial view. Our hope is that this 
partial view, created by a group of people, will be useful enough to develop a strategy that 
leads to action. 
 
The framework we described can be characterized as a lightweight formal framework. It is 
formal because it imposes specific semantics on the model, objects in various states, actions 
and relationships. It is lightweight because within this format, it leaves the user a great deal of 
freedom in what and how to model. It also uses a very small number of modeling entities, 
which makes it relatively easy to select one or the other without doubting too much whether it 
is right or wrong. In our view this is important if we want managers to be involved in 
business modeling. 
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