
An Integrated Compile-Time/Run-Time
Software Distributed Shared Memory System

S a n d h y a D w a r k a d a s , A l a n L. C o x , a n d W i l l y Z w a e n e p o e l

D e p a r t m e n t o f C o m p u t e r Sc i e nc e

R i c e U n i v e r s i t y

e - m a i l : { s a n d h y a , a lc , w i l l y) @ c s . r i c e . e d u

Abst rac t

On a distributed memory machine, hand-coded message pass-
ing leads to the most efficient execution, but it is difficult to
use. Parallelizing compilers can approach the performance
of hand-coded message passing by translating data-parallel
programs into message passing programs, but efficient exe-
cution is limited to those programs for which precise analy-
sis can be carried out. Shared memory is easier to program
than message passing and its domain is not constrained by
the limitations of parallelizing compilers, but it lags in per-
formance. Our goal is to close that performance gap while
retaining the benefits of shared memory. In other words, our
goal is (1) to make shared memory as efficient as message
passing, whether hand-coded or compiler-generated, (2) to
retain its ease of programming, and (3) to retain the broader
class of applications it supports.

To this end we have designed and implemented an in-
tegrated compile-time and run-time software DSM system.
The programming model remains identical to the original
pure run-time DSM system. No user intervention is required
to obtain the benefits of our system. The compiler com-
putes da ta access pat terns for the individual processors. It
then performs a source-to-source transformation, inserting
in the program calls to inform the run-time system of the
computed da ta access patterns. The run-time system uses
this information to aggregate communication, to aggregate
da ta and synchronization into a single message, to eliminate
consistency overhead, and to replace global synchronization
with point-to-point synchronization wherever possible.

We extended the Paxascope programming environment
to perform the required analysis, and we augmented the
TreadMaxks run-time DSM library to take advantage of the
analysis. We used six Fortran programs to assess the per-
formance benefits: Jacobi, 3D-FFT, Integer Sort, Shallow,
Gauss, and Modified Gramm-Schmidt, each with two dif-
ferent da ta set sizes. The experiments were run on an 8-
node IBM SP/2 using user-space communication. Compiler
optimization in conjunction with the augmented run-time
system achieves substantial execution time improvements in
comparison to the base TreadMaxks, ranging from 4% to
59% on 8 processors. Relative to message passing imple-

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commemial advantage, the copyright notice, the
title o1 the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

ASPLOS VII 10/96 MA, USA
¢) 1996 ACM 0-89791-767-7/96/0010...$3.50

mentations of the same applications, the compile-time run-
time system is 0-29% slower than message passing, while
the base run-time system is 5-212% slower. For the five
programs that XHPF could parallelize (all except IS), the
execution times achieved by the compiler optimized shared
memory programs axe within 9% of XHPF.

1 In t roduct ion

A shared memory programming model for a distributed mem-
ory machine can be implemented either solely by run-time
methods (e.g., [21]) or solely by compile-time methods (e.g.,
[14]). Distributed sha redmemory (DSM) run-time libraries
dynamically detect shared memory accesses, and send mes-
sages accordingly to implement consistency. Compilers use
static analysis of the shared memory access pat terns to gen-
erate a message passing program. Compile-time systems of-
fer bet ter performance for programs with regular access pat-
terns that allow precise analysis, because they avoid much
of the overhead encountered by a run-time system. The
class of programs that allow this precise analysis is, how-
ever, limited. Run-time systems do not suffer from similar
limitations.

In this paper, we demonstrate a combined compile-time
run-time approach that

1. provides the same efficiency as a pure compile-time
approach for regular programs, and

2. retains the same efficiency as pure run-time systems
for programs that defy precise compiler analysis.

In this combined compile-time run-time system, the run-
time library retains its original role of detecting shared mem-
ory accesses and sending messages, if necessary, to main-
tain consistency. The compiler, however, serves a function
very different from its function in a pure compiler-based ap-
proach. In particular, when its analysis is successful, our
compiler does no t generate a message passing program. In-
stead, it inserts in the source program, calls to (an aug-
mented version of) the shared memory run-time library.
Roughly speaking, these calls inform the run-time library of
future shared memory accesses, obviating the need for run-
time detection, avoiding on-demand remote da ta fetches,
and allowing for aggregation of several remote da ta fetches
into a single message exchange. If the compiler analysis
fails, the program is passed on without modification, and
executed with the run-time library as in a pure run-time
system. If the compiler is partially successful, for instance,

186

it can analyze some phases or some da ta structures in a pro-
gram but not others, then those phases or da ta structures
for which analysis succeeds benefit from optimized execu-
tion. In summary, in the combined system, the run-time
library remains the basic vehicle for implementing shared
memory, while the compiler performs optimization rather
than implementation.

Our compiler s tar ts from explicitly parallel shared mem-
ory programs written for lazy release consistency (LRC) [17].
We use regula~ section analysis [13] to determine the shared
data access pat terns between synchronization statements.
The resulting regular section descriptors (RSDs) are used to
identify opportunities for communication aggregation, con-
sistency overhead elimination, merging synchronization and
da ta messages, and replacing global with point-to-point syn-
chronization. The paper presents the following contribu-
tions:

1. An experimental evaluation of the benefit of compiler
support to improve the performance of DSM, includ-
ing a comparison of both optimized and unoptimized
DSM to hand-coded and compiler-generated message
passing.

2. An experimental evaluation of the contributions of the
individual optimizations to the overall performance im-
provement.

3. A comparison of the performance of different run-time
strategies for taking advantage of the da ta access pat-
terns provided by the compiler, in particular, syn-
chronous vs. asynchronous da ta fetching, and combin-
ing aggregation with synchronization.

We extended the Parascope parallel programming en-
vironment [18] to analyze and transform explicitly parallel
programs. We also extended the interface to the Tread-
Marks run-time DSM system [2] to take advantage of the
compiler analysis. We have measured the performance of
these techniques on an 8-node IBM SP/2 for six Fortran ap-
plications: Jacobi, 3D-FFT, Integer Sort, Shallow, Gauss,
and Modified Gramm-Schmidt, with two da ta sets for each
application. This selection includes applications that can
be expressed in a da ta parallel language and parallelized ef-
ficiently by a pure compile-time approach. This does not
undo our case for compiler support for explicitly paraJlel
DSM programs. Explicit parMlelism provides a more gen-
eral programming model than da ta parallel programs, allow-
ing the expression of applications that would be difficult or
impossible to express in a da ta parallel language. For this
more general model to be viable, however, it must provide
performance competitive with that of parallelizing compilers
for da ta parallel programs. This is exactly one of the areas
in which explicitly parallel DSM programs have been lag-
ging [22]. Our claim is that compiler support for explicitly
paraJJel DSM programs can close this performance gap for
da ta parallel programs, while the underlying DSM system
still retains the advantage of being able to support a wider
class of applications.

Compiler optimization in conjunction with the augmented
run-time system achieves substantial execution time improve-
ments in comparison to the base run-time system, ranging
from 4% to 59% on 8 processors. Relative to message pass-
ing implementations of the same applications, the base run-
time system is 5-212% slower, while the compile-time run-
time system is only 0-29% slower. For the five programs that
XHPF could paraJlelize, the execution times achieved by the
compiler optimized shared memory programs are within 9%

of XHPF. IS was not amenable to parallelization by XHPF
because of an indirect access to the main array, and repre-
sents an example where partial compiler analysis is benefi-
cial.

On our platform and up to 8 processors, communication
aggregation and consistency elimination were the most ef-
fective optimizations, in that order. Combining da ta with
synchronization operations is useful when the da ta is small
enough in size such that it can be piggy-backed on the syn-
chronization, or when da ta can be broadcast at a barrier.
With large da ta sizes, it is bet ter to delay the da ta fetch un-
til after the synchronization operation, because there is no
longer any significant reduction in the number of messages
and there is some processor overhead involved in combin-
ing da ta aggregation and synchronization (see Section 3.3).
Asynchronous da ta fetching improved performance more than
synchronous fetching.

The methods described in this paper generalize to soft-
ware DSM systems other than TreadMarks. Every soRware
DSM system must contend with the same issues of message
cost, read latency, false sharing, and consistency mainte-
nance. The methods for dealing with these issues may differ
in other systems, and the relative values of the improve-
ments obtained by compiler support may differ as well, but
the methods remain applicable.

The outline of the rest of this paper is as follows. Sec-
tion 2 motivates the approach using a comparison of the
performance of shared memory and message passing. Sec-
tion 3 describes the augmented run-time interface. Section 4
presents the compiler analysis used to generate calls to the
augmented run-time. Section 5 describes the experimental
environment in which the measurements were made. Sec-
tion 6 presents the performance results. Finally, we survey
related work in Section 7 and conclude in Section 8.

2 Motivation

DSM provides a shared memory abstra~:tion on distributed
memory machines. We focus here on explicitly parallel sys-
tems that provide a load-store interface to memory, and that
do not require annotations (e.g. [6]) or access to shared mem-
ory through object methods (e.g. [~]). Various techniques
have been used to optimize the performance of such DSM
systems. To make this discussion specific, we describe the
techniques used in TreadMarks [2].

TreaxiMarks uses lazy release consistency [17] to reduce
communication and consistency overhead. Lazy release con-
sistency delays consistency-related communication until the
time of an acquire synchronization operation [10]. In Tread-
Marks, which uses locks and barriers for synchronization,
an acquire corresponds to a lock acquisition or to a depar-
ture from a barrier. At that time, the acquiring processor is
informed by write notices of modifications to shared pages.
TreadMarks uses an invaJidate protocol: the write notices
cause the corresponding pages to be invalidated, resulting
in a page fault at the time of access. The write notices in-
form the faulting processor whom it needs to communicate
with to get the necessary modifications to the page. Tread-
Marks uses a multiple-writer protocol, retrieving digs [8] at
the time of an access miss rather than whole pages. Digs
are produced by the TreadMarks write detection mechanism.
Initially, a page is write-protected. When a processor first
writes to the page, it incurs a protection violation and Tread-
Marks makes a twin, a copy of the unmodified page. When
the modifications to a page are requested by a remote pro-
cessor, the twin is compared to the modified copy to create

187

a diff containing the changes. This diff is transmitted to the
faulting processor and merged into its copy of the page. In
addition to reducing communication, multiple writer proto-
cols have the benefit of reducing false sharing overheads by
Mlowing multiple concurrent writers [8].

Recent studies (e.g., [22]) have shown that, for relatively
coarse-grained applications, software DSM provides good
performance, Mthough there still remains a sizable gap be-
tween the performance of DSM and message passing for
some applications. In particular, in a comparison of PVM
and TreadMarks on a network of workstations [22], a number
of issues were identified as contributing to the performance
gap between TreadMarks and PVM: absence of bulk data
transfer, separation of synchronization and data movement,
consistency overhead, and false sharing. The thesis of this
work is that for many applications these shortcomings can
be overcome by adding compiler anaJysis. We focus here
on the first three performance issues; false sharing is not
directly addressed in this paper. Compiler transformations
to reduce false sharing in shared memory programs are dis-
cussed elsewhere [12, 16].

We illustrate the performance differences between mes-
sage passing and DSM with a simple example, the Jacobi
program. Jacobi is an iterative method for solving par-
tim differential equations, with nearest-neighbor averaging
as the main computation. A shared memory version of a
parallel Jacobi appears in Figure 1. To simplify the discus-
sion, we assume that there is no false sharing, i.e., boundary
columns start on page boundaries and their length is a mul-
tiple of the page size (Our methods work in the presence of
false sharing. This simplification is for explanatory purposes
only). Processes arrive at B a r r i e r (2) at the end of each it-
eration, resulting in 2(n - 1) messages with n processors. At
the departure from the barrier, pages containing elements
of the boundary columns are invalidated on the neighboring
processors. When a processor accesses a page in one of its
neighbor's boundary columns in the first half of the next
iteration, it takes a page fault, which causes TreadMarks to
fetch a cliff from its neighbor. With m pages in a bound-
ary column, the result is 4 m (n - 1) messages. In addition,
there are another 2 (n - 1) messages at B a r r i e r (l) that ends
the first half of the iteration. Finally, there is consistency
overhead for write detection during the second half of the
iteration, including memory protection operations, memory
protection violations, twinning and diffing. In a message
passing version of Jacobi, at the end of an iteration, each
processor sends two messages: one to each of its neighbors
containing the boundary column to be used by that neigh-
bor in the next iteration. It waits to receive the boundary
columns from its neighbors, and proceeds with the next it-
eration. The result is only 2(n - 1) messages per iteration
for the message passing program. A parallelizing compiler
can achieve the same performance for Jacobi.

Compiler analysis and transformation can substantially
reduce the number of messages and the consistency over-
head for the Jacobi DSM program. First, by intersecting
the sections of data written by individual processors be-
fore B a r r i e r (2) and read afterwards, the compiler recog-
nizes that B a r r i e r (2) can be replaced by a Push point-
to-point message exchange between neighboring processors.
The Push eliminates barrier overhead and pushes the data
rather than pulling it. Second, the compiler can determine
that during the second half of the iteration a processor writes
all elements of the pages in its assigned section of the array.
It inserts a V a l i d a t e for that section with a WRITE_ALL argu-
ment, which causes the run-time no t to make twins and diffs

do k = I,I00
do j = begin,end

do i = 2,8-1
a(i,j) = 0.25 *
(b(i-i,j)+b(i+l,j)+b(i,j-1)+b(i,j+l))

enddo
enddo
ca l l Barr ier (t)
do j = begin,end

do i= I,M
b (i , j) = a (i , j)

enddo
enddo
call Barrier(2)

enddo

Figure 1: Pseudo-code for the TreadMarks Jacobi program:
The variables begin and end are used to partition the work
among the processors, with each processor working on a
different partition of the shared array b.

do k = 1,100
do j = b e g i n , e n d

do i = 2,8-1
a(i , j!) = 0.25 *
(b (i - l , j) + b (i + l , j) + b (i , j - 1) + b (i , j + l))

enddo
enddo
call Barrier(I)
ca l l Validate(b[1,R:begin,end], MRITE_ALL);
do j = begin,end

do i= 1,M
b(i,j) = a(i,j)

enddo
enddo
call Push(b[l,M:begin(p)-l,end(p)+l],

b[1,M:begin(p),end(p)])
enddo

Figure 2: Pseudo-code for the transformed Jacobi program:
A Validate has been inserted, and Barrier(2) has been
replaced by Push. In the arguments to Push, the dependence
of be g i n and end on the processor number p has been made
explicit.

for these pages, eliminating consistency overhead. Figure 2
shows the transformed program. While not all overhead is
eliminated, the reduction is nonetheless substantiM.

The next sections generalize the ideas outlined in this
example. We describe in detail the augmented run-time in-
terface, the compiler analysis, and the resulting source-to-
source transformations.

3 Augmented Run-Time System

The run-time system was augmented in order to take ad-
vantage of program access pattern information provided by
the compiler. Section 3.1 and Figure 3 describe the compiler
interface. Section 3.2 and Figure 4 describe the underlying
communication aald consistency primitives.

3.1 Interface

There are two primary interfaces between the compiler and
the run-time system: V a l i d a t e and Push. The compiler
passes describes the data accessed to the run-time system in

188

/* | i s t h e number o f p r o c e s s o r s *
/ * P i s t h e p r o c e s s o r i d * /

V a l i d a t e (s e c t i o n , a c c e s s _ t y p e)
{

case (a c c e s s _ t y p e) of

/ * p r e s e r v e s c o n s i s t e n c y * /

READ:
WRITE:
READkWRITE:

F e t c h _ d i f f s (s e c t i o n) ; A p p l y _ d i f f s (s e c t i o n) ; W r i t e _ p r o t e c t (s e c t i o n)
F e t c h _ d i f f s (s e c t i o n) ; A p p l y _ d i f f s (s e c t i o n) ; C r e a t e _ t w i n s (s e c t i o n) ; W r i t e _ e n a b l e (s e c t i o n)
F e t c h _ d i f f s (s e c t i o n) ; A p p l y _ d i f f s (s e c t i o n) ; C r e a t e _ t w i n s (s e c t i o n) ; W r i t e _ e n a b l e (s e c t i o n)

/ * does not preserve consistency - compiler analysis must be exact * /

WRITE_ALL:
READkWRITE_ALL: Fetch_dills(section); Apply_dills(section);

W r i t e _ e n a b l e (s e c t i o n)
W r i t e _ e n a b l e (s e c t i o n)

V a l i d a t e _ w _ s y n c (s e c t i o n , a c c e s s _ t y p e)
{

/ * Uses Fetch_diffs_w_sync i n s t e a d of Fetch_dills.
}

O t h e r w i s e , i s i d e n t i c a l t o V a l i d a t e . * /

/ * does no t p r e s e r v e c o n s i s t e n c y - c o m p i l e r a n a l y s i s mus t be e x a c t * /

Push (r _ s e c t i o n [O . . | - l] , w _ s e c t i o n [O . . | - l])
{

f o r a l l p r o c e s s o r s i != P
i f (r_section[i] intersect w_section[P] != empty)

s e n d (r _ s e c t i o n [i] i n t e r s e c t w _ s e c t i o n [P]) t o i

f o r a l l p r o c e s s o r s i != P
i f (w _ s e c t i o n [i] i n t e r s e c t r _ s e c t i o n [P] != empty)

r e c e i v e f rom i

Figure 3: Augmented run-time interface

/ * P o i n t - t o - p o i n t commun i ca t i on p r i m i t i v e s * /

F e t c h _ d i l l s (S e c t i o n)
{

for all pages i n S e c t i o n
determine the set of write notices without dlffs

s end r e q u e s t f o r d i l l s by w r i t e n o t i c e
}

F e t c h _ d i f f s _ w _ s y n c (S e c t i o n)
{

for all pages in Section
determine the current timestamp for that page

a t s y n c h r o n i z a t i o n t i m e
s e n d r e q u e s t f o r d i l l s by t i m e s t a m p

on s y n c h r o n i z a t i o n r e q u e s t

A p p l y _ d i l l s (S e c t i o n)
{

r e c e i v e dills

apply dills t o pages in Section
}

/ * C o n s i s t e n c y p r i m i t i v e s * /

C r e a t e _ t w i n s (S e c t i o n)
{

f o r a l l p a g e s i n S e c t i o n
c r e a t e a t w i n

}

W r i t e _ e n a b l e (S e c t i o n)
{

f o r a l l p a g e s i n S e c t i o n
i n s e r t page i n t o d i r t y l i s t
e n a b l e w r i t e a c c e s s f o r t h e page

}

W r i t e _ p r o t e c t (S e c t i o n)
{

f o r a l l p a g e s i n S e c t i o n
d i s a b l e w r i t e a c c e s s f o r t h e page

}

Figure 4: Run-time communication and consistency primitives

189

the form of sections, or so called regular sections [13] (for a
precise definition, see Section 4)

3.1.1 Validate

Validate and its variant, Validate.~_sync, take two param-
eters: a section and the access pattern, access_type, to that
section, access_type is one of READ, NRITE, READ&NRITE,
NRITE_ALL, or READ&NRITE.ALL. In essence, the first three
access types enable the compiler to reduce execution over-
head by bypassing, but not disabling, the page-fault based
consistency mechanisms. For all three access patterns, the
run-time system fetches the diffs to update the pages and
applies them. For READ, it write-protects the page, whereas,
for NRITE and READ~tNRITE, it makes a twin and enables write
access to the page.

In contrast, the last two access types disable the con-
sistency mechanisms. WRITE_JiLL indicates that the entire
section is written before it is read. Consequently, the run-
time system need not make the pages within the section
consistent. In other words, it can avoid fetching the diffs to
update the pages. Furthermore, since the entire contents of
every page will be overwritten, it need not twin or cliff any
of the pages. Finally, READ&NRITEALL indicates that the en-
tire section is written, but at least part of the section is read
before it is written. Therefore, while the run-time system
must fetch the data to update the pages, it need not twin
or diff the pages.

The only distinguishing feature of the ValidateJ_sync
variant is that it piggy-backs the request for diffs on the next
synchronization operation.

3.1.2 Push

Push is used to replace a barrier and to send data to a pro-
cessor in advance of when it is needed. The arguments to
Push are the sections of data that are written by individ-
ual processors before the barrier and read after the barrier.
Push on processor P computes the intersection of the sec-
tions written by P with those that will be read by the other
processors and sends the data in the intersection to the cor-
responding processor. P then computes the intersection of
the sections written by other processors with the sections
that will be read by P, and posts a receive for that data.
Push guarantees consistency only for the sections of data
received through the Push. The rest of the shared address
space may be inconsistent until the next barrier. Push can
be used only if the compiler has determined with certainty
that the program does not read the regions of shared data
left inconsistent. This directive provides the capabilities of
a message passing interface within a shared memory envi-
ronment. The run-time system ensures that if a global syn-
chronization separates the current phase from the rest of the
program, all data is made consistent on all processors after
that global synchronization. Unlike Validate, Push receives
data in place; it does not first receive the incoming message
in diff space and then apply the diff.

3.2 Run-Time Primitives

3.2.1 Communication Primitives

Three primitives are used by the higher-level compiler inter-
face routines to implement communication. The first two,
Fetch_dills and Fetch_diffs_w_sync, each take a section as
their argument, and direct the run-time to fetch the modi-
fied data in that section. Several sections can be fetched at

the same time. In a Fetch_diffs_w_sync the fetch request
is piggy-backed on the next synchronization request. In the
case of a lock acquire, the requested data is piggy-backed on
the response. The third primitive, Apply_di l l s , enables the
processor to walt for the completion of a F e t c h _ d i l l s or a
F e t c h _ d i f f s j _ s y n c , and applies the diffs.

F e t c h _ d i l l s first converts the section arguments to a list
of pages. For all of those pages, F e t c h _ d i l l s then finds the
set of write notices whose timestamps dominate the times-
tamp of the local copy of the page. Next, it determines for
which write notices in that set it does not have the cor-
responding diffs, and requests those diffs from the appro-
priate processors. Each of those processors returns all the
requested diffs in a single response message.

Since a Fetch~diffs_w_sync is sent before synchroniza-
tion completes, the processor is not aware of all modifica-
tions to shared data, because it has not yet received write
notices for the latest intervals. Hence, the sections given
as arguments to the Fetch_diffsj_sync call are sent along
with the synchronization request. This message is sent to
the last releaser in the case of a lock or to all other pro-
cessors in the case of a barrier (by piggy-backing the infor-
mation on the barrier arrival message to the master, and
then forwarding it on the barrier departure messages from
the master). The processor also includes the current vector
timestamps [17] for the pages in the sections requested to
allow other processors to determine what diffs it has and has
not seen. These other processors then determine what diffs
to communicate to the acquirer. Diffs for the pages in the
section with write notices that dominate the page's times-
tamp are aggregated into a single message and sent to the
acquirer. Only the diffs present locally are sent. Other diffs
cause an access miss on the acquirer and are faulted in.

Fetch.diffs_w_zync results in additional overhead com-
pared to Fetch_dif fs , especially at a barrier, since each pro-
cessor must examine potentially large address ranges that it
did not necessarily modify. Whether to perform data ag-
gregation with or after synchronization is therefore depen-
dent not only on the ability to analyze the code and move
the fetch call up to the synchronization point, but also on
whether the savings in messages compensate for the addi-
tional run-time overhead.

When used with a barrier, Fetch_dif fs_w_sync uses broad-
cast if the processor can determine that it sends the same
data to all other processors.

3.2.2 Consistency Primitives

Three primitives are used by the higher-level compiler inter-
face routines to implement consistency. All of the primitives
take a section as their sole argument. The first, Create_twins,
makes a twin of every page within the section. The last two
primitives, Write_enable and Write.protect, enable or dis-
able write access to every page within the section. In addi-
tion, Write_enable places all of the pages within the section
on the processor's dirty page list.

3.2.3 Synchronous Vs. Asynchronous Communication

Validate, Validate.~_sync, and Push may be performed ei-
ther synchronously or asynchronously. Figure 3 only shows
the synchronous interface. The asynchronous version of
Validate only calls Fetch_dills. The processor continues
executing until the next page fault. At that time, the re-
mainder of the synchronous Validate is executed in the page
fault handler. The asynchronous versions of ValidateJ_sync
and Push work similarly. Asynchronous communication is

190

likely to outperform synchronous communication if there is
some computation between the fetch and the first access to
the shared data.

3.3 Implementation and Limitations

The implementation of the interface was done in conjunction
with TreadMarks [2]. Although in the above we specified the
parameters to the augmented run-time system calls as sec-
tions, this is done for ease of explanation only. To reduce
run-time overhead, in the actual implementation these sec-
tion parameters are translated by the compiler into a set
of contiguous address ranges. Furthermore, our implemen-
tation currently supports only the synchronous version of
Push.

4 Compiler Analysis

In our analysis we deal with explicitly parallel programs
written for an LRC memory model. This observation consid-
erably simplifies the analysis. With lazy release consistency,
consistency is enforced only at an acquire. For instance,
for an invalidate protocol as used in TreadMarks, all in-
validations happen at the time of an acquire. As a result,
any data item that is accessed after an acquire al but be-
fore the next acquire a2 can be fetched immediately after al.
Such a fetch always returns the correct value, and never gets
invalidated before it is accessed. Also, since we are fetch-
ing into memory (and not into cache), there is no issue of
replacement of fetched data, as with non-binding prefetch-
ing. Our compiler analysis therefore focuses on regions of
code between two consecutive synchronization statements.
It determines the set of accesses made in such a region, and
inserts a Va l ida t e for the corresponding data immediately
after the first acquire. In practice, limitations of the analy-
sis may restrict the extent to which we can implement this
general principle. For instance, the presence of conditional
statements or - - in the absence of interprocedural analysis
- - procedure calls may limit the region of code for which we
can analyze the shared memory access patterns. The corre-
sponding Va l ida t e is then inserted at the beginning of this
region. The algorithms used by the compiler are detailed
below.

4.1 Access Analysis

In the following, let V be the set of shared variables, let S be
the set of all synchronization operations in the program, and
let F be the set of "possible fetch points", the locations in
the program where a Va l ida t e or a Push may be inserted.
F includes the set S, but in addition includes conditional
statements, and, in the absence of interprocedural analysis,
procedure calls.

Access analysis generates a summary of shared data ac-
cesses associated with each element of F, and the type of
such accesses. Our main tool is regular section analysis [13].
Regular section descriptors (RSDs) are used as the represen-
tation to concisely provide information about array accesses
in a loop nest. The RSDs represent the accessed data as
linear expressions of the upper and lower loop bounds along
each dimension, and include stride information.

For each statement p in the program,

1. Determine the set Fp,.ec(p) of all possible fetch points
in the program that directly precede the statement.
This is done by traversing the control flow graph to
determine all the possible control flow directions that

2.

contain a fetch point that could precede the state-
ment. Determine the set Ss~,~c(p) of all synchroniza-
tion points in the program that directly succeed the
statement.

For each statement f in the set Fprec(p),

(a) Determine the location of the outermost loop that
encloses p but not f or any member of the set
S (p).

(b) Construct a section for each definition or refer-
ence in p to a variable in V. Associate a {read}
or {write} tag with the section depending on the
access type.

(c) Perform a union of the resulting section, including
the tag, with the other sections that have already
been generated for f . A union of the tags {read}
and {write} is {read, write}.

(d) Determine the reaching definitions for each refer-
ence to a variable in V. If this definition occurs
after the fetch point but before the use, add the
attribute w r i t e - f i r s t to the tag. A section that
is written but never read will always acquire the
tag {write, write-first}.

4.2 Transformations

For each element f of F

1. If f is a barrier, determine the set Fpr~(f) of elements
of F that immediately precede f , and the set Fs,,¢~(f)
of elements of F that immediately succeed f .

2. If Fvr¢~(f) contains one and only one barrier, F , ~ c (f)
is non-empty and contains only barriers, the sections
associated with Fnr~(f) and f are exact representa-
tions of the data accessed, and the sections associated
with Fp~c(f) contain write accesses, then

• replace f with a Push, passing as arguments, the
read sections of f , and the write sections of Fnr~¢(f
in terms of processor identifiers.

else

• If the section is exact, tagged as {read, wri te}
but not {read, w r i t e , w r i t e - f i r s t } , and refers
to a contiguous range of addresses, then insert a
Va l ida t e at f with the section and access type
READJRITEALL. If the section is exact, the tag
contains the attribute w r i t e - f i r s t , and refers to
a contiguous range of addresses, insert a Va l ida te
at f with the section and access type WRITE_~LL.

else

• If f is a synchronization statement, then insert a
Validate.~_sync, specifying the sections and the
access type, just before f . Although it is always
correct to insert a Validate.~_sync under these
conditions, we will see in Section 6 that it is some-
times better to insert a Va l ida t e after f .

else

• If the section is not unknown (compiler could not
analyze the access pattern), insert a Va l ida te at
f , specifying the section and the access type.

191

4.3 Examples

We illustrate the analysis with the Jacobi example in Fig-
ure 1. In this example, V is the array b, and both F and
S contain the barriers 1 and 2, which we will denote b l and
b2.

For statement pl, the assignment to a (i , j) , Fp~**(pl)
contains b2, and S (/91) contains b l . For each reference
to the array b in the righthand side, a section with a {read}
tag is constructed, of the form [1, M - 2 : begin, end], [3, M :
begin, end], [2, M - 1 : begin - 1, end - 1], and [2, M - 1 :
begin + 1, end + 1] respectively. Each of these sections is
added to the union of the sections for b2, resulting in a final
section with ~ {read} tag and of the form [1, M : begin -
1,end + 1]. For p2, the assignment to b (i , j) , Fprec(p2)
contains b l , and Fs~,,,(p2) contains b2. The assignment to
the array causes a section with a {write} tag of the form
[1, M : begin, end] to be constructed.

Going next to the transformation phase, for b2, the con-
ditions for a Push are satisfied, and b2 is replaced by a Push.
For b l , we have a {wr i t e , w r i t e - f i r s t } section spanning
a contiguous range of addresses, so we can insert a Va l ida t e
after b l , with an access type of WRITE_ALL.

In the Jacobi example, analysis is precise: the compiler
can determine exactly what data is reaA or written by what
processor. In such a case it is also possible for the compiler
to directly generate a message passing program. As will be
seen in Section 6 the performance of this strategy and ours
are very similar. Our methods can, however, also be applied
to applications for which analysis cannot be made precise.
The IS program from the NAS benchmarks [4], discussed
in more detail in Section 6, provides a good example. Here
a large sub-array is passed between processors under the
control of a lock. Our analysis creates a section for the
sub-array and issues a V a l i d a t e when the lock is acquired,
resulting in significant performance improvement. In order
for the compiler to generate a message passing program, it
would in addition need to determine which processor last
held the lock and wrote the data. This information is not
available at compile-time. The sequential program also has
an indirect access to the main array. Hence, it is difficult to
express this program in a data parallel style.

4.4 Implementation and Limitations

We implemented the analysis using the Parascope paralleliz-
ing environment [18]. We modified the Parascope analysis
to work on explicitly parallel programs written for the re-
lease consistency model. We added passes to recognize syn-
chronization calls, and to generate data access summaries at
each of these calls. Our current framework does not perform
inter-procedural analysis. All shared variables must be allo-
cated in a single common block named shared_common. Our
regular section analysis handles only indices that are depen-
dent on zero or one induction variable. The loop bounds
can themselves be linear functions of variables.

5 Experimental Environment and Applications

Our experimental environment is an 8-processor IBM SP/2
running AIX version 3.2.5. Each processor is a thin node
with 64 KBytes of data cache and 128 Mbytes of main mem-
ory. Interprocessor communication is accomplished over the
IBM SP/2 high-performance two-level cross-bar switch. Un-
less indicated otherwise, all results are for 8-processor runs.

We used six Fortran programs: IS and 3D-FFT from the
NAS benchmark suite [4], the Shallow benchmark, and Ja-

Application

Jacobi- 4Kx4K

Data set size

4096x4096
Jacobi- 1KxlK 1024x1024

3D-FFT - 6x6x6 26 × 28 × 28
3D-FFT - 5x6x5 25 × 26 × 25

Shallow - 1KxlK
Shallow - 1Kx.5K

i

1S - 23-19
IS - 20-15

Gauss- 2Kx2K

1024x1024
1024x512
N-~- 223,Brnax = 219
N = 22°, S m a x = 215
2048x2048

Gauss- 1KxlK 1024x1024

MGS - 2Kx2K 2048x2048
M G S - 1KxlK 1024x1024

Time
(secs)
288.3

17.7

9.5
2.3

74.8
36.9

91.2
3.9

3344.8
271.5

449.3
56.4

Table 1: Applications, data set sizes, and uniprocessor exe-
cution times

cobi, Gauss, a nd Modified Gramm-Schmidt (MGS), three
locally developed benchmarks. For each application, we use
two data set sizes to bring out any effects from changing
the computation to communication ratio. Table 1 describes
the data set sizes and the corresponding uniprocessor exe-
cution times. Uniprocessor execution times were obtained
by removing all synchronization from the TreadMarks pro-
grams; these times were used as the basis for speedup figures
reported later in the paper.

We present the performance of these applications in four
different versionsi

1. The base TreadMarks program executing with the base
TreadMarks run-time system.

2. The compiler-optimized TreadMarks program execut-
ing with the augmented TreadMarks run-time system.

3. A message passing version automatically generated by
the Forge XHPF compiler [3] from Applied Parallel
Research, Inc. (APR). The results for the XHPF corn-
plier are provided in order to compare performance
against a commercial parallelizing compiler for data-
parallel programs.

4. A hand-coded PVMe message passing [9] version. The
results for PVMe are included to estimate the best
possible performance that can be achieved on this plat-
form.

All four systems underneath use IBM's user-level Mes-
sage Passing Library (MPL). The minimum roundtrip time
using send and receive for the smallest possible message
is 365 #seconds, including an interrupt. 1 In TreadMarks,
the minimum time to acquire a free lock is 427 pseconds.
The minimum time to perform an 8-processor barrier is
893 /tseconds. Under AIX 3.2.5, the time for both page
faults and memory protection operations is a hnear function
of the page number and the number of pages in use. For
instance, the memory protection operation time can vary
between 18 and 800 #seconds with 2000 pages in use.

1Although substlantially faster round-trip times are possible if in-
terrupts are disabled, interrupts are required to implement lock and
page requests in TreadMarks. For XHPF and PVMe interrupts were
disabled.

192

Q)

8

6

4

2

0 I I
,4 ,4
,1¢

~, ,

0 0
o <

i II
I I I I I I

to to ~ ~ o~ to ~ ~ ~

u. u. g) g) 0 0

-i- -l-
ff) m

Application % segv % msg % data

Jacobi-4Kx4K 100.0 79.9 -2312
Jacobi- lKxlK 100.0 49.7 -614

3 D - F F T - 6x6x6 100.0 70.6 0.8
3 D - F F T - 5x6x5 99.2 44.0 46.3

Shallow- 1KxlK 86.9 56.4 3.5
Shallow - 1Kx.5K 85.0 47.6 3.2

IS - 23-19 99.5 96.5 58.9
IS - 20-15 90.1 60.7 66.3

Gauss = 2Kx2K 100.0 40.0 0.1
Gauss = 1KxlK 100.0 25.0 0.4

MGS - 2Kx2K 100.0 53.5 0.2
MGS - 1KxlK 100.0 29.0 40.5

Table 2: Percentage reduction in page faults ("segv'), mes=
sages ("msg"), and data ("data") for the compiler-optimized
version of TreadMarks in comparison to the base version of
TreadMarks

I lTmk ~lOpt-Tmk F~XHPF i pvMe

Figure 5: Comparison of TreadMarks, best compiler opti-
mized version of TreadMarks, XHPF, and PVMe. The IS
bar is missing for XHPF because it cannot parallelize IS.

6 Results

6.1 Overall Results

Figure 5 shows the speedups achieved for all applications in
their four different scenarios: base TreadMarks, compiler-
optimized TreadMarks, APR's XHPF, and PVMe. The
numbers for the compiler=optimized TreadMarks version re-
flect the gains achieved by the most sophisticated level of
analysis possible for each application and by the best choice
of run-time support. There are no entries for IS using XHPF
in the figure. XHPF cannot parallelize IS because of an in-
direct access to the main array in the computation.

Table 2 shows the percentage reduction in the number of
page faults, the number of messages, and the amount of data
in the compiler-optimized version of TreadMarks compared
to the base version.

Compiler optimization achieves substantial execution time
improvements in comparison to the base TreadMarks, rang-
ing from 4% to 59%. 2 For programs for which base Tread-
Marks achieves relatively good speedups (Jacobi, Shallow,
Gauss, and MGS), the execution time improvements are
moderate, 4% to 16%. For the two programs (IS and 3D-
FFT) for which base TreadMarks performs poorly compared
to message passing, execution time improvements are quite
large, ranging from 48% to 59%. Table 2 shows that the
optimized programs have almost all their page faults elim-
inated for our test programs. The number of messages is
reduced from 25-96%. The amount of data transferred dif-
fers only in the case where TreadMarks sends multiple diffs
per page (MGS and IS) or where false sharing is eliminated
by using Push to replace barriers (3D-FFT).

For four out of the six programs, the execution times

2Percen tage improvements are ca lcu la t ed by the formula (b a s e -

opt) + base.

for the compiler optimized shared memory programs are
within 0-17% of the PVMe message passing programs. For
IS, the difference is larger, 17% or 29%, depending on the
data set. This result is a substantial improvement over the
base TreadMarks shared memory programs, which lag be-
hind the PVMe execution time by 5-14% in the best case
(Gauss) and by 181-212% in the worst case (IS).

For the five programs that XHPF could parallelize, the
execution times achieved by the compiler optimized shared
memory programs are within 0-9% of XHPF.

6.2 Detailed Discussion of Applications and Optimizations

Figure 6 presents a detailed breakdown of the performance
of each application under different levels of optimization.
XHPF and PVMe results are also presented for compari-
son. For each of the applications we show speedups under
the following scenarios: 1) TreadMarks, 2) communication
aggregation, 3) communication aggregation and consistency
overhead elimination, 4) if applicable, communication aggre-
gation, consistency overhead elimination, and merging data
with synchronization, and 5) if applicable, the Push opti-
mization. Communication aggregation reduces the number
of messages by combining multiple page transfers into a sin-
gle message. Consistency overhead elimination reduces the
write detection overhead: twinning, diffing, and page pro-
tection. The Push optimization eliminates synchronization
overhead in addition to reducing the number of messages
and eliminating consistency overhead.

The J a e o b i program was described in Section 2. All lev-
els of optimization can be applied to Jacobi. The compiler
optimized program shows a 10-16% improvement in execu-
tion time over the base TreadMarks and is within 8% of the
execution times of the XHPF and PVMe versions.

For the 4096x4096 data set, Jacobi derives most of its
improvement from communication aggregation, because of a
significant reduction in the number of messages (from 13.8k
to 2.7k). There is only a small added benefit from con-
sistency elimination, because the reduced number of mem-
ory protection operations, twins and diffs is offset by the
increase in the amount of data transmitted (see Table 2).
With diffing, only the data whose values change actually
get transmitted. In this case, since the internal elements
of the matrix are initially zero, a large part of each page

193

JACOBI-4Kx4K
I

JACOBI-1KxlK

~- 3' -g

3D-FFT-6x6x6 3D-FFT-5x6x5

• Base
[] Comm. Aggr.
[] Comm. Aggr+Cons. Elim
~'~ Sym>t.Data Merge

[] Push
[]XHPF
[]PVMe

• Base
[] Corn m. Aggr.
[] Comm. Aggr+Cons. Elim
[] Syno+Data Merge

[] Push
[] XHPF
[] PVMe

i |

2 |
0 I

IS-23-19

|
|

IS-20-15

8 =

7-
6-
5 -

2

1

0
SHALLOW-1KxlK

Bll

SHALLOW-1Kx.5K

• Base [] Push-not appl.
[] Comm. Aggr. [] XHPF-not appl.
[] Comm. Aggr+Cons. Elim [] PVMe
[] Sync+Data Merge

• Base
[] Comm. Aggr.
[] Comm. Aggr+Cons. Eiim
[] Syrm+Data Merge-not appl.

[] Push-not eppl.
IL~XHPF
~PVMe

7

6

5

='4 ~3
2

1

I
GAUSS-2Kx2K GAUSS-1 KxlK

8 :

7.:

s ~

3-

2~
I

0

r m

MGS-2Kx2K

[]

H
MGS-1KxlK

• Base [] Push-not appl. • Base [] Push-not appl.
[] Comm. Aggr. [] XHPF [] Comm. Aggr. [] XHPF
E~] Comm. Aggr+Cons. Elim • PVMe [] Comm. Aggr+Cone. Elim • PVMe
[] Syno+Data Merge [] Syrlc*Deta Merge

Figure 6: Speedups at 8 processors under varying levels of optimization. The IS speedup is missing for XHPF because it
cannot parallelize IS. The other missing speedups are because our compiler is unable 1) to merge synchronization and da ta
movement for Shallow or 2) to replace barriers with a Push for Gauss, MGS, IS, and Shallow.

194

remains unmodified, and hence the diffs are small relative
to the page size. There is no gain from merging data with
synchronization. The reduction in the number of messages
is small, and offset by the extra overhead of each processor
determining whether it has modified any of the requested
pages. Similarly, there is little gain from replacing the bar-
rier with a Push, since the barrier synchronization is only a
small part of the total communication overhead.

The results for the 1024x1024 data set differ in two ways.
First, the communication aggregation does not improve ex-
ecution time, because the boundary rows are exactly one
page. Second, there is a gain from using Push. With a
smaller data set, the cost of the barrier becomes propor-
tionally higher, and hence its elimination results in some
improvement in running time (10%).

3 D - F F T is the three-dimensional Fast Fourier Trans-
form program from the NAS suite [4]. 3D-FFT numerically
solves a certain partial differential equation using three di-
mensional forward and inverse FFTs. The phases of the
program are separated by barriers, with a transpose between
some of the phases to reduce the array traversal cost. Each
processor is assigned a contiguous section of the array. The
transpose thus causes the producer-consumer communica-
tion at the barrier.

All five levels of analysis were applicable and performed.
The compiler optimized shared memory program shows a
48-59% improvement in execution time over the base Tread-
Marks and is within 0-8% of the PVMe and XHPF execution
times.

For the large 2 s x 2 s x 26 data set, large and similar
sized gains result from communication aggregation and con-
sistency overhead elimination. Communication aggregation
reduces the number of messages from 13.3k to 3.9k. Con-
sistency overhead elimination eliminates all page faults, all
protection operations, and all twinning and diffing (see Ta-
ble 2). Combining synchronization and data transfer and
replacing the barrier by a Push do not result in additional
gains, because the main bottleneck for 3D-FFT is the large
amount of data transferred.

For the small 2 s × 26 × 2 s data size, the results differ
in two ways. First, the gains from communication aggrega-
tion are significantly larger than those stemming from con-
sistency overhead elimination. For this data set, each con-
tiguous piece of data spans less than a single page. Hence,
there is little reduction in the number of memory protection
operations due to consistency overhead elimination. There
are still gains because of page fault, twin, and diff overhead
reduction. Second, the Push eliminates some false sharing
(reducing the data transfer from 12 to 6 MBytes), resulting
in a 11% gain compared to the execution time of the version
with merging synchronization and data but with the barrier
instead of a Push.

I n t e g e r Sor t (IS) is another program from the NAS
benchmark suite [4]. IS ranks an unsorted sequence of N
keys. The rank of a key is the index value i that the key
would have if the sequence of keys were sorted. All the keys
are integers in the range [0, B,~x] and the method used is
bucket sort. IS divides the keys evenly among the proces-
sors. At first, processors count the number of occurrences
of each key in their private buckets. In the next phase, the
values in the private buckets are summed up using locks to
acquire exclusive access to the shared buckets. The shared
buckets are divided into as many sections as there are pro-
cessors. Access to each section is controlled by a lock. The
processors access the sections in a staggered manner. The
data is migratory in this phase. In the final phase, sepa-

rated by a barrier to ensure that all the processors are done
with updating the shared buckets, the processors read the
sums in the shared buckets and rank the keys in their own
memory.

Communication aggregation, consistency elimination, and
synchronization and data merging were applied to IS. The
barrier could not be replaced by a Push because the com-
piler cannot statically determine from where the data is go-
ing to come (in other words, which processor held the lock
last). The compiler optimized TreadMarks program shows a
55-57% improvement in execution time over the base Tread-
Marks. Execution time is still 17-29% worse than that of
PVMe because the PVMe version pipelines the data trans-
fer to the next processor. XHPF could not parallelize this
program because of an indirect access to the main array.

There are no qualitative differences in the results for the
two data sets. Both communication aggregation and con-
sistency overhead elimination result in substantial improve-
ments. The gains from consistency overhead elimination
are more significant than communication aggregation since
consistency elimination also results in reduced data trans-
fer (745 Mbytes to 299 Mbytes). The compiler generates a
Validate with type READ,WRITE_ALL. As a result, no twins
or diffs are made. In contrast, TreadMarks suffers from a
diff accumulation phenomenon [22]. In TreadMarks, if a
processor incurs an access miss on a page, it is sent all the
diffs created by processors who have modified the data. In
IS, the shared array is modified by all processors, causing
many diffs to be sent to the faulting processor, even though
all of the diffs overlap completely. Merging synchronization
with data leads to a worsening of the performance. The
increased run-time overhead resulting from going through
a large page list outweighs the benefits of a reduction in
number of messages (see Section 3.3).

Shallow is the shallow water benchmark from the Na-
tional Center for Atmospheric Research. This code solves
difference equations on a two dimensional grid for the pur-
pose of weather prediction. Parallelization is done in bands,
with sharing only across the edges. Barriers are used to
synchronize the processors between phases.

Only communication aggregation and consistency elim-
ination are performed for this program. Combining syn-
chronization and data transfer or replacing the barriers with
Push calls would require interprocedural analysis, which our
implementation does not support. The compiler optimized
program shows a 12-15% improvement in execution time
over the base TreadMarks and is within 3-5% and 8-17%
of the execution times of the XHPF and PVMe versions,
respectively.

There are no qualitative differences in the results for the
two data sets. Shallow is in many ways similar to Jacobi,
with a small improvement resulting from communication
aggregation. The improvement from consistency overhead
elimination, is, however, larger for Shallow than for Jacobi.
The reason is that the larger number of pages used by Shal-
low makes page faults and memory protection operations
more expensive.

G a u s s implements Gaussian elimination with partial piv-
oting to solve a set of hnear equations. Parallelization is
done in a cyclic manner in order to improve load balance.
At every iteration, one processor determines the pivot row,
and assigns its row number to a shared variable. The other
processors read this shared variable as well as the column
containing the pivot element. Logically, both the row num-
ber and the column are broadcast. Barriers are used to
synchronize the processors between iterations.

195

Communication aggregation, consistency elimination, and
synchronization and data merging were applied. The com-
piler optimized program shows a 4-6% improvement in exe-
cution time over the base TreadMarks, a 2-3% improvement
over XHPF execution times, and is within -1-9% of the ex-
ecution times of the PVMe version.

There are no qualitative differences in the results for the
two data sets. In contrast to the other programs, synchro-
nization and data merging was the most effective because it
allows the data to be broadcast. The data can be broadcast
to all other processors at the time of the barrier, since all
processors require exactly the same data, and are aware of
who the last producer was.

M o d i f i e d G r a m m - S c h m i d t (M G S) computes an or-
thonormal basis for a set of N-dimensional vectors. At each
iteration i, the algorithm normalizes the ith vector, and
makes all vectors j > i orthogonal to vector i. Paralleliza-
tion is done in a cyclic manner in order to reduce communi-
cation while balancing the load in each iteration. The com-
munication and synchronization pattern is similar to that in
Gauss.

Once again, communication aggregation, consistency elim-
ination, and synchronization and data merging were applied.
The compiler optimized program shows a 4-18% improve-
ment in execution time over the base TreadMarks and is
within 9% and 19-29% of the execution times of the XHPF
and PVMe versions, respectively. Both XHPF and the opti-
mized TreadMarks suffer some loss in performance relative
to PVMe because of the strided access pattern, which results
in extra overhead at run-time.

There are no qualitative differences in the results for the
two data sets. The use of a broadcast in merging data com-
munication with the barrier was the most effective optimiza-
tion, resulting in a 2-10% improvement over the base Tread-
Marks.

6.3 Synchronous vs. Asynchronous Data Fetching

Figure 7 shows the speedups achieved by synchronous vs. asyn-
chronous data fetching for the large data sets. Asynchronous
data fetching dominates synchronous data fetching in almost
all cases. Virtually all applications benefit from the overlap
of communication and computation, more so than they are
hurt by the additional memory protection operations. Given
that the memory management operations on the IBM SP/2
are relatively slow, we expect this result to hold a fortiori
on most other architectures.

6.4 Summary

We conclude that for the programs and environment used
in this study,

1. Communication aggregation and consistency elimina-
tion always improve performance, in some cases by a
substantial amount.

2. Merging data and synchronization leads to a signifi-
cant improvement, only if the data is small and can be
sent in the same message as the synchronization, or if
the data can be broadcast.

3. Gains resulting from the use of a Push to replace a
barrier are minor. Replacing barriers with a Push, in
addition, suffers from the problem that a barrier is
needed later to restore release consistency. Most of
the gain of the Push is due to avoiding false sharing.
The use of a Push may, however, be more beneficial

8

4

2

0

V

0
o

- - c9

-I < :~

• Tmk [] Sync [] Async

Figure 7: Synchronous vs. asynchronous data fetching

at larger numbers of processors, since the overhead of
global synchronization and consistency increases.

4. Asynchronous data fetching gets better performance
than synchronous data fetching.

We therefore conclude that a suitable general purpose strat-
egy is to do communication aggregation and consistency
elimination. Merging data with synchronization and replac-
ing barriers with a Push are only useful when the data to
be communicated is small relative to the overhead of the
barrier messages or when there is false sharing.

7 Related Work

Research and commercial compilers for distributed mem-
ory machines have to date targeted the underlying message
passing layer directly [3, 14]. Careful optimization to min-
imize data movement by improving locality is performed,
and data and work is distributed according to the owner
computes rule. At the other end, compilers such as SUIF [1]
parallefize directly to shared memory and do not take ad-
vantage of bulk transfer capabilities. This work attempts to
bridge the gap by providing the flexibility of shared memory
while taking advantage of bulk transfer.

Several recent proposals for hardware shared memory
machines include a message passing subsystem designed in
part to allow apphcations to take advantage of bulk data
transfer [19, 20]. Woo et al. [24] evaluate one such design in
the context of the Flash system. There are many differences
between their work and ours. The Flash bulk data transfer
consists of multiple cache l ines as opposed to multiple pages
in our work, and the latencies used in the Flash simulation
are much smaller than in our implementation. Finally, while
Woo et al. focus on estabfishing the magnitude of the per-
formance benefits of bulk data transfer, we have explored in
addition ways f0r the compiler to automate the use of the
bulk data transfer facility.

Mowry et al. [23] discuss the design and evaluation of a
compiler algorithm for prefetching. Their algorithm concen-
trates on improving the performance of cache-based systems
and issues prefetch requests for data that are fikely to in-
cur a cache miss. Porterfield et al. [7] present an algorithm
for inserting prefetches one loop iteration ahead. Gornish,

196

Granston, and Veidenbaum [11] present an algorithm for de-
termining the earliest time when it is safe to prefetch shared
data. Our work differs in the granularity of information re-
quired, and takes advantage of the software-based consis-
tency maintenance. Our optimizations perform aggregation
with a view to exploiting the explicit synchronization in re-
laxed consistency models.

Jeremiassen et al. [15] present a static algorithm for com-
puting per-process memory references to shared data in coarse-
grained parallel programs. This information is then used to
determine cross-process memory references in order to di-
rect the type of coherence protocol to use in a bus-based
architecture. We use a similar analysis in terms of processor
identifiers in order to replace a barriers with a Push.

8 Conclus;on

We have experimentally demonstrated that the addition of
compiler-driven communication aggregation and consistency
overhead elimination improves the performance of software
DSM on distributed memory multiprocessors. Our com-
prier computes data access summaries using regular section
analysis and feeds that information to the release-consistent
TreadMarks DSM system. Improvements in execution time
range from 4 to 59% on an 8-processor IBM SP/2 in com-
parison to the base run-time system for the applications an-
alyzed. Among the various run-time options, asynchronous
communication aggregation coupled with consistency over-
head elimination works best. Combining synchronization
and data transfer, and replacing a barrier by a Push, result
in gains if the data transfer overhead is small in compari-
son to the synchronization overhead, and if it reduces false
sharing or allows a broadcast.

A combined comprie-time run-time system of this nature
retains the ease of programming of shared memory. No ad-
ditional user input is required. It also supports the same
wide class of programs as shared memory. The combina-
tion of static prediction of shared memory accesses by the
compiler with dynamic detection of accesses by the run-time
allows the combined system to approach the performance of
hand-coded or compiler-generated message passing. It does
so without incurring the programming difficulties of mes-
sage passing or the limitations on automatic parallelization
of data-parallel programs for message passing targets.

Acknowledgements

We would like to thank Gene Wagenbreth of Applied Par-
allel Research, Inc. and Honghui Lu of Rice University for
developing the XHPF versions of the benchmarks.

This work is supported in part by the National Science
Foundation under Grants CCR-9410457, BIR-9408503, CCR-
9457770, CCR-9502500, CCR-9521735, CDA-9502791, and
MIP-9521386, by the Texas TATP program under Grant
003604-017, and by grants from IBM Corporation and from
Tech-Sym, Inc.

References

[1] S. P. Amarasinghe et al. The SUIF compiler for scalable par-
allel machines. In Proceedings of the 7th SIAM Conference
on Parallel Processing for Scientific Computing, February
1995.

[2] C. Amza et ai. TreadMarks: Shared memory computing on
networks of workstations. IEEE Computer, February 1996.

[3] Applied Parallel Research. FORGE High Performance For-
tran User's Guide, version 2.0.

[4] D. Bailey et al. The NAS parallel benchmarks. Technical
Report 103863, NASA, July 1993.

[5] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A
language for parallel programming of distributed systems.
IEEE-TSE, June 1992.

[6] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Mid-
way distributed shared memory system. In Proceedings of
the ~93 CompCon Conference, February 1993.

[7] D. Callahan, K. Kennedy, and A. Porterfield. Software
prefetching. In Proceedings of ASPLOS-~, April 1991.

[8] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques
for reducing consistency-related information in distributed
shared memory systems. AGM TOGS, August 1995.

[9] G.A. Geist and V.S. Sunderam. Network-based concurrent
computing on the PVM system. Concurrency: Practice and
Experience, June 1992.

[10] K. Gharachorloo et al. Memory consistency and event or-
dering in scalable shared-memory multiprocessors. In Pro-
ceedings of ISCA-17, May 1990.

[11] E. Gornish, E. Granston, and A. Veidenbaum. Compiler-
directed data prefetching in multiprocessors with memory
hierarchies. In Proceedings of IGS-90, 1990.

[12] E. Granston and H. Wijshoff. Managing pages in shared
virtual memory systems: Getting the compiler into the game.
In Proceedings of ICS-93, July 1993.

[13] P. Havlak and K. Kennedy. An implementation of interpro-
cedural bounded regular section analysis. IEEE- TPDS, July
1991.

[14] S. Hiranandarti, K. Kennedy, and C. Tseng. Compiling For-
tran D for MIMD distributed-memory machines. CA CM,
August 1992.

[15] T.E. Jeremiassen and S. Eggers. Computing per-process
summary side-effect information. In U. Banerjee et al., edi-
tors, Fifth Workshop on Languages and Compilers for Par-
allelism, August 1992.

[16] T.E. Jeremiassen and S. Eggers. Reducing false sharing on
shared memory multiprocessors through compile time data
transformations. In Proceedings of PPoPP-95, July 1995.

[17] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release
consistency for software distributed shared memory. In Pro-
ceedings of ISCA-19, May 1992.

[18] K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and
transformation in an interactive parallel programming tool.
Concurrency: Practice and Experience, October 1993.

[19] D. Kranz et al. Integrating message-passing and shared-
memory: Early experience. In Proceedings of PPoPP-93,
May 1993.

[20] J. Kuskin et al. The Stanford FLASH multiprocessor. In
Proceedings of ISCA-21, April 1994.

[21] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. A GM TOGS, November 1989.

[22] H. Lu et al. Message passing versus distributed shared mem-
ory on networks of workstations. In Proceedings SuperCom-
puting '95, December 1995.

[23] T.C. Mowry, M.S. Lain, and A. Gupta. Design and evalua-
tion of a compiler algorithm for prefetching. In Proceedings
of ASPLOS-5, October 1992.

[24] S.C. Woo, J.P. Singh, and J.L. Hennessy. The perfor-
mance advantages of integrating block data transfer in cache-
coherent multiprocessors. In Proceedings of ASPLOS-6, Oc-
tober 1994.

197

